材料力学B试题弯曲变形
材料力学第七章课后题答案 弯曲变形
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC
材料力学B作业
第一章 绪 论一、选择题1、构件的强度是指_________,刚度是指_________,稳定性是指_________。
A. 在外力作用下构件抵抗变形的能力B. 在外力作用下构件保持其原有的平衡状态的能力C. 在外力作用下构件抵抗破坏的能力2、根据均匀性假设,可认为构件的________在各点处相同。
A. 应力B. 应变C. 材料的弹性常数D. 位移3、下列结论中正确的是________ 。
A. 内力是应力的代数和B. 应力是内力的平均值C. 应力是内力的集度D. 内力必大于应力4、下列说法中,正确的是________ 。
A. 内力随外力的改变而改变。
B. 内力与外力无关。
C. 内力在任意截面上都均匀分布。
D. 内力在各截面上是不变的。
5、图示两单元体虚线表示其受力后的变形情况,两单元体的切应变γ分别为________ 。
A. α,αB. 0,αC. 0,-2αD. α,2α二、计算题1、如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
2、已知杆内截面上的内力主矢为F R与主矩M如图所示,且均位于x-y平面内。
试问杆件截面上存在哪种内力分量,并确定其大小。
图中之C点为截面形心。
3、板件ABCD的变形如图中虚线A’B’C’D’所示。
试求棱边AB与AD的平均正应变以及A点处直角BAD的切应变。
第二章 拉伸与压缩一、选择题和填空题1、轴向拉伸杆件如图所示,关于应力分布正确答案是_________。
A 1-1、2-2面上应力皆均匀分布;B 1-1面上应力非均匀分布,2-2面上应力均匀分布;C 1-1面上应力均匀分布,2-2面上应力非均匀分布;D 1-1、2-2面上应力皆非均匀分布。
2、图示阶梯杆AD 受三个集中力作用,设AB 、BC 、CD 段的横截面积分别为3A 、2A 、A ,则三段的横截面上 。
A 轴力和应力都相等B 轴力不等,应力相等C 轴力相等,应力不等D 轴力和应力都不等3、在低碳钢拉伸曲线中,其变形破坏全过程可分为4个变形阶段,它们依次是 、 、 、 。
材料力学B试题6弯曲变形
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如致形状有下列(A)(B)、(C),(D)四种:答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q xF F x M )(d d ,d d ,d d 22SS ===;(B)EI x M xw q x F F xM)(d d ,d d ,d d 22SS =-=-=; (C)EI x M x w q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M x w q xF F x M )(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.(a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
《材料力学》 练习题 (弯曲变形)
《材料力学》练习题(弯曲变形)
院系:年级:专业:
姓名:学号:成绩:
1、试用积分法求如图所示梁:
(1)挠曲线方程,并绘出挠曲线的大致形状;
(2)截面A处的挠度和截面B处的转角。
(EI为已知)
2、用积分法求图所示各梁的挠曲线方程、转角方程和B截面的转角、挠度。
(设EI=常数)
3、试用积分法求图中截面A 处的挠度和转角。
4、外伸梁受力如图所示,试用积分法求A θ、B θ及D y 、C y 。
(设EI =常数)
6、试用叠加法求如图所示简支梁C截面的挠度和两端的转角。
8、如图所示梁AB 的右端由拉杆BC 支承。
已知:4kN/m q =,2m l =,3m h =,梁的截面为边长200mm b =的正方形,材料的弹性模量110GPa E =;拉杆的横截面面积2250mm A =,材料的弹性模量2200GPa E =。
试求拉杆的伸长l ∆,以及梁的中点在竖直方向的位移。
材料力学习题册答案-第6章 弯曲变形
第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为EIy’’=M(x)。
(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。
(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。
