沪科版八年级数学上册《三角形中的边角关系》教案1

合集下载

三角形中的边角关系教案沪科版(精美教案)

三角形中的边角关系教案沪科版(精美教案)

三角形中的边角关系教案沪科版(精美教案)
《三角形中的边角关系》第一课时教学案例
一、内容分析:
三角形是最简单的多边形,是研究其他图形的基础。

本节课是在学生已学过了一些三角形的基础上,进一步系统的研究它的概念、分类、性质和应用。

二、学情分析:
虽然学生已在小学阶段及日常生活中了解了不少有关三角形的知识,但却偏重于感性认识,且缺乏系统化。

故教学时应从学生熟悉的事物入手,创设情境,调动学生的学习积极性,积极进行观察、操作、猜想、验证,主动探究解决问题。

三、教学目标:
、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形;
、理解三角形中三边之间的关系,并运用它解决一些简单的问题;
、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动中的创造性,体验探究的乐趣。

四、教学中的重、难点及处理:
、重点:理解三角形三边之间的关系,了解三角形的分类思想。

、难点:探究三角形三边之间的关系。

、处理:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。

五、教学准备:
、教师准备:制作多媒体课件。

、学生准备:笔、刻度尺。

七、教学设计说明:。

沪科版八年级数学上册13.1三角形中的边角关系教学设计

沪科版八年级数学上册13.1三角形中的边角关系教学设计
-小组讨论并总结三角形边角关系的解题策略和技巧。
作业要求:
-学生需按照作业要求,认真完成,书写工整,保持作业整洁。
-鼓励学生在解题过程中,标注解题思路,以便于教师了解学生的思考过程。
-对于完成作业过程中遇到的困难,学生应积极寻求帮助,及时解决疑问。
-计算给定三角形的内角和,以及未知角度。
-利用勾股定理求解直角三角形的未知边长。
2.实践应用题:设计一些与生活实际相关的问题,让学生将所学的三角形知识应用到解决实际问题中,培养学生的建模能力和实践能力。
-测量并计算学校旗杆的高度,如果知道旗杆底部与观察点的距离以及旗杆顶部的仰角。
-分析并计算给定三角形形状的屋顶面积。
-教师关注学生的学习过程,鼓励学生积极参与,体验数学学习的乐趣。
-学生通过自主探究、合作交流,形成良好的学习习惯,为终身学习打下基础。
二、学情分析
八年级学生已经在之前的数学学习中,掌握了基本的几何图形知识和相关性质,具备了一定的空间想象能力。在此基础上,他们对三角形的边角关系有了初步的认识,但对于三角形中较为复杂的边角关系及其应用,仍需进一步引导和拓展。此外,学生在解决实际问题时,可能存在以下困难:对三角形概念的理解不够深入,无法熟练运用相关定理和公式;缺乏将实际问题转化为数学模型的意识,导致解题思路不明确。因此,在本章节的教学中,教师应关注学生的基础知识掌握情况,结合生活实例,激发学生兴趣,引导他们主动探究三角形边角关系,提高解决问题的能力。同时,注重培养学生的逻辑思维和团队合作精神,使其在互动交流中,不断提升数学素养。
3.拓展提高题:提供一些综合性强、难度较高的题目,鼓励学有余力的学生挑战自我,拓展思维。
-解决涉及多个三角形的复合问题,如多边形的内角和计算。

13.1三角形中的边角关系(第一课时)教学设计

13.1三角形中的边角关系(第一课时)教学设计

沪科版数学学科八年级上册第十三章第一节《13.1三角形中的边角关系(第1课时)》教学设计【教学目标】1. 知识与技能:(1)了解三角形的意义,掌握三角形的表示方法。

(2)了解不等边三角形、等腰三角形和等边三角形,会按边将三角形分类。

(3)掌握三角形中三边之间的关系,并能利用这个关系解决问题。

2.过程与方法:在经历揭示“三角形三边之间的关系”的探究过程中,初步培养学生的逻辑思维能力、动手操作能力和数学活动的经验方法。

3.情感态度与价值观:(1)能积极参与数学学习活动,对数学有好奇心。

(2)在数学学习活动中获得成功的体验,建立对数学学习的自信心。

(3)体验数学的应用价值,感受环保意识、公德意识。

【教学重点】三角形三边之间的关系。

【教学难点】三角形三边之间关系的探究。

【教学方法】情境——自主 、探究——发现。

【教具准备】多媒体课件,三角板。

【教学过程】 一、畅所欲言师板书课题:§13.1三角形中的边角关系(1)。

师:为了能有效的进行学习,请大家分成学习小组,并准备好直尺或三角板、练习本。

二、自主学习1. 阅读课本67面,自主学习。

2. 活动:画一画,标一标,认一认,练一练。

(1)标出三角形的顶点、边、角等,用符号表示三角形。

如图“△ABC ”,读作“三角形ABC ”。

生1:顶点A 、顶点B 、顶点C 。

问题1.姚明是同学们熟悉而喜爱的篮球明星,他高大而帅 气,有人说:“姚明特厉害,他一步就能迈3米”,对 于这个说法,你信不信呢?(背景资料:姚明身高2.36米,体重139kg,腿长约1.30米。

) 生1:相信...... 生2:不相信......师:从这节课开始,我们将一起来研究三角形的相关知识, 来解决这个问题。

ABCcb a生2:边AB 也可用小写字母a 表示...... 生3:∠A 、∠B 、∠C 叫做三角形的内角。

(2)会将三角形按边分类,知道每类三角形的特征。

不等边三角行三角形等腰三角行(等边三角形是等腰三角形的特例。

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1一. 教材分析《三角形边角关系》是沪科版数学八年级上册的教学内容,本节课的主要内容是让学生掌握三角形的边角关系,包括三角形的内角和定理、三角形的边长关系等。

教材通过丰富的实例和活动,引导学生探究和发现三角形的边角关系,培养学生的抽象思维能力和解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和观察能力。

但是,对于三角形的边角关系的理解和运用,还需要进一步的引导和培养。

因此,在教学过程中,要注重启发学生思考,引导学生发现规律,提高学生的几何思维能力。

三. 教学目标1.了解三角形的内角和定理,掌握三角形的边长关系。

2.培养学生观察、分析、解决问题的能力。

3.培养学生的合作意识和几何思维能力。

四. 教学重难点1.三角形内角和定理的证明。

2.三角形边长关系的理解和运用。

五. 教学方法1.情境教学法:通过实例和活动,引导学生发现三角形的边角关系。

2.问题驱动法:引导学生提出问题,自主探究,解决问题。

3.合作学习法:分组讨论,共同解决问题,培养合作意识。

六. 教学准备1.准备相关的实例和活动材料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生观察并思考:这些三角形有什么共同的特点?你想到了什么关于三角形的性质?2.呈现(10分钟)教师通过讲解和展示三角形内角和定理的证明过程,让学生理解并掌握三角形的内角和定理。

