高等数学考试试卷及答案
高等数学期末试题(含答案)
![高等数学期末试题(含答案)](https://img.taocdn.com/s3/m/05466b5d9a6648d7c1c708a1284ac850ad02049e.png)
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
完整)高等数学考试题库(附答案)
![完整)高等数学考试题库(附答案)](https://img.taocdn.com/s3/m/3df1a724cd7931b765ce0508763231126edb77ec.png)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
大学高等数学上下考试题库(及答案)
![大学高等数学上下考试题库(及答案)](https://img.taocdn.com/s3/m/8409254367ec102de2bd89ce.png)
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高等数学期末试卷(带答案)
![高等数学期末试卷(带答案)](https://img.taocdn.com/s3/m/8029512b0508763230121286.png)
高等数学期末试卷(带答案)
一、高等数学选择题
1.点是函数的极值点.
A、正确
B、不正确
【答案】B
2.由曲线,直线,轴及所围成的平面图形的面积为.
A、正确
B、不正确
【答案】A
3.设函数,则.
A、正确
B、不正确
【答案】B
4.是微分方程.
A、正确
B、不正确
【答案】A
二、二选择题
5.设函数,则().
A、
B、
C、
D、
【答案】C
6.设函数,则().
A、
B、
C、
D、
【答案】A
7.不定积分,其中为任意常数.
A、正确
B、不正确
【答案】B
8.设函数,则.
A、正确
B、不正确
【答案】B
二、二选择题
9.设曲线如图示,则在内
( ).
A、没有极大值点
B、有一个极大值点
C、有两个极大值点
D、有三个极大值点
【答案】B
10.不定积分.
A、正确
B、不正确
【答案】B
11. ( ).
A、
B、
C、
D、
【答案】D
12.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
13.函数的图形如图示,则是函数的
( ).
A、最大值点
B、极大值点
C、极小值点也是最小值点
D、极小值点但非最小值点
【答案】C
14..
A、正确
B、不正确
【答案】B
15.不定积分.
A、
B、
C、
D、
【答案】B。
高等数学期末试卷及答案
![高等数学期末试卷及答案](https://img.taocdn.com/s3/m/e43a203489eb172dec63b701.png)
高数试卷(一)(上册)一、单项选择题(每题4分,共20分,把选择题答案填在括号里)1.当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则( ).A.11, 6a b ==B.11, 6a b =-= C.11, 6a b ==- D.11, 6a b =-=-2.函数2()sin πx x f x x-=的可去间断点的个数为( ).A.1B.2C.3D.无穷多个3.曲线321x y x =-的渐近线有( ).A.1条B.2条C.3条D.4条 4.下面等式正确的是( ).A. d ()()f x f x '⎡⎤'=⎣⎦⎰B.()d()d ()f x x f x =⎰C.d ()d ()d f x x f x C x =+⎰ D.d ()d ()d ba f x x f x x=⎰ 5.已知广义积分2d 1xkx+∞+⎰收敛1(0k >),则k =( ).A.π22π2 D.2π4二、填空题(每题4分,共20分)6.222111lim π2ππn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭. 7.设函数)(x y y =由方程y x xy+=2所确定,则d x y== .8.设⎩⎨⎧-=-=),1e (,π)(3tf y t f x 其中f 可导且(0)0f '≠,则0d d t y x == . 9.不定积分6d (1)xx x =+⎰. 10.定积分π322π2(sin cos )d x x x -+=⎰ . 三、计算题(每题7分,共28分)11.求极限0x →.12.曲线y =的切线与x 轴和y 轴围成一个图形,记切点的横坐标为a ,试求切线方程和这个图形的面积S .当切点沿曲线趋于无穷远时,该面积的变化趋势如何?13.求不定积分⎰.14.已知21()e d xt f x t -=⎰,求10()d f x x ⎰.四、证明题(本题6分)15.设)(x f 在[0,1]上连续,在(0,1)内可导,且1233()d (0)f x x f =⎰,求证:在(0,1)内存在一点ξ使()0f ξ'=.五、讨论题(每小题8分,共16分)16.已知⎪⎩⎪⎨⎧≤+>+=.0),ln(,0,1sin )(2x x a x bx x x x f 试讨论 (1)a 、b 取何值时,)(x f 在0=x 点连续;(2)a 、b 取何值时,)(x f 在0=x 点可导,并求)0(f '.17.讨论函数0()(4)d xF x t t t =-⎰在[1,5]-上的增减性、极值和凹凸区间及拐点.六、应用题(本题10分)18.设2y x =定义在[0,1]上,t 为[0,1]上任意一点,试问t 为何值时,参考答案一、1.C ;2.B ;3.C ;4.A ;5.D .二、6.1;7. x d )12(ln -;8.3;9.61ln ln(1)6x x C -++;10.2π. 三、11.解 因为当0→x 时,x x x x 232sin 31~1sin 1-+, x x 2~1e 2-, 22~tan x x ,所以,2222001sin 13lim lim (e 1)tan 2x x x x xxx x →→=-⋅ 2221sin 1sin 1666x x x x ⎛⎫=⋅=⋅= ⎪⎝⎭. 12.解 由题设可知切点的横坐标为0>a,代入曲线方程y =可求的切点坐标为a ⎛⎝,因为312212y x x --''⎛⎫'===-= ⎪⎝⎭,所以,曲线在该点的切线斜率x ak y ='==,切线方程为)y x a =-,即230x a +-=.