等比数列性质教学教案

合集下载

等比数列的性质教案及学案.doc

等比数列的性质教案及学案.doc

242等比数列性质学案一 .复习引入:问题:已知等比数列{%}中,a「a〔= 9 ,求a2-a b和值,从中你有何结论?二.新课:等比数列性质探究类比等差数列的定义和性质,猜想等比数列对应的性质,并证明.性质等差数列(〃/m.p.q eN+>等比数列(n,m, p,q G N+(1)角标性质若沸部p q则有____________________(特别:当2n=p+q时,有 ___________________________________________ /称与是祀附肇中项)若dr材p c\则有___________________(特别:当2n=p+q时,有_____________________________________________ , 称勾为---------------------)(2)通项公式的推广a n -a m =(n-m)d,(d 为公差)即a,i ^a m+(n-m)d%= ___________ (q为公比)a m即«…=--------------1.证明性质(1)在等曲列中{南}+ = +w 则p q a n -a m = a p -a q/(n,m,p,q^N+)2.证明性质(2)在等比数列回}公比为q,则有* = qf,(n,m eN+)例:1.在等比数列{勾}中,已知缶=5, a9a w = 100 ,求即8 2.在等比数列{心}中,a3 =2,a5 = 8,求给3.在等比数列也,}中,b3=2,求该数列前五项之积4.在等比数列{%}中,%=1,,公比力1,若a m= a2a3,求m值.注意点:等比数列角标性质中要求等号两侧项数相同随堂练习:1.已知等差数列{a"}满足a? - a., + a n = 4,数列{如}是等比数列,且Z?7 = a7,求姑“值2.已知等比数列{aJ满足乎=。

4,求a i a53.已知等比数列{aJ中各项均为正数,且缶但& + ”4“7 = 18,求log3印+log3“i值4.已知各项均为正数的等比数列{a“}中,=5,。

