函数学案
3.1.1(第1课时)函数的概念 学案(含答案)
3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
初中数学函数备课教案
初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册
3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。
高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册
3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。
3.2函数关系的建立 教案 学案
第三章:函数的基本性质第二节:函数关系的建立【知识讲解】A.掌握建立函数关系的步骤1、分析题意.找出自变量和因变量。
2、列出相关的等量关系.3、等式变形得出因变量关于自变量的函 数解析式.4、根据问题的实际意义给出函数的定义域.B.在实际问题建立一系列函数关系。
包括分段函数的建立。
建立函数关系常用方法:(1)代入法;(2)构造法;(3)待定系数法;(4)换元法;(5)函数方程法. 例题分析例1.要建造一个高为3米,容积为48立方米的无盖的长方体储水池,已知池底的造价为每平方米1500元,池壁的造价为每平方米1000元。
试将该储水池的总造价y 表示成池底一边长x 的函数。
例2.某服装厂生产一种服装,每件成本为40元,出厂价为60元,该厂鼓励销售商订购,决定当一次定量超过100件时,每多定一件,订购的全部服装的出厂价就降低0.02元。
根据市场调查,销售商一次订购不会超过600件。
(1)设一次定量为x 件,服装实际出厂价为p 元,写出)(x f p 的表达式;(2)当销售商一次订购多少件时,该服装厂获得的利润最大?最大利润是多少?例3.如下图,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y 的最大值.【课堂练习】1、正三角形的边长为x ,周长为C ,面积为S ,那么周长C 关于边长x 的函数关系是 ,面积S 关于边长x 的函数关系是 。
2、有一块边长为10厘米的正方形铁皮,在它的四个角上各截取一块边长为x cm 的小正方形铁皮,剩余部分围成一个无盖的长方形盒子,将盒子的体积记作y 3cm ,那么y 关于x 的函数关系是 。
3、某产品的总成本y (万元)与产量x (台)之间的函数关系是3000201.02++-=x x y ,若每台售价为25万元,则生产者不亏本时(即销售收入不小于总成本)的最低产量为 台。
函数的奇偶性学案
函数的奇偶性学案【课前我能行——未闻先知】【学习目标】1、掌握函数奇偶性的定义及其图象的基本特点。
2、学会根据图象判断函数的奇偶性及其根据函数的奇偶性定义论证函数的奇偶性。
3、理解函数的奇偶性是对函数的内部的对称性的研究,要注意将它和两个不同函数之间的对称性相区别。
4、通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,从特殊到一般的概括能力,渗透数形结合的数学思想方法。
【基础知识】函数的奇偶性1. 如果对于函数)(x f 的定义域内 一个x ,都有 ,函数)(x f 就叫偶函数。
偶函数的图象关于 对称。
2. 如果对于函数)(x f 的定义域内 一个x ,都有 ,函数)(x f 就叫奇函数。
奇函数的图象关于 对称。
3.由奇、偶函数的定义可知,奇、偶函数的定义域在数轴上表示的区间关于 对称。
若奇函数的定义域中有零,其图象必过 ,即0)0(=f .4.在公共定义域内,(1)奇函数与奇函数之积是 。
(2)奇函数与偶函数之积是 。
(3)偶函数与偶函数之积是 。
答案提示:1、2见课本,3.原点,原点4.(1)偶函数(2)奇函数(3)偶函数课堂讲练:例1:求证:函数2432)(x x x f -=是偶函数。
证明:函数2432)(x x x f -=的定义域为R. =---=-2432)()()(x x x f 2432x x -=)(x f ,所以,)(x f 为R 上的偶函数。
例2:求证:函数5)(x x f =是奇函数。
证明:函数5)(x x f =的定义域为R.()x f x x x f -=-=-=-55)()(,所以f(x)为R 上的奇函数。
点评:1、奇函数和偶函数的几何意义:关于原点中心对称的函数是奇函数,反之,奇函数的图象关于原点对称; 关于y 轴对称的函数是偶函数,反之,偶函数的图象关于y 轴对称。
2、 证明函数奇偶性的一般步骤?(1)先判断函数的定义域,观察是否关于原点对称;(2)若关于原点对称,在判断f(-x)和f(x)的关系,相等就是偶函数,相反就是奇函数。
初中《函数》教案设计
初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
函数的基本性质 学案 说课稿 课件
月记忆量y(百分比)100%58.2%44.2%35.8%33.7%27.8%25.4%21.1%观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(二)经典例题二、知识要点1.增函数和减函数: 一般地,设函数()f x的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x<,那么就说函数()f x在区间D上是增函数.如果对于定义域I内某个区间D上的任意两个自变量的值12,x x,当12x x<时,都有12()()f x f x>,那么就说函数()f x在区间D上是减函数.2.单调性与单调区间如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.依据函数单调性的定义证明函数单调性的步骤:(1)取值.即设12,x x是该区间内的任意两个值且12x x<.(2)作差变形.求21()()f x f x-,通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.(3)定号.根据给定的区间和21x x -的符号确定21()()f x f x -的符号.当符号不确定时,可以进行分类讨论. (4)判断.根据单调性定义作出结论.即取值——作差——变形——定号——判断.函数()f x 在给定区间上的单调性,反映了函数()f x 在区间上函数值的变化趋势,是函数在区间上的整体性质,即若证明()f x 在[a ,b ]上是递增的,就必须证明对于区间[a ,b ]上任意的两个自变量12,x x ,当12x x <时,都有12()()f x f x <成立,而不可以用两个特殊值来替换,但是要否定一个函数在某一区间上的单调性,只要举一个反例即可.误区警示 函数单调性定义中的12,x x 有三个特征:一是同属一个单调区间;二是任意性,即“任意”取12,x x ,“任意”二字决不能丢掉,证明单调性时更不可随意以两个特殊值替换;三是有大小,通常规定12x x <三者缺一不可. ( 三)经典例题1.根据函数图象判定单调性例1 如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 【思路分析】利用函数单调性的几何意义.图象上升则在此区间上是增函数,图象下降则在此区间上是减函数. 【解析】☆变式练习2根据函数()y f x =的图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 【解析】2. 函数单调性的证明例2 证明函数()21f x x =-在区间(,)-∞+∞上是增函数.【思路分析】根据函数单调性的定义进行证明,要注意证明的方法和步骤. 【证明】☆变式练习2 证明函数1()f x x=在区间(0,)+∞上是减函数. 【证明】三、总结提升1、本节课你主要学习了2、依据函数单调性的定义证明函数单调性的步骤: 四、问题过关1、函数()y f x =的图象如图1所示,则函数()f x 的单调递增区间为 单调递减区间为2、函数()y f x =的图象如图2所示,则函数()f x 的单调递增区间为 单调递减区间为3、函数()y f x =的图象如图3所示,则函数()f x 的单调递增区间为 单调递减区间为图1 图2 图3 4、如图所示的是定义在闭区间[-4,7]上的函数()y f x =的图象,根据图象说出函数的单调区间,并回答:在每一个单调区间上,f (x )是增函数还是减函数?。
数学八年级下册学案 19.1 函数
(1)65-=x y (2)xy 6=(3)2542-+=x x y (4)),(为常数其中b k b kx y +=例2、小李坐出租车由湖南广益实验中学去往长沙火车南站,出租车的收费标准如下:(1)写出出租车行驶的里程数x ≥3(公里)与费用y (元)之间的关系式; (2)若这段路程有4.5千米,小李身上有10元钱,够不够付车费?课后作业 一、选择题1.半径是r 的圆的周长为r π2C =,其中常量是( )A.π2B.2, rC.π,rD.22.平行四边形的一组邻边长分别为y x ,,周长为20,则y 与x 的关系式为( )A.x y -=20B.x y 220-=C.x y -=10D.x y 2110-= 3.以速度v 匀速行驶的汽车行驶路程s 与时间t 的关系式为:vt s =,在此问题中变量是( )A.t v ,B.t s ,C.v s ,D.t v s ,,4.中国电信公司推出的无线市话的收费标准为:前3min (不足3min 按3min 计)收费0.2元,3min 后每分0.1元,则通话一次x (min)(x >3)与这次通话费用y(元)之间的关系为( )xy 1.0.A = x y 1.02.0.B +=)3(1.02.0.C -+=x y 5.01.0.D +=x y二、填空题5.设地面气温为20℃,如果每升高1千米,气温下降6℃,在这个变化过程中,气温t (℃)随高度h (千米)的变化而变化的关系式为 .6.三角形的一边长为5cm ,它的面积S (cm 2)与这边上的高h (cm )的关系式是 .7.甲乙两地相距S 千米,一自行车以每小时10千米的速度从甲地驶向乙地,则自行车离乙地的距离y (千米)与行驶的时间t (h)之间的关系式是____________. 8.设打字收费标准为每一千字4元,则打字费y (元)与字数x (千字)之间的关系式为:,在这个问题中 是变量, 是常量. 三、解答题9.先写出下列问题中的关系式,然后指出其中的变量和常量. (1)面积为10的矩形的长y 与宽x 之间的关系;(2)一个铜球在0℃的体积为 1 0003cm ,加热后温度每增加1℃,体积增加0.0513cm ,t ℃时球的体积为V 3cm .10.(1)设圆柱的底面半径r 不变,圆柱的体积V 与圆柱的高h 的关系式是h r 2V π=,在这个式子中常量和变量分别是什么?(2)设圆柱的高h 不变,在圆柱的体积V 与圆柱的底面半径r 的关系式h r 2V π=中,常量和变量分别又是什么?11.小亮现已存款100元.为赞助“希望工程”,他计划今后三年每月存款10元.存款总金额y (单位:元) 将随时间x (单位:月)的变化而改变.写出存款总金额y 与随时间x 的关系式,并指出其中的常量与变量.四、拓展提高如图,在Rt △ABC 中,已知∠C=90°,边AC= 4cm ,BC= 5cm ,点P 为CB 边上一点,当动点P 沿CB 从点C 向点B 运动时,△APC 的面积发生了变化. (1)如果设CP 长为x cm ,△APC 的面积为y cm ,求y 与x 的关系式; (2)当点P 从点D (D 为BC 的中点)运动到点B 时,则△APC 的面积从 2cm 变到 2cm ..2 函数(一)学习目标1.理解函数的概念,会确定简单函数的关系式以及自变量的取值范围;2.通过对实际问题的分析、对比,归纳函数的概念,在此基础上理解掌握函数的概念。
