高职专升本第二章导数及其应用习题及答案

合集下载

专升本导数练习题及答案

专升本导数练习题及答案

专升本导数练习题及答案### 专升本导数练习题及答案#### 练习题一:基础导数计算题目:计算以下函数的导数:1. \( f(x) = 3x^2 + 2x - 5 \)2. \( g(x) = \sin(x) + e^x \)3. \( h(x) = (x^3 - 1)^4 \)解答:1. 对于 \( f(x) = 3x^2 + 2x - 5 \),我们使用幂函数的导数规则: \[ f'(x) = 6x + 2 \]2. 对于 \( g(x) = \sin(x) + e^x \),我们分别求导:\[ g'(x) = \cos(x) + e^x \]3. 对于 \( h(x) = (x^3 - 1)^4 \),我们使用链式法则和幂函数的导数规则:\[ h'(x) = 4(x^3 - 1)^3 \cdot (3x^2) = 12x^2(x^3 - 1)^3 \]#### 练习题二:复合函数的导数题目:计算以下复合函数的导数:1. \( F(x) = (\ln(x))^2 \)2. \( G(x) = \sqrt{x} \cdot \sin(x) \)解答:1. 对于 \( F(x) = (\ln(x))^2 \),我们使用链式法则和对数函数的导数:\[ F'(x) = 2(\ln(x)) \cdot \frac{1}{x} = \frac{2\ln(x)}{x} \]2. 对于 \( G(x) = \sqrt{x} \cdot \sin(x) \),我们使用乘积法则: \[ G'(x) = \frac{1}{2\sqrt{x}} \cdot \sin(x) + \sqrt{x}\cdot \cos(x) \]\[ G'(x) = \frac{\sin(x)}{2\sqrt{x}} + \sqrt{x}\cos(x) \]#### 练习题三:隐函数的导数题目:计算以下隐函数的导数:1. \( x^2 + y^2 = 9 \) 求 \( \frac{dy}{dx} \)2. \( y^3 + xy = 2 \) 求 \( \frac{dy}{dx} \)解答:1. 对于 \( x^2 + y^2 = 9 \),我们对等式两边求导:\[ 2x + 2y\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx} = -\frac{x}{y} \]2. 对于 \( y^3 + xy = 2 \),我们对等式两边求导:\[ 3y^2\frac{dy}{dx} + (x + y)\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx}(3y^2 + x + y) = -x \]\[ \frac{dy}{dx} = -\frac{x}{3y^2 + x + y} \]#### 练习题四:高阶导数题目:计算以下函数的二阶导数:1. \( f(x) = x^3 - 6x^2 + 9x \)2. \( g(x) = \ln(x) - e^x \)解答:1. 对于 \( f(x) = x^3 - 6x^2 + 9x \),我们首先求一阶导数: \[ f'(x) = 3x^2 - 12x + 9 \]然后求二阶导数:\[ f''(x) = 6x - 12 \]2. 对于 \( g(x) = \ln(x) - e^x \),我们首先求一阶导数:\[ g'(x) = \frac{1}{x} - e^x \]然后求二阶导数:\[ g''(x) = -\frac{1}{x^2} - e^x \]这些练习题涵盖了基础导数计算、复合函数导数、隐函数导数以及高阶导数,是专升本数学考试中常见的题型。

高职专升本第二章导数及其应用习题及答案

高职专升本第二章导数及其应用习题及答案

应用数学习题集第二章导数及其应用一.选择题1.若)(x f 在x 0处可导,则以下结论错误的是( D )。

A )(x f 在x 0处有极限; B )(x f 在x 0处连续; C )(x f 在x 0处可微; D )(lim )('x f x f x x 0→0=必成立。

2.若)(x f 在x 0处可导,则( B )是错误的。

(02-03电大试题) A 函数)(x f 在点x 0处有定义; B A x f x x =→)(lim 0,但)(0x f A ≠;C 函数)(x f 在x 0处连续;D 函数)(x f 在x 0处可微。