(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。
(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。
(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。
(√)8.弯矩突变的截面转角也有突变。
(×)二、选择题1. 梁的挠度是(D)A 横截面上任一点沿梁轴线方向的位移B 横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D 横截面形心的位移2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。
A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C 转角和挠度的正负号均与坐标系有关D 转角和挠度的正负号均与坐标系无关3. 挠曲线近似微分方程在(D)条件下成立。
A 梁的变形属于小变形B 材料服从胡克定律C 挠曲线在xoy平面内D 同时满足A、B、C4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。
A 挠度最大B 转角最大C 剪力最大D 弯矩最大5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。
跨中作用有相同的力F,二者的(B)不同。
A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。
为减小最大挠度,则下列方案中最佳方案是(B)A 梁长改为l /2,惯性矩改为I/8B 梁长改为3 l /4,惯性矩改为I/2C 梁长改为5 l /4,惯性矩改为3I/2D 梁长改为3 l /2,惯性矩改为I/47. 已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax²(4lx - 6l²-x²),则该段梁上(B)A 无分布载荷作用B 有均布载荷作用C 分布载荷是x 的一次函数D 分布载荷是x 的二次函数 8. 图1所示结构的变形谐条件为:(D ) A f A=f BB f A+△l=fBCfA +fB =△l DfA-fB=△l三、填空题1. 用积分法求简支梁的挠曲线方程时, 若积分需分成两段,则会出现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连续 条件来确定。
《材料力学》弯曲计算-习题
②无均布载荷段弯矩图均为直线。有均布载荷段,弯矩图为
抛物线,其开口与均布载荷方向相同。
(3)弯矩、剪力、载荷集度的关系
①
M '(x) F S (x) F S'(x) q(x)
② FS=0的点是M图的取极值的点,FS=0的段M图是平行
于轴线的直线。
注意: 内力图上要注明控制面值、特殊点纵坐标值。
利用微分关系绘内力图
y
B截面 30.3 +
z
C截面 15.1 z
-
+
69
34.5
(d) 单位:MPa
Engineering Mechanics
四、弯曲 弯曲强度计算
例3 之二
解:(1)求截面形心轴,即中性轴z轴。
yC
( yi Ai ) Ai
170 30 170 30 200 (170 30)
2
2
17030 30 200
解:(1)外力分析,判变形。
10kN
50kN
(a) A
CD
B
z
4m
2m
4m
求得支坐反力
FA 26kN ,FB 34kN
荷载与梁轴垂直,梁将发
26kN 26 16
34kN
生平面弯曲。中性轴z过形心
+ (b)
与载荷垂直,沿水平方向。
FQ(kN)
104 136
34
(2)内力分析,判危险面。剪力
+
(c)
⑤解题步骤:
1)外力分析,判变形、中性轴,求截面的几何性质、支反力。 2)内力分析,判危险面,画剪力图、弯矩图(可只画弯矩图)
3)应力分析,判危险点。 4)强度计算。
材料力学弯曲变形答案
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
材料力学B试的题目5弯曲应力
(A)(B)(C)(D)弯曲应力1. 圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量2B AE E=。
求在外力偶矩e M作用下,A,B中最大正应力的比值maxminABσσ有4个答案:(A)16; (B)14;(C)18; (D)110。
答:B2. 矩形截面纯弯梁,材料的抗拉弹性模量tE大于材料的抗压弹性模量cE,则正应力在截面上的分布图有以下4种答案:答:C3. 将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为11000-,则该曲面在点A处的曲率半径为mm。