分别令0y =和0,x =得切线在x 轴和y 轴上的截距分别为3, X a Y ==,切线与x 轴和y 轴围成一个图形为直角三角形AOB ∆,(如图所示)其面积为a a a XY S 492332121=⋅⋅==.因为+∞==+∞→+∞→a S a a 49limlim ,049lim lim 00==++→→a S a a , 故当切点沿曲线趋于x 轴正方向无穷远时,面积S 趋于无穷大;当切点沿曲线趋于y 轴正方向无穷远时,面积S 趋于零.13.解 设sin x t =,ππ,22t ⎡⎤∈-⎢⎥⎣⎦,则 原式1cos d sin cos tI t t t==+⎰,若设2sin d sin cos tI t t t=+⎰,则121cos sin d cos sin t tI I t t C t t++==++⎰,122cos sin d ln sin cos cos sin t tI I t t t C t t--==+++⎰,故()11ln cos sint 2I t t C =+++(1arcsin ln 2x x C =+++. 14.解 由题设可得2()e x f x -'=,(1)0f =,则111201()d ()()d 0e d 0x f x x xf x xf x x x x -'=-=-⎰⎰⎰ 122101111e d()(e 1)1222e x x --⎛⎫=-=-=- ⎪⎝⎭⎰. 四、15.证明 由积分中值定理知12323()d (), ,13f x x f ⎡⎤=∈⎢⎥⎣⎦⎰ηη, 即()(0)f f η=.于是)(x f 在[0,]η上满足罗尔定理的条件,知存在(0,)(0,1)ξη∈⊂,使()0f ξ'=.五、16.解(1)因00lim ()lim ln()ln ,x x f x a x a --→→=+= 2001lim ()lim sin 0,x x f x x bx x +-→→⎛⎫=+= ⎪⎝⎭(0)ln ,f a =要使函数)(x f 在0=x 点连续必须使函数在该点左、右极限相等且等于该点的函数值即ln 0, 1a a ==.故当1, a b =为任意实数时,函数)(x f 在0=x 点连续.(2)由于连续是可导的必要条件,所以要使)(x f 在0=x 点可导,必须首先令1a =,此时函数变为⎪⎩⎪⎨⎧≤+>+=.0),ln(,0,1sin )(2x x a x bx xx x f 又因为0()(0)ln(1)0(0)lim lim0---→→-+-'==-x x f x f x f x x1lim ln(1)ln e 1,-→=+==xx x 2001sin 01(0)lim lim sin ,0x x x bx x f x b b x x +++→→+-⎛⎫'==+= ⎪-⎝⎭要使)0(f '存在必须使其在该点左、右导数存在并相等即(0)(0)(0)11f f f b -+'''===⇒=.所以当1a =且1b =时,)(x f 在0=x 点可导,此时(0)1f '=.17.解(1)0()(4)d (4)xF x t t t x x '⎡⎤'=-=-⎢⎥⎣⎦⎰, 令()0F x '=,得驻点120, 4x x ==. (2)()24F x x ''=-,令()0F x ''=,得 32x =. (3)列表:(4(1,0)-(0,2)单减且上凸;在区间上(2,4)单减且上凹;在区间(4,5)上单增且上凹. 在0x =处取得极大值0,在4x =处取得极小值332-;)316,2(-. 五、18.解 如图所示,阴影1S 部分的面积为222331012()d 033t t S t x x t x x t =-=-=⎰, 阴影2S 部分的面积为122323221121()d 333t S x t x x t x t t t =-=-=-+⎰,故)10(3134)(2321≤≤+-=+=t t t S S t S ,从而2d 42d S t t t =-,令d 0d S t =,得驻点1210, 2t t ==. 分别求出1112(0), , (1),3243S S S ⎛⎫=== ⎪⎝⎭比较可知,当12t =时,1S 与2S 之和最小.检测题(二)(上册)一、单项选择题(每题4分,共20分,把选择题答案填在括号里)1.函数y =ln u x =能构成复合关系的区间是( ).A.1,e e⎡⎤⎢⎥⎣⎦B.(0,)∞C.1,e⎡⎫+∞⎪⎢⎣⎭D.(0,e) 2.设1010()ln , (), ()e xf x xg x xh x ===则当x 充分大时有( )A.()()()g x f x h x <<B.()()()h x g x f x <<C.()()()f x g x h x <<D.()()()g x h x f x <<3.设函数(),()f x g x 具有二阶导数,且()0g x ''<.若0()g x a =是()g x 的极值,则[()]f g x 在0x 取得极大值的一个充分条件是( ).A.()0f a '<B.()0f a '>C.()0f a ''<D.()0f a ''> 4.下面等式正确的是( ). A.21arctan d C 1x x x=++⎰; B.arcsin C x =+; C.1ln d x x C x=+⎰; D.d()d ()d baf x x f x x =⎰.5.已知广义积分11d kx x ⎰收敛2(0k >),则k =( ). A.32; B.1; C.2; D.12.二、填空题(每题4分,共20分)6.若011lim e 1x x a x x →⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦,则a = . 7.设2()()lim1()x af x f a x a →-=--,则()f x 在x a =取得极 值.8.若曲线321y x ax bx =+++有拐点(1,0)-则b = . 9.定积分π32π2(sin cos )d x x x -+=⎰ . 10.不定积分22d (1)(4)x xx x =++⎰.三、计算题(每题8分,共32分)11.求极限20ln(1)lim sin x x x x x→+-. 12.已知 ⎩⎨⎧+==),1ln(,arctan 2t y t x 求22d 1d y t x =.13.