3.)(x f 在x 0处不连续,则)(x f 在x 0处( A )A 必不可导;B 有时可导;C 必无定义;D 必无极限。

4.函数)(x f =|2x|在x=0处的导数( D )。

A 等于0;B 等于2;C 等于-2;D 不存在。

5.函数)(x f =|sinx|在点x=0处的导数( D )。

A 等于-1;B 等于0;C 等于1 ;D 不存在。

6.||ln x y =,则y’=( B )。

A ||1x -; B x 1; C x1-; D ||1x 。

7.曲线y=sinx 在点(0,0)处的切线方程是( C )。

A y=2x B x y 21=C y=xD y=-x 8.x x x f cos )(=,则)("x f =( D )。

(02-03电大试题) A cosx+xsinx B cosx-xsinx C 2sinx+xcosx D -2sinx-xcosx9.函数中在[1,e]上满足Lagrange 定理条件的函数是( B )。

A y=ln(lnx); B y=lnx ; C y=xln 1; D y=ln(2-x)。

10.若)(x f 在[a,b]上连续,在(a,b)内可导,Lagrange 定理的结论是至少存在一点ξ,使( A )。

湖南专升本导数的几何应用例题

湖南专升本导数的几何应用例题

湖南专升本数学导数的几何应用例题一、导数的定义导数是描述函数在某一点上的变化率的概念。

在几何上,导数可以被解释为函数图像上某一点处的切线斜率。

对于函数f(x),它在点x0处的导数可以用如下极限来表示:f'(x0) = lim(h->0) [f(x0+h) - f(x0)]/h二、切线方程考虑以下函数f(x) = x^2,我们来计算在点x0=1处的切线斜率。

首先求出函数在x0处的导数:f'(1) = lim(h->0) [f(1+h) - f(1)]/h= lim(h->0) [ (1+h)^2 - 1^2 ]/h= lim(h->0) [ 1 + 2h + h^2 - 1 ]/h= lim(h->0) [ 2 + 2h ]/h= 2得到切线斜率为2,接着我们来求出切线方程。

由于切线斜率为2,而且经过点(1,1),所以切线方程为:y - 1 = 2(x - 1)即 y = 2x - 1三、拐点函数的拐点是指函数图像上的一个点,该点处的二阶导数发生了变号。

如果函数在拐点处的二阶导数为正,那么该点是一个极小值点;如果函数在拐点处的二阶导数为负,那么该点是一个极大值点。

考虑以下函数f(x) = x^3 - 3x^2 + 3x - 1,我们来求出它的拐点。

首先求出函数的一阶导数和二阶导数:f(x) = x^3 - 3x^2 + 3x - 1f'(x) = 3x^2 - 6x + 3f''(x) = 6x - 6令f''(x) = 0,得到x = 1。

将x = 1代入二阶导数得到f''(1) = 6*1 - 6 = 0。

所以函数在x = 1处的二阶导数为0,该点是一个拐点。

四、曲线的凹凸性函数图像上的凹凸性可以由函数的二阶导数来描述。

如果函数在某点处的二阶导数为正,那么函数在该点处的图像是凹的;如果函数在某点处的二阶导数为负,那么函数在该点处的图像是凸的。

(完整版)第二章导数与微分(答案)

(完整版)第二章导数与微分(答案)

x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。

x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。

专升本高数导数练习题

专升本高数导数练习题

专升本高数导数练习题一、选择题1. 函数 \( f(x) = x^3 - 2x^2 + 3x \) 的导数是:A. \( 3x^2 - 4x + 3 \)B. \( x^3 - 2x^2 \)C. \( 2x^2 - 3x + 1 \)D. \( 3x^2 - 4x + 3 \)2. 若 \( y = \ln(x) \),其导数 \( y' \) 为:A. \( \frac{1}{x} \)B. \( x \)C. \( \ln(x) \)D. \( x^2 \)3. 函数 \( g(t) = \sin(t) + \cos(t) \) 的导数是:A. \( \cos(t) - \sin(t) \)B. \( \sin(t) + \cos(t) \)C. \( \sin(t) - \cos(t) \)D. \( \cos(t) + \sin(t) \)二、填空题4. 函数 \( h(x) = e^x \) 的导数是 __________。