同时,引导学生发现三角形的边长关系,如:三角形的两边之和大于第三边,两边之差小于第三边等。

3.操练(10分钟)学生分组讨论,每组选择一个三角形,用尺子和量角器测量三角形的内角和,并验证三角形的边长关系。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)教师出示一些关于三角形边角关系的练习题,让学生独立完成,检验学生对知识的掌握情况。

14.1三角形中的边角关系教案(沪科版八年级上)

14.1三角形中的边角关系教案(沪科版八年级上)

14.1三角形中的边角关系教学目标:知识目标:理解三角形的有关概念,掌握三角形三边的关系。

能力目标:通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。

情感目标:让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。

教学重、难点:教学重点:三角形三边关系的探究和归纳。

教学难点:三角形三边关系的应用。

教学过程:Ⅰ.回顾与思考1.如何表示线段?2.如何表示一个角?Ⅱ.创设现实情景,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)Ⅲ.讲授新课在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:观察下面的屋顶框架图.图5-1(1)你能从图5-1中找出4个不同的三角形吗?与同伴交流各自找的三角形.(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)根据指出的三角形回答下列问题:1.这些三角形有什么共同的特点?(结合小学对三角形的认识回答)2.什么叫做三角形?(通过视频了解三角形定义)(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?3.如何表示三角形?4.三角形的边可以怎么表示?5.如果我说三角形有三要素,你能猜出是哪三要素吗?(通过视频了解三角形的基本元素)练一练:(三角形定义三角形的表示方法)研究三角形的三条边是否相等,有多少种可能的情况?(通过视频掌握三角形按边的分类)1.三条边各不相等的三角形叫做不等边三角形,如图3-9.2.有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角,如图3-10.3.三条边都相等的三角形叫做等边三角形.议一议(1) 元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色彩灯的电线哪根长呢?说明你的理由。

八年级数学上册13.1三角形中的边角关系教案沪科版

八年级数学上册13.1三角形中的边角关系教案沪科版

13.1 三角形中的边角关系第1课时三角形中边的关系1.结合具体的实例,进一步认识三角形的概念及其基本要素.2.会用符号、字母表示三角形,并了解按边的相等关系对三角形进行分类.3.理解三角形任何两边之和大于第三边的性质,并会初步运用这一性质来解决问题.重点三角形的三边关系.难点三角形的三边关系.一、创设情境,导入新课教师出示一个用硬纸板剪好的三角形,并提出问题:小学中我们已经认识了三角形,那么你能不能给三角形下一个完整的定义?教师出示教具,提出问题.让学生观察教具,然后给出三角形的定义.由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形叫做三角形.【教学说明】通过小学知识,引入新的知识,温故而知新.通过教具观察,引起学生的注意,引发学生的学习兴趣.二、合作交流,探究新知1.探究三角形的有关概念(1)三角形的顶点及符号表示方法.(2)三角形的内角.(3)三角形的边.教师继续利用教具向学生直接指明相关的概念.学生注意记忆相关的概念.然后教师出示另外剪好的三角形,各顶点字母与原来不同,然后通过新三角形让学生巩固刚才的有关概念.【教学说明】直截了当地向学生指明相关的概念,之后借助练习巩固.2.探究三角形的分类问题1:小学中已经学过,如何将三角形进行分类?问题2:如何将三角形按边分类?教师提出问题,学生举手回答.教师提示,分类的标准是什么?教师进一步提出新的问题,并进一步讲解,等边三角形,等腰三角形的有关概念.然后给出三角形的按边分类方法:三角形错误!之后师生共同归纳三角形的分类方法.按不同的标准分类,可以有不同的分法.【教学说明】在三角形的分类学习过程中,让学生体会分类的思想,即:统一标准,不重不漏.3.探究三角形的三边关系探究:画出一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?教师提出问题,学生先画图然后进行讨论,并思考问题,然后教师指定学生回答问题.(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B→C路线短.然后教师进一步提出问题:这条路径为什么是最短的?学生举手回答:“两点之间,线段最短."然后师生共同归纳得出:AC+BC>AB,AB+AC>BC,AB+BC>AC,即:三角形的两边之和大于第三边.教师出示教材P68例1。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13章第1节的内容。

本节主要介绍三角形中的边角关系,包括三角形的内角和定理、三角形的边长关系等。

通过本节的学习,学生能够理解三角形的边角关系,并能够运用这些关系解决实际问题。

二. 学情分析八年级的学生已经学习了三角形的性质和角的度量,对于三角形的基本概念和性质有一定的了解。

但是,学生对于三角形边角关系的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的参与和实践,通过操作和思考,引导学生理解和掌握三角形的边角关系。

三. 教学目标1.知识与技能:学生能够理解和运用三角形的内角和定理,掌握三角形的边长关系。

2.过程与方法:学生能够通过观察、操作和思考,探索三角形的边角关系,培养解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。

四. 教学重难点1.教学重点:三角形的内角和定理,三角形的边长关系。

2.教学难点:三角形边角关系的运用和解决实际问题。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生探索三角形的边角关系。

2.实践操作法:让学生通过实际操作,观察和分析三角形的边角关系,加深理解。

3.合作学习法:学生分组合作,共同解决问题,培养合作精神和沟通能力。

六. 教学准备1.教学课件:制作教学课件,包括三角形的内角和定理和边长关系的图片和示例。

2.教学用具:准备一些三角形模型和测量工具,供学生实践操作使用。

3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一些实际问题,引导学生思考三角形中的边角关系,激发学生的学习兴趣。

2.呈现(10分钟)利用课件呈现三角形的内角和定理和边长关系的图片和示例,引导学生观察和分析,探索三角形的边角关系。

3.操练(10分钟)学生分组合作,利用准备好的三角形模型和测量工具,进行实际操作,观察和分析三角形的边角关系。

沪科版 初中数学八年级上册《三角形中的边角关系》教案

沪科版 初中数学八年级上册《三角形中的边角关系》教案

《三角形中的边角关系》教学设计教学目标:(一)知识与技能1、了解三角形的概念,会对三角形按边的关系进行分类,并会用符号语言表示三角形。

2、理解三角形中三边之间的关系,并运用它解决一些简单的问题。

(二)过程与方法1、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动充满着探索性和创造性,体验探究的乐趣。

2、通过对三角形三边关系的发展及应用培养学生的分类讨论思想和方程思想。

(三)情感态度价值观1、感知数学与生活的密切联系,体会生活中的数学美、图形美。

2、激发学生的勇于探究精神,让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。

教学重点:理解三角形三边之间的关系并能灵活应用。

教学难点:探究三角形三边之间的关系。

设计理念:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想。

教学方法:情境导入法、实验比较法教学准备:1、教师准备:制作多媒体课件。

2、学生准备:小木棒、刻度尺。

教学过程:一、创设情境,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)教师叙述:我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。