一次函数专题复习学案
xOy一次函数专题复习学案学习目标:1、知道什么是一次函数、正比例函数,并能判定一次函数和正比例函数。
2、会用待定系数法确定一次函数的解析式。
3、会运用一次函数图像及性质解决简单的问题。
练习回顾目标1 知道什么是一次函数、正比例函数,并能判断一个函数是不是一次函数和正比例函数1.函数:①y=-15x x;②y=2x -1;③y=12x;④y=x 2+3x-1;⑤y=x+4;⑥y=3. 6x, 一次函数有___ __;正比例函数有____________(填序号). 2.函数y=(k 2-1)x+3是一次函数,则k 的取值范围是( ) A.k≠1 B.k≠-1 C.k≠±1 D.k 为任意实数.3.若一次函数y=(1+2k)x+2k-1是正比例函数,则k=_______. 目标2 会运用一次函数图象及性质解决简单的问题 1. 正比例函数y=kx,若y 随x 的增大而减小,则k______. 2. 一次函数y=kx+b 的图象如图,则下面正确的是( ) A.k<0,b<0 B.k<0,b>0 C.k>0,b>0 D.k>0,b<03.一次函数y=-2x+4的图象经过的象限是_______,它与x 轴的交点坐标是_____,与y 轴的交点坐标是_______.4. 已知一次函数y=(k-2)x+(k+2),若它的图象经过原点,则k=_____;若y 随x 的增大而增大,则k__________.5.若一次函数y=kx+b 满足k<0,b<0则它的大致图象是图中的( )xO yA xOyBxO yCxOyD目标3 会用待定系数法确定一次函数的解析式。
1、正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.2、已知一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式.3、一次函数y=kx+b 的图象如上图所示,求此一次函数的解析式。
初中数学函数教案范文
初中数学函数教案范文教学目标:1. 知识与技能:学生能够理解函数的概念,明确自变量与函数之间的关系。
2. 过程与方法:学生通过探索函数概念的过程,能够体验函数的模型思想。
3. 情感、态度与价值观:学生能够培养观察、交流、分析的思想意识,理解函数在实际应用中的价值。
教学重、难点与关键:1. 重点:使学生认识函数的概念。
2. 难点:对函数中自变量取值范围的确定。
3. 关键:从实际出发,由具体到抽象,建立函数的模型。
教学方法:采用情境探究的方法,让学生从具体的情境中提升函数的思想方法。
教学过程:一、回顾交流,聚焦问题1. 教师提问:同学们通过学习变量这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量。
2. 学生活动:思考问题,踊跃发言(先归纳出5个思考题的关系式,再举例)。
3. 教师活动:激发兴趣,鼓励学生联想。
二、探究新知,建构概念1. 教师活动:在地球某地,温度T与高度d的关系可以用T=10-d/2来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量。
(2)填写下表(高度d/m 0,200,400,600,800,1000)。
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就随之确定。
2. 学生活动:根据关系式回答问题。
三、巩固新知,内化概念1. 教师活动:出示一些具体实例,让学生判断其中的变量关系是否可以看作函数。
2. 学生活动:对实例进行判断。
四、练习与提高1. 教师活动:出示练习题,让学生独立完成。
2. 学生活动:完成练习题,小组内交流讨论。
五、总结与反思1. 教师提问:通过本节课的学习,同学们对函数有了哪些认识?2. 学生活动:总结函数的概念,明确函数的模型思想。
教学评价:通过学生在课堂上的发言、练习题的完成情况以及小组讨论的表现,评价学生对函数概念的理解和运用情况。
人教版九年级数学下册第二十六章二次函数课时学案
人教版九年级数学下册第二十六章二次函数课时学案26.1.二次函数学案一一、学习目标1.知识与技能目标:(1)理解并掌握二次例函数的概念;(2)、能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式;(3)、能根据实际问题中的条件确定二次例函数的解析式。
二、学习重、难点1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式;2.难点:理解二次例函数的概念.。
三、教学过程(一)、创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?(二).自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。
问题2:n边形的对角线数d与边数n之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。
问题5:什么是二次函数?形如。
问题6:函数y=ax²+bx+c,当a、b、c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?(三).尝试应用:例1: 关于x 的函数mm xm y -+=2)1(是二次函数, 求m 的值.注意:二次函数的二次项系数必须是 的数。
例2:已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.(待定系数法)(四).巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x. 2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
函数的极限学案--优质课竞赛一等奖
函数的极限学案--优质课竞赛一等奖
简介
这是一份优质课竞赛一等奖的文档,主题为函数的极限学案。
本文档将介绍函数极限的概念、性质和计算方法,旨在培养学生对函数极限的理解和运用能力。
第一部分:概念解释
函数极限是函数在某一点或无穷远处的趋势或行为。
它是研究函数性质和行为的重要工具。
学生们需要理解函数极限的定义以及与函数连续性、导数等概念的关系。
第二部分:极限的性质
函数极限具有一些重要的性质,如极限的唯一性、四则运算法则、复合函数的极限等。
通过讲解这些性质,学生们能够更好地理解和运用函数的极限。
第三部分:计算方法
计算函数极限是研究函数极限的关键。
我们将介绍一些常用的计算方法,包括代入法、夹逼准则、洛必达法则等。
通过练和应用
这些计算方法,学生们可以提升他们的计算能力,并解决更复杂的极限问题。
第四部分:应用举例
为了帮助学生更好地理解和应用函数的极限,我们将提供一些实际应用的举例,如在物理、经济学等领域中的应用。
通过这些实际例子,学生们可以将极限理论与实际问题相结合,培养他们的问题解决能力。
结语
函数极限是高等数学研究中的重要概念,掌握函数极限的理论和运用对学生们的数学素养和发展至关重要。
希望本文档能够为教师们提供一些教学思路和资源,同时也能够激发学生们对函数极限的兴趣和研究动力。
以上是函数的极限学案--优质课竞赛一等奖的文档内容,谢谢阅读!。
人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念
第三章函数的概念与性质3.1 函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.『微思考』(1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}『微体验』1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2』∪『0,+∞)C.(-∞,-2)∪『0,+∞)D.(-∞,-2』∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x>1,x∈Q}.A.2B.3 C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =『-1,1』,B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4『方法总结』判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?『方法总结』求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的『解 析』式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2』D .『2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.『方法总结』求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.