设可导函数()y y x =由方程2200e d sin d x yxt t x t t --=⎰⎰确定,求d 0d yx x =.14.分别用第一换元法(凑微分法)和第二换元法求不定积分.四、讨论题(12分)15.设函数⎪⎩⎪⎨⎧>+=<+=,0,1e ,0,,0,1)(2x x x x x x f x αα试讨论α的值在什么范围内,函数满足(1)在0x =点有极限;(2)在0x =点连续;(3)在0x =点可导.五、应用题(本题10分)16.设位于曲线)y x t =≤≤下方,x 轴上方的区域为G ,求(1)G 绕x 轴旋转一周所得空间区域的体积()V t ;(2)当t 为何值时,该旋转体的体积()V t 最大?最大体积是多少?六、证明题(6分)17.设)(x f 在[0,)+∞上连续,在(0,)+∞内可导,如果存在两个正数12k k 、满足1212(0)()d 0k k k k f f x x +-=⎰,证明:存在ξ0>使()0f ξ'=.检测题(二)参考答案一、1.A ;2.C ;3.B ;4.B ;5.D .二、6.2;7.大;8.3;9.34;10.2211ln 64x C x +++.三、11.解 因为当0→x 时,22~)1ln(x x x x ⋅+,所以,222000ln(1)3lim lim lim sin sin 1cos x x x x x x x x x x x x x→→→+⋅==--- 061limsin 6x x x →==. 12.解 因为2d 2, d 1y t t t =+2d 1d 1x t t=+,所以 22d d d 212 d d d 11y y t t t t x x t t +===+, 2222d d d 2d d 2(1)d d d 11y y t x t x x t t⎛⎫⎪⎝⎭===++, 22211d 2(1)4d t t y t x ===+=. 13.解 由题设可知2200e d sin d x yxt t x t t --=⎰⎰,方程两边同时求导得2()220e(1)sin d sin xx y y t t x x --'-=+⎰,把0x =代入上述等式得1y '=,故d 10d yx x ==.14.解法1 凑微分法2C===.解法2 第二类换元积分法==设11sin22x t-=π2t⎛⎫<<⎪⎝⎭,则原式1cos d d2t t t==⎰arcsin(21)t C x C=+=-+.解法3 第二类换元积分法x=⎰,令2πsin02x t t⎛⎫=<<⎪⎝⎭,则d2sin cos dx t t t=,所以原式112sin cos d2dsin cost t t tt t=⋅⋅=⎰⎰2t C C=+=.四、解(1)因为00lim()lim(1)1,x xf x x--→→=+=00lim()lim(e1)1,xx xf x x++→→=+=α可见α是任意实数时,函数在0x=点左、右极限都相等.(2)又因为2(0)f=α,要使函数)(xf在0=x点连续必须使函数在该点极限值等于该点的函数值,即21,1a==±α.故当1±=α时,函数)(xf在0=x点连续.(3)由于连续是可导的必要条件,所以要使)(xf在0=x点可导,必须首先令21=α,此时函数变为⎪⎩⎪⎨⎧>+=<+=,0,1e ,0,1,0,1)(x x x x x x f x α0()(0)(1)1(0)lim lim 10x x f x f x f x x---→→-+-'===-, 00(e 1)1(0)lim lim e ,x x x x x f x+++→→+-'===ααα 要使)0(f '存在必须使其在该点左、右导数存在并相等,即(0)(0)(0) 1 1f f f -+'''====⇒=αα.所以当1=α时,)(x f 在0=x 点可导,此时(0)1f '=. 五、16.解 (1)222e ee 11()πd πd πd ln (1ln )1ln ttt x V t y x x x x x x ===++⎰⎰⎰ []e ππarctan(ln )πarctan(ln )4t x t ⎛⎫==- ⎪⎝⎭.(2)因为2π()0 (e)(1ln )V t t t t '=>>+,这说明()V t 在[e,)+∞上单调递增,所以当t →+∞时,()V t 取得最大值,其最大值为[]2max e πππ()πlim arctan(ln )π244tt V t x →+∞⎛⎫==-= ⎪⎝⎭. 六、17.证明 由积分中值定理知[]1212112()d (), ,k k k f x x k f k k k +=∈+⎰ηη,代入题设等式得()(0)f f η=.于是)(x f 在[0,]η上满足罗尔定理的条件,知存在112(0,)[,](0,)k k k ∈⊂+⊂+∞ξη,使()0f ξ'=.。
高等数学考试题库(含答案解析)
![高等数学考试题库(含答案解析)](https://img.taocdn.com/s3/m/d690f7765901020207409cad.png)
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
高等数学期末考试试卷(含答案)
![高等数学期末考试试卷(含答案)](https://img.taocdn.com/s3/m/327b18208bd63186bdebbca6.png)
高等数学期末考试试卷(含答案)
一、高等数学选择题
1.由曲线,直线,轴及所围成的平面图形的面积为.
A、正确
B、不正确
【答案】A
2.设函数,则.
A、正确
B、不正确
【答案】B
3.设函数,则().
A、
B、
C、
D、
【答案】D
4.不定积分.
A、
B、
C、
D、
5.微分方程的通解是().
A、
B、
C、
D、
【答案】B
6.设为上的连续函数,且,则定积分().A、
B、
C、
D、
【答案】D
一、一选择题
7.设,则微分.
B、不正确
【答案】B
二、二选择题
8.函数的定义域为.
A、正确
B、不正确
【答案】A
9.不定积分 ( ).
A、
B、
C、
D、
【答案】A
10.设,则.
A、正确
B、不正确
【答案】B
11.设,则.
A、正确
B、不正确
【答案】B
12.不定积分.
A、正确
B、不正确
【答案】A
二、二选择题
13.设函数,则().A、
B、
C、
D、
【答案】B
14.函数在点处连续.
A、正确
B、不正确
【答案】A
15.设,则.