等比数列的性质备课教案

等比数列的性质备课教案

等比数列的性质备课教案一、引言等比数列是数学中常见的一种数列,它具有一些独特的性质和规律。

了解等比数列的性质对于学生深入理解数列的特点以及解题思路具有重要意义。

本教案将介绍等比数列的基本性质,并提供相关的教学活动和练习,帮助学生掌握等比数列的概念和性质。

二、概念讲解1. 等比数列的定义等比数列是指一个数列中,从第二项开始的每一项与前一项的比等于同一个常数。

该常数被称为等比数列的公比,通常用字母q表示。

2. 公式表示一般地,等比数列可以表示为:a,aq,aq^2,aq^3,...其中,a为首项,q为公比。

三、性质讲解1. 性质一:通项公式等比数列的通项公式可以表示为:an = a * q^(n-1)其中,an为第n项,a为首项,q为公比。

2. 性质二:前n项和等比数列的前n项和可以表示为:Sn = a * (q^n - 1) / (q - 1)其中,Sn为前n项和,a为首项,q为公比。

3. 性质三:公比在(0,1)或(-1,0)之间时当等比数列的公比q在(0,1)或(-1,0)之间时,数列的前n项和趋向于一个有限的值,即无穷数列收敛。

4. 性质四:公比大于1或小于-1时当等比数列的公比q大于1或小于-1时,数列的绝对值会无限增大或无限减小,即无穷数列发散。

四、教学活动1. 概念引入通过实际生活中的例子引入等比数列的概念,例如细菌繁殖、利滚利等。

让学生思考这些现象背后是否存在某种规律,并引出等比数列的定义。

2. 探索发现给学生一个等比数列的例子,让他们观察数列的特点,并找出首项、公比、通项公式和前n项和的公式。

帮助学生通过数学归纳法来总结等比数列的性质。

3. 实例练习提供一些练习题,让学生运用等比数列的性质来求解问题。

例如,计算前n项和、找出给定数列的公比等。

通过实际应用题提升学生对等比数列性质的理解和运用能力。

五、课堂总结回顾等比数列的概念和性质,强调公比对数列变化的影响。

总结等比数列的通项公式和前n项和的公式,并鼓励学生多进行实践和练习,以加深对等比数列的理解和运用。

等比数列性质教学教案

等比数列性质教学教案

等比数列性质教学教案一、教学目标:1. 理解等比数列的概念。

2. 掌握等比数列的性质。

3. 学会运用等比数列的性质解决问题。

二、教学内容:1. 等比数列的概念。

2. 等比数列的性质。

3. 等比数列的通项公式。

4. 等比数列的前n项和公式。

5. 等比数列的应用。

三、教学重点:1. 等比数列的概念及性质。

2. 等比数列的通项公式和前n项和公式。

四、教学难点:1. 等比数列的性质的理解和应用。

2. 等比数列的通项公式和前n项和公式的推导。

五、教学方法:1. 讲授法:讲解等比数列的概念、性质、通项公式和前n项和公式。

2. 案例分析法:分析等比数列的应用实例。

3. 练习法:让学生通过练习题巩固所学知识。

六、教学过程:1. 引入:通过生活中的实例,引导学生思考等比数列的概念。

2. 讲解:讲解等比数列的概念、性质、通项公式和前n项和公式。

3. 案例分析:分析等比数列的应用实例,让学生理解等比数列的实际意义。

4. 练习:让学生通过练习题,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调等比数列的性质和应用。

七、课后作业:1. 等比数列的概念和性质的复习。

2. 等比数列的通项公式和前n项和公式的应用。

八、教学评价:1. 课堂讲解的清晰度和准确性。

2. 学生对等比数列的概念和性质的理解程度。

3. 学生对等比数列的通项公式和前n项和公式的掌握程度。

九、教学反思:在课后,教师应反思本节课的教学效果,是否达到了教学目标,学生是否掌握了等比数列的概念和性质,以及教学过程中是否存在需要改进的地方。

十、教学拓展:1. 等比数列在实际生活中的应用。

2. 等比数列与其他数列的关系。

3. 等比数列的进一步研究。

六、教学策略:1. 采用互动式教学,鼓励学生积极参与讨论,提高学生的思维能力。

2. 通过数学软件或教具展示等比数列的性质,增强学生的直观理解。

3. 设计具有梯度的练习题,让学生在练习中不断深化对等比数列性质的理解。

七、教学准备:1. 准备等比数列的相关教学素材,如PPT、教学案例、练习题等。

等比数列教案

等比数列教案

等比数列教案一、教学目标1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列解决实际问题。

二、教学重点1.等比数列的概念和性质;2.等比数列的通项公式和求和公式。

三、教学难点1.等比数列的求和公式的推导;2.应用等比数列解决实际问题。

四、教学过程1. 导入教师可以通过提问的方式引入等比数列的概念,例如:“小明在银行存款,每年利率为5%,如果他连续存5年,每年的利息都加到本金里,最后一共有多少钱?”通过这个问题,引导学生思考连续增长的情况,从而引出等比数列的概念。

2. 概念讲解等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数的结果。

这个常数称为公比,通常用字母q表示。

例如,1,2,4,8,16就是一个等比数列,公比为2。

3. 性质讲解等比数列有以下性质:1.任意一项与它的前一项的比值都相等,即an/an-1=q;2.任意一项与它的后一项的比值都相等,即an/an+1=q;3.等比数列的前n项和为a1(1-qn)/(1-q)。

4. 公式推导4.1 通项公式设等比数列的首项为a1,公比为q,第n项为an,则有:an=a1qn-1这个公式可以通过数学归纳法证明。

4.2 求和公式设等比数列的首项为a1,公比为q,前n项和为Sn,则有:Sn=a1(1-qn)/(1-q)这个公式可以通过以下方法推导:设Sn=a1+a2+…+an,则有:qSn=a1q+a2q+…+anq两式相减得:Sn-qSn=a1(1-qn)-an+1因为an+1=a1qn,所以有:Sn(1-q)=a1(1-qn)即:Sn=a1(1-qn)/(1-q)5. 应用实例教师可以通过一些实际问题,如利息计算、人口增长等,引导学生应用等比数列解决问题。

五、教学总结通过本节课的学习,学生应该掌握等比数列的概念和性质,能够使用等比数列的通项公式和求和公式解决实际问题。

同时,教师应该引导学生思考,培养学生的数学思维能力和解决问题的能力。

关于公开课等比数列教案

关于公开课等比数列教案

关于公开课等比数列教案第一章:等比数列的概念1.1 引入等比数列的概念通过实际例子,让学生理解等比数列的定义和特点。

解释等比数列的通项公式和公比的概念。

1.2 等比数列的性质探讨等比数列的性质,如相邻两项的比值是常数,每一项都是前一项与公比的乘积等。

引导学生通过数学归纳法证明等比数列的性质。

第二章:等比数列的求和公式2.1 引入等比数列的求和公式通过实际例子,让学生理解等比数列的求和公式的推导过程。

解释等比数列求和公式的形式和各个参数的含义。

2.2 等比数列求和公式的应用探讨等比数列求和公式的应用,如求等比数列的前n项和、求等比数列中某一项的值等。

引导学生通过实际例子运用等比数列求和公式解决问题。

第三章:等比数列的通项公式的应用3.1 引入等比数列的通项公式的应用通过实际例子,让学生理解等比数列通项公式的应用,如求等比数列的第n项的值。

解释等比数列通项公式的形式和各个参数的含义。

3.2 等比数列通项公式的进一步应用探讨等比数列通项公式的进一步应用,如判断等比数列的收敛性和发散性。

引导学生通过实际例子运用等比数列通项公式解决问题。

第四章:等比数列的性质和求和公式的综合应用4.1 引入等比数列性质和求和公式的综合应用通过实际例子,让学生理解等比数列的性质和求和公式的综合应用,如求等比数列的前n项和,并判断等比数列的收敛性和发散性。