答:999 mm4. 边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比max amax b()()σσ=。
(a)(b)答:2/15. 一工字截面梁,截面尺寸如图,, 10h b b t ==。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%。
证:412, (d ) 1 8203BA z z zMy M Mt M y yb y I I I σ==⨯=⨯⎰4690z I t=41411 82088%3690M t M t=⨯⨯≈ 其中:积分限1 , 22h h B t A M =+=为翼缘弯矩6. 直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试解:1MEIρ=而M Fa =4840.78510 m , 0.654 kN 64d EII F aπρ-==⨯==33max80.654100.22010167 MPa 2220.78510M d Fad I I σ--⋅⨯⨯⨯⨯====⨯⨯ 7. 钢筋横截面积为A ,密度为 ρ,放在刚性平面上,一端加力F ,提起钢筋离开地面长度3l解:截面C 曲率为零2(/3)0, 326C Fl gA l gAl M F ρρ=-==8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用3F解:在截面C 处, 有 10C M EIρ==2()2 0, 323AC C AC AC l F F lM l l l =⨯-⨯==即AC段可视为受均布载荷q 作用的简支梁2maxmax 22()/8/63AC M q l FlWbt bt σ===9. 图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。
材料力学B试题6弯曲变形
弯曲变形1。
已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B ) M e1/M e2=3;(C ) M e1/M e2=1/2; (D) M e1/M e2=1/3.答:(C)2。
外伸梁受载荷如致形状有下列(A)(B)、(C ),(D)答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A )EI x M xw q xF FxM )(d d ,d d ,d d 22SS ===;(B )EI x M x w q x F F x M )(d d ,d d ,d d 22S S =-=-=; (C)EI x M xw q x F F x M )(d d ,d d ,d d 22S S -==-=;(D )EI x M xw q x F F x M )(d d ,d d ,d d 22S S -=-==。
答:(B )4。
弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Flw B 232e3+=(↓)则截面C 处挠度为:(A )2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B )233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓).答:(C )5. 画出(a )、(b)、(c )三种梁的挠曲线大致形状。
答:6.7.(a )、(b)刚度关系为下列中的哪一种: (A) (a)>(b ); (B) (a)<(b);(C ) (a)=(b ); (D) 不一定. 答:(C)8。
材料力学试题带答案B
试卷类型:B 卷一、判断题(判断以下论述的正误,认为正确的就在答题相应位置划“T”,错误的划“F”。
每小题 1分,共10 分)1.材料力学主要研究杆件受力后变形与破坏的规律。
()2.工程构件正常工作的条件是必须同时满足必要的强度、刚度和稳定性。
()3.由切应力互等定理可知,在相互垂直平面上,切应力总是成对出现,且数值相等,方向则共同指向该两平面的交线。
()4.截面法是分析应力的基本方法。
()5.只有静不定结构才可能有温度应力和装配应力。
()6.圆轴扭转时,横截面上既有正应力,又有剪应力。
()7.截面的主惯性矩是截面对通过该点所有轴的惯性矩中的最大值和最小值。
()8.梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。