A、正确
B、不正确
【答案】B。
高等数学A(二)试卷及答案
![高等数学A(二)试卷及答案](https://img.taocdn.com/s3/m/ff066b6eba68a98271fe910ef12d2af90342a80e.png)
高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。
2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。
3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。
4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。
5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。
二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。
(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。
(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。
(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。
(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。
6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。
(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。
(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。
答案课程名称:高等数学A(二) 试卷编号:5一、填空题。
(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。
高等数学试卷及答案
![高等数学试卷及答案](https://img.taocdn.com/s3/m/6c385b74b9d528ea80c77961.png)
仅供参考 《高等数学》试卷一、选择题:(每小题3分,共36分)1.函数y =31x1ln -的定义域是( ) A .),0()0,(+∞⋃-∞ B .),1()0,(+∞⋃-∞ C .(0,1]D .(0,1)2.方程2x+3y=1在空间表示的图形是 ( ) A .平行于xoy面的平面 B .平行于oz轴的平面 C .过oz轴的平面 D .直线3.函数f (x )在点x =x 0处连续是f (x )在x =x 0处可导的( ) A .必要条件B .充分条件C .充分必要条件D .既非充分条件又非必要条件4.设332(,)xf x y x y x ytg y =++,则f(tx,ty)= ( )A .tf(x,y)B .t2f(x,y)C .t3f(x,y)D .21tf(x,y)5.设an ≥0,且1lim n n a p a →∞+=,则级数1n n a ∞=∑ ( )A .在p〉1时收敛,p〈1时发散B .在p≥1时收敛,p〈1时发散C .在p≤1时收敛,p〉1时发散D .在p〈1时收敛,p〉1时发散6.方程y '+3xy=6x2y 是 ( )A .一阶线性非齐次微分方程B .齐次微分方程C .可分离变量的微分方程D .二阶微分方程7.当0x →时,与2332x x +等价的无穷小量是 ( )A .32xB .23xC .2xD .3x8.2xe dx-⎰等于 ( )A .22xeC -+ B .212x e C -+ C .22xe C --+ D .212x e C --+9.2200lim sinx y xy xy x y →→+ = ( )A . 0B . 1C . ∞D . sin110.对微分方程 y"=f(y,y '),降阶的方法是 ( )A . 设y '=p,则 y"=p 'B .设y '=p,则 y"= dp dyC . 设y '=p,则 y"=pdp dyD . 设y '=p,则 y"=1dpp dy11.设幂级数n nn a x ∞=∑在xo (xo ≠0)收敛, 则n nn a x ∞=∑ 在│x│〈│xo │ ( )A .绝对收敛B .条件收敛C .发散D .收敛性与an 有关12.设D域由y=x,y=x2所围成,则sin D xd x σ⎰⎰= ( )A .110sin xdx dy x ⎰⎰B.10y x dy dx x ⎰ C.10x x dx dy x ⎰ D.1sin xx dy dx x ⎰二、填空题:(每小题4分,共16分)13.41xx -⎰dx=_____________。
高等数学考试题库(附答案解析)
![高等数学考试题库(附答案解析)](https://img.taocdn.com/s3/m/33bacfb3aaea998fcc220ef2.png)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学考试试卷及答案
![高等数学考试试卷及答案](https://img.taocdn.com/s3/m/9497d848dd3383c4ba4cd2de.png)
则
(本题 2.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:A 解析: 得分:2
22. ( 单选题 ) 无穷小量是(本题 2.0 分)
A、 比 0 稍大一点的一个数 B、 一个很小很小的数 C、 以 0 为极限的一个变量 D、 数 0 学生答案:C 标准答案:C
解析: 得分:2
学生答案:A,C 标准答案:BC 解析: 得分:0
38. ( 多选题 )
下列微分方程中为一阶线性微分方程是( )。
(本题 4.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:BC 解析: 得分:0
39. ( 多选题 ) 函数
在区间
内二阶可
导, 且
则曲线
在
区间
内
(本题 4.0 分)
A、 曲线单调减少 B、 曲线单调增加 C、 曲线既不增、也不减 D、 曲线图形上凹(凹弧) E、 曲线图形下凹(凸弧) 学生答案:A,D 标准答案:AE
C、
D、 学生答案:D 标准答案:A 解析: 得分:0
29. ( 单选题 )
函数
的图形关于( )。
(本题 2.0 分) A、 x 轴(直线 y=0)对称 B、 y 轴(直线 x=0)对称 C、 直线 y=x 对称 D、 原点 对称
学生答案:C 标准答案:B 解析: 得分:0
30. ( 单选题 )
函数 f(x)=ln(x-5)的定义域为( )
5. ( 单选题 ) 设函数 f(x)=(x+1)Cosx,则 f(0)=( ).(本题 2.0 分)
A、 -1 B、 0 C、 1 D、 无定义 学生答案:C 标准答案:C 解析: 得分:2
6. ( 单选题 ) 分)