三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。

(设计说明:数学来源于生活,感受生活中的数学美,培养学生善于观察生活,洞悉生活中数学常识的能力。

)二、合作交流,初探新知活动一:师生动手任意画一三角形并通过刚才看过的图形中的三角形,讨论它们有什么共同点呢?引出三角形的定义。

教师总结三角形的定义:由不在同一条直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。

活动二:请同学们对照提纲阅读教科书第67页◆阅读提纲:1、会用几何符号表示一个三角形。

2、知道三角形的顶点、角、边等概念,并会用几何符号表示。

3、会把三角形按边进行分类,知道每类三角形的特征。

沪科版八年级数学上册13.1三角形边角关系(第一课时)教学设计

沪科版八年级数学上册13.1三角形边角关系(第一课时)教学设计

《三角形中的边角关系(第1课时)》教学设计教材分析:“三角形中的边角关系”是义务教育课程标准实验教科书《数学》(沪科版)八年级上册第十四章《三角形中的边角关系》中的第13.1节(第1课时)的内容。

本节课主要内容是了解三角形的概念、认识三角形的组成元素、会用符号语言表示三角形并按边对三角形分类以及三角形三边的关系。

在平面图形里,三角形是最简单也是最基本的多边形,它是由三条线段围成,但不是任意三条线段都能围成三角形。

所以学好本课内容,不仅可以从形的方面加深对周围事物的理解,发展学生空间观念,可以在动手操作、探索实验和联系生活、应用数学方面拓展学生的知识视野,发展学生的思维和解决问题的能力,同时也为顺利学习其他平面图形积累知识经验,打下坚实基础。

学生分析:在认知方面,学生在小学已经对三角形有了一定的认识和了解,具有了相应的知识基础(如两点之间线段最短),具有了相应的生活经验,具有一定的几何直觉,但应用知识的能力有待提高,抽象、概括的能力较弱,推理的能力有待提高。

在情感方面,大多数学生对动手活动感兴趣,能够积极参与数学探究活动,感受到数学与生活的联系。

但可能少数学生活动的目的不明确,合作交流的意识和水平不平衡,数学的价值感受不深刻,教师要注意引导、鼓励。

设计思路:从学生熟悉的风车图案引入课题,通过展示实际生活有关的三角形实物图片,让学生在体验数学来源于生活的感受中激发学习的兴趣。

学生在小学学习的三角形知识的基础上,通过观察、交流、讨论、归纳,从而得出三角形的准确定义。

为了培养学生的自主学习能力,设计阅读提纲让学生独立学习和三角形有关的概念、表示方法及分类相关的教材内容。

通过创设学生探究活动,引导学生动手实践、大胆猜想、推理归纳,逐层深入地揭示三角形三边关系的同时,也让学生在自主参与、合作交流、尽情发挥表现的过程中充分体验知识的获得过程。

最后,通过对一生活实例的解释,培养学生的数学应用意识。

同时也有助于培养学生的公德意识、环保意识,提高学生的数学素养和道德品质。

沪科版数学八年级上册:13.1三角形中的边角关系-教案(1)

沪科版数学八年级上册:13.1三角形中的边角关系-教案(1)

13.1 三角形中的边角关系(1)教学目标1.理解三角形的概念及基本元素,会按边对三角形进行分类,并会用符号语言表示三角形;2.理解三角形中三边之间的关系,会用三边关系判断三条线段能否构成三角形;3.经历三角形按边分类的过程,感受分类讨论思想的基本原则。

难点:三角形三边关系的探究及应用教学过程:(一)创设情境,概念形成问题1:动手画一个三角形,并用自己的语言描述什么是三角形?1.三角形定义:由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形。

2.基本元素如图所示,A ,B ,C 是三角形的顶点;两个顶点的连线,即线段AB ,BC ,CA 叫做这个三角形的边;两边形成的夹角,即∠A ,∠B ,∠C 叫做这个三角形的内角,简称三角形的角. 这个三角形记作“△ABC ”,读作“三角形ABC ”.三角形的三边有时用它所对角的小写字母表示:如边BC 对着 ∠A ,记作aB C教学重难点重点:三角形三边之间的关系练一练:如图所示,(1)图中有____个三角形;(2)∠1是哪个三角形的角?(3)以AB为一条边的三角形有____________________.3.三角形的分类问题2:三角形按边如何分类?有两条边相等的三角形叫做等腰三角形.如图,在等腰三角形ABC,AB=AC,它的各边与各角的名称如图所示;三边都相等的三角形叫做等边三角形,也叫正三角形.三角形三边都不相等的三角形叫不等边三角形;问题2-1:等腰三角形与等边三角形有什么关系?故等边三角形是特殊的等腰三角形三角形按边长关系可分为:不等边三角形三角形等腰三角形(包括等边三角形)(二)深入探究,再现新知问题3:已知在△ABC中,AC=6cm,BC=8cm,求第三边AB的长.(动手画一画)(学生动手操作,发现AB的值不唯一,但也是有取值范围的,老师借助几何画板进行演示,引出研究三角形的三边关系)问题情境:如图所示,其中B点代表小明的家,C点代表学校,A点代小胖家,现在小明要从家出发去学校,他有几条路线可选择?哪种最短呢?为什么?2条路线:路线1:B A C,即BA+AC路线2:B C,即BC其中路线2最短,因为两点之间线段最短,所以AB+AC>BC小胖要从家出发去学校,他有几条路线可选择?哪种最短呢?可得AC+AB>BC那小明要从学校出发去家,他有几条路线可选择?哪种最短呢?同理可得: AB+BC>AC由此得到三角形的三边关系:三角形任意两边之和大于第三边.根据不等式的性质得BC>AC -AB同理可得:AC>BC-AB, AB>AC-BC即三角形任意两边之差小于第三边.练一练:判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm、4cm、8cm(2)5cm、11cm 、6cm(3)5cm、0.6dm、10cm问题解决:已知在△ABC中,AC=6cm,BC=8cm,则第三边AB的取值范围是____________________.分析:由三角形的三边关系得BC -AC < AB <BC+AC 即8 - 6 < AB < 8+ 6 所以2cm < AB < 14cm小结:两边之差<第三边<两边之和字母表示: |a-b| < x < a+b(三)例题变式,巩固新知例1.例1 用一条长为18cm 的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4cm 的等腰三角形吗?为什么 ?能力提升:已知a ,b ,c 是△ABC 的三条边, 化简|a-b-c|+|b-c-a|+|c+a-b|(四)课堂总结,课下作业通过这堂课的学习, 你学到了哪些知识?涉及到哪些数学思想?还有哪些疑惑?课下作业:1. 课本69页练习1-3题.(选做)思考三角形的中的角有哪些关系?如何得到?BC A。