解释等比数列的性质和求和公式的关系。

4.2 等比数列性质和求和公式的综合应用案例分析探讨等比数列性质和求和公式的综合应用案例,如解决实际问题中的等比数列问题。

引导学生通过实际例子运用等比数列的性质和求和公式解决问题。

第五章:等比数列的应用案例分析5.1 引入等比数列的应用案例分析通过实际例子,让学生理解等比数列的应用案例,如解决金融、经济、物理等领域中的问题。

解释等比数列在实际问题中的应用场景。

5.2 等比数列应用案例分析探讨等比数列在实际问题中的应用案例,如计算复利、求等比数列的极限等。

等比数列教案设计

等比数列教案设计

一、教学目标1. 知识与技能:理解等比数列的定义,掌握等比数列的通项公式和求和公式,能够运用等比数列解决实际问题。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

二、教学重点与难点1. 教学重点:等比数列的定义,通项公式和求和公式。

2. 教学难点:等比数列求和公式的推导和应用。

三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

2. 学具准备:笔记本、笔。

四、教学过程1. 导入新课:利用多媒体课件展示等比数列的实例,引导学生观察、思考,引出等比数列的概念。

2. 自主学习:学生自主探究等比数列的定义,教师巡回指导,解答学生疑问。

3. 课堂讲解:讲解等比数列的通项公式和求和公式,并通过例题演示如何运用这些公式解决问题。

4. 课堂练习:布置练习题,让学生独立完成,教师选取部分学生的作业进行点评。

5. 小组讨论:学生分组讨论等比数列的性质,总结规律,教师参与讨论,给予指导。

6. 课堂小结:总结本节课的主要内容,强调等比数列的定义、通项公式和求和公式的运用。

7. 课后作业:布置课后作业,巩固本节课所学内容。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

关注学生在学习过程中遇到的困难和问题,及时给予解答和指导。

六、教学目标1. 知识与技能:理解等比数列的性质,包括公比的概念,能够判断一个数列是否为等比数列。

2. 过程与方法:通过探究等比数列的性质,培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

七、教学重点与难点1. 教学重点:等比数列的性质,公比的概念。

2. 教学难点:判断一个数列是否为等比数列的方法。

八、教学准备1. 教具准备:黑板、粉笔、多媒体课件。

等比数列性质教学教案

等比数列性质教学教案

等比数列性质教学教案第一章:等比数列的定义与性质1.1 等比数列的定义引导学生回顾数列的概念,引入等比数列的定义。

通过示例,让学生理解等比数列的特点,即相邻两项的比值相等。

1.2 等比数列的性质探讨等比数列的通项公式,引导学生理解通项公式的推导过程。

引导学生理解等比数列的求和公式,并通过示例进行解释。

第二章:等比数列的求和2.1 等比数列的前n项和公式引导学生推导等比数列的前n项和公式。

通过示例,让学生理解前n项和公式的应用,并能够熟练运用。

2.2 等比数列的求和性质引导学生探讨等比数列的求和性质,例如:等比数列的求和与项数的关系,等比数列的求和与首项和公比的关系等。

第三章:等比数列的图像与性质3.1 等比数列的图像引导学生绘制等比数列的图像,并理解图像的特点。

引导学生通过图像分析等比数列的性质,例如:增长速度,收敛性等。

3.2 等比数列的性质与应用引导学生探讨等比数列的性质,例如:等比数列的单调性,有界性等。

引导学生运用等比数列的性质解决实际问题,例如:人口增长模型,利息计算等。

第四章:等比数列的扩展4.1 等比数列的推广引导学生思考等比数列的推广,例如:等比数列的变体,广义等比数列等。

引导学生理解广义等比数列的性质与应用。

4.2 等比数列与其他数列的关系引导学生探讨等比数列与其他数列的关系,例如:等差数列与等比数列的关系,斐波那契数列与等比数列的关系等。

第五章:等比数列的综合应用5.1 等比数列在数学中的应用引导学生探讨等比数列在数学中的应用,例如:数论中的等比数列,图论中的等比数列等。

引导学生通过解决数学问题,加深对等比数列的理解。

5.2 等比数列在其他学科中的应用引导学生探讨等比数列在其他学科中的应用,例如:物理学中的等比数列,经济学中的等比数列等。

引导学生通过解决实际问题,理解等比数列的实际意义。

第六章:等比数列的练习题解析6.1 基础练习题解析选取一些基础的等比数列练习题,引导学生运用所学的知识进行解答。

等比数列教案

等比数列教案

等比数列教案等比数列教案篇一一、概述教材内容:等比数列的概念和通项公式的推导及简单应用教材难点:灵活应用等比数列及通项公式解决一般问题教材重点:等比数列的概念和通项公式二、教学目标分析1、知识目标掌握等比数列的定义理解等比数列的通项公式及其推导2.能力目标(1)学会通过实例归纳概念(2)通过学习等比数列的通项公式及其推导学会归纳假设(3)提高数学建模的能力3、情感目标:(1)充分感受数列是反映现实生活的模型(2)体会数学是来源于现实生活并应用于现实生活(3)数学是丰富多彩的而不是枯燥无味的三、教学对象及学习需要分析1、教学对象分析:(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。

并掌握了函数及个别特殊函数的性质及图像,如指数函数。

之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。

(2)对归纳假设较弱,应加强这方面教学2、学习需要分析:四。

教学策略选择与设计1、课前复习(1)复习等差数列的概念及通向公式(2)复习指数函数及其图像和性质2.情景导入等比数列教案篇二【教学目标】知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

【教学重点】等比数列定义的归纳及运用。