5. 若 \( f(x) = \sqrt{x} \),则 \( f'(x) = __________ \)。

三、计算题6. 求函数 \( F(x) = x^4 - 3x^3 + 2x^2 \) 在 \( x = 1 \) 处的导数。

7. 已知 \( G(x) = \ln(x^2 + 1) \),求 \( G'(x) \)。

四、证明题8. 证明函数 \( H(x) = x^2 \) 在 \( x = 2 \) 处的导数为 \( 4 \)。

五、应用题9. 某工厂生产函数为 \( P(t) = 100t^2 - 50t + 5 \),求该工厂在\( t = 3 \) 时的生产率。

六、综合题10. 假设 \( Q(x) = \frac{1}{x} \),求 \( Q'(x) \) 并讨论\( Q(x) \) 在 \( x = 1 \) 处的切线方程。

专升本《高等数学》易错题解析-第二章:导数与微分

专升本《高等数学》易错题解析-第二章:导数与微分

第二章 导数与微分导数与微分这一章的基本思想是用极限理论来研究函数。

这一章内容是高等数学微积分部分的基础,因此必须牢固地掌握其基本理论、基本方法和常用解题技巧。

在研究生入学考试中,本章是所有《高等数学》课程的必考内容之一,一些综合考试题往往也要涉及到此章内容。

通过这一章的学习,我们认为同学们应达到如下要求:1、熟练掌握导数的定义,特别是左导数、右导数概念。

知道导数的几何意义(切线斜率)和物理意义(如速度、加速度等)以及经济意义(如边际成本、边际收入等)。

2、熟练掌握求导数的方法。

3、掌握高阶导数的定义,计算方法。

4、了解微分定义,可导与可微的关系,一阶微分不变性。

一、知识网络图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧可微一定可导可导一定可微导数与微分的关系几何意义定义微分计算方法基本公式导数定义)数定义、右导数定义、定义(一般定义、左导导数Dini 注:Dini 导数在控制理论与应用中有广泛的应用。

虽然高等数学教材上没有介绍,但计算机专业、电子专业的后继课程中有所涉及,因此我们认为还是有必要让学生知道。

定义:函数)(x f 在定义域D 内连续,)(x f 的四种Dini 导数定义为(1)hx f h x f x f D h )()(sup lim )(0-+=+→+, (2)hx f h x f x f D h )()(sup lim )(0-+=-→-, (3)hx f h x f x f D h )()(inf lim )(0-+=+→+, (4)hx f h x f x f D h )()(sup lim )(0-+=-→-。