()9.若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。
()10.在平面图形的几何性质中,静矩和惯性积的值可正、可负、也可为零。
()二、填空题(本题共有10个空,填错或不填均不能得分。
每空2分,共20分)1.基本变形中:轴向拉压杆件横截面上的内力是,扭转圆轴横面上的内力是,平面弯曲梁横截面上的内力是和。
2.图所示铆钉联接件将发生挤压与剪切破坏,铆钉所受剪应力大小为,接触面上的挤压应力为。
(a)(b)PP3.EA称为材料的。
4.图示正方形截面简支梁,若载荷不变而将截面边长增加一倍,则其最大弯曲正应力为原来的倍,最大弯曲剪应力为原来的倍。
5.剪切的胡克定律表明:当应力不超过材料的pτ时,切应力τ与切应变γ成比例关系。
三、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题2分,共20分)1.下列结论中,只有哪个是正确的 。
A 材料力学的任务是研究材料的组成分析; B 材料力学的任务是研究各种材料的力学性能;C 材料力学的任务是在保证安全的原则下设计结构的构件;D 材料力学的任务是在即安全又经济的原则下,为设计结构构件提供分析计算的基本理论和方法。
材料力学-弯曲变形
二、叠加法求梁的变形 梁的刚度校核
1. 叠加法求梁的变形
当梁上同时受几种荷载作用时,我们可用叠加法来计算 梁的变形。其方法是:先分别计算每一种荷载单独作用时所 引起的 梁的变形(挠度或转角),然后求出各种荷载作用下 变形的代数和,即得到这些荷载共同作用下的变形。一般工 程中要找的是特定截面的变形(最大挠度和最大转角)。我 们将一些简单荷载作用下梁变形的计算公式列成教材中表81,以供选用。
2
式(8-2)再积分一次得:
y
1 EI
M( x)dxdx
Cx
D 8
3
式(8-2)、(8-3)为转角方程和挠曲线方程。式中常数C、D
可由边界条件确定。
图8-1a 图8-1b
(图8-1a)的边界条件为:
x 0, yA 0; x l, yB 0
(图8-1b)的边界条件为:
x 0, yA 0;
ql 3 24EI
, B
ql 3 24EI
转角 A 为负值,表明A截面绕中性轴作顺时针方向转动; 转角 B 为负值,表明B截面绕中性轴作逆时针方向转动。
例2:试计算图示梁的转角方程和挠曲线方程,并求 ymax
例2图
设:a>b
解:(一)分段建立弯矩方程和挠曲线近似微分方程并积分二次
AC 段 (0 x1 a)
C1a D1 C2a D2 将 C1 C2, D1 0 代入上式得:D1 D2 0
将 D2
0 代入式e得:C2
Pbl 6
P(l a)3 6l
化简后得:
C1
C2
Pb 6l
(l 2
b
2)
(三) 列出转角方程和挠曲线方程:将C1,C2, D1, D2代入式 a,b,c,d得:
西南交1112考试批次材料力学B习题与参考答案
材料力学B第1次作业正确答案:说法错误解答参考:9.用截面法只能确定等直杆横截面的力。
正确答案:说法错误解答参考:10.若物体产生位移,则必定同时产生变形。
正确答案:说法错误解答参考:11.冷作硬化是指材料经过塑性变形后,其比例极限提高,塑性降低的现象。
正确答案:说确解答参考:12.矩形截面杆发生扭转时,最大切应力发生在四个角点处。
正确答案:说法错误解答参考:四、主观题(共5道小题)13.图示结构中,AB为水平放置的刚性杆,杆1,2,3材料相同,其弹性模量E= 210GPa,已知l=1m, A 1 = A 2 =100m m 2 , A 3 =150m m 2 ,F=20kN 。
试求C点的水平位移和铅垂位移。
参考答案:解:(1)∑ F x =0, F 3 =0, F 2 = F 1 = F 2 (2)因 F 3 =0,故Δl 3 =0 Δl 1 = F 1 ⋅l E A 1 = F 2 l EA 1 = 10×10 3 ×1 210×10 9 ×100×10 −6 = 1 2100 m=0.476mm(向下)Δl 2 =Δl 1 =0.476mm(向下)由图中几何关系知;ΔCx = ΔAx = ΔAy =0.476mm;ΔCy =0.476mm14.一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[ σ]=170MPa ,试选择杆AB,AD的角钢型号。
参考答案:解:∑M E =0 , F N AD ×2=300×10 3 × 1 2 ×2×2, F N AD =300×10 3 N 由节点A: F NAB sin 30 ∘= F N AD , F N AB =2 F N AD =600kN 故 A AB ≥ F AB 2×170×10 6 = 600×10 3 2×170×10 6 =1.77×10 −3 m 2 =17.7 c m 2 故杆AB选2根100×10角钢。