【教学难点】正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列【教学手段】多媒体辅助教学【教学方法】启发式和讨论式相结合,类比教学。

【课前准备】制作多媒体课件,准备一张白纸,游标卡尺。

【教学过程】复习回顾:等差数列的定义。

高中数学等比数列教案

高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。

二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。

三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。

四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。

五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。

2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。

3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。

4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。

5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。

六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。

2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。

七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。

八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。

2. 展望下一节课内容,引导学生进行自主学习和提前预习。

等比数列教案设计

等比数列教案设计

等比数列教案设计一、教学目标1. 知识与技能:(1)理解等比数列的定义及其性质;(2)掌握等比数列的通项公式和求和公式;(3)能够运用等比数列解决实际问题。

2. 过程与方法:(1)通过观察、分析和归纳,引导学生发现等比数列的性质;(2)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生克服困难、积极探索的精神。

二、教学重点与难点1. 教学重点:(1)等比数列的定义及其性质;(2)等比数列的通项公式和求和公式;(3)运用等比数列解决实际问题。

2. 教学难点:(1)等比数列的通项公式的推导;(2)等比数列求和公式的推导及应用。

三、教学准备1. 教具:黑板、粉笔、多媒体教学设备;2. 学具:笔记本、文具。

四、教学过程1. 导入新课:(1)复习等差数列的相关知识;(2)引入等比数列的概念。

2. 探究等比数列的性质:(1)引导学生观察等比数列的前几项,发现规律;(2)引导学生归纳等比数列的性质。

3. 推导等比数列的通项公式:(1)引导学生利用等比数列的性质推导通项公式;(2)解释通项公式的含义。

4. 推导等比数列的求和公式:(1)引导学生利用通项公式推导求和公式;(2)解释求和公式的含义。

5. 运用等比数列解决实际问题:(1)出示实际问题;(2)引导学生运用等比数列的知识解决问题。

五、巩固练习1. 填空题:(1)等比数列的通项公式为______;(2)等比数列的前n项和为______。

2. 选择题:(1)已知等比数列的首项为a,公比为q,则第n项为______;A. aq^(n-1)B. aq^nC. aqD. a3. 解答题:(1)已知等比数列的首项为2,公比为3,求前5项的和;(2)某数列的前三项分别为1,3,9,求该数列的通项公式。

六、课堂小结1. 等比数列的定义及其性质;2. 等比数列的通项公式和求和公式;3. 运用等比数列解决实际问题。

4.1.2等比性质教案

4.1.2等比性质教案
举例:已知等比数列的前3项和为21,前6项和为126,求该数列的通项公式和首项。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“4.1.2等比性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过类似银行利息递增、细胞分裂这样的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等比数列的奥秘。
五、教学反思
在今天的教学过程中,我发现学生们对等比数列的概念和性质的理解普遍较好,大多数同学能够快速掌握等比数列的通项公式和求和公式。但在实际应用方面,部分学生还是显得有些吃力。我觉得这可能是因为我们在教学过程中,对实际案例的分析和讲解还不够充分,导致学生们在遇到实际问题时,不知道如何运用所学知识去解决。
在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们通过讨论和实验操作,加深了对等比数列的理解。但同时我也发现,部分学生在讨论过程中过于依赖同学,缺乏独立思考。针对这一问题,我将在接下来的教学中,鼓励学生们独立思考,培养他们解决问题的能力。
此外,我还注意到,在课堂总结环节,有些学生对等比数列的应用仍然存在疑问。为了帮助他们更好地消化和吸收所学知识,我计划在课后加强个别辅导,针对学生的疑问进行有针对性的解答。
1.培养学生的逻辑推理能力,使其能够理解和运用等比数列的定义和性质进行推理;
2.提升学生的数学建模能力,通过等比数列的通项公式和求和公式的推导与应用,解决实际问题;
3.培养学生的数据分析能力,让学生能够从实际问题中抽象出等比数列模型,并进行求解;
4.增强学生的数学运算能力,熟练掌握等比数列的计算方法和技巧;
4.1.2等比性质教案
一、教学内容