二、典型错误分析例1.设)()()(x g a x x f -=,其中)(x g 在a x =处连续,求)(a f '。

[错解] 因为)()()(x g a x x f -=,则)()()()(x g a x x g x f '-+='。

导数及其应用练习及答案详解

导数及其应用练习及答案详解

导数及其应用一、选择题(共15小题,每小题4.0分,共60分)1.下列求导运算正确的是()A.′=x B.(x e x)′=e x+1 C.(x2cos x)′=-2x sin x D.′=1-2.已知f(x)=ax3+bx2+x(a,b∈R且ab≠0)的图象如图所示,若|x1|>|x2|,则有()A.a>0,b>0 B.a<0,b<0 C.a<0,b>0 D.a>0,b<03.已知函数f(x)=x2+cos x,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是() A.B.C.D.4.函数f(x)=x-sin x在区间[0,π]上的最大、最小值分别为()A.π,0 B.-,0 C.π,-1 D.0,-15.ʃ(e x+e-x)d x的值为()A.e+B.2e C.D.e-6.已知f(x)=x+在(1,e)上为单调函数,则实数b的取值范围是()A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,e2] D.[1,e2] 7.若函数f(x)=x2-a ln x在(1,+∞)上为增函数,则实数a的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1) D.(-∞,1]8.设函数f(x)=x-ln x(x>0),则y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内无零点,在区间(1,e)内有零点D.在区间内有零点,在区间(1,e)内无零点9.已知函数f(x)=x2-2ln x,若关于x的不等式f(x)-m≥0在[1,e]上有实数解,则实数m的取值范围是()A.(-∞,e2-2) B.(-∞,e2-2] C.(-∞,1) D.(-∞,1]10.曲线y=x2-2ln x的单调增区间是()A . (0,1]B . [1,+∞)C . (-∞,-1]和(0,1]D . [-1,0)和[1,+∞) 11.由曲线y =与直线y =2x -1及x 轴所围成的封闭图形的面积为( )A .B .C .D .12.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车走过的路程为( )A . 405B . 540C . 810D . 94513.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A . (2,3) B . (3,+∞) C . (2,+∞) D . (-∞,3)14.如图,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A . -4B . 3C . -2D . 115.函数f (x )={2−x,x ≤0,√4−x 2,0<x ≤2,则∫f(x)dx 2−2的值为( ) A . π+6 B . π-2 C . 2π D . 8二、填空题(共6小题,每小题4.0分,共24分)16.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的长、宽、高分别为__________时,其体积最大.17.若函数f (x )=x 3+x 2+m 在区间[-2,1]上的最大值为,则m =________.18.如图,已知点A ,点P (x 0,y 0)(x 0>0)在曲线y =x 2上,若阴影部分的面积与△OAP 的面积相等,则x 0=________.19.如图所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为________时,其容积最大.20.已知函数f (x )=-x 3+2ax 2+3x (a >0)的导数f ′(x )的最大值为5,则在函数f (x )图象上的点(1,f (1))处的切线方程是________.21.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),给出以下说法:①函数f (x )在区间(1,+∞)上是增函数;②函数f (x )在区间(-1,1)上无单调性;③函数f (x )在x =-处取得极大值;④函数f (x )在x=1处取得极小值.