『方法总结』判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简『解析』式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数『解析』式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.——★参*考*答*案★——课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系『微思考』(1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b『a,b』(a,b) 『a,b) (a,b』(2) (-∞,+∞)(3) 『a,+∞)(a,+∞)(-∞,b』(-∞,b)『微体验』1.C『『解析』』集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪『0,+∞).2.D『『解析』』用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)『『解析』』{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B『『解析』』(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B『『解 析』』①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A『『解 析』』由2-x ≥0,解得x ≤2,所以M =(-∞,2』,所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}『『解 析』』要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入『解 析』式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2』.(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1』. 探究四 同一个函数的判定 例4 ②③『『解 析』』①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。
学案:高三函数的图象教案
平陆中学高三年级理科数学教案课题:函数的图象教学目标:1.通过复习函数图象的画法,体会等价转化的思想和图象间的相互关系,提升逻辑推理的核心素养。
2.通过函数的性质来识别函数的图像,提升直观想象的核心素养。
3.通过函数图象的应用,体会数形结合和等价转化的数学思想。
教学重点:函数图象的画法 教学难点:函数图象的应用 学习过程:一.知识梳理1.利用描点法作函数图象 其基本步骤是列表、描点、连线.首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象 (1)平移变换(2)对称变换①y =f (x )―――――――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――――――→关于y 轴对称y =f (-x ). ③y =f (x )――――――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (x >0). (3)翻折变换①y =f (x )―――――――――――――――――――→保留x 轴及上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )――――――――――――→保留y 轴及右边图象,并作其关于y 轴对称的图象y =f (|x |).(4)伸缩变换 ①y =f (x )a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变→y =f (ax ). ②y =f (x )a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变→y =af (x ).二.自我检测判断正误(正确的打“√”,错误的打“×”)(1)将函数y =f (x )的图象先向左平移1个单位,再向下平移1个单位得到函数y =f (x +1)+1的图象.( )(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( ) (3)函数y =f (x )与y =-f (-x )的图象关于原点对称.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( ) 答案:(1)× (2)× (3)√ (4)√已知函数y =|x -1|,则其图象关于________对称( ) A .(1,0) B .(-1,0) C .直线x =1D .直线x =-1解析:选C.y =|x -1|=⎩⎪⎨⎪⎧x -1,x >1,0,x =1,-x +1,x <1.其图象如图所示.故选C .函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x +1 B .e x -1 C .e-x +1 D .e-x -1解析:选D.曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x 向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.函数y =f (x )在x ∈[-2,2]上的图象如图所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.解析:由f (x )的图象知f (x )为奇函数,则f (x )+f (-x )=0. 答案:0若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 解析:由题意a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解,则a >0,即实数a 的取值范围是(0,+∞).答案:(0,+∞)三.典例分析分别作出下列函数的图象. (1)y =2x +2; (2)y =|lg x |; (3)y =x +2x -1.【解】 (1)将y =2x 的图象向左平移2个单位.图象如图所示.(2)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图所示.(3)因为y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,图象如图所示.将本例(3)的函数变为“y =x +2x +3”,函数的图象如何?解:y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如图所示.(1)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )(2)函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0【解析】 (1)易知函数g (x )=x +sin xx 2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx 2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D .(2)函数定义域为{x |x ≠-c },结合图象知-c >0,所以c <0. 令x =0,得f (0)=bc 2,又由图象知f (0)>0,所以b >0.令f (x )=0,得x =-b a ,结合图象知-ba >0,所以a <0.故选C.【答案】 (1)D (2)C已知函数f (x )=|x |(x -a ),a >0,(1)作出函数f (x )的图象; (2)写出函数f (x )的单调区间;(3)当x ∈[0,1]时,由图象写出f (x )的最小值. 【解】 (1)f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥0,-x (x -a ),x <0,其图象如图.(2)由图知,f (x )的单调递增区间是(-∞,0),⎝⎛⎭⎫a 2,+∞;单调递减区间是⎝⎛⎭⎫0,a2. (3)由图象知,当a2>1,即a >2时,所求最小值f (x )min =f (1)=1-a ;当0<a2≤1,即0<a ≤2时,所求最小值f (x )min =f ⎝⎛⎭⎫a 2=-a24. 综上,f (x )min =⎩⎪⎨⎪⎧-a 24(0<a ≤2),1-a (a >2).如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( ) A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}【解析】 令g (x )=y =log 2(x +1),知g (x )的定义域为(-1,+∞),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1.所以结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.【答案】 C(2017·高考山东卷)已知当x ∈[0,1]时,函数y =(mx -1)2 的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1]∪[23,+∞) B .(0,1]∪[3,+∞) C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)【解析】 当0<m ≤1时,需满足1+m ≥(m -1)2,解得0≤m ≤3,故这时0<m ≤1.当m >1时,需满足(m -1)2≥1+m ,解得m ≥3或m ≤0,故这时m ≥3.综上可知,正实数m 的取值范围为(0,1]∪[3,+∞). 【答案】 B四.巩固练习1. 分别作出下列函数的图象. (1)y =|x -2|(x +1); (2)y =⎝⎛⎭⎫12|x |.