高等数学考试题库(附答案)
![高等数学考试题库(附答案)](https://img.taocdn.com/s3/m/bd0afb8ceff9aef8941e06c2.png)
.《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是().(A )2 fxlnx 和gx2lnx (B )fx|x|和2gxx(C )fxx 和 2 gxx (D ) fx |x | x和gx1sinx42fxln1xx0在x0处连续,则a ().2.函数ax0(A )0(B )14(C )1(D )23.曲线yxlnx 的平行于直线xy10的切线方程为(). (A )yx1(B )y(x1)(C )ylnx1x1(D )yx 4.设函数fx|x|,则函数在点x0处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微 5.点x0是函数4 yx 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点 6.曲线 y 1 |x|的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 11 fdx2xx 的结果是(). (A ) 1 fC x (B ) 1 fC x (C ) 1 fC x (D ) 1 fC x8. dxxx ee的结果是().(A )arctanx eC (B )arctanx eC (C )xxxxeeC (D )ln(ee)C9.下列定积分为零的是().(A )4 4 a rctan x 1 2 x dx (B )4 4 xarcsinxdx (C ) xx ee 1 dx (D ) 121 12 xxsinxdx 10.设fx 为连续函数,则 1 0f2xdx 等于(). (A )f2f0(B )1 2 f11f0(C ) 1 2f2f0(D )f1f0 二.填空题(每题4分,共20分)21 x efxxx01.设函数在x0处连续,则a.ax0 2.已知曲线yfx 在x2处的切线的倾斜角为5 6,则f2. 3. yx 21 x 的垂直渐近线有条. 4. dx 2 x1lnx.5. 2 4xsinxcosxdx.2.三.计算(每小题5分,共30分)1.求极限①limx 1xx2x②limx0xsinx2xxe12.求曲线ylnxy所确定的隐函数的导数y x. 3.求不定积分①dxx1x3②dx22xaa 0 ③xxedx四.应用题(每题10分,共20分)1.作出函数332yxx的图像.2.求曲线22yx和直线yx4所围图形的面积..《高数》试卷1参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C 二.填空题1.22.333.24.arctanlnxc5.2三.计算题1①2e②162.yx1xy13.①1x1ln||2x3C②22xln|xax|C③ex1C四.应用题1.略2.S18《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)fxx和 2gxx(B) fx21xx1和yx1(C)fxx和22gxx(sinxcosx)(D)2fxlnx和gx2lnx sin2x1x1x12.设函数fx2x1lim,则x12x1x1f x().(A)0(B)1(C)2(D)不存在3.设函数yfx在点x0处可导,且fx>0,曲线则yfx在点x0,fx0处的切线的倾斜角为{}.(A)0(B)(C)锐角(D)钝角24.曲线ylnx上某点的切线平行于直线y2x3,则该点坐标是().(A)2,ln 12(B) 2,ln12(C)12,ln2 (D)12,ln25.函数2xyxe及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A)若x0为函数yfx的驻点,则x0必为函数yfx的极值点.(B)函数yfx导数不存在的点,一定不是函数yfx的极值点.(C)若函数yfx在x0处取得极值,且f x存在,则必有fx0=0.(D)若函数yfx在x0处连续,则f x一定存在...1 4.设函数yfx 的一个原函数为2x xe,则fx=().1111(A) 2x1e x (B)2xe x (C)2x1e x (D)2xe x5.若fxdxFxc,则sinxfcosxdx().(A)Fsinxc(B)Fsinxc(C)Fcosxc(D)Fcosxc6.设Fx 为连续函数,则x 1fdx=(). 02(A)f1f0(B)2f1f0(C)2f2f0(D)1 2ff027.定积分 badxab 在几何上的表示(). (A)线段长ba(B)线段长ab(C)矩形面积ab1(D)矩形面积ba1 二.填空题(每题4分,共20分)2ln1x fxx1cosx07.设,在x0连续,则a=________.ax08.设 2ysinx,则dy_________________dsinx.9.函数 y x 21 x1的水平和垂直渐近线共有_______条.10.不定积分xlnxdx______________________.11.定积分 1 1 2 xsinx1 dx 2 1x ___________.三.计算题(每小题5分,共30分) 1.求下列极限: ①1 lim12x x ② x0lim x2a rctan x 1 xy2.求由方程1yxe 所确定的隐函数的导数y x .3.求下列不定积分:①3 tanxsecxdx ②dx 22 xaa 0③ 2xxedx四.应用题(每题10分,共20分)1.作出函数 1 3yxx 的图象.(要求列出表格)32.计算由两条抛物线:2,2yxyx 所围成的图形的面积...《高数》试卷2参考答案一.选择题:CDCDBCADDD 二填空题:1.-22.2sinx3.34.11 22 xlnxxc5. 242三.计算题:1.①2e ②12.y xye y28.① 3 sec 3 x c ② 22 lnxaxc ③222x xxec四.应用题:1.略2. S13《高数》试卷3(上)一、填空题(每小题3分,共24分) 12.函数 y 9 1 2 x的定义域为________________________.sin4x fxx,x013.设函数,则当a=_________时,fx 在x0处连续.a,x0 14.函数 f(x)2x12 x3x2的无穷型间断点为________________.x15.设f(x )可导,yf(e),则y____________. 16.2x1 lim_________________.2 xxx25 17. 1 1 32 xsinx 42 xx 1dx=______________. 18. d dx 2 x 0t edt _______________________. 19.30yyy 是_______阶微分方程.二、求下列极限(每小题5分,共15分) 2. lim x0 x e si n1 x ;2. li m x3x 2 x 3 9 ;3. x1 lim1. x2x三、求下列导数或微分(每小题5分,共15分)x4.y,求y(0).2.x2cosx ye,求dy.3.