其中正确的说法有________.二、解答题(共6小题,每小题11.0分,共66分)22.已知定义在R上的函数f(x)=ax3-2ax2+b(a>0)在区间[-2,1]上的最大值是5,最小值是-11.(1)求函数f(x)的解析式;(2)若t∈[-1,1]时,f′(x)+tx≤0恒成立,求实数x的取值范围.23.已知函数f(x)=x-ln x-2.(1)求函数f(x)的最小值;(2)如果不等式x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.24.已知函数g(x)=,f(x)=g(x)-ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.25.已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.26.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加,年销售量y关于x的函数为y=3 240,则当x为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量)26.设函数f(x)=2−ax2+ax-2ln x(a∈R).(1)当a=0时,求函数f(x)的极值;(2)当a>4时,2求函数f(x)的单调区间;(3)若对任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln 2>|f(x1)-f(x2)|恒成立,求实数m的取值范围.导数及其应用答案解析1.【答案】D【解析】A项,′=-;B项,(x·e x)′=e x+x·e x;C项,(x2cos x)′=2x cos x -x2·sin x;D正确,故选D.2.【答案】B【解析】由f(x)的图象易知f(x)有两个极值点x1,x2,且x=x1时有极小值,∴f′(x)=3ax2+2bx+1的图象如图所示,∴a<0.又|x1|>|x2|,∴-x1>x2,∴x1+x2<0,即x1+x2=-<0,∴b<0.3.【答案】A 【解析】由于f(x)=x2+cos x,∴f′(x)=x-sin x,∴f′(-x)=-f′(x),故f′(x)为奇函数,其图象关于原点对称,排除B和D,又当x=时,f′=-sin=-1<0,排除C,故选A.4.【答案】C【解析】函数f(x)=x-sin x,∴f′(x)=1-cos x,令f′(x)=0,解得cos x=,又x∈[0,π],∴x=,∴x∈时,f′(x)<0,f(x)单调递减;x∈时,f′(x)>0,f(x)单调递增.又f=-sin=-1,f(0)=0,f(π)=π,∴函数f(x)在区间[0,π]上的最大、最小值分别为π,-1.5.【答案】D 【解析】ʃ(e x+e-x)d x=(e x-e-x)|=e-.6.【答案】A【解析】若b≤0,则函数在(0,+∞)上为增函数,满足条件,若b>0,则函数的导数f′(x)=1-=,由f′(x)>0得x>或x<-,此时函数单调递增,由f′(x)<0得-<x<,此时函数单调递减,若函数f(x)在(1,e)上为增函数,则≤1,即0<b≤1,若函数f(x)在(1,e)上为减函数,则≥e,即b≥e2,综上b≤1或b≥e2,故选A.【解析】由题意知,f′(x)=x-=(x>0),∵f(x)在区间(1,+∞)上是增函数,∴f′(x)≥0在区间(1,+∞)上恒成立,∴a≤x2在区间(1,+∞)上恒成立,∵x>1时,x2>1,∴a≤1,故选D.8.【答案】C【解析】由题意得f′(x)=(x>0),令f′(x)>0,得x>3;令f′(x)<0,得0<x<3;令f′(x)=0,得x=3,故知函数f(x)在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x=3处有极小值1-ln 3<0;又f(1)=>0,f(e)=-1<0,f=+1>0.所以f(x)在区间内无零点,在区间(1,e)内有零点.9.【答案】B【解析】由f(x)-m≥0得f(x)≥m,函数f(x)的定义域为(0,+∞),f′(x)=2x-=,当x∈[1,e]时,f′(x)≥0,此时,函数f(x)单调递增,所以f(1)≤f(x)≤f(e).即1≤f(x)≤e2-2,要使f(x)-m≥0在[1,e]上有实数解,则有m≤e2-2.10.【答案】B【解析】求解函数的导数可得y′=2x-,令2x-≥0,结合x>0,解得x≥1.所以单调增区间为[1,+∞).11.【答案】D【解析】联立曲线y=与直线y=2x-1,构成方程组解得联立直线y=2x-1,y=0构成方程组,解得∴曲线y=与直线y=2x-1及x轴所围成的封闭图形的面积为S=ʃd x-==+-=.12.