解:(1)当x ≥2,即x -2≥0时, y =(x -2)(x +1)=x 2-x -2=⎝⎛⎭⎫x -122-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝⎛⎭⎫x -122+94. 所以y =⎩⎪⎨⎪⎧⎝⎛⎭⎫x -122-94,x ≥2,-⎝⎛⎭⎫x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)作出y =⎝⎛⎭⎫12x的图象,保留y =⎝⎛⎭⎫12x图象中x ≥0的部分,加上y =⎝⎛⎭⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝⎛⎭⎫12|x |的图象,如图中实线部分.2. (2018·长沙市统一模拟考试)函数y =ln|x |-x 2的图象大致为( )解析:选A.令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B ,D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈⎝⎛⎭⎪⎫0,22时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.选A.3.下列区间中,函数f (x )=|lg(2-x )|在其上为增函数的是( ) A .(-∞,1] B .⎣⎡⎦⎤-1,43 C .⎣⎡⎭⎫0,32 D .[1,2)解析:选D.用图象法解决,将y =lg x 的图象关于y 轴对称得到y =lg(-x )的图象,再向右平移两个单位,得到y = lg[-(x -2)]的图象,将得到的图象在x 轴下方的部分翻折上来,即得到f (x )=|lg(2-x )|的图象.由图象,在选项中的区间上f (x )是增函数的显然只有D.4.已知函数f (x )=⎩⎪⎨⎪⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值范围是( ) A .(-∞,-1] B .[-1,2) C .[-1,2]D .[2,+∞)解析:选B.由题意可得直线y =x 与函数f (x )=2(x >m )有且只有一个交点.而直线y =x 与函数f (x )=x 2+4x +2的图象至多有两个交点.题目需要三个交点,则需满足直线y =x 与函数f (x )=x 2+4x +2的图象有两个交点,画图可知,函数y =x 与f (x )=x 2+4x +2的图象交点为A (-2,-2),B (-1,-1),故有m ≥-1.而当m ≥2时,直线y =x 和射线y =2(x >m )无交点,故实数m 的取值范围是[-1,2).故选B.五.课堂小结 1.函数图象的画法[提醒] (1)画函数的图象一定要注意定义域.(2)利用图象变换法时要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. 2.辨识函数图象的5个切入点(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性. (4)从函数的周期性,判断图象的循环往复. (5)从函数的特征点,排除不合要求的图象. 3. 利用函数图象求解问题的策略(1)对称性信息转化为中点坐标关系,注重形与数的结合. (2)“渐近线”信息转化为函数的定义域或值域.(3)方程根的个数转化为两曲线的交点个数,注重数与形的结合. (4)图象的“最高点”“最低点”信息转化为最值问题.六.作业1.函数y =x 2-2|x |的图象是( )2.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-23.已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)4.已知函数y =f (x )的大致图象如图所示,则函数y =f (x )的解析式可能为( ) A .f (x )=e x ln xB .f (x )=e -x ln|x | C .f (x )=e x ln|x | D .f (x )=e |x |ln|x |5.已知函数y =f (1-x )的图象如图所示,则y =f (1+x )的图象为( )6.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)的值等于________.7.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________.8.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 9.已知函数f (x )=x1+x .(1)画出f (x )的草图; (2)指出f (x )的单调区间.10.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)若方程f (x )=a 只有一个实数根,求a 的取值范围.。
学案2:4.5.1 函数的零点与方程的解
4.5.1函数的零点与方程的解1.函数的零点(1)概念:对于一般函数f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)方程的根、函数的图象与x轴的交点、函数的零点三者之间的联系名师点拨函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.2.函数零点的判断1.判断正误(正确的打“√”,错误的打“×”)(1)函数的零点是一个点.()(2)任何函数都有零点.()(3)若函数y=f(x)在区间(a,b)上有零点,则一定有f(a)·f(b)<0.()2.函数f(x)=log2(2x-1)的零点是()A.1B.2C.(1,0)D.(2,1)3.函数f(x)=x3-3x-3有零点的区间是()A.(-1,0)B.(0,1)C .(1,2)D .(2,3)4.已知函数f (x )=-2x +m 的零点为4,则实数m 的值为________.5.已知函数y =f (x )的定义域为R ,图象连续不断,若计算得f (1)<0,f (1.25)<0,f (1.5)>0,则可以确定零点所在区间为________.讲练互动探究点1 求函数的零点例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x +3x ;(2)f (x )=x 2+2x +4; (3)f (x )=2x -3; (4)f (x )=1-log 3x . 规律方法函数零点的求法求函数y =f (x )的零点通常有两种方法:一是令f (x )=0,根据解方程f (x )=0的根求得函数的零点;二是画出函数y =f (x )的图象,图象与x 轴的交点的横坐标即为函数的零点. 跟踪训练1.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0的所有零点构成的集合为( )A .{1}B .{-1}C .{-1,1}D .{-1,0,1}2.若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( ) A .-1和16B .1和-16C .12和13D .-12和-13例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .3B .2C .1D .0(2)函数f (x )=ln x -2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(e ,+∞)规律方法(1)判断函数零点所在区间的3个步骤①代入:将区间端点值代入函数解析式求出相应的函数值.②判断:把所得的函数值相乘,并进行符号判断.③结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.(2)判断函数存在零点的2种方法①方程法:若方程f(x)=0的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判定零点的个数.②图象法:由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一平面直角坐标系内作出y1=g(x)和y2=h(x)的图象,根据两个图象交点的个数来判定函数零点的个数.跟踪训练1.根据表格中的数据,可以判定方程e x-2x-5=0的一个根所在的区间是()A.(0,1) B.2.判断函数f(x)=ln x+x2-3的零点的个数.探究点3 根据函数的零点求参数的值例3已知a是实数,函数f(x)=2|x-1|+x-a,若函数y=f(x)有且仅有两个零点,则实数a 的取值范围是________.规律方法根据函数零点个数求参数值(范围)的方法已知函数有零点(方程有根)求参数取值范围的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,通过解不等式确定参数的取值范围.(2)分离参数法:先将参数分离,然后转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练 函数f (x )=ax 2-2x +1,若y =f (x )在区间⎣⎡⎦⎤-12,12内有零点,则实数a 的取值范围为________.达标反馈1.函数f (x )=2x 2-3x +1的零点是( ) A .-12,-1B .12,1C .12,-1D .-12,12.函数y =x 2-bx +1有一个零点,则b 的值为( ) A .2 B .-2 C .±2D .3 3.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)4.函数f (x )=2x +x -2有________个零点.巩固提升 A 基础达标1.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下对应值表:则函数f (x )A .(-∞,1) B .(1,2) C .(2,3)D .(3,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为 ( )A .12,0B .-2,0C .12D .03.若函数f (x )的图象是一条连续不断的曲线,且f (0)>0,f (1)>0,f (2)<0,则y =f (x )有唯一零点需满足的条件是( ) A .f (3)<0B .函数f (x )在定义域内是增函数C .f (3)>0D .