材料力学典型例题及解析 6.弯曲变形典型习题解析
弯曲变形典型习题解析1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲轴大致形状。
图中C 为中间铰。
为已知。
I E解题分析:梁上中间铰处,左、右挠度相等,转角不相等。
解:设支反力为,如图示。
yB A yA FM F、、1、建立各段挠曲轴近似微分方程并积分 将梁分为AC 、CB 、BD 段。
AC 段 a x ≤≤10挠曲轴近似微分方程 11x FM w I E yA A ⋅−=′′转角方程1211'12C x Fx Mw IE yA A+−= (a) 挠度方程1113121162D x C x F x M w I E y A A ++−=(b)CB 段 )(2b a x a +≤≤挠曲轴近似微分方程2"2x FMw I E yA A ⋅−=转角方程 222222C x F xM w I E yA A+−=′(c)挠度方程2223222262D x C xFx M w I E yA A++−= (d)BD 段 l x b a ≤≤+3)(挠曲轴近似微分方程[])(333b a x Fx FM w I E yB yA A+−+−=′′转角方程[]32323332)(2C b a x F x F x M w I E yB yA A++−+−=′ (e) 挠度方程[]33333332336)(62D x C b a x FxFxM w I E yB yA A+++−+−= (f)2、确定积分常数共有6个积分常数。
需要6个位移边界条件和光滑连续条件。
332211D C D C D C 、、、、、题1图M A边界条件:,代入(b)得 01=x 01=w 01=D (g)0'1=w 代入(a)得 01=C(h)b a x +=2,02=w (i)连续条件: , a x x ==2121w w =(j) b a x x +==32, 32w w ′=′ (k) 32w w =(l)联立(i)、(j)、(k)、(l),可求出。
材料力学_梁的弯曲问题
2 梁的任一横截面上的弯矩在数值上等于该截面左 侧(或右侧)所有竖向力对该截面形心力矩的代数和 (包括外力偶、约束反力偶);且截面左边顺时针 (右边逆时针)的力矩使截面产生正号的弯矩。
例2 试利用上述结论写出图示梁1-1截面上的剪力和 弯矩的表达式。
e
c
l
q
1 F1 FQ
d b
M1
Me
f
α
FRB
F2
的代数和。
2、区段叠加法作弯矩图:
设简支梁同时承受跨间荷
MB
载q与端部力矩MA、MB的作用 。其弯矩图可由简支梁受端部
力矩作用下的直线弯矩图与跨
间荷载单独作用下简支梁弯矩
图叠加得到。即:
M x M x M 0x MB
B
l
B
+ MA
+
M0
+ MA M0
1 q(x)=0 FQ x C 1 FQ x 0
F2=10kN,试计算指定截面1-1、2-2的内力。
0.5m F1 1
F2 2
1m
A
FRA 1
2
B FRB
1m
1.5m
3m
解:(1) 求支座反力
M B 0 F1 2.5 F2 1.5 FRA 3 0 Fy 0 FRA FRB F1 F2 0
FRA 15kN FRB 7kN
(2)求1-1截面上的内力
实际支承→理想支承 ⑶ 以简化后的荷载代替实际的荷载。
三、梁的分类 ●按支座情况 ⑴简支梁:一端固定铰,一端可动铰
⑵外伸梁:一端或两端向外伸出的简支梁
⑶悬臂梁:一端固定支座,另一端自由
●按支座反力的求解方法
⑴静定梁:用平衡方程可求出未知反力的梁;
材料力学习题弯曲变形
弯曲变形基本概念题一、选择题1.梁的受力情况如图所示,该梁变形后的挠曲线如图()所示(图中挠曲线的虚线部分表示直线,实线部分表示曲线)。
2. 如图所示悬臂梁,若分别采用两种坐标系,则由积分法求得的挠度和转角的正负号为()。
题2图题1图A.两组结果的正负号完全一致B.两组结果的正负号完全相反C.挠度的正负号相反,转角正负号一致D.挠度正负号一致,转角的正负号相反3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。
题3图4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中()是错误的。
A.该梁应分为AB、BC两段进行积分B.挠度积分表达式中,会出现4个积分常数-26-题4图 题5图 C .积分常数由边界条件和连续条件来确定D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( )A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y =D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。