三角形中的边角关系教案沪科版

三角形中的边角关系教案沪科版
3.学生可能遇到的困难和挑战:在学习三角形的边角关系时,学生可能遇到的困难包括对三角形分类的理解和运用,以及对内角和定理的深入理解。部分学生可能在空间想象能力上有所欠缺,导致对三角形性质的理解不够直观。此外,学生在解决实际问题时,可能会遇到将数学知识与现实情境相结合的挑战。
教学资源
1.软硬件资源:多媒体投影仪、计算机、白板、几何画板软件、三角板、量角器、直尺、彩色粉笔。
-实践活动法:设计实践活动,让学生在实践中掌握三角形的分类和性质。
-合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
-帮助学生深入理解三角形的边角关系知识点,掌握相关技能。
-通过实践活动,培养学生的动手能力和解决问题的能力。
-通过合作学习,培养学生的团队合作意识和沟通能力。
"三角形分类"在线互动游戏:这是一个互动性强的在线游戏,学生可以通过游戏的方式,加深对三角形分类的理解,并提高学习的兴趣。
"三角形边角关系"教学视频:这是一个详细讲解三角形边角关系的教学视频,通过视频的学习,学生可以更直观地理解三角形的性质,并掌握三角形的相关知识。
2.拓展建议:
阅读《几何原本》:建议学生在课后阅读《几何原本》中关于三角形的部分,通过阅读,加深对三角形性质的理解,并了解三角形在几何学中的重要性。
答案:这个三角形的面积为6cm²。
5.题目五:已知直角三角形的斜边长为10cm,一条直角边长为8cm,求另一条直角边的长度。
答案:另一条直角边的长度为15cm。
板书设计
①三角形的边角关系定理:边长、内角、外角
②三角形的分类:锐角三角形、直角三角形、钝角三角形
③三角形内角和定理:三角形的三个内角之和等于180°

沪科版-数学-八年级上册-教案:13.1三角形中的边角关系 (1)

沪科版-数学-八年级上册-教案:13.1三角形中的边角关系  (1)

项目内容课题13.1三角形中的边角关系修改与创新教学目标1、知识目标:理解三角形的有关概念,掌握三角形三边的关系。

2、能力目标:通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。

3、情感目标:让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。

教学重、难点教学重点:三角形三边关系的探究和归纳。

教学难点:三角形三边关系的应用。

教学准备多媒体课件教学过程一、回顾与思考1.如何表示线段?2.如何表示一个角?二、创设现实情景,引入新课问题:看下列实物中,有你熟悉的图形吗?(出示多媒体课件:一些含有三角形的建筑物)三、讲授新课在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:观察下面的屋顶框架图.图13-1你能从图13-1中找出4个不同的三角形吗?与同伴交流各自找的三角形.(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)根据指出的三角形回答下列问题:1.这些三角形有什么共同的特点?(结合小学对三角形的认识回答)2.什么叫做三角形?(通过视频了解三角形定义)(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?3.如何表示三角形?4.三角形的边可以怎么表示?5.如果我说三角形有三要素,你能猜出是哪三要素吗?(通过视频了解三角形的基本元素)练一练:(三角形定义三角形的表示方法)研究三角形的三条边是否相等,有多少种可能的情况?(通过视频掌握三角形按边的分类)1.三条边各不相等的三角形叫做不等边三角形,如图13-2.2.有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角,如图13-2.3.三条边都相等的三角形叫做等边三角形.(如图13-2.)议一议(1) 元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色彩灯的电线哪根长呢?说明你的理由。

沪教版八年级数学上册13.1 三角形中的边角关系教案(共3课时)

沪教版八年级数学上册13.1 三角形中的边角关系教案(共3课时)