高一数学《等比数列的性质及应用》教案优秀3篇

高一数学《等比数列的性质及应用》教案优秀3篇

高一数学《等比数列的性质及应用》教案优秀3篇教学过程篇一一、提出问题给出以下几组数列,将它们分类,说出分类标准。

(幻灯片)①-2,1,4,7,10,13,16,19,…②8,16,32,64,128,256,…③1,1,1,1,1,1,1,…④243,81,27,9,3,1,,,…⑤31,29,27,25,23,21,19,…⑥1,-1,1,-1,1,-1,1,-1,…⑦1,-10,100,-1000,10000,-100000,…⑧0,0,0,0,0,0,0,…由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)。

二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题。

假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的'共同特性,这是我们将要研究的另一类数列——等比数列。

(这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1、等比数列的定义(板书)根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义。

学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的。

教师写出等比数列的定义,标注出重点词语。

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列。

学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例。

而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列。

等比数列的性质教案

等比数列的性质教案

等比数列的性质四教学目标能了解等比数列的性质,更快捷解题五教学重点(1)a n=a m q n-m,是等比数列任意两项之间的关系,是通项公式a n=a1q n-1的升级。

(2)若m,n,p,q∈N*,且m+n=p+q,有a m a n=a p a q,是研究等比中项的基础。

(3)若a ,G, b成等比,那么G2=ab其中ab同号,G是ab 的等比中项。

六教学难点当学生了等比数列的性质,最终为了把它应用到实际中去,但如何将等比数列运用到不同情节中去存在困难,所以,等比数列变式应用是本节的难点七教学过程(一)复习引入:复习1:等比数列的定义:如果一个数列从第二项开始,每一项与它的前一项比等于同一个常数,这个数列就称为等比数列。

这个常数就是等比数列的公比,用q表示。

(q≠0)2:等比数列的通项公式:a n=a1q n-13:等差数列的性质:(1)等差数列的通项公式变型式a n=a m+(n-m)d(2)等差数列的下标公式若m,n,p,q∈N*且m+n=p+q则a m+a n=a p+a q(3) 等差数列的中项公式. 若a G b成等差数列,则2G=a+b(二)新课探究思考:同样是数列等比数列会有和等差数列相似的性质吗?知识点一:等比数列通项公式的变型式a n=a m q n-m(讨论等比数列任意两项之间的关系式)例题在等比数列中,若a4=4,a6=16,求a5 方法一:用通项公式解法a1q4-1 =4 解得a1=±½a1q6-1 =16 q2=4a5=a1q5-1=±8方法二:用等比数列通项公式变型式解题a n=a m q n-m所以a6=a4q6-4即16=4q2得q2=4所以a5=a4q5-4=±8可以看出用变型式解题简便得多思考:1:方法二与等差数列中求等差数列的项有没有相似处?2:等差数列求项时出现过正负两个答案的情况吗?3:最后可以用a4=a6q4-6解题吗?思考在等差数列中我们在解任意项时还有其它方法吗?那么这个方法在等比数列中有吗?同样适用吗?知识点二:若a ,G, b成等比,那么G2=ab其中ab同号,G是ab的等比中项。

等比数列性质教学教案

等比数列性质教学教案

等比数列性质教学教案第一章:等比数列的定义1.1 等比数列的概念引导学生回顾数列的定义,即按照一定顺序排列的一列数。

引入等比数列的概念,即从第二项起,每一项都是前一项与一个常数(比)的乘积。

1.2 等比数列的表示方法介绍等比数列的通项公式:\(a_n = a_1 \times r^{(n-1)}\),其中\(a_n\)表示第n项,\(a_1\)表示首项,\(r\)表示公比。

讲解等比数列的列表和项的表示方法。

第二章:等比数列的性质2.1 等比数列的性质引导学生探究等比数列的性质,如相邻项的比相等,任意项可以表示为首项和公比的幂次关系等。

2.2 等比数列的求和公式推导等比数列的前n项和公式:\(S_n = a_1 \times \frac{1-r^n}{1-r}\),其中\(S_n\)表示前n项和。