函数f (x )在定义域内是减函数4.函数f (x )=x 3-⎝⎛⎭⎫12x的零点个数是( )A .0B .1C .2D .无数个5.若函数f (x )=x +ax (a ∈R )在区间(1,2)上有零点,则a 的值可能是( )A .-2B .0C .1D .36.函数f (x )=(x -1)(x 2+3x -10)的零点有________个.7.已知函数f (x )=a +log 2x ,且f (a )=1,则函数f (x )的零点为________. 8.若函数f (x )=ax 2-x +2只有一个零点,则实数a 的取值集合是________. 9.判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x 4-x 2; (2)f (x )=4x +5; (3)f (x )=log 3(x +1).10.已知函数f (x )=cx -1x +1(c 为常数),若1为函数f (x )的零点.(1)求c 的值;(2)证明函数f (x )在[0,2]上是单调增函数; (3)已知函数g (x )=f (e x )-13,求函数g (x )的零点.B 能力提升11.方程log 3x +x =3的零点所在的区间为( ) A .(0,2) B .(1,2) C .(2,3)D .(3,4)12.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有________个零点,这几个零点的和等于________.13.已知函数f (x )=2x -x 2,问方程f (x )=0在区间[-1,0] 内是否有解,为什么?14.已知函数f (x )=x 2-bx +3. (1)若f (0)=f (4),求函数f (x )的零点;(2)若函数f (x )的一个零点大于1,另一个零点小于1,求b 的取值范围.C 拓展探究15.已知函数f (x )=a -2+a ·2x1+2x.(1)当a =1时,判断函数f (x )的奇偶性并证明; (2)试讨论f (x )的零点个数.参考答案新知初探1.【答案】(1)× (2)× (3)×2.【答案】A3.【答案】D【解析】因为f (2)=8-6-3=-1<0,f (3)=27-9-3=15>0,所以f (2)·f (3)<0, 所以D 正确. 4.【答案】8【解析】f (x )=-2x +m 的零点为4,所以-2×4+m =0,m =8. 5.【答案】(1.25,1.5) 讲练互动探究点1 求函数的零点例1 解:(1)令x +3x =0,解得x =-3,所以函数f (x )=x +3x 的零点是-3.(2)令x 2+2x +4=0, 由于Δ=22-4×4=-12<0, 所以方程x 2+2x +4=0无解, 所以函数f (x )=x 2+2x +4不存在零点. (3)令2x -3=0, 解得x =log 23,所以函数f (x )=2x -3的零点是log 23. (4)令1-log 3x =0, 解得x =3,所以函数f (x )=1-log 3x 的零点是3. 跟踪训练 1.【答案】C【解析】当x ≤0时,f (x )=x +1=0⇒x =-1;当x >0时,f (x )=log 2x =0⇒x =1,所以函数f (x )的所有零点构成的集合为{-1,1}. 2.【答案】B【解析】由于f (x )=x 2-ax +b 有两个零点2和3,所以a =5,b =6,所以g (x )=6x 2-5x -1有两个零点1和-16.探究点2 判断函数零点所在的区间或个数 例2 【答案】 (1)B (2)B【解析】 (1)当x ≤0时,由f (x )=x 2+2x -3=0得x 1=-3,x 2=1(舍去); 当x >0时,由f (x )=-2+ln x =0得x =e 2. 所以函数的零点个数为2.(2)因为f (1)=-2<0,f (2)=ln 2-1<0,所以在(1,2)内f (x )无零点,A 错; 又f (3)=ln 3-23>0,所以f (2)·f (3)<0,所以f (x )在(2,3)内有零点. 跟踪训练 1.【答案】C【解析】设f (x )=e x -2x -5,此函数的图象是连续不断的, 由表可知f (0)=1-5=-4<0, f (1)=2.72-7=-4.28<0, f (2)=7.39-9=-1.61<0, f (3)=20.09-11=9.09>0,f (4)=54.60-13=41.60>0,所以f (2)·f (3)<0,所以函数f (x )的一个零点,即方程e x -2x -5=0的一个根所在的区间为(2,3). 2.解:法一:函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数. 在同一平面直角坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数f (x )=ln x +x 2-3有一个零点. 法二:因为f (1)=-2,f (2)=ln 2+1>0. 所以f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的, 所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是单调递增的, 所以零点只有一个.探究点3 根据函数的零点求参数的值 例3 【答案】 (1,+∞)【解析】 函数f (x )=2|x -1|+x -a 有且仅有两个零点,即函数y =2|x -1|+x 与y =a 有且仅有两个交点.分别作出函数y =2|x -1|+x 与y =a 的图象,如图所示.由图易知,当a >1时,两函数的图象有两个不同的交点,故实数a 的取值范围是(1,+∞). 跟踪训练 【答案】(-∞,0] 【解析】f (x )=ax 2-2x +1=0,可得a =-1x 2+2x=-⎝⎛⎭⎫1x -12+1.若f (x )在⎣⎡⎦⎤-12,12内有零点,则f (x )=0在区间⎣⎡⎦⎤-12,12内有解,当-12≤x <0或0<x ≤12时,可得a =-1x 2+2x≤0.所以实数a 的取值范围为(-∞,0].达标反馈1.【答案】B【解析】方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2-3x +1的零点是12,1.2.【答案】C【解析】因为函数有一个零点,所以Δ=b 2-4=0,所以b =±2. 3.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)【解析】选C.易知f (x )=e x +x -2在R 内单调递增,且f (0)=-1<0,f (1)=e -1>0,所以f (x )的零点所在区间为(0,1). 4.【答案】1【解析】在同一平面直角坐标系中作出函数y =2x ,y =-x +2的图象,由图可知函数f (x )有1个零点.巩固提升 A 基础达标1.【答案】C【解析】若f (x )在[a ,b ]上连续,且f (a )·f (b )<0则f (x )在(a ,b )上一定存在零点.因为f (2)>0,f (3)<0,所以f (x )在(2,3)上一定存在零点. 2.【答案】D【解析】当x ≤1时,由f (x )=0,得2x -1=0,所以x =0.当x >1时,由f (x )=0,得1+log 2x =0,所以x =12,不成立,所以函数的零点为0.3.【答案】D【解析】因为f (1)>0,f (2)<0,所以函数f (x )在区间(1,2)上一定有零点.若要保证只有一个零点,则函数f (x )在定义域内必须是减函数. 4.【答案】B【解析】作出y =x 3与y =⎝⎛⎭⎫12x的图象,如图所示,两个函数的图象只有一个交点,所以函数f (x )只有一个零点.故选B.5.【答案】A【解析】f (x )=x +ax (a ∈R )的图象在(1,2)上是连续不断的,逐个选项代入验证,当a =-2时,f (1)=1-2=-1<0,f (2)=2-1=1>0.故f (x )在区间(1,2)上有零点,同理,其他选项不符合,选A. 6.【答案】3【解析】因为f (x )=(x -1)(x 2+3x -10) =(x -1)(x +5)(x -2),所以由f (x )=0得x =-5或x =1或x =2. 7.【答案】12【解析】依题意有a +log 2a =1, 即log 2a =1-a , 易知a =1,所以f (x )=1+log 2x ,令f (x )=0,得x =12.8.【答案】⎩⎨⎧⎭⎬⎫0,18【解析】当a =0时,f (x )=-x +2,令f (x )=0,解得x =2, 所以函数只有一个零点2,符合题意;当a ≠0时,由函数只有一个零点可得Δ=(-1)2-4×a ×2=0,即1-8a =0,解得a =18. 综上a =18或a =0. 9.解:(1)因为f (x )=x 2(x -1)(x +1)=0,所以x =0或x =1或x =-1,故函数f (x )=x 4-x 2的零点为0,-1和1.(2)令4x +5=0,则4x =-5<0,方程4x +5=0无实数解.所以函数f (x )=4x +5不存在零点.(3)令log 3(x +1)=0,解得x =0,所以函数f (x )=log 3(x +1)的零点为0.10.(1)解:因为1为函数f (x )的零点,所以f (1)=0,即c =1.(2)证明:设0≤x 1<x 2≤2,则f (x 2)-f (x 1)=x 2-1x 2+1-x 1-1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 因为0≤x 1<x 2≤2,所以x 2-x 1>0,x 2+1>0,x 1+1>0,所以f (x 2)>f (x 1),即函数f (x )在[0,2]上是单调增函数.(3)令g (x )=f (e x)-13=e x -1e x +1-13=0, 所以e x =2,即x =ln 2,所以函数g (x )的零点是ln 2.B 能力提升11.【答案】C【解析】令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,所以方程log 3x +x =3的零点所在的区间为(2,3).12.【答案】3 0【解析】因为函数f (x )是定义域为R 的奇函数,且在(0,+∞)上是增函数,所以f (0)=0.又因为f (-2)=0,所以f (2)=-f (-2)=0,故该函数有3个零点,这3个零点之和等于0.13.解:方程f (x )=0在区间[-1,0]内有解,理由如下:因为f (-1)=2-1-(-1)2=-12<0, f (0)=20-02=1>0,而函数f (x )=2x -x 2的图象是连续不断的曲线,所以f (x )在区间[-1,0]内有零点,即方程f (x )=0在区间[-1,0]内有解.14.解:(1)由f (0)=f (4)得3=16-4b +3,即b =4,所以f (x )=x 2-4x +3,令f (x )=0即x 2-4x +3=0得x 1=3,x 2=1.所以f (x )的零点是1和3.(2)因为f (x )的零点一个大于1,另一个小于1,如图.需f (1)<0,即1-b +3<0,所以b >4.故b 的取值范围为(4,+∞).C 拓展探究15.解:(1)当a =1时,函数f (x )=-1+2x1+2x,该函数为奇函数. 证明如下:依题意得函数f (x )的定义域为R ,关于原点对称,又f (-x )=-1+2-x 1+2-x =-2x +12x +1=--1+2x1+2x=-f (x ),所以函数f (x )为奇函数. (2)化简得f (x )=a -21+2x ,所以f (x )=0⇔a =21+2x ,因为函数y =2x 在R 上单调递增且值域为(0,+∞),所以y =2 1+2x 在R 上单调递减且值域为(0,2),所以当a ≤0或a ≥2时,函数f (x )无零点;当0<a <2时,函数f (x )有唯一零点.。