关于它们的最大挠度有如下结论,正确的是( )。
A . I 梁最大挠度是Ⅱ梁的41倍 B .I 梁最大挠度是Ⅱ梁的21倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。
期末复习 材料力学(大二下学期)
判断题 1、轴向拉压杆件任意斜截面上的内力作用线一定与杆件的轴线重合2、拉杆内只存在均匀分布的正应力,不存在切应力。
3、杆件在轴向拉压时最大正应力发生在横截面上4、杆件在轴向拉压时最大切应力发生在与轴线成45度角的斜截面上 选择题1、杆件的受力和截面如图,下列说法中,正确的是 。
A :σ1>σ2>σ3;B :σ2>σ3>σ1C :σ3>σ1>σ2 D:σ2>σ1>σ32、设m-m的面积为A,那么P/A代表A :横截面上正应力;B :斜截面上剪应力;C :斜截面上正应力;D :斜截面上应力。
A :σ/2、σ;B :均为σ;C :σ、σ/2;D :均为σ/24、轴向拉压杆,与其轴线平行的纵向截面上 。
A :正应力为零、切应力不为零;B :正应力不为零、切应力为零;C :正应力、切应力均不为零;D :正应力和切应力均为零。
答案:1. A ; 2. D ; 3.D ; 4.D ;3、设轴向拉伸杆横截面的正应力为σ,则45度斜截面上的正应力和切应力分别为 。
判断题1.材料的延伸率与试件的尺寸有关2.没有明显的屈服极限的塑性材料,可以将产生0.2%应变时的应力作为屈服极限3.构件失效时的极限应力是材料的强度极限选择题1.现有两种说法:①弹性变形中,σ-ε一定是线性关系②弹塑性变形中,σ-ε一定是非线性关系;哪种说法正确?A:①对②错; B:①对②对;C:①错②对; D:①错②错;2、进入屈服阶段以后,材料发生变形。
A:弹性;B:非线性;C:塑性;D:弹塑性;3、钢材经过冷作硬化以后,基本不变。
A:弹性模量; B:比例极限; C:延伸率; D:断面收缩率;4、钢材进入屈服阶段后,表面会沿出现滑移线。
A:横截面; B:纵截面;C:最大切应力所在面; D:最大正应力所在的面;5、右图为某材料由受力到拉断的完整的应力应变曲线,该材料的变形过程无。
A:弹性阶段、屈服阶段;B:强化阶段、颈缩阶段;C:屈服阶段、强化阶段;D:屈服阶段、颈缩阶段。
材料力学第2版 课后习题答案 第7章 弯曲变形
解:查自重得:
q = 587.02 N / m
J = 15760cm4 Pl 3 5ql 4 f =− − 48EJ 384EJ −176 × 103 × 113 = 48 × 210 × 109 × 15760 × 10−8 × 4 −587.02 × 5 × 114 + 385 × 210 × 109 × 15760 × 10−8 × 4 = 0.0377 m = 3.77cm
(d) 解:
D A P P E
' yC = y E + θ B ia + y C
C B P
− P ( 2a ) − Pa 3 − Pa3 = − − 3EJ 3EJ 3EJ 3 −10 Pa = 3EJ
3
252
7-5 门式起重机横梁由4根36a工字钢组成如图所示, 梁的两端均可视为铰支, 钢的弹 性模量E=210Gpa。试计算当集中载荷P=176 kN作用在跨中并考虑钢梁自重时,跨中截面 C的挠度yC。
x=l
∴y =−
'
∴D = 0
y=0
∴C =
− M 0l 6
M 0l 2 ⎛ x x 3 ⎞ ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
M 0l 2 ⎛ 1 3 x 2 ⎞ ∴θ = y = − ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
− M 0l 2 l ;此时挠度最大 f = 3 9 3EJ 2 ⎛ l ⎞ − M 0l 中点挠度 y ⎜ ⎟ = ⎝ 2 ⎠ 16 EJ − M 0l Ml θA = θB = 0 6 EJ 3EJ (b)解: 设中点为C点,则分析CB段
''
C2 = −
D2 = −
a4 24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲变形1、 已知梁得弯曲刚度EI 为常数,今欲使梁得挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2、 外伸梁受载荷如图示,致形状有下列(A)(B)、(C),(D)四种: 答:(B)3、 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间得关系以及挠曲线近似微分方程为: (A); (B); (C); (D)。