解释公式的含义和应用,举例说明如何使用求和公式计算等比数列的前n项和。

第三章:等比数列的通项公式应用3.1 等比数列的通项公式的应用引导学生思考如何利用通项公式解决实际问题,如计算等比数列中特定项的值。

举例讲解如何使用通项公式计算等比数列中特定项的值。

3.2 等比数列的性质的应用引导学生思考如何利用等比数列的性质解决实际问题,如判断数列是否为等比数列。

举例讲解如何使用等比数列的性质判断数列是否为等比数列。

第四章:等比数列的求和公式的应用4.1 等比数列的求和公式的应用引导学生思考如何利用求和公式解决实际问题,如计算等比数列的前n项和。

举例讲解如何使用求和公式计算等比数列的前n项和。

4.2 等比数列的性质的应用引导学生思考如何利用等比数列的性质解决实际问题,如判断数列是否为等比数列。

举例讲解如何使用等比数列的性质判断数列是否为等比数列。

第五章:等比数列的综合应用5.1 等比数列在实际问题中的应用引导学生思考如何将等比数列应用于实际问题,如计算利息、增长等问题。

举例讲解如何使用等比数列解决实际问题。

5.2 等比数列的综合练习提供一些综合性的练习题,让学生练习等比数列的性质、通项公式和求和公式的应用。

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。

等比数列的性质教案

等比数列的性质教案

等比数列的性质教案一、知识目标:1.了解等比数列的定义。

2.掌握等比数列的通项公式和前n项和公式。

3.了解等比数列各项之间的比值相等的性质。

二、能力目标:1.能够利用通项公式求出等比数列中任意一项的值。

3.能够应用等比数列的性质解决实际问题。

三、情感目标:1.培养学生对等比数列的兴趣,并提升其数学学科素养。

2.培养学生独立思考和解决问题的能力。

3.激发学生学习数学的积极性和自信心。

四、教学过程:1.导入通过一组数据,引出等比数列的定义。

举例:小明的家庭一代一代的传下来的达官贵族收藏有古玩,第一代收藏了1件,第二代收藏了2个,第三代收藏了4个,第四代收藏了8个,第五代收藏了16件,…… ,请问,第六代需要收藏几件?(可能会有学生说第6代应该是32件,然而验算后能发现第6代应该是16 x 2 = 32件或者8 x 4=32件。

)引出等比数列的概念:如果一个数列中任意一项除以前一项均等于同一常数,那么这个数列就是等比数列。

如此例中的古玩数量就是一个等比数列。

2.讲授由定义可知,一个等比数列的性质是:任意两项之间的比都相等。

不难得出一个等比数列的第n项通项公式为:an = a1 x q^(n-1)其中,a1为首项,q为公比,n为项数。

3.练习1).求等比数列 0.4,1.6,6.4,…… 的通项公式。

解:由题意得q = 1.6 / 0.4 = 4,a1 = 0.4,则有an = a1 x q^(n-1) = 0.4 x 4^(n-1)。

2).已知一个等比数列的首项为40,公比为2,求这个数列前10项的和。

4、拓展应用1).某人每月将其银行存款增加40万元,第一次存入100万元,这时它含有40万元的利息,第二次存入的时候也含有40万元的利息,依次类推。

设这个人一共存了n个月,问n为多少时,这个人银行存款首次大于500万元?求大于500万元意味着要求出前n项和Sn > 500万元。

由等比数列前n项和公式可知:Sn > 500万元1.4^n < 0.6n > log1.4 0.6 ≈ 6.18n = 7最后,提醒学生,如果我们要研究一个问题,尤其是数学问题,我们应该将问题中所涉及到的各个数之间的关系——即数学模型——考虑清楚后,再找到数学模型的解,这样才能得到正确的答案。

等比数列教案——

等比数列教案——

等比数列教案——教学目标:1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列的相关知识解决实际问题。

教学重点:1.等比数列的通项公式和求和公式;2.应用等比数列解决实际问题的能力。

教学难点:应用等比数列解决实际问题的能力。

教学准备:教辅书、板书、练习册。

教学过程:一、导入(5分钟)1.引导学生回顾等差数列的概念和性质,并与等比数列进行对比;2.提问学生:在日常生活中,你们观察到的等比现象有哪些?二、讲授(20分钟)1.引入等比数列的概念和性质,解释等比数列的特点;2.教师示范推导等比数列的通项公式,并让学生进行跟读;3.解释等比数列的求和公式,并让学生进行运算验证;4.提供一些例题,引导学生理解和掌握等比数列的相关公式。