【答案】A【解析】停车时v(t)=0,由27-0.9t=0,得t=30,∴所求路程s=ʃv(t)d t=ʃ(27-0.9t)d t=(27t-0.45t2)=405.【解析】因为f ′(x )=6x 2+2ax +36,且在x =2处有极值,所以f ′(2)=0,即24+4a +36=0,解得a =-15,所以f ′(x )=6x 2-30x +36=6(x -2)(x -3),由f ′(x )>0,得x <2或x >3.14.【答案】D【解析】由图象可得函数y =f (x )的图象在点P 处的切线是l ,与x 轴交于点(4,0),与y 轴交于点(0,4),则可知l :x +y =4,∴f (2)=2,f ′(2)=-1,∴f (2)+f ′(2)=1,故选D. 15.【答案】A【解析】∵f (x )={2−x,x ≤0,√4−x 2,0<x ≤2,则∫f(x)dx 2−2=∫(2−x)dx 0−2+∫√4−x 2dx 20=(2x -12x 2)|0−2+∫√4−x 220dx =6+∫√4−x 2dx 20,设y =2(y ≥0,0<x ≤2),则x 2+y 2=4(y ≥0,0<x ≤2)对应的曲线为半径为2的圆位于第一象限内的部分,对应的面积S =14π×22=π,根据积分的几何意义可得∫√4−x 2dx 20=π,故∫f(x)dx 2−2=6+∫√4−x 2dx 20=π+6. 16.【答案】2 cm,1 cm ,cm【解析】设长、宽、高分别2x ,x ,h ,则4(2x +x +h )=18,h =-3x ,∴V =2x ·x ·h =2x 2=-6x 3+9x 2,求导得,V ′=-18x 2+18x ,由V ′=0得x =1或x =0(舍去).∴x =1是函数V 在(0,+∞)上唯一的极大值点,也是最大值点,故长、宽、高分别为2 cm ,1cm ,cm 时,体积最大.17.【答案】2【解析】f ′(x )=3x 2+3x =3x (x +1).由f ′(x )=0,得x =0或x =-1.又f (0)=m ,f (-1)=m +,f (1)=m +,f (-2)=-8+6+m =m -2,∴当x ∈[-2,1]时,最大值为f (1)=m +,∴m +=,∴m =2.18.【答案】【解析】由题意知×x0×=ʃx2d x,即x0=x,解得x0=或x0=-或x0=0.∵x0>0,∴x0=.19.【答案】【解析】设被切去的全等四边形的一边长为x,如图所示,则正六棱柱的底面边长为1-2x,高为x,所以正六棱柱的体积V=6×(1-2x)2·x=(4x3-4x2+x),则V′=(12x2-8x+1).令V′=0,得x=(舍去)或x=.当x∈时,V′>0;当x∈时,V′<0.故当x=时,V有极大值,也是最大值,此时正六棱柱的底面边长为.20.【答案】15x-3y-2=0【解析】∵f′(x)=-2x2+4ax+3=-2(x-a)2+3+2a2,∴f′(x)max=3+2a2=5,∵a>0,∴a=1.∴f′(x)=-2x2+4x+3,f′(1)=-2+4+3=5.又f(1)=-+2+3=,∴所求切线方程为y-=5(x-1).即15x-3y-2=0.21.【答案】①④【解析】从图象上可以发现,当x∈(1,+∞)时,xf′(x)>0,于是f′(x)>0,故f(x)在区间(1,+∞)上是增函数,故①正确;当x∈(-1,1)时,f′(x)<0,所以函数f(x)在区间(-1,1)上是减函数,②错误,③也错误;f(x)在区间(0,1)上是减函数,而在区间(1,+∞)上是增函数,所以函数f(x)在x=1处取得极小值,故④正确.22.【答案】解(1)∵f(x)=ax3-2ax2+b,∴f′(x)=3ax2-4ax=ax(3x-4).令f′(x)=0,得x1=0,x2=∉[-2,1],∵a>0,∴可得下表:因此f(0)必为最大值,∴f(0)=5,因此b=5,∵f(-2)=-16a+5,f(1)=-a+5,∴f(1)>f(-2),即f(-2)=-16a+5=-11,∴a=1,∴f(x)=x3-2x2+5.(2)由(1)知,f′(x)=3x2-4x,∴f′(x)+tx≤0等价于3x2-4x+tx≤0,令g(t)=xt+3x2-4x,则问题就是g(t)≤0在t∈[-1,1]上恒成立时,求实数x的取值范围,为此只需即解得0≤x≤1,∴所求实数x的取值范围是[0,1].23.【答案】解(1)求函数的定义域为(0,+∞),因为f′(x)=,所以当x∈(0,1)时,f′(x)<0,函数f(x)单调递减;当x∈[1,+∞)时,f′(x)≥0,函数f(x)单调递增.