人教B版数学高一版必修1学案 函数
数学人教B 必修1第二章2.1.1 函数1.会用集合与对应语言来刻画函数,了解构成函数的要素,会求一些简单函数的定义域和值域.2.掌握用换元法和代入法求函数解析式这一常用方法,并能正确地使用区间表示数集. 3.了解映射的概念,能判定一些简单的对应是不是映射,并用映射概念加深对函数概念的理解.1(1)在近代定义中,x 叫做自变量,自变量取值的范围(数集A )叫做这个函数的______; 如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的____,记作______; 所有函数值构成的集合______叫做这个函数的值域. (2)确定一个函数只需两个要素:____和______.要检验给定两个变量之间是否具有函数关系,只要检验: ①____和____是否给出; ②根据给出的对应法则,自变量x 在其定义域中的____值,是否都能确定____的函数值y .(1)一次函数f (x )=kx +b (k ≠0)的定义域为R ,值域是R ;(2)反比例函数f (x )=kx (k ≠0)的定义域为{x |x ≠0},值域是{y |y ≠0};(3)二次函数f (x )=ax 2+bx +c (a ≠0)的定义域是R ;当a >0时,值域是⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ,当a <0时,值域是⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . 【做一做1-1】下列四组函数中,f (x ),g (x )表示同一函数的是( ) A .f (x )=x ,g (x )=4x 4B .f (x )=1,g (x )=xxC .f (x )=(x )2,g (x )=3x 3 D .f (x )=|x |,g (x )=x 2【做一做1-2】函数f (x )= 2 011-x +1x -2 010的定义域为__________.2.区间(1)在数轴上,区间可以用一条以a ,b 为端点的线来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.__________无穷区间的概念:-∞或+∞作为区间的一端或两端的区间称为无穷区间.数轴表示__________取遍数轴上所有值(1)区间是数轴上某一线段或射线或直线上的所有点所对应的实数的取值集合.这是一种符号语言,即用端点对应的实数、+∞、-∞、方括号、圆括号等符号来表示数集;(2)区间符号内的两个字母(或数)之间要用“,”隔开;(3)“∞”是一个符号,不是一个数,它表示数的变化趋势;(4)区间的形式必须是前面的数小,后面的数大.如(3,2)就不是区间,(2,2)也不是区间,并不是所有数集都能用区间表示,如自然数集N,整数集Z等;(5)在平面直角坐标系中,(2,3)可表示点,也可表示区间,应用时注意区分,不能混淆.【做一做2】用区间表示下列数集:(1){x|5<x≤8}=__________;(2){x|x<3,且x≠0}=__________;(3)R=__________.3.映射的概念设A,B是两个非空集合,如果按照某种对应法则f,对A中的______,在B中______元素y与x对应,则称f是集合A到集合B的____.这时,称y是x在映射f的作用下的____,记作______.于是y=f(x),x称作y的__________.映射f也可记为______.其中A叫做映射f的________(函数定义域的推广),由所有象f(x)构成的集合叫做映射f 的________,通常记作______.如果映射f是集合A到集合B的映射,并且对于集合B中的____一个元素,在集合A 中都______原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的______.理解映射的概念必须注意如下几点:(1)方向性,“集合A到集合B的映射”与“集合B到集合A的映射”往往不是同一个映射;(2)非空性,集合A,B必须是非空集合;(3)唯一性,对于集合A中的任何一个元素,集合B中都有唯一确定的元素与之对应,这是映射的唯一性,也可以说A中任一元素的象必在集合B中;(4)存在性,就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;(5)映射可以看成函数概念的推广,而函数是一种特殊的映射,在对应方面只允许存在“一对一”与“多对一”这两种对应,而不允许“一对多”的对应.【做一做3-1】有下列各图中表示的对应:其中能构成映射的个数为()A.4 B.3 C.2 D.1【做一做3-2】已知(x,y)在映射f下的象是(x+y,x-y),则(4,6)在f下的原象是().A.(5,-1) B.(-1,5)C.(10,-2) D.(-2,10)一、函数符号“y=f(x),x∈A”中的“f”及f(x)与f(a)的区别与联系剖析:(1)符号“y=f(x)”中的“f”表示对应法则,在不同的具体函数中,“f”的含义不一样,可以把函数的对应法则“f”形象地看作一个“暗箱”.例如y=f(x)=x2,可以将其看作输入x,输出x2,于是“暗箱”相当于一个“平方机”的作用,则显然应该有f(a)=a2,f(m+1)=(m+1)2,f(x+1)=(x+1)2.(2)符号y=f(x)是“y是x的函数”的符号表示,应理解为:x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(3)f(x)与f(a)的区别与联系:f(a)表示当x=a时函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值.如一次函数f(x)=3x +4,当x=8时,f(8)=3×8+4=28是一个常数.y=f(x)是“y是x的函数”的符号表示,它也未必就是一个解析式,y=f(a)表示自变量x=a时的函数值,它是一个常数;y=f(x)是函数,通常是一个随x变化而变化的变量.函数还可以用其他一些符号来表示,例如:F(x),G(x),h(x),…,也就是说,不管用哪一个字母表示,它总是表达同样一个含义:y是x的函数.二、同一函数的判定剖析:一般地,判断几个函数是否相同,离不开函数的三要素,但值域由定义域和对应法则所确定,因此在实际的解题过程中,往往只要判断函数的定义域、对应法则两个方面即可.两个函数当且仅当定义域与对应法则分别相同时,才是同一函数,注意以下四点: (1)定义域不同,两个函数也就不同.如y =x 2(x ∈R )与y =x 2(x >0)不是同一函数; (2)对应法则不同,两个函数也是不同的.如y =x 与y =x 2不是同一函数;(3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则,如函数f (x )=x 2与f (x )=2x 2虽定义域和值域均相同,但它们不是同一函数;(4)因为函数是两个数集之间的对应关系,所以至于用什么字母表示自变量、因变量和对应法则是无关紧要的,如f (x )=2 012x +2 011,f (t )=2 012t +2 011,g (x )=2 012x +2 011都表示同一函数.题型一 求函数的定义域【例1】求函数y =(x +1)2x +1-1-x 的定义域.分析:本题主要考查函数的定义域.只给出函数的解析式,而没有指明它的定义域,那么函数的定义域就是使函数解析式有意义的自变量的取值集合.反思:(1)已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即:①如果f (x )是整式,那么函数的定义域是实数集R .②如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合.③如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.④如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).⑤对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约. (2)本题容易错解:化简函数的解析式为y =x +1-1-x ,得函数的定义域为{x |x ≤1}.错解的原因是违背了讨论函数问题要遵循定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前,不要化简解析式.题型二 简单函数值域的求法 【例2】求下列函数的值域:(1)y =2x +1x -3;(2)y =x 2-4x +6,x ∈[1,5); (3)y =2x -x -1.分析:求函数的值域没有统一的方法.如果函数的定义域是有限个值,那么就可将函数值都求出得到值域;如果函数的定义域是无数个值,则可根据函数表达式的特点采取相应的方法来求其值域,如观察法、配方法、换元法等.反思:在求函数的值域时,常用的方法有:(1)观察法.