设 xy xye,求 d y dx . 四、求下列积分(每小题5分,共15分)1.12sinxdxx .2.xln(1x)dx.3. 1 2x edx 0五、(8分)求曲线x ty1cost在t处的切线与法线方程.2六、(8分)求由曲线21,yx直线y0,x0和x1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积. ..七、(8分)求微分方程y6y 13y0的通解. 八、(7分)求微分方程 y ye xx满足初始条件y10的特解. 《高数》试卷3参考答案一.1.x32.a43.x24.'()xxefe9.1220.7. xe8.二阶x2 2x 二.1.原式=lim1 x0 x3. lim xx 311 364.原式=111 222 xlim[(1)]e x2x 三.1. 21 y',y'(0) 2 (x 2)25. cosxdysinxedx6.两边对x 求写:'(1')yxyeyxyy' xyeyxyy xy xexxy 四.1.原式=limx 2cosxC4.原式= 22xx1 2 lim(1x)d()lim(1x)xd[lim(1x)] 2x2 = 22 x1xx11 lim(1x)dxlim(1x)(x 1)dx 221x221x =22 x1x lim(1x)[xlim(1x)]C 2225.原式= 1111 2x2x121111ed(2x)e(e1)0 222dydy 五.sin1,1ttty且dxdx22 切线:1,10yx 即yx22 法线:1(),10yx 即yx22六. 122113 S(x1)dx(xx)22122142V(x1)dx(x 2x1)dx00 5 x22821(xx)5315七.特征方程:2r6r130r32i 3xye(Ccos2xCsin2x)12八. 11 dxdx x yexee xdxC()1 x x[(x1)eC]由yx10,C0x1xyex《高数》试卷4(上)一、选择题(每小题3分)1、函数yln(1x)x2的定义域是()...A2,1B2,1C2,1D2,1 2、极限 x lime 的值是(). x A 、B 、0C 、D 、不存在 3、 sin(x lim xx 11 2 1) (). A 、1B 、0C 、1 2D 、1 2 3x4、曲线2yx 在点(1,0)处的切线方程是() A 、y2(x1)B 、y4(x1) C 、y4x1D 、y3(x1)5、下列各微分式正确的是(). 2A 、()xdxdxB 、cos2xdxd(sin2x) C 、dxd(5x)D 、d(x dx 2)() 2)()2x6、设f(x)dx2cosC ,则f(x )().2A 、sin x 2B 、 si n x 2 xC 、sinCD 、 22 si n x 2 2lnx 7、dxx(). 21122A 、xCB 、(2lnx)C2ln x221lnxC 、ln2lnxCD 、C2 x8、曲线2 yx ,x1,y0所围成的图形绕y 轴旋转所得旋转体体积V (). A 、 1 0 x B 、4dx 4dx 1 0 ydy C 、 1 0 (1y)dyD 、 1 0 (1xdx 4) 4) 9、 1 01 x e xe dx (). A 、ln 1e2e1e1 B 、lnC 、lnD 、ln 2232e 2 10、微分方程y yy 2x 2e 的一个特解为(). A 、 y 3 7 2x e B 、 y 3 7 x e C 、 y 2 7 2 xe x D 、 y 2 7 2x e二、填空题(每小题4分)1、设函数x yxe ,则y ; 2、如果 3sinmx lim x0x22 3,则m. 3、 1 x ;3cosxdx3cosxdx 1 4、微分方程y4y 4y 0的通解是.5、函数f(x )x2x 在区间0,4上的最大值是,最小值是;三、计算题(每小题5分)1、求极限limx01x1xx12;2、求ycotxlnsinx2的导数;..3、求函数3x1y的微分;4、求不定积分3x1dx1x 1;5、求定积分e1lnxdx;6、解方程ed ydx yx21x;四、应用题(每小题10分)1、求抛物线2yx与2y2x所围成的平面图形的面积.2、利用导数作出函数23y3xx的图象.参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A;10、D;二、1、x(x2)e;2、49;3、0;4、y2x(C1Cx)e;5、8,0226x三、1、1;2、cot3x;3、dx32(x1)1;4、2x12ln(1x1)C;5、)2(2e2212;;6、yxC8四、1、;32、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数1y2x的定义域是(). lg(x1)A、2,10,B、1,0(0,)C、(1,0)(0,)D、(1,)2、下列各式中,极限存在的是().A、limcosxx0 B、limarctanxC、limsinxD、xxlimx2x3、xx lim()(). x1xA、eB、e2C、1D、 1e4、曲线yxlnx的平行于直线xy10的切线方程是().A、yxB、y(lnx1)(x1)C、yx1D、y(x1)5、已知yxsin3x,则dy().A、(cos3x3sin3x)dxB、(sin3x3xcos3x)dxC、(cos3xsin3x)dxD、(sin3xxcos3x)dx6、下列等式成立的是().11 A、xdxxC1xlnx B、adxaxC..1C、cosxdxsinxCD、tanxdxC21xsin的结果中正确的是().x sincos7、计算exxdxsinxB、e sinx cosxCA、eCC、e sinx sinxCD、e sinx(sinx1)C8、曲线2yx,x1,y0所围成的图形绕x轴旋转所得旋转体体积V().A、1x B、4dx4dx10 ydyC、1(1y)dyD、1(1xdx4)4)a22().9、设a﹥0,则axdxA、 2aB、 2 2aC、142a0D、142a10、方程()是一阶线性微分方程.y2xA、xyln0B、yey0xC、(1x2)y ysiny0D、xydx(y26x)dy0二、填空题(每小题4分)1、设f(x)xeax1,b,xx0 ,则有limf(x)x0 ,limf(x)x0;2、设xyxe,则y;23、函数()ln(1)fxx在区间1,2的最大值是,最小值是;4、1x;3cosxdx 3cosxdx 15、微分方程y3y2y0的通解是.三、计算题(每小题5分)131、求极限lim()2x1x1xx2;22、求y1xarccosx 的导数;3、求函数xy的微分;21x14、求不定积分dxx2lnx;5、求定积分e1lnxdx;e26、求方程xyxyy1满足初始条件y()4的特解.2四、应用题(每小题10分)1、求由曲线 2y2x和直线xy0所围成的平面图形的面积. ..3x2x2、利用导数作出函数694yx的图象.参考答案(B卷)一、1、B;2、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10、B.二、1、2,b;2、x(x2)e;3、ln5,0;4、0;5、xCe2x Ce1.2三、1、13x;2、arccosx121x1;3、dx(1xx2)12)12;14、22lnxC;5、)2(2e ;6、y2x2e1x;四、1、92;2、图略单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