13.1 三角形中的边角关系第1课时三角形中的边角关系(一)教学目标【知识与技能】1.认识三角形,理解三角形的边角关系.2.知道三角形的高、中线、角平分线等概念,并能作出三角形的一边上的高.3.理解等腰三角形及其相关概念.【过程与方法】1.经历三角形边长的数量关系的探索过程,理解三角形的三边关系.2.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】1.带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲.2.帮助学生树立几何知识源于生活并服务于生活的意识.重点难点【重点】理解并掌握三角形的三边关系.【难点】已知三条线段能构成三角形,求表示线段长度的代数式中字母的取值范围.教学过程一、创设情境,导入新知教师多媒体出示:教师把事先收集的与三角形有关的生活图片运用多媒体播放,让学生对三角形有一个感性认识,如图所示.教师活动:通过播放图片,引导学生认识三角形,并提出:图(b)中能找出几个三角形,这些三角形具有怎样的特性?学生活动:回顾小学学过的三角形,与同桌交流,找出图(b)中的三角形.教师归纳:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.教师多媒体出示:师:你能指出这个三角形的顶点有几个吗?分别是什么?生:这个三角形的顶点有三个,分别是A、B、C.师:这个三角形的边呢?生:边有三条,分别是AB、BC和CA.师:对.我们把这个三角形记作“△ABC”,读作“三角形ABC”.三角形的三边有时用它所对角的相应小写字母表示.如边AB对着∠C,记作c;边BC对着∠A,记作a;边CA对着∠B,记作b.也就是说,一边可用两个大写字母或一个小写字母表示,角可用“∠”加上一个大写字母表示.师:按边分类时,你知道的都有哪些三角形?生:等边三角形.师:等边三角形是三条边都相等的三角形.如果不是三条边都相等,比如两条边相等,这类三角形叫什么三角形呢?生:等腰三角形.师:对,等边三角形是等腰三角形的特例.如果三条边都不相等呢?学生思考.师:我们把这类三角形叫做不等边三角形.教师多媒体出示:教师板书:三角形(按边分)师:在等腰三角形中,你能区分哪条边是腰,哪条边是底吗?生:相等的两边叫做腰,第三边叫做底边.师:对.我们现在再来认识一下顶角和底角.两腰的夹角叫做顶角,腰与底边的夹角叫做底角.二、共同探究,获取新知师:请大家任意画出一个三角形,用刻度尺测量一下,并说说任意两边之和与第三边的关系.学生操作.生:任意两边之和大于第三边.师:对,你有没有其他的方法来证明三角形的任意两边之各大于第三边呢?生:由所有两点之间的连线中线段最短得到.教师板书:三角形中任何两边的和大于第三边.师:对.根据不等式的性质,我们能得到三角形中任意两边的差小于第三边.(教师板书)如果三条线段要构成一个三角形,它们就要满足这两个条件,但是在实际计算中,需要验证六个不等式都成立吗?学生思考,讨论.师:不等式a+b>c,你把a移到不等式的右边,这个不等式如何表示?生:b>c-a.师:对,也就是c-a<b,由此你能得到什么启示?学生思考.生甲:同样的道理,由两个三角形两边之和大于第三边,可以得到两个三角形两边之差小于第三边.生乙:我们只要验证“三角形中任何两边的和大于第三边”和“三角形中任何两边的差小于第三边”,因为第二个条件由第一个得到,所以我们只要满足第一个条件即可.下面请大家看一个例题.教师多媒体出示:【例】等腰三角形中,周长为18cm.(1)如果腰长是底边长的2倍,求各边长;(2)如果一边长为4cm,求另外两边长.师:请同学们思考后回答.生:设等腰三角形的底边长为xcm,则腰长为2xcm,根据题意,得x+2x+2x=18,解方程得x的值,即底边长,然后求出腰长.师:当已知一边长为4cm,但并未指明它是腰还是底时,应该怎么求另外两边的长呢?生:要分4cm是腰长和底边长两种情况来讨论.师:对.还要注意对得到的三条线段能否构成一个三角形进行讨论.教师找两名学生板演,其余同学在下面做,然后集体订正.解:(1)设等腰三角形的底边长为 xcm,则腰长为2xcm.根据题意,得x+2x+2x=18.解方程,得x=3.6.所以三角形的三边长分别为3.6cm、7.2cm、7.2cm.(2)若底边长为4cm,设腰长为xcm,则有2x+4=18.解方程,得x=7.若一条腰长为4cm,设底边长为xcm,则有2×4+x=18.解方程,得x=10.因为4+4<10,所以,以4cm为一腰不能构成三角形.所以,三角形的另外两边长都是7cm.三、练习新知师:请同学们判断用下列长度的三条线段能否组成一个三角形.(1)1cm、2cm、3cm;(2)2cm、3cm、4cm;(3)4cm、5cm、6cm;(4)5cm、6cm、10cm.教师找四名同学回答,然后集体订正.师:同学们可以总结出判断三条线段能否构成一个三角形的简便方法吗?以题(2)为例,根据三角形任意两边的和大于第三边,我们要作几个判断?生:三个.师:哪三个?生:2+3>4,2+4>3,3+4>2.师:你能不能用一个判断的结果得到这三条线段能否构成三角形?生:……师:2+4一定大于3,3+4一定大于2,因为长度为4的这一条边长已经大于3了,同样的长度为3或4的一条边长已经大于2了.生:只要看最长的一边是否小于其他两边之和.师:很好.四、课堂小结师:今天我们又学习了什么内容?生:我们学习了三角形的分类,等腰三角形的底边和腰,三角形三边的关系等.教师补充完善.教学反思通过本节课的学习,使学生认识到不是任意的三条线段都能构成三角形,并让学生知道怎样判断三条线段是否能构成三角形.在判断三条线段能否构成三角形时,我们不对任意两边之和是否大于第三边、任意两边之差是否小于第三边一一验证,因为后面的式子可由前面的变形得到.事实上,只要看最长的一边是否小于其他两边之和即可,因为当这个条件成立时,其他的两边之和大于第三边的式子也成立.通过这些方法的探讨使学生养成积极思考、简化计算的习惯.第2课时三角形中的边角关系(二)教学目标【知识与技能】1.掌握三角形的内角和定理.2.能应用三角形的内角和定理解决一些简单的实际问题.【过程与方法】经历实验探究,得出三角形的内角和定理.【情感、态度与价值观】1.通过带领学生探究三角形的角的数量关系,引起学生的好奇心,激发学生的求知欲.2.发展学生的合情推理能力,使学生养成独立思考的习惯.重点难点【重点】三角形的内角和定理.【难点】三角形内角和定理的证明过程.教学过程一、创设情境,导入新知师:上节课我们把三角形按边来分类,并研究了三角形三边之间的关系,同学们还记得三角形的三边之间是什么关系吗?生:记得.三角形中任意两边之和大于第三边,任意两边之差小于第三边.师:对.那么如果按角来分类呢?生:分为锐角三角形、直角三角形和钝角三角形.师:你能说说它们分别是怎样定义的吗?生:能.三角形中,三个角都是锐角的三角形叫做锐角三角形,有一个角是直角的三角形叫做直角三角形,有一个角是钝角的三角形叫做钝角三角形.师:在介绍等腰三角形时,我们对它的边进行了区分,分为腰和底边.直角三角形中,我们怎么对它的边长加以区分呢?生:直角三角形中夹直角的两边叫做直角边,直角相对的边叫做斜边.师:对.我们分别给它们取一个名字,这样以后就容易指出了.直角三角形可以写成“Rt△ABC”,我们把不是直角三角形的归为一类,称为斜三角形,所以斜三角形包括锐角三角形和钝角三角形.二、共同探究,获取新知师:我们再回忆一下,在一个三角形中三个内角之间有什么关系?生:三角形的三个内角和是180°.师:你还记得在小学时,我们是怎样知道这个关系的吗?生:用折叠和剪拼的方法得到的.师:好.请同学们拿出一张纸,画出一个三角形,并将它剪下来.学生交流讨论后操作.师:将纸片三角形的一角折向其对边,使顶点落在对边上,折线与对边平行,然后把另外两角相向对折,使其顶点与已折角的顶点嵌合.学生操作.教师多媒体出示:师:这样我们就得到了什么结论?生:三角形的内角和是180°.教师多媒体出示:师:现在请同学们自己用剪拼的方法证明一下,看你们能不能得到这样的结果.学生操作.生:能得到同样的结论:三角形的内角和是180°.师:很好!你们还有什么方法来证明这个结论吗?生:用量角器量.师:对,你们在纸上画出一个三角形,然后用量角器量它的三个内角,看它们有什么关系?学生操作后回答.师:同学们思考一下一个三角形中最多有几个钝角?学生计论后回答:一个.师:你是怎样得出的结论?生:因为一个三角形的内角和是180°,钝角是大于90°的角,若有两个钝角,三个内角的和就超过180°了,所以至多有一个钝角.师:最多有几个直角呢?生:一个.师:为什么呢?生:与钝角情况类似,若有两个直角,它们的和就已经是180°了,再加上第三个角的度数,内角和就超过180°了.师:你分析得很好!三、巩固练习,加深理解教师多媒体出示:【例】已知:如图所示,△ABC中,BD⊥AC,垂足为D,∠ABD=54°,∠DBC=18°.求∠A和∠C的度数.师:怎么求∠A的大小?把它看作哪个三角形的内角求?生:∠A是△ABD的内角,因为BD⊥AC,所以∠BDA=90°,∠ABD的度数已知,所以用三角形的内角和定理就可以求出∠A的大小.师:很好!∠C的度数怎么求呢?把它作为哪个三角形的内角来求呢?生:可以放在△ABC中求,也可以放在△DBC中求.师:对.当∠C作为△ABC的内角时怎么求呢?生:∠A+∠ABD+∠DBC+∠C=180°,所以∠C=180°-∠A-(∠ABD+∠DBC),然后把各个角的度数代入即可.师:当∠C作为△DBC的内角时怎么求呢?生:因为BD⊥AC,所以∠BDC=90°,∠BDC+∠DBC+∠C=180°,所以∠C=180°-∠BDC-∠DBC,然后把各角的度数代入即可.教师板书计算过程.解:由于BD⊥AC,(已知)所以∠ADB=∠CDB=90°.在△ABD中,∠A+∠ABD+∠ADB=180°,(三角形的三个内角和等于180°)∠ABD=54°,∠ADB=90°,(已知)∠A=180°-∠ABD-∠ADB=180°-54°-90°=36°.在△ABC中,∠C=180°-∠A-(∠ABD+∠DBC)=180°-36°-(54°+18°)=72°.四、课堂小结师:我们今天学习了什么内容?学生回答,教师补充完善.师:你还有什么疑问吗?学生提问,教师解答.教学反思本节课学生通过自主探索、合作交流、认真探究,从而证明出三角形的内角和等于180°,并按照“探究性学习方式”的三个层次要素设计学生的学习过程:“回忆旧知、引入新知”,“分析交流、探索规律”,“学以致用、提高能力”,使整节课既有规律性又有艺术性.教学过程中,不浪费任何一个促使学生动手操作、实践获得真知的机会,以师生互动、生生互动使学生主动自觉地发现结果,找到方法,培养学生的操作、观察,分析能力和思维的全面性.第3课时三角形中的边角关系(三)教学目标【知识与技能】1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线.2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点.【过程与方法】经历探究三角形的高、角平分线、中线的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】1.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.2.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识.重点难点【重点】三角形的三条高、中线和角平分线的画法.【难点】钝角三角形三条高的画法.教学过程一、创设情境,导入新知师:我们在上节课把三角形按角进行了分类,我请几个同学回答一下什么是锐角三角形、什么是直角三角形、什么是钝角三角形.生甲:在三角形中,三个角都是锐角的三角形叫做锐角三角形.生乙:在三角形中,有一个角是直角的三角形叫做直角三角形.生丙:在三角形中,有一个角是钝角的三角形叫做钝角三角形.师:很好!我们上节课学习了一个重要的定理,大家还记得吗?生:记得.三角形三个内角的和等于180°.师:很好!这节课我们继续学习三角形的有关知识.二、共同探究,获取新知师:三角形中三条边、三个角是它的六个基本元素,除此之外,同学们通过预习,知道它还有什么元素吗?生:角平分线.师:什么是角平分线呢?生:三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线.师:还有什么元素?生:中线.师:什么是中线呢?生:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线.师:还有什么元素呢?生:高.师:什么是高呢?生:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高.学生熟记定义.师:你能根据这些线的定义作出这些线吗?生:能.师:现在请大家画一个三角形,并作出各个角的平分线.学生操作,教师巡视.教师在黑板上演示画一个角的平分线.∠1=∠2,BD是∠ABC的平分线.师:现在请大家重新画一个三角形,并作出这个三角形的三条中线.学生操作,教师巡视.教师在黑板上演示画一条中线.BD=DC,AD是BC边上的中线.师:现在请大家重新画一个三角形,并作出这个三角形的三条高.学生操作,教师巡视.教师在黑板上演示画三种类型的三角形的一条高线.锐角三角形BC边上的高直角三角形BC边上的高钝角三角形BC边上的高师:你能用折叠的方法作出一个角的平分线吗?学生思考,交流.生:能.师:你是怎样做的?生:先作出一个三角形,把它裁剪下来,我折叠要平分的这个角使它的两边重合,这样得到的折痕与这个角的对边有一个交点,连接这个角的顶点与这个交点得到的线段就是这个三角形的角平分线.师:你太聪明了.大家现在都知道怎么作的吗?生:知道.师:那么请同学们动手做一做.学生操作.师:你能用折叠的方法作出三角形的一条中线吗?学生思考,交流.生:能.师:你是怎么做的?生:要作出三角形一边上的中线,我折叠这条边,使其两端点重合,折痕与这条边的交点,就是这条边的中点.连接这条边所对角的顶点与这个中点,所得的线段就是这条边上的中线.师:现在请大家动手作出中线.学生操作.师:你能用折叠的方法作出三角形一边上的高吗?学生讨论.生:过这边所对角的顶点折叠三角形,使这条边的两段重合,这样就得到了三角形的高.师:很好,请大家动手做一做.学生操作,教师巡视指导.三、作图练习,理解定义师:三角形的角平分线的定义给出了角平分线的作法,请同学们在纸上画出一个三角形,并根据角平分线的定义,画出三个角的平分线.学生操作,教师巡视指导.师:请同学们再画出一个三角形,然后根据中线的定义,作出中线.学生操作,教师巡视指导.师:请同学们完成教材上“操作”的第1题.学生操作,教师巡视指导,最后集体订正.师:直角三角形的高中,有两条和边重合;钝角三角形的高中,有两条在三角形的外部.请同学们观察一下,你们作出的三条角平分线、三条中线和三条高,它们有什么特点?生甲:三条角平分线交于一点.生乙:三条中线交于一点.生丙:三条高交于一点.师:很好!之前学过的说明三角形意义的语句、本节中说明三角形角平分线意义的语句:“不在同一直线上的三条线段首尾依次相接所组成的图形叫做三角形”,“三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线”,分别是三角形、三角形角平分线的定义.七年级时我们也学过一些定义,如“整数和分数统称为有理数”是有理数的定义.前两个定义揭示了对象的特征性质,后一个定义明确了所指对象的范围.给出定义,就是在于明确研究对象是什么.四、课堂小结师:本节课我们学习了什么内容?生:我们学习了三角形的角平分线、中线和高的定义以及画法.师:对,我们由作图过程知道了三角形的三条角平分线、三条中线和三条高是交于一点的.教学反思本节课通过让学生自己动手作图,作出三角形三个角的平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的这些线是交于一点的,培养他们观察、总结的能力.通过实际动手得到的结论,他们的印象会更深刻,理解更透彻.这节课所讲授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,学习起来更容易.强调三角形中的三种线是“线段”,而不是以往的“射线”.。