通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”,观察求得函数的值域,这就是观察法.(2)配方法.对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域的方法求函数的值域,这就是配方法.(3)换元法.通过对函数的解析式进行适当换元,可将复杂的函数化归为简单的函数,从而求出函数的值域.求函数的值域没有通用的方法和固定的模式,要靠自己在解题过程中逐渐探索和积累.除了上述常用的方法外,还有最值法、数形结合法等,应注意选择最优的解法.总之,求函数的值域关键是要重视对应法则的作用,还要特别注意定义域对值域的制约. 题型三 求函数解析式【例3】已知f (x -1)=x 2-2x +7. (1)求f (2)和f (a )的值;(2)求f (x )和f (x +1)的解析式.分析:利用代入法或换元法.对(1)可令x =3和x =a +1即可求得;对(2)可用“x +1”去替换f (x -1)中的“x ”即得f (x ),用“x +2”去替换f (x -1)中的“x ”即得f (x +1).反思:已知类型为f [g (x )]=h (x )的函数,求f (x )的解析式时,常常使用配凑法和换元法.在解答过程中,一定要把法则读懂,分清法则f 到底作用的变量是谁,然后利用化归的思想,把待求问题转向已知问题,从而使问题得以解决.题型四 有关映射的问题【例4】判断下列对应法则是否是从A 到B 的映射和一一映射. (1)A =R ,B ={x |x >0},f :x →y =|x |.(2)A ={x |x ≥0},B ={y |y ≥0},f :x →y =x .(3)A ={x |x ≥2,x ∈Z },B ={y |y ≥0,y ∈N },f :x →y =x 2-2x +2.分析:判断某一映射是否是一一映射,应抓住两点:①原象不同,象不同;②每个象都必须有原象.反思:由上面例题我们可以总结出:(1)按照映射的定义可知,映射应满足:①存在性:集合A 中的每一个元素在集合B 中都有对应元素;②唯一性:集合A 中的每一个元素在集合B 中只有唯一的对应元素.(2)一一映射的两个特点:①对于集合A 中不同的元素,在集合B 中有不同的象;②集合B 中的每一个元素都有原象,即对应形式为“一对一”,集合A ,B 中均没有剩余元素. 【例5】已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x+1,x 2+1),求A 中元素2的象和B 中元素⎝⎛⎭⎫32,54的原象.分析:本题考查映射的知识,把x =2代入即可求得2的象,⎝⎛⎭⎫32,54的原象可通过列方程组解出.反思:解答此类问题,关键是:(1)分清原象和象;(2)搞清楚由原象到象的对应法则.一般已知原象求象时,常采用代入法.已知象求原象时,通常由列方程组法求解.求解过程中要注意象与原象的区别和联系.题型五 易错辨析【例6】已知f (x +4)=x +8x ,求f (x ). 错解:令x +4=t ,则x =(t -4)2, ∴f (t )=(t -4)2+8(t -4)=t 2-16,∴f (x )=x 2-16.反思:在利用换元法求函数解析式时,一定要及时求出新自变量的取值范围,否则将导致所求函数定义域错误,进而引起一系列错误,如求值域、画图象等.1函数f (x )=1x -1+(x -2)0的定义域为( ) A .[1,+∞) B .[1,2)∪(2,+∞) C .(1,+∞) D .(1,2)∪(2,+∞) 2(2011·河北邯郸高一期末)下列四组函数中,表示同一函数的是( ) A .f (x )=x 2,g (x )=xB .f (x )=x ,g (x )=3x 3 C .f (x )=(x )2,g (x )=|x |D .f (x )=x ,g (x )=x 2x3已知集合A ={a ,b },B ={-1,1},则A 到B 的一一映射有__________个.4函数y =1x 2+x +1的值域为__________.5已知函数f (x +1)=x 2-1,x ∈[-1,3],求f (x )的解析式. 答案: 基础知识·梳理1.唯一的一个y 值 自变量 因变量 任意数x 唯一 y =f (x ),x ∈A 函数f 或函数f (x ) (1)定义域 函数值 y =f (a )或y |x =a {y |y =f (x ),x ∈A } (2)定义域 对应法则 ①定义域 对应法则 ②每一个 唯一【做一做1-1】D 若两个函数表示同一函数,则需其定义域、对应法则都相同,缺一不可.选项A 中对应法则不同,选项B 中定义域不同,选项C 中定义域不同,仅有选项D 表示同一函数.【做一做1-2】{x |x ≤2 011,且x ≠2 010} 要使f (x )有意义,则需⎩⎪⎨⎪⎧2 011-x ≥0,x -2 010≠0,解得x ≤2 011且x ≠2 010.∴函数f (x )的定义域为{x |x ≤2 011,且x ≠2 010}.2.(1)[a ,b ] {x |a <x <b }半开半闭区间 (2)[a ,+∞){x |x ≤a } (-∞,+∞)【做一做2】(1)(5,8] (2)(-∞,0)∪(0,3) (3)(-∞,+∞)3.任意一个元素x 有一个且仅有一个 映射 象 f (x ) 原象 f :A →B ,x →f (x ) 定义域 值域 f (A ) 任意有且只有一个 一一映射【做一做3-1】D 所谓映射,是指“多对一”或“一对一”的对应,且A 中每一个元素都必须参与对应.只有图(3)所表示的对应符合映射的定义,即A 中的每一个元素在对应法则下,B 中都有唯一的元素与之对应.图(1)不是映射,因A 中的元素c 没有参与对应,即违背A 中的任一元素都必须参与对应的原则.图(2)、图(4)不是映射,这两个图中集合A 中的元素在集合B 中有多个元素与之对应,不满足集合A 中的任一元素在集合B 中有且仅有唯一元素与之对应的原则.综上,可知能构成映射的个数为1.【做一做3-2】A 由题意,根据对应关系,得⎩⎪⎨⎪⎧ x +y =4,x -y =6,解得⎩⎪⎨⎪⎧x =5,y =-1,故原象为(5,-1).典型例题·领悟【例1】解:要使函数有意义,则需⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1且x ≠-1.故函数的定义域为{x |x ≤1,且x ≠-1}.【例2】解:(1)(观察法)y =2x +1x -3=2+7x -3.因为x ≠3,所以7x -3≠0,所以y ≠2.故所求函数的值域为{y |y ≠2}.(2)(配方法)y =x 2-4x +6=(x -2)2+2. 因为1≤x <5,所以函数的值域为{y |2≤y <11}.(3)(换元法)设t =x -1,则t ≥0,且x =t 2+1.所以y =2(t 2+1)-t =211548t ⎛⎫-+ ⎪⎝⎭.因为t ≥0,所以158y ≥.故函数2y x -=158y y ⎧⎫≥⎨⎬⎩⎭.【例3】解:(1)f (2)=f (3-1)=9-2×3+7=10,f (a )=f [(a +1)-1]=(a +1)2-2(a +1)+7=a 2+6. (2)解法一(配凑法):f (x )=f [(x +1)-1] =(x +1)2-2(x +1)+7=x 2+6,f (x +1) =f [(x +2)-1]=(x +2)2-2(x +2)+7=x 2+2x +7.解法二:f (x -1)=x 2-2x +7=(x -1)2+6, ∴f (x )=x 2+6,f (x +1)=(x +1)2+6=x 2+2x +7. 解法三(换元法):设t =x -1,则x =t +1,∴f (t )=(t +1)2-2(t +1)+7=t 2+6,,故f (x )=x 2+6. f (x +1)=(x +1)2+6=x 2+2x +7.【例4】解:(1)因为0∈A ,在f 作用下0→|0|=0∉B ,,所以不是映射,更不是一一映射. (2)对于任意x ∈A ,都有x ∈B ,故是映射.又因为对B 中任一元素,在A 中有且仅有一个原象,所以为一一映射. (3)对任意的x ∈A ,依对应法则f 有x →y =x 2-2x +2=(x -1)2+1, 因为x ≥2,x ∈Z ,所以y ≥2,y ∈N ,即y ∈B ,所以是映射.因为0∈B ,且(x -1)2+1=0无解,所以集合B 中的元素0在A 中无原象,所以不是一一映射.【例5】解:把x =2代入f :x →(x +1,x 2+1),得其象为(2+1,3).由⎩⎨⎧x +1=32,x 2+1=54,得x =12.所以2的象为(2+1,3),⎝⎛⎭⎫32,54的原象为12. 【例6】错因分析:在换元时,未标明t 的取值范围,而使f (x )缺少定义域. 正解:解法一(配凑法):∵f (x +4)=x +8x =(x +4)2-16, ∴f (x )=x 2-16(x ≥4).解法二(换元法):设x +4=t ≥4,则x =t -4, 即x =(t -4)2,∴f (t )=(t -4)2+8(t -4)=t 2-16. ∴f (x )=x 2-16(x ≥4). 随堂练习·巩固1.D 由题意,知⎩⎪⎨⎪⎧x -1>0,x -2≠0,解得x >1且x ≠2.∴函数f (x )的定义域为(1,2)∪(2,+∞).2.B 根据同一函数的判断标准,即定义域相同,对应法则也相同判断. 3.2 根据映射及一一映射的定义可建立如下一一映射:故共2个.4.⎝⎛⎦⎤0,43 ∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴0<1x 2+x +1≤43,∴值域为⎝⎛⎦⎤0,43. 5.分析:本题可用“配凑法”或“换元法”求f (x )的解析式.解:解法一(配凑法):∵f (x +1)=x 2-1=(x +1)2-2(x +1), ∴f (x )=x 2-2x .又x ∈[-1,3]时,(x +1)∈[0,4], ∴f (x )=x 2-2x ,x ∈[0,4].解法二(换元法):令x +1=t ,则x =t -1, 且由x ∈[-1,3]知t ∈[0,4],∴由f (x +1)=x 2-1,得f (t )=(t -1)2-1=t 2-2t ,t ∈[0,4], ∴f (x )=x 2-2x ,x ∈[0,4].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,奇×偶=奇.