高等数学试卷(含答案)
![高等数学试卷(含答案)](https://img.taocdn.com/s3/m/ce84e0bafd0a79563c1e724d.png)
高等数学I一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1.)(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x xx x βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02x F x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x(B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin2)31(lim .6. ,)(cos 的一个原函数是已知x f xx =⋅⎰x xx x f d cos )(则.7.lim(coscoscos)→∞-+++=22221 n n nnnnππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10..d )1(177x x x x⎰+-求11.. 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰10()()g x f x t d t,且→=0()limx f x Ax,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()高数II 试题一、选择题(每题4分,共16分)1.函数2222220(,)0 0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点 .(A) 连续,且偏导函数都存在; (B) 不连续,但偏导函数都存在; (C) 不连续,且偏导函数都不存在; (D) 连续,且偏导函数都不存在。
大四高等数学考卷及答案
![大四高等数学考卷及答案](https://img.taocdn.com/s3/m/0f0bb721a517866fb84ae45c3b3567ec102ddc2a.png)
专业课原理概述部分一、选择题(每题1分,共5分)1.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在区间(a,b)内是()A.严格单调递增B.严格单调递减C.常数函数D.无法确定2.设函数f(x)=x^33x,则f(x)的极大值点为()A.x=-1B.x=0C.x=1D.x=33.设函数f(x)=e^x,则f(x)的n阶导数为()A.e^xB.ne^xC.(n-1)e^xD.e^(x+n)4.设函数f(x)=ln(x),则f(x)在x=1处的二阶导数值为()A.1B.0C.-1D.无限大5.设函数f(x)=sin(x),则f(x)的泰勒展开式的前三项为()A.xx^3/6B.x+x^3/6C.xx^3/3D.x+x^3/3二、判断题(每题1分,共5分)1.若函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在区间(a,b)内单调递增。
()2.函数f(x)=x^33x在x=0处取得极大值。
()3.函数f(x)=e^x的n阶导数仍为e^x。
()4.函数f(x)=ln(x)在x=1处的二阶导数值为0。
()5.函数f(x)=sin(x)的泰勒展开式的前三项为xx^3/6。
()三、填空题(每题1分,共5分)1.若函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在区间(a,b)内是______。
2.函数f(x)=x^33x的极大值点为______。
3.函数f(x)=e^x的n阶导数为______。
4.函数f(x)=ln(x)在x=1处的二阶导数值为______。
5.函数f(x)=sin(x)的泰勒展开式的前三项为______。
四、简答题(每题2分,共10分)1.简述罗尔定理的内容及其应用。
2.简述拉格朗日中值定理的内容及其应用。
3.简述泰勒公式的内容及其应用。
4.简述牛顿-莱布尼茨公式的内容及其应用。
5.简述高斯-赛德尔迭代法的内容及其应用。
高等数学下册试卷及答案
![高等数学下册试卷及答案](https://img.taocdn.com/s3/m/68ab9aba70fe910ef12d2af90242a8956becaaad.png)
高等数学下册试卷及答案高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=loga(x+y)的定义域为D={(x,y)|x+y>0}。
2、二重积分∬|x|+|y|≤1 2ln(x+y)dxdy的符号为负。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(e+1-x)dx dy,其值为e-1.4、设曲线L的参数方程表示为{x=φ(t)。
y=ψ(t)} (α≤t≤β),则弧长元素ds=√[φ'(t)²+ψ'(t)²]dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∫∫∑(x²+y²+1)ds=18√2.6、微分方程y'=x/(y²+1)的通解为y=1/2ln(y²+1)+1/2x²+C。
7、方程y''-4y=tanx的通解为y=C1e^(2x)+C2e^(-2x)-1/2cosxsinx。
8、级数∑n=1∞1/(n(n+1))的和为1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x²+y²等于(A)x+y。
3、设Ω:x+y+z≤1.z≥0,则三重积分I=∭ΩzdV等于(D)∫0^1∫0^(1-z)∫0^(1-x-y)zdxdydz。
4、球面x²+y²+z²=16a²与柱面x²+y²=2ax所围成的立体体积V=(C)8∫0^π/2∫0^(2acosθ)∫0^√(16a²-r²)rdzdrdθ。
注:原文章中第一题的符号“>”应该是“≥”,已进行更正。
(完整word版)高等数学考试题库(附答案)
![(完整word版)高等数学考试题库(附答案)](https://img.taocdn.com/s3/m/964da55ec5da50e2524d7f59.png)