三、练习(15分钟)学生独立完成练习册上的练习题,辅导答疑并给予必要的指导。

四、拓展(15分钟)1.提供一些应用场景,让学生尝试应用等比数列解决实际问题;2.鼓励学生思考和分享自己的解题思路;3.教师进行点评和总结。

五、归纳总结(10分钟)1.教师归纳等比数列的概念和性质;2.与学生一同总结等比数列的通项公式和求和公式;3.引导学生反思学习过程中的困难和收获。

六、作业布置(5分钟)布置相应的作业,并要求学生在作业中应用等比数列的知识解决问题。

教学反思:本节课通过引导学生理解等比数列的概念和性质,掌握等比数列的通项公式和求和公式,培养学生应用等比数列解决实际问题的能力。

在教学过程中,我采取了问题导入、示范推导、练习训练等教学策略,使学生在实践中理解和掌握等比数列的相关知识。

在拓展环节,我鼓励学生思考和分享自己的解题思路,让学生在合作中互相学习,提高了课堂氛围。

同时,在归纳总结环节中,我与学生一起总结等比数列的概念和性质,帮助学生加深对等比数列的理解。

综上所述,本节课教学效果良好,学生的学习兴趣得到了激发,目标达成情况较好。

等比数列性质教学教案

等比数列性质教学教案

等比数列(二)教学重点等比数列的通项公式、性质及应用.教学难点灵活应用等比数列的定义及性质解决一些相关问题.教学过程一、复习1.等比数列的定义.2.等比数列的通项公式:)0,(111≠⋅=-q a q a a n n , )0,(≠⋅=-q a q a a m m n m n , )0,(≠=B A AB a n n3.{an }成等比数列⇔)0,( 1≠∈=++q N n q a a n n二、讲解新课:思考:类比等差中项的概念,你能说出什么是等比中项吗?1.等比中项:如果在a 与b 中间插入一个数G ,使a, G ,b 成等比数列,那么称这个数G为a 与b 的等比中项. 即G=±ab (a,b 同号) ,则ab G ab G G b a G ±=⇒=⇒=2,反之,若G 2=ab,则G b a G =,即a,G,b 成等比数列 ∴a,G,b 成等比数列⇔G 2=ab (a ·b ≠0)例1.三个数成等比数列,它的和为14,它们的积为64,求这三个数.解:设m,G,n 为所求的三个数,有已知得m+n+ G =14, 64=⋅⋅G n m , ,2mn G =,4643=⇒=∴G G ⎩⎨⎧=⋅=+∴,16,10n m n m ⎩⎨⎧==⎩⎨⎧==∴.8,2,2,8n m n m 或 ∴这三个数为8,4,2或2,4,8.解法二:设所求三个数分别为,,,aq a q a 则,4,643=∴=a a 又,14=++aq a q a 14444=++∴q q 解得,21,2==q q 或 ∴这三个数为8,4,2或2,4,8.2.等比数列的性质:若m+n=p+k ,则k p n m a a a a = 在等比数列中,m+n=p+q ,k p n m a a a a ,,,有什么关系呢?由定义得:11n 11 --==n m m q a a q a a 11k 11 --⋅==k p p q a a q a a 221-+=⋅n m n m q a a a ,221-+=⋅k p k p q a a a则kp n m a a a a = 例2. 已知{n a }是等比数列,且252,0645342=++>a a a a a a a n , 求53a a +. 解: ∵{n a }是等比数列,∴ 2a 4a +23a 5a +4a 6a =(3a +5a )2=25, 又n a >0, ∴3a +5a =5;3.判断等比数列的常用方法:定义法,中项法,通项公式法例3.已知{}{}n n b a ,是项数相同的等比数列,求证{}n n b a ⋅是等比数列. 证明:设数列{}n a 的首项是1a ,公比为1q ;{}n b 的首项为1b ,公比为2q ,那么数列{}n n b a ⋅的第n 项与第n+1项分别n n nn n n q q b a q q b a q b q a q b q a )()(2111121112111121111与即为与---⋅⋅⋅⋅⋅⋅ .)()(2112111211111q q q q b a q q b a b a b a n nn n n n ==⋅⋅-++它是一个与n 无关的常数,所以{}n n b a ⋅是一个以q1q2为公比的等比数列.思考;(1){an }是等比数列,C 是不为0的常数,数列{}n ca 是等比数列吗? (2)已知{}{}n n b a ,是项数相同的等比数列,⎭⎬⎫⎩⎨⎧n n b a 是等比数列吗?4.等比数列的增减性:当q>1, a1>0或0<q<1, a1<0时, {an}是递增数列; 当q>1, a1<0,或0<q<1, a1>0时, {an}是递减数列;当q=1时, {an}是常数列;当q<0时, {an}是摆动数列.三、课堂小结:1.等比中项的定义;2.等比数列的性质;3.判断数列是否为等比数列的方法.。