答:(B)4、 弯曲刚度为EI 得悬臂梁受载荷如图示,自由端得挠度(↓)则截面C 处挠度为: (A)(↓); (B)(↓); (C)(↓);(D)(↓)。
答:(C)5、 画出(a)、(b)、(c)三种梁得挠曲线大致形状。
答:6、7、正方形截面梁分别按(a)、(b)两种形式放置,则两者间得弯曲刚度关系为下列中得哪一种:(A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。
答:(C)8、试写出图示等截面梁得位移边界条件,并定性地画出梁得挠曲线大致形状。
答:x=0, w1=0, =0;x=2a,w2=0,w3=0;x=a,w1=w2;x=2a,。
9、试画出图示静定组合梁在集中力F作用下挠曲线得大致形状。
答:(a)(b)(c)10、 画出图示各梁得挠曲线大致形状。
答:11、12、 支座间得距离应为l -2a =0、577l 。
证:2b ,,因对称性,由题意有: 得 即13、 等截面悬臂梁弯曲刚度EI 为已知,梁下有一曲面,方程为w = -Ax 3。
欲使梁变形后与该曲面密合(曲面不受力),试求梁得自由端处应施加得载荷。
解:F S (x ) = -6EIA x=l , M = -6EIAlF =6EIA (↑),M e =6EIAl ()14、 变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E 。
试求截面A 得挠度w A 与截面C 得转角θC 。
解:由边界条件得(↓) , ()15、在刚性圆柱上放置一长2R、宽b、厚h得钢板,已知钢板得弹性模量为E。
试确定在铅垂载荷q作用下,钢板不与圆柱接触部分得长度l及其中之最大应力。
解:钢板与圆柱接触处有故16、弯曲刚度为EI得悬臂梁受载荷如图示,试用积分法求梁得最大挠度及其挠曲线方程。
解:(↓)17、图示梁得左端可以自由上下移动,但不能左右移动及转动。
试用积分法求力F作用处点A下降得位移。
解:(↓)18、简支梁上自A至B得分布载荷q(x)=-Kx2,K为常数。
试求挠曲线方程。
解:二次积分x=0, M=0, B=0x=l, M=0,x=0, w=0, D=0x=l, w=0,(↓)19、弯曲刚度为EI得悬臂梁原有微小初曲率,其方程为y=Kx3。
现在梁B端作用一集中力,如图示。
当F力逐渐增加时,梁缓慢向下变形,靠近固定端得一段梁将与刚性水平面接触。
若作用力为F,试求:(1)梁与水平面得接触长度;(2)梁B端与水平面得垂直距离。
解:(1) 受力前C处曲率,弯矩M(a)1 = 0受力后C处曲率,弯矩M(a)2 = -F (l-a)(2) 同理, 受力前x1截面处受力后x1截面处积分二次C=0, D=020、图示弯曲刚度为EI得两端固定梁,其挠度方程为式中A、B、C、D为积分常数。
试根据边界条件确定常数A、B、C、D,并绘制梁得剪力F S、弯矩M图。
解:x = 0,w = 0,D = 0代入方程21、已知承受均布载荷q0得简支梁中点挠度为,则图示受三角形分布载荷作用梁中点C得挠度为w C= 。
答:(↓)22、试用叠加法计算图示梁A点得挠度w A。
解:(↓)23、试求图示梁BC段中点得挠度。
解:(↓)24、 已知梁得弯曲刚度EI 。
试用叠加法求图示梁截面C 得挠度w C 。
解: (↓)25、 已知梁得弯曲刚度EI 为常数。
试用叠加法求图示梁B 截面得挠度与转角。
解: (↓) ()26、 试用叠加法求图示简支梁跨度中点C 得挠度。
解: (↓)27、 试用叠加法求图示简支梁集中载荷作用点C 得挠度。
解: (↓)28、 已知简支梁在均布载荷作用下跨中得挠度为,用叠加法求图示梁中点C 得挠度。
解: (↓)29、 弯曲刚度为EI 得悬臂梁受载荷如图示,试用叠加法求A解:()30、 弯曲刚度为EI 得等截面梁受载荷如图示,试用叠加法计算截面C 得挠度w C 。
解:(↓)q /23q31、如图所示两个转子,重量分别为P1与P2,安装在刚度分别为EI1及EI2得两个轴上,支承轴就是A、B、C、D四个轴承。
B、C两轴承靠得极近以便于用轴套将此两轴连接在一起。
如果四个轴承得高度相同,两根轴在B、C处连接时将出现“蹩劲”现象。
为消除此现象可将A处轴承抬高,试求抬高得高度。
解: ,点A抬高得高度为32、图示梁AB得左端固定,而右端铰支。
梁得横截面高度为h,弯曲刚度为EI,线膨胀系数为,若梁在安装后,顶面温度为t1,底面温度为t2(t2>t1),试求此梁得约束力。
解:因温度变化而弯曲得挠曲线微分方程为由A处边界条件得而33、图示温度继电器中两种金属片粘结得组合梁,左端固定,右端自由。
两种材料得弹性模量分别为E1与E2。
线膨胀系数分别为与,并且>。