例题:1.判断下列函数的奇偶性:
(1)f(x)=|x+1|-|x-1|;(2)f(x)=(x-1)· ;(3)f(x)= ;
6.已知函数f(x)=a x -6ax+1 (a>0),则下列关系中正确的是()
(A)f( )<f( )(B)f( )<f(3)(C)f(-1)<f(1)(D)f(2)>f(3)
7.若f(x)是R上的增函数,对于实数a,b,若a+b>0,则有() A.f(a)+ f(b)>f(-a)+ f(-b)
B.f(a)+ f(b)<f(-a)+ f(-b) C.f(a)- f(b)>f(-a)- f(-b) D.f(a)- f(b)<f(-a)-f(-b)
(1) ,对应关系 (2) ,对应关系
(3) ,对应关系 (4) ,对应关系
2、下图中,可表示函数 的图像只能是()
2.函数概念的三要素:定义域、值域与对应法则.
练习:1.在下列各组函数中, 与 表示同一函数的是[]
A. =1, = B. 与 C. 与 D. =∣ ∣, = E. 和 F. 和 G. 和 H. 和
13.如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()
利用单调性解决函数的最值(值域)问题
例题:1.函数f(x)=-2x+1在[-1,2]上的最大值和最小值分别是
2. 在区间 上有最大值吗?有最小值吗?
3.求函数 的最小值
4.已知f(x)在区间[a,c]上单调递减,在区间[c,d]上单调递增,则f(x)在[a,d]上最小值为
5.已知二次函数f(x)=2 x -mx+3在 上是减函数,在 上是增函数,则实数m的取值是
③若将函数 的图象右移 、上移 个单位,得到函数 的图象;
2)对称变换:①y=f(x)→y=f(-x)图象关于y轴对称;②y=f(x)→y=-f(x)图象关于x轴对称.
③y=f(x)→y=-f(-x)图象关于原点对称;
④y=f(x)→y=f(2a-x)图象关于直线x=a对称;
注:若f(x)=f(2a-x)(或f(a+x)=f(a-x))则函数自身的图象关于直线x=a对称
例题
1.判断 在(0,+∞)上是增函数还是减函数2.判断 在(—∞,0)上是增函数还是减函数
3.下列函数中,在(0,2)上为增函数的是()(A)y= (B)y=2x-1(C)y=1-x(D)y=
4.函数y= -1的单调递区间为5.证明函数f(x)=- +x在( ,+ )上为减函数
6.已知f(x)=(2k+1)x+1在(- ,+ )上是减函数,则()A)k> B)k< C)k>- D)k<-
与之相等价的定义:⑴ ,〔或都有 〕则说 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点 连线的斜率都大于(或小于)0。
⑵ ,〔或都有 〕则说 在这个区间上是增函数(或减函数)。
注:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。单调区间是定义域的子集;
A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数
4.已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=___________,b=___________.
5.奇函数y=f(x),x∈R的图象必经过点()A.(a,f(-a))B.(-a,f(a))C.(-a, -f(a))D.(a, f( ))
(4) (5) (6) (7)
2.下面四个结论中,正确的个数是
①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1B.2C.3D.4
3.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是
6.对于定义在R上的奇函数f(x)有)A.f(x)+f(-x)<0 B.f(x) -f(-x)<0 C.f(x) f(-x)≤0 D.f(x) f(-x)>0
7.已知 且f(-2)=0,那么f(2)等于
8.奇函数f(x)在1≤x≤4时解吸式为 ,则当-4≤x≤-1时,f(x)最大值为
9.f(x)= 为奇函数,y= 在(-∞,3)上为减函数,在(3,+∞)上为增函数,则m=n=
(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.
练习:1.若函数 的定义域为[ (1)求函数 的定义域;(2)求函数 的定义域。
2.函数f(x)的定义域是[ ,1],则y=f(3-x)的定义域是.
5.函数值域:
1.基本初等函数值域
2.函数的值域是由函数的定义域与对应法则确定的,因此,要求函数的值域,一般要从函数的定义域与对应法则入手分析,常用的方法有:(1)观察法;(2)图象法;(3)配方法;(4)换元法。
(A)f( )>f(a+1)(B)f(a)<f(3a)(C)f( +a)>f( )(D)f( -1)<f( )
10函数y= 的单调减区间为
11.定义域为R的函数f(x)在区间(—∞,5)上单调递减,对注意实数t都有 ,那么f(—1),f(9),f(13)的大小关系是
10.若f(x)是定义在 上的减函数,f(x-1)<f( -1),求x的取值范围
2.画出下列函数的图像
3.函数y= 的图象关于点对称.
4.一次函数的图象经过点(2,0)和(-2,1),则此函数的解析式为
5.若二次函数 的图象的对称轴为 ,则
函数的单调性:
1.函数单调性的理解
(1)图形刻画:对于给定区间上的函数 ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连ຫໍສະໝຸດ 下降,则称函数在该区间上单调递减。
1.求下列函数的值域:(1) ;(2) ;(3) ;(4) ;
(5) (6) (7)
2.给定闭区间上的一元二次函数的值域
6.函数的解析式的求法
1.换元法(1)已知f(3x+1)=4x+3, 求f(x)的解析式. (2)若 ,求 .
2.拼凑法(1)已知 , 求 的解析式.(2).若 ,求 .
3.待定系数法(1)已知函数f(x)是一次函数,且满足关系式f(x-1)=2x+17,求f(x)的解析式
1.求分段函数的定义域和值域求函数 的定义域、值域.
2.求分段函数的函数值 已知函数 求
3.求分段函数的最值求函数 的最大值
8.函数图像与变换
1.常见函数图像
2.图像变换(1)平移变换:①y=f(x)→y=f(x±a)(a>0)图象横向平移a个单位,(左+右—).
②y=f(x) →y=f(x)±b(b>0)图象纵向平移b个单位,(上+下—)
7.在区间(0,+∞)上不是增函数的是()(A)y=2x+1(B)y=3 +1(C)y= (D)y=3 +x +1
8.若函数f(x)= +2(a-1)x+2在区间(- ,4)上为增函数,则实数a的取值范围是()
(A)a -3(B)a -3(C)a 3(D)a 3
9.如果函数f(x)是实数集R上的增函数,a是实数,则()
4.解方程组法(1)设函数 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足 ,求 的解析式.
(2)若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)=
7.分段函数
分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集.
⑵.当 时, 与 具有相同的单调性;当 时, 与 具有相反的单调性。
⑶.当 恒不等于零时, 与 具有相反的单调性。
⑷.当 、 在 上都是增(减)函数时,则 + 在 上是增(减)函数。
⑸.当 、 在 上都是增(减)函数且两者都恒大于0时, 在 上是增(减)函数;当 、 在 上都是增(减)函数且两者都恒小于0时, 在 上是减(增)函数。
10.已知函数f(x)在[-5,5]上是奇函数,且f(3)<f(1),则()
(A)f(-1)<f(-3)(B)f(0)>f(1)(C)f(-1)<f(1)(D)f(-3)>f(-5)
11.下列函数中既非奇函数又非偶函数的是()
(A)y= (B)y= (C)y=0 , x∈[-1,2](D)y=
12.设函数f(x)= 是奇函数,则实数 的值为()(A)-1(B)0(C)2(D)1
(2)定性刻画:对于给定区间上的函数 ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。
(3)定量刻画,即定义。设函数 的定义域为 ,区间 如果对于区间 内的任意两个值 , ,当 时,都有 ,那么就说 在区间 上是 称为 如果对于区间 内的任意两个值 , ,当 时,都有 ,那么就说 在区间 上是 称为 ..,
(3)翻折变换主要有
①y=f(x) →y=f(|x|)的图象在y轴右侧(x>0)的部分与y=f(x)的图象相同,在y轴左侧部分与其右侧部分关于y轴对称.
②y=f(x) →y=|f(x)|的图象在x轴上方部分与y=f(x)的图象相同,其他部分图象为y=f(x)图象下方部分关于x轴的对称图形.