等比数列教案(精选7篇)

等比数列教案(精选7篇)

等比数列教案等比数列教案什么是教案?教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

等比数列教案(精选7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。

等比数列教案1教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 等比数列教案2教学目标1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法讨论、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)①-2,1,4,7,10,13,16,19,②8,16,32,64,128,256,③1,1,1,1,1,1,1,④-243,81,27,9,3,1,,,⑤31,29,27,25,23,21,19,⑥1,-1,1,-1,1,-1,1,-1,⑦1,-10,100,-1000,10000,-100000,⑧0,0,0,0,0,0,0,由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).二、讲解新课请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列(二)
教学重点
等比数列的通项公式、性质及应用. 教学难点
灵活应用等比数列的定义及性质解决一些相关问题. 教学过程
一、复习
1.等比数列的定义.
2.等比数列的通项公式:
)
0,(11
1≠⋅=-q a q
a a n n , )
0,(≠⋅=-q a q a a m m
n m n ,
)
0,(≠=B A AB a n
n
3.{an }成等比数列⇔)
0,( 1
≠∈=+
+q N n q a a n
n
二、讲解新课:
思考:类比等差中项的概念,你能说出什么是等比中项吗?
1.等比中项:如果在a 与b 中间插入一个数G ,使a, G ,b 成等比数列,那么称这个数G
为a 与b 的等比中项. 即G=±ab (a,b 同号) ,则ab
G ab G
G b a
G ±=⇒=⇒=2

反之,若G 2
=ab,则G b
a
G
=
,即a,G ,b 成等比数列 ∴a,G ,b 成等比数列⇔G 2
=ab (a ·b ≠0)
例1.三个数成等比数列,它的和为14,它们的积为64,求这三个数. 解:设m,G ,n 为所求的三个数,
有已知得m+n+ G =14, 64=⋅⋅G n m , ,2
mn G = ,4643
=⇒=∴G G
⎩⎨⎧=⋅=+∴,16,10n m n m ⎩⎨
⎧==⎩⎨⎧==∴.
8,
2,2,8n m n m 或
∴这三个数为8,4,2或2,4,8.
解法二:设所求三个数分别为
,
,,aq a q
a 则
,
4,643
=∴=a a

,14=++aq a q
a
14
444=++∴
q q
解得
,
21,2=
=q q 或
∴这三个数为8,4,2或2,4,8.
2.等比数列的性质:若m+n=p+k ,则k
p n m a a a a =
在等比数列中,m+n=p+q ,
k
p n m a a a a ,,,有什么关系呢?
由定义得:
1
1n 1
1 --==n m m q
a a q
a a
1
1k 1
1 --⋅==k p p q
a a q
a a
2
2
1-+=⋅n m n m q
a a a ,2
2
1-+=⋅k p k p q
a a a

k
p n m a a a a =
例2. 已知{n
a }是等比数列,且
25
2,0645342=++>a a a a a a a n , 求
5
3a a +.
解: ∵{n
a }是等比数列,∴ 2a 4a +23a 5a +4a 6a =(3a +5a )2
=25, 又
n
a >0, ∴3
a +
5
a =5;
3.判断等比数列的常用方法:定义法,中项法,通项公式法 例3.已知
{}{}n n b a ,是项数相同的等比数列,求证{}n n b a ⋅是等比数列.
证明:设数列
{}n a 的首项是1a ,公比为1q ;{}n b 的首项为1b ,公比为2q ,那么数列{}
n n
b a ⋅的第n 项与第n+1项分别
n
n n n n n q q b a q q b a q b q a q b q a )
()
(21111
211121111
2
11
1
1与即为与---⋅⋅⋅⋅⋅⋅
.
)
()(211
2111211111q q q q b a q q b a b a b a n n
n
n n n ==
⋅⋅-++
它是一个与n 无关的常数,所以
{}n n b a ⋅是一个以q1q2为公比的等比数列.
思考;(1){an }是等比数列,C 是不为0的常数,数列
{}n ca 是等比数列吗?
(2)已知{}{}n n b a ,是项数相同的等比数列,⎭⎬

⎩⎨⎧n n b a 是等比数列吗?
4.等比数列的增减性:当q>1, a1>0或0<q<1, a1<0时, {an}是递增数列; 当q>1, a1<0,或0<q<1, a1>0时, {an}是递减数列;
当q=1时, {an}是常数列;当q<0时, {an}是摆动数列. 三、课堂小结: 1.等比中项的定义;
2.等比数列的性质;
3.判断数列是否为等比数列的方法.。

相关文档
最新文档