沪科版数学八年级上册:13.1三角形中的边角关系-教案(1)

沪科版数学八年级上册:13.1三角形中的边角关系-教案(1)

第十三章三角形中的边角关系、命题与证明13.2命题与证明第1课时命题一、教学目标1.掌握命题的概念,并能分清命题的组成部分;2.经历判断命题真假的过程,对命题的真假有一个初步的了解.理解原命题与逆命题的概念;3.初步培养不同几何语言相互转化的能力.二、教学重点及难点重点:找出命题的条件(题设)和结论.难点:命题概念的理解.三、教学用具多媒体课件.四、相关资源无.五、教学过程【课堂导入】判断下列语句哪些是判断句?(1)合肥市是安徽省的省会.(是)(2)3+7<11.(是)(3)有公共顶点的角是对顶角.(是)(4)北京欢迎你!(不是)(5)画一个角,它的大小是60度.(不是)(6)你的作业做完了吗?(不是)如何用数学语言来定义这种判断呢?设计意图:通过对上述语句是否是判断句的判断,引出本节课程内容的学习,为“命题”这一概念的提出做了铺垫.【新知讲解】1.命题、真命题和假命题.教师提出问题:现在,我们已经知道刚才的六条语句中,只有(1)合肥市是安徽省的省会.(2)3+7<11.(3)有公共顶点的角是对顶角.这三条语句是判断句,那我们根据已有的知识可以判断出哪些句子是真的,哪些句子是假的呢?学生回答问题.教师解答并讲解:语句(1)和(2)是正确的,语句(3)是错误的.那么,像这样可以判断出它是正确的还是错误的句子叫做命题.其中正确的命题叫做真命题;错误的命题叫做假命题.在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题“如果两个角是对顶角,那么这两个角相等”中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果……,那么……”的形式,就可以分清它的题设和结论了.例如,上述的语句(3)“有公共顶点的角是对顶角”可写成“如果两个角有公共顶点,那么这两个角是对顶角.”设计意图:通过提问和举例说明,引起学生思考,深化学生理解.2.原命题与逆命题.教师讲解:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.当一个命题是真命题时,它的逆命题不一定是真命题.例如“如果∠1与∠2是对顶角,那么∠1=∠2"是真命题,但它的逆命题“如果∠1=∠2,那么∠1与∠2是对顶角"却是假命题.设计意图:通过概念讲解和举例说明,引起学生思考,深化学生理解.【典型例题】例1指出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.解析:第(1)题中有“如果”“那么”,条件结论明显,(2)(3)题可先改写成“如果……那么……”形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.方法总结:通常情况下命题都可以写成“如果……那么……”形式,当条件结论不是很明显的时候,把所给命题改写成“如果……那么……”形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.解析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.方法总结:将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题例子的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.设计意图:命题真假判断,归纳命题题设和结论,改写命题的综合应用.【随堂练习】1. 已知三条不同的直线a、b、c在同一平面内,下列四个命题:①如果a∥b,a ⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是____________(填写所有真命题的序号).解析:①如果a∥b,a⊥c,那么b⊥c是真命题,故本项正确;②如果b∥a,c∥a,那么b∥c是真命题,故本项正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故本项错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故本项正确.故答案为①②④.方法总结:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.设计意图:通过学生练习,使教师及时了解学生的理解情况,以便教师及时对学生进行矫正.六、课堂小结1.什么叫命题?什么叫真命题?什么叫假命题?2.什么叫互逆命题?3.命题都可以写成“如果.....,那么.......”的形式.设计意图:通过小结,回顾本节课所学新知,加深印象.七、板书设计第1课时命题1. 命题1.1真命题1.2假命题2. 原命题与逆命题。