试求温度升高t℃时在B端引起得挠度。
解:>,梁上凸下凹弯曲平衡条件F N1 = F N2 = F NM1 + M2 = F N h变形协调θ1 =θ2,ε1 =ε2,即ε1N +ε1M +ε1t =ε2N +ε2M +ε2t得其中A1 = A2 = bh,I1 = I2 =则F N1 = F N2 =M1 =M2 =故34、单位长度重量为q,弯曲刚度为EI得均匀钢条放置在刚性平面上,钢条得一端伸出水平面一小段CD,若伸出段得长度为a,试求钢条抬高水平面BC段得长度b。
解:35、图示将厚为h = 3mm得带钢围卷在半径R = 1、2m得刚性圆弧上,试求此时带钢所产生得最大弯曲正应力。
已知钢得弹性模量E = 210GPa,屈服极限= 280MPa,为避免带钢产生塑性变形,圆弧面得半径R应不小于多少?解:MPa,, R = 1、12 m36、一悬臂梁受分布载荷作用如图示,荷载集度,试用叠加原理求自由端处截面B得挠度w B,梁弯曲刚度EI为常量。
解:(↑)37、试用叠加法求图示简支梁跨中截面C得挠度w C值,梁弯曲刚度EI为常量。
解:(↓)38、试求图示超静定梁截面C得挠度w C值,梁弯曲刚度EI 为常量。
解: 取悬臂梁为基本系统,w B = 0,(↑)(↓)39、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:取悬臂梁为基本系统,w B = 0(↑),(↑),()40、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解: 去C支座,取简支梁AB为基本系统,(↑)(↑),(↑)41、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解: 去C支座,取简支梁AB为基本系统,(↑)(↑),(↓)42、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:去C支座,取简支梁AB为基本系统w C = 0,(↑),(↑)利用对称性取C端固定,以AC段悬梁比拟作基本系统,w A = 0,(↑)43、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:去C支座,取简支梁AB为基本系统(↓)(↑)w C = 0,(↑)(↑)另解:因对称性,取C处固定得AC悬臂梁为基本系统,w A = 0 ,(↑),(↑)44、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:去A支座,以外伸梁为基本系统,w A = 0(↓),(↑),(↑)45、试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:因反对称,w C = 0取AC段悬臂梁为基本系统,C处只有反对称内力F S C (↑),()(↓),()46、图示超静定梁A端固定,B端固结于可沿铅垂方向作微小移动,但不可转动得定向支座上。
梁弯曲刚度EI为常量,试求挠度w B值。
解:去B支座,以悬臂梁AB为基本系统,θB = 0()(↓)47、图示超静定梁AB两端固定,弯曲刚度为EI,试求支座B 下沉Δ后,梁支座B处约束力。
解: 取悬臂梁AB为基本系统,w B =Δ,θB = 0(↓)()另解:由挠曲线反对称,内力一定就是反对称,且l/2处有拐点,此处M = 0,挠度, (↓)(↑),()48、图示超静定梁AB两端固定,弯曲刚度为EI,试求支座B转动φ角后,梁支座得约束力。
解:取悬臂梁AB为基本系统,w B = 0,θB =φ(↑)()另解:取简支梁AB为基本系统,θA = 0,θB =φ()()49、图示悬臂梁自由端B处与45°光滑斜面接触,设梁材料弹性模量E、横截面积A、惯性矩I及线膨胀系数αl已知,当温度升高ΔT,试求梁内最大弯矩M max。
解:取AB悬臂梁为基本系统变形协调关系即且N = F B,50、试用积分法求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。
解:x = 0,θA = 0,C = 0x = 0,w A = 0,D = 0联立求解得(),(↑)(),(↑)51、梁挠曲线近似微分方程为,其近似性就是,与。
答:;略去剪力对位移得影响。
52、应用叠加原理求梁得变形及位移应满足得条件就是,与。
答:线弹性;小变形。
53、梁变形中挠度与转角之间得关系为。
答:54、等截面纯弯曲梁变形得挠曲线为曲线,其曲率与外力偶矩间关系为。
答:圆;。
55、图示简支梁跨中截面C得挠曲线曲率半径为。
答:56、一超静定梁受载荷如图示,当梁长l增加一倍,其余不变,则跨中挠度w C增大倍。
答:15。