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ).A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学上、下册考试试卷及答案6套[1]
![高等数学上、下册考试试卷及答案6套[1]](https://img.taocdn.com/s3/m/adf96c235901020207409c3e.png)
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在点( x0, f(x0) )处的法线的斜率等于()(本题2.0分)A、B、C、D、学生答案:C标准答案:B解析:得分:02. ( 单选题) 函数f(x)=ln(x-5)的定义域为()。
(本题2.0分)A、x>5B、x<5C、D、学生答案:A标准答案:A解析:得分:23. ( 单选题)极限(本题2.0分)A、-2B、0C、 2D、 1学生答案:A标准答案:A解析:得分:24. ( 单选题) 设则(本题2.0分)A、B、C、D、学生答案:A标准答案:C解析:得分:05. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题2.0分)A、-1B、0C、 1D、无定义学生答案:C标准答案:C解析:得分:26. ( 单选题) (本题2.0分)A、B、C、D、学生答案:A标准答案:A解析:得分:27. ( 单选题) 若,则f(x)=()。
(本题2.0分)A、B、C、D、学生答案:B标准答案:A解析:得分:08. ( 单选题)微分方程是一阶线性齐次方程。
(本题2.0分)A、正确B、错误学生答案:B标准答案:B解析:得分:29. ( 单选题)设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:010. ( 单选题)设函数f(x) 在点x=1 处可导,则()。
(本题2.0分)A、B、C、D、学生答案:D标准答案:D解析:得分:211. ( 单选题) 设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:012. ( 单选题)极限(本题2.0分)A、 1B、-1C、0D、不存在学生答案:B标准答案:A解析:得分:013. ( 单选题) 不定积分(本题2.0分)A、正确B、错误学生答案:A标准答案:B解析:得分:014. ( 单选题) 已知极限,则 k = ()。
(本题2.0分)A、-3B、0C、 3D、 4学生答案:D标准答案:A解析:得分:015. ( 单选题)设可导,且 , 则 ( )。
(本题2.0分)A、B、C、D、学生答案:C标准答案:D解析:得分:016. ( 单选题)设,则( )。
(本题2.0分)A、B、6xC、 6D、0学生答案:A标准答案:C解析:得分:017. ( 单选题) (本题2.0分)A、B、C、D、学生答案:A标准答案:C解析:得分:018. ( 单选题)设y = sin2x,则y〃=()。
(本题2.0分)A、cos2xB、2cos2xC、4sin2xD、-4sin2x学生答案:B标准答案:D解析:得分:019. ( 单选题) 若函数在区间内存在原函数,则原函数有()。
(本题2.0分)A、一个B、两个C、无穷多个D、不确定学生答案:C标准答案:C解析:得分:220. ( 单选题) (本题2.0分)A、-1B、0C、 1D、不存在学生答案:D标准答案:D解析:得分:221. ( 单选题) 设则(本题2.0分)A、B、C、D、学生答案:A标准答案:A解析:得分:222. ( 单选题) 无穷小量是(本题2.0分)A、比0稍大一点的一个数B、一个很小很小的数C、以0为极限的一个变量D、数0学生答案:C标准答案:C得分:223. ( 单选题)极限(本题2.0分)A、正确B、错误学生答案:A标准答案:A解析:得分:224. ( 单选题)设函数,则其间断点的个数是()。
(本题2.0分)A、0B、 1C、 2D、 3学生答案:C标准答案:C得分:225. ( 单选题) 设可导 ,且 , 则 ( ) 。
(本题2.0分)A、B、C、D、学生答案:C标准答案:D解析:得分:026. ( 单选题) 函数y=f(x)与其反函数的图形对称于直线()。
(本题2.0分)A、x=0B、y=0C、y=xD、y=-x学生答案:D标准答案:C解析:得分:027. ( 单选题) 下列不定积分计算中,结果不正确的是 ( ) 。
(本题2.0分)A、B、C、D、学生答案:C标准答案:A解析:得分:028. ( 单选题)若函数 f(x) 在点 x0 处可导且则曲线 y=f(x) 在点(x0, f(x0))处的切线方程为()。
(本题2.0分)A、B、C、D、学生答案:D标准答案:A解析:得分:029. ( 单选题)函数的图形关于()。
(本题2.0分)A、x轴(直线y=0)对称B、y轴(直线 x=0)对称C、直线 y=x 对称D、原点对称学生答案:C标准答案:B解析:得分:030. ( 单选题)函数f(x)=ln(x-5)的定义域为()(本题2.0分)A、x>5B、x<5C、D、学生答案:A标准答案:A解析:得分:231. ( 多选题) 下列函数中为奇函数的是()。
(本题4.0分)A、B、C、D、学生答案:A,D标准答案:AB解析:得分:032. ( 多选题)(本题4.0分)A、曲线单调减少B、曲线单调增加C、曲线既不增、也不减D、曲线图形上凹(凹弧)E、曲线图形下凹(凸弧)学生答案:B,E标准答案:BE解析:得分:433. ( 多选题) 设函数,则g(x) 是()。
(本题4.0分)A、偶函数B、奇函数C、图形关于原点对称的函数D、图形关于y轴对称的函数学生答案:A,C标准答案:BC解析:得分:034. ( 多选题)下列各组函数中是相同的函数有()。
(本题4.0分)A、B、C、D、学生答案:A,B标准答案:ABC解析:得分:2.735. ( 多选题) 下列说法正确的是()。
(本题4.0分)A、无穷小是一个很小、很小的数。
B、无穷小是以零为极限的变量。
C、无穷大是一个很大、很大的数。
D、无穷小量的倒数是无穷大量。
学生答案:B,D标准答案:BD解析:得分:436. ( 多选题) 函数y = x+lnx 在其定义域内为()。
(本题4.0分)A、单调增加B、单调减少C、图形上凹D、图形下凹学生答案:B,D标准答案:AD解析:得分:037. ( 多选题)设函数,则g(x) 是()。
(本题4.0分)A、偶函数B、奇函数C、图形关于原点对称的函数D、图形关于y轴对称的函数学生答案:A,C标准答案:BC解析:得分:038. ( 多选题)下列微分方程中为一阶线性微分方程是()。
(本题4.0分)A、B、C、D、学生答案:A标准答案:BC解析:得分:039. ( 多选题) 函数在区间内二阶可导,且则曲线在区间内(本题4.0分)A、曲线单调减少B、曲线单调增加C、曲线既不增、也不减D、曲线图形上凹(凹弧)E、曲线图形下凹(凸弧)学生答案:A,D标准答案:AE解析:得分:040. ( 多选题) 函数y = x+lnx 在其定义域内为()。
(本题4.0分)A、单调增加B、单调减少C、图形上凹D、图形下凹学生答案:A,C标准答案:AD解析:得分:0。