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1

沪科版数学八年级上册《三角形边角关系》教学设计1一. 教材分析《三角形边角关系》是沪科版数学八年级上册的教学内容。

本节课主要让学生掌握三角形的三边关系和三角形的内角和定理,为学生进一步学习几何知识打下基础。

教材通过实例引导学生探究三角形的边角关系,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析八年级的学生已经掌握了三角形的基本概念,具备了一定的观察和动手能力。

但部分学生对几何图形的理解仍较模糊,对三角形的边角关系认识不足。

因此,在教学过程中,要关注学生的个体差异,引导学生积极参与课堂活动,提高学生的几何素养。

三. 教学目标1.知识与技能:使学生掌握三角形的三边关系和三角形的内角和定理,能运用这些知识解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验成功的喜悦。

四. 教学重难点1.教学重点:三角形的三边关系和三角形的内角和定理。

2.教学难点:三角形边角关系的证明和运用。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、猜想、验证,培养学生的逻辑思维能力。

3.小组合作学习:让学生在小组内讨论、交流,提高学生的团队协作能力。

4.直观演示法:利用教具、模型等进行直观演示,帮助学生更好地理解三角形的边角关系。

六. 教学准备1.教具:三角板、直尺、量角器、多媒体设备。

2.学具:学生用书、练习题、剪刀、胶水。

3.课件:制作与教学内容相关的课件,包括图片、动画、实例等。

七. 教学过程1.导入(5分钟)利用生活实例引入三角形边角关系的话题,激发学生的学习兴趣。

例如,展示一个三角形的拼图游戏,让学生观察并思考:如何判断一个四边形能否拼成一个三角形?2.呈现(10分钟)利用多媒体课件展示三角形的三边关系和三角形的内角和定理。

沪科版(2012)初中数学八年级上册 13.1 三角形中的边角关系 教案

沪科版(2012)初中数学八年级上册 13.1 三角形中的边角关系 教案

环节时间学生自学事宜教师引导事宜第二次自学围绕重点自学5分钟个人自学P69(1)操作:在2cm、3cm、4cm、5cm、6cm的纸棒中,任选三条,能否拼成三角形?将能拼成三角形的三根纸棒长度记下来。

(2)三角形的三边之间有什么大小关系?(3)为什么会有这样的关系?小组交流教师巡视指导第二次自学讨论自学未解5分钟课堂生成预设:三边关系的根据点拨自学得失3分钟三角形三边关系的实际应用巩固自学成果16分钟练一练:(1)下列长度的三条线段能否组成三角形?为什么?①1cm、2cm、3cm;②2cm、3cm、4cm;③4cm、6cm、5cm;④10cm、6cm、5cm。

例2:已知等腰三角形的周长是18cm,有一边长是4cm,求另两边的长。

思考:一根木棒长为9cm,另一根木棒长为3cm,那么用长度为5cm的木棒能和它们拼成三角形吗?长度为11cm的木棒呢?若能拼成三角形,则第三条边应在什么范围呢?请用所学的数学知识解释:为什么经常有行人斜穿马路而不走人行横道?小结:本节课的收获和体会,还有什么疑问?布置作业:必做题:1、第70页练习第3题2、第74页习题14.1第1题3、《全品作业本》43页选作题:《全品作业本》44页学生回答,教师根据学生回答情况适时评价板书设计14.1三角形的边角关系由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

记作:△ABC三角形中任何两边的和大于第三边三角形中任何两边的差小于第三边教后反思。

八年级数学上册13.1三角形中的边角关系第1课时三角形中边的关系教案新版沪科版

八年级数学上册13.1三角形中的边角关系第1课时三角形中边的关系教案新版沪科版

第13章三角形中的边角关系、命题与证明13.1三角形中的边角关系第1课时三角形中边的关系◇教学目标◇【知识与技能】1.认识三角形,理解三角形的三边关系;2.会对三角形按边分类.【过程与方法】经历三角形边长的数量关系的探索过程,理解三角形的三边关系.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.【情感、态度与价值观】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力.让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣.◇教学重难点◇【教学重点】三角形三边关系的探究和归纳.【教学难点】三角形三边关系的应用.◇教学过程◇一、情境导入看下列实物中,有你熟悉的图形吗?二、合作探究在小学数学中我们学习了有关三角形的一些初步知识,现在请观察上面的屋顶框架图,并思考以下问题:(1)你能从图中找出几个不同的三角形?这些三角形有什么共同的特点?(2)什么叫做三角形?(3)三角形的边可以怎么表示?问题1:研究三角形的三条边是否相等,有多少种可能的情况?结论:三角形中,三条边互不相等的三角形叫做不等边三角形;有两条边相等的三角形叫做等腰三角形,其中相等的两边叫做腰,第三边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角;三条边都相等的三角形叫做等边三角形.问题2:我们以前学习过这样一个性质:两点之间的所有连线中,线段最短.那么在一个三角形中,任意两边之和与第三边的长度有怎样的关系?结论:三角形任意两边之和大于第三边.典例1画一个三角形,分别量出三角形的三边长度,计算出三角形的任意两边之差,并与第三边比较,你能得到什么结论?[解析]三角形任意两边之差小于第三边.典例2有两条长度分别为5 cm和7 cm的线段,用长度为13 cm的线段与它们能摆成三角形吗?为什么?那么换上线段的长度在什么范围内时可以组成三角形呢?[解析]用长度为13 cm的线段与它们不能摆成三角形.因为三角形任意两边之和大于第三边.三角形第三边的取值范围是两边之差<第三边<两边之和,即第三边x的取值范围是2 cm<x<12 cm.三、板书设计三角形中边的关系1.三角形按边长分类:三角形2.三角形中任何两边的和大于第三边,三角形中任何两边的差小于第三边.◇教学反思◇本节课的学习使学生认识到不是任意的三条线段都能构成三角形,并学会判断三条线段能否构成三角形,通过探讨使学生养成积极思考的习惯.。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册13.1章节的内容,本节课的主要内容是让学生掌握三角形的三边关系和三角形的内角和定理。