因此,函数f(x)的最小值为f(1)=-1.(2)不等式x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立等价k<(x>1).令g(x)=(x>1),则g′(x)==,由于x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增且f(1)=-1<0,所以函数f(x)在(1,+∞)上有且只有一个零点x0,因为f(3)=1-ln 3<0,f(4)=2-ln 4>0,所以x0∈(3,4),因此,当x∈(1,x0)时,f(x)<0,g′(x)<0;当x∈(x0,+∞)时,f(x)>0,g′(x)>0,从而函数g(x)在(1,x0),(x0,+∞)上分别是减函数、增函数.因此g(x)min=g(x0)===x0,所以,由k<(x>1)得k<x0,又因为k∈Z,且x0∈(3,4),所以k max=3.24.【答案】解(1)由已知得函数g(x)的定义域为(0,1)∪(1,+∞),g′(x)==.当x>e时,g′(x)>0,所以函数g(x)的单调递增区间是(e,+∞);当0<x<e且x≠1时,g′(x)<0,所以函数g(x)的单调递减区间是(0,1),(1,e).(2)因为f(x)在(1,+∞)上为减函数,且f(x)=-ax,所以f′(x)=-a≤0在(1,+∞)上恒成立,所以当x∈(1,+∞)时,f′(x)max≤0.又f′(x)=-a=-2+-a=-2+-a.故当=,则x=e2时,f′(x)max=-a,所以-a≤0,于是a≥,故a的最小值为.25.【答案】解(1)f(x)的定义域为(0,+∞),当a=4时,f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0,曲线y=f(x)在(1,f(1))处的切线方程为y=-2(x-1),即2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0,设g(x)=ln x-,则g′(x)=-=,且g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得,x1=a-1-,x2=a-1+.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)单调递减,因此g(x)<0,综上,a的取值范围是(-∞,2].26.【答案】解由题意得,本年度每辆车的投入成本为10(1+x),每辆车的出厂价为13(1+0.7x),年利润为f(x)=[13(1+0.7x)-10(1+x)]·y=(3-0.9x)×3 240×=3 240(0.9x3-4.8x2+4.5x+5),则f′(x)=3 240(2.7x2-9.6x+4.5)=972(9x-5)(x-3),由f′(x)=0,解得x=或x=3(舍去),当x∈时,f′(x)>0,f(x)是增函数;当x∈时,f′(x)<0,f(x)是减函数.第 11 页 共 11 页 所以当x =时,f (x )取极大值,f =20 000.因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =时,本年度的年利润最大,最大利润为20 000万元. 27.【答案】(1)函数的定义域为(0,+∞),当a =0时,f (x )=x 2-2ln x ,f ′(x )=2x -2x =2(x+1)(x−1)x ,令f ′(x )=0,得x =1,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.∴f (x )极小值=f (1)=1,无极大值.(2)f ′(x )=(2-a )x +a -2x=(2−a )x 2+ax−2x =(2−a)(x−2a−2)(x−1)x ,∵a >4,∴2a−2<1,令f ′(x )<0,得0<x <2a−2或x >1,函数单调递减,令f ′(x )>0,得2a−2<x <1,函数单调递增,故当a >4时,f (x )在 (0,2a−2)和(1,+∞)上单调递减,在(2a−2,1)上单调递增.(3)由(2)知,当a ∈(4,6)时,f (x )在[1,2]上单调递减,∴当x =1时,f (x )有最大值,当x =2时,f (x )有最小值, |f (x 1)-f (x 2)|≤f (1)-f (2)=a 2-3+2ln 2,∴ma +2ln 2>a 2-3+2ln 2,∵a >0,∴m >12-3a ,∵4<a <6,∴-14<12-3a <0,∴m ≥0,故实数m 的取值范围为[0,+∞).。