教材通过生活中的实例引入三角形的三边关系,让学生探讨和总结三角形的性质,从而培养学生独立思考和合作交流的能力。

二. 学情分析学生在学习本节课之前,已经掌握了多边形和角的概念,具备了一定的观察和思考能力。

然而,对于三角形的边角关系,学生可能还存在着一定的困惑,因此,在教学过程中,需要教师耐心引导,让学生在实践中掌握知识点。

三. 教学目标1.让学生了解三角形的三边关系,能运用三角形的边角关系解决实际问题。

2.引导学生探讨三角形的内角和定理,并能运用内角和定理解释生活中的现象。

3.培养学生的观察能力、思考能力和合作交流能力。

四. 教学重难点1.三角形的三边关系2.三角形的内角和定理五. 教学方法1.采用情境教学法,以生活中的实例引入三角形的三边关系,激发学生的学习兴趣。

2.采用探究式教学法,让学生通过合作交流,探讨三角形的内角和定理。

3.采用讲练结合的教学法,教师讲解知识点,学生练习巩固。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,用于巩固知识点。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如:一个人在划船时,船和划桨的长度关系,引导学生观察和思考三角形的三边关系。

2.呈现(10分钟)教师通过讲解和展示相关的课件,向学生介绍三角形的三边关系,让学生理解和掌握。

3.操练(10分钟)教师给出一些练习题,让学生运用三角形的三边关系解决问题,教师及时进行指导和讲解。

4.巩固(10分钟)教师继续给出一些练习题,让学生巩固三角形的三边关系,教师进行点评和讲解。

5.拓展(10分钟)教师引导学生探讨三角形的内角和定理,让学生通过合作交流,共同探讨出结论。

6.小结(5分钟)教师对本节课的内容进行小结,让学生掌握三角形的三边关系和内角和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形边的关系》教案1
教学内容分析
三角形是最简单的多边形,是研究其他图形的基础.本节课是在学生已学过的一些三角形基础上,进一步系统的研究它的概念、分类、性质和应用.
教学目标分析
(一)知识技能
理解三角形中三边之间的关系,并运用它解决一些简单的问题.
(二)过程与方法
1、经历观察、猜想、操作、实验、验证等数学活动,感受数学活动充满着探索性和创造性,体验探究的乐趣.
2、通过对三角形三边关系的发展及应用培养学生的分类讨论思想和方程思想.
(三)情感态度价值观
1、感知数学与生活的密切联系,体会生活中的数学美、图形美.
2、激发学生的勇于探究精神以及文明环保意识.
教学中的重、难点及处理
1、重点:理解三角形三边之间的关系并能灵活应用.
2、难点:探究三角形三边之间的关系.
3、处理:结合多媒体课件,揭示图形特点,通过观察、操作、合作交流,结合“两点之间,线段最短”原理,验证猜想.
教学方法
情境导入法、实验比较法.
教学准备
1、教师准备:制作多媒体课件.
2、学生准备:笔、刻度尺.
教学过程
一、情境激趣,悬念探路
1、提出问题:看NBA姚明赛场,姚明的身高是2.26米腿长约1.2米左右,他在赛场上能一步走3米吗?
2、抽象问题:人的体型可以模拟成三角形.(投影展示生活中具有三角形状的实物.)
3、揭示问题:进入三角形的世界探究虚实,板书课题:三角形的边角关系.
(设计说明:数学来源于生活,感受生活中的数学美,培养学生善于观察生活,洞悉生
活中数学常识的能力.)
二、感知实物,提升认识
在小学阶段我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:
图1
1、共性特征方面:
从图1中找出两个不同的三角形吗?与同伴交流各自找的三角形.
(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)
根据指出的三角形回答下列问题:
(1)这些三角形有什么共同的特点?(结合小学对三角形的认识回答)
(2)什么叫做三角形?(通过视频了解三角形定义)
(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?)
(3)如何表示三角形?
(4)三角形的边可以怎么表示?
(5)如果我说三角形有三要素,你能猜出是哪三要素吗?(通过多媒体课件了解三角形的基本元素).
2、个性特征方面:
研究三角形的三条边是否相等,有多少种可能的情况? (通过视频掌握三角形按边的分类)
(1)三条边各不相等的三角形叫做不等边三角形.
(2)有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
(3)三条边都相等的三角形叫做等边三角形.
三、实践探究,形成性质
1、议一议C
观察:蚂蚁从A到B的路线有那些?走那条路线最近呢?为什么?
路线1:从A到C再到B路线走
路线2:沿线段AB走
理论依据:两点之间,线段最短. A B
转化:(用数学符号表示)
在△ABC中,AC+CB>AB
猜想:三角形任意两边之和大于第三边.
(即:在△ABC中,AC+CB>AB,AC+AB>CB,AB+CB>AC,)
2、做一做:
画图测量:任意画一个三角形,量出它的三边长度并填空:
a=______;b=_______;c=______;
计算比较:a+b__>__c;b+c__>__a;c+a__>__b
a-b___<_c;b-c___<_a;c-a__<__b
通过以上的计算你认为三角形的三边存在怎样的关系?
验证结论:(三角形任意两边之和大于第三边)
(三角形任意两边之差小于第三边)
即:在△ABC中,AC+CB>AB,AC+AB>CB,AB+CB>AC
AC-CB<AB,AC-AB<CB,AB-CB<AC
3、想一想:(投影出示)
解释姚明一步能走3米是子虚乌有的说法,不可能的事情.
四、例题解析
在等腰三角形中,周长为18cm(1)、如果腰长是底边长的2倍,求各边的长;(2)、如果一边长为4cm,求另两边的长.
解:(1)设等腰三角形的底边长为xcm,则腰长为2xcm,
根据题意,得x+2x+2x=18
解方程,得x=3.6
所以三角形的三条边长分别为7.2cm、7.2cm、3.6cm
(2)若底边长为4cm,设腰长为xcm,则有:
2x+4=18
解方程,得x=7
若一条腰长为4cm,设底边长为xcm,则有
2×4+x=18
解方程,得x=10
因为4+4<10,所以4cm为一腰不能构成三角形.
所以,三角形的另两边长都是7cm.
教师强调说明:方程思想及分类讨论思想的应用价值.
五、小结
1.三角形的概念;
2.三角形的三要素;
3.三角形的表示方法.
4.三角形按边分类
5.三角形三边之间的关系六、课后作业
P69练习1,2,3题。

相关文档
最新文档