专升本高等数学(二)-导数的应用、中值定理及其应用

专升本高等数学(二)-导数的应用、中值定理及其应用

专升本高等数学(二)-导数的应用、中值定理及其应用(总分:94.53,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:5,分数:5.00)1.在下列函数中,以x=0为极值点的函数是______.∙ A.y=-x3∙ B.y=cosx∙ C.y=tanx-x∙ D.y=arcsinx-x(分数:1.00)A.B. √C.D.解析:2.下列命题正确的是______.∙ A.在(a,b)内,f'(x)>0是y=f(x)在(a,b)内为增函数的充分条件∙ B.可导函数的驻点一定是极值点∙ C.连续函数在[a,b]上的极大值必大于极小值∙ D.函数y=f(x)的极值点一定是此函数的驻点(分数:1.00)A. √B.C.D.解析:3.已知y=f(x)在x0处有极大值,下列结论正确的是______.∙ A.f'(x0)=0,且f"(x0)<0∙ B.f'(x0)=0,或f'(x0)不存在∙ C.f'(x0)=0∙ D.f"(x0)<0(分数:1.00)A.B. √C.D.解析:4.下列命题正确的是______.∙ A.若(x0,f(x0))为曲线y=f(x)的拐点,则f"(x0)=0∙ B.若f"(x0)=0,则(x0,f(x0))为曲线y=f(x)的拐点∙ C.若f"(x0)=0,或f"(x0)不存在,则(x0,f(x0))可能为曲线y=f(x)的拐点∙ D.以上命题都不对(分数:1.00)A.B.C. √D.解析:5.已知(0,1)是曲线y=ax3+bx+1上的拐点,则a,b的值是______.∙ A.a=1,b=-3∙ B.a≠0,b∈R∙ C.a=1,b=0∙ D.a∈R,b∈R(分数:1.00)A.B. √C.D.解析:二、{{B}}填空题{{/B}}(总题数:2,分数:2.00)6.曲线f(x)=x3-2x在点x=1的切线方程是 1.(分数:1.00)填空项1:__________________ (正确答案:y=x-2.)解析:7.曲线y=x3-3x2-x的拐点坐标为 1.(分数:1.00)填空项1:__________________ (正确答案:(1,-1).)解析:三、{{B}}解答题{{/B}}(总题数:3,分数:87.50)证明下列等式或不等式.(分数:22.50)2.50)__________________________________________________________________________________________ 正确答案:(证明一个函数是常数函数,分为两步:第一步先证其为常数,即证其导为0;第二步,再用特殊点求常数.设y=arcsinx+arccosx,由于[*],得知函数y为常数函数.取x=0,得y=arcsin 0+arccos 0=[*],所以 arcsinx+arccosx=[*])解析:>1).(分数:2.50)正确答案:(设[*],由于[*],在x>1时恒有y'>0,所以函数[*]在x>1上是单调递增的函数.而y(1)=0,从而y(x)>y(1)=0,即lnx-[*],也即 [*])解析:(3).[0,3]上的最大值和最小值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(因为[*],令y'=0,得驻点x=1,不可导点x=0,x=2.由于y(0)=0,y(2)=0,y(3)=[*],所以最大值为y(3)=[*],最小值为y(0)=0,y(2)=0.)解析:(4). 2.50)__________________________________________________________________________________________ 正确答案:(为方便求导,把函数改写成指数对数形式:[*],由于 [*] 令y'=0,得x=e.当x<e时,y'>0;当x>e时,y'<0.说明函数在x=e处取得极大值,且[*].)解析:(5).求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.(分数:2.50)__________________________________________________________________________________________ 正确答案:(求曲线y=ax3+bx2+cx+d,使得(-2,44)为驻点,(1,-10)为拐点.由y'=3ax2+2bx+C一0及已知得知:3a(-2)2+2b(-2)+c=0,44=a(-2)3+b(-2)2+c(-2)+d.由y"=6ax+2b=0及已知得知:6a+2b=0,-10=a+b+c+d.联立解得:[*])解析:(6). 2.50)__________________________________________________________________________________________ 正确答案:(描绘函数[*]的图形.(1)函数y=f(x)定义域为(-∞,-1)∪(-1,+∞).x=-1为间断点.[*](2)f'(x)=0的根为x=1;f"(x)=0的根为x=2.点x=1和x=2把定义域划分成四个区间:(-∞,-1),(-1,1],[1,2],[2,+∞).(3)在各部分区间内f'(x),f"(x)的符号、相应曲线弧的升降及凹凸,以及极值点和拐点等如下表所示.x (-∞,-1) (-1,1) 1 (1,2) 2 (2,+∞)f'(x) - + 0 - - -f"(x) - - - - 0 +f(x) [*] [*] 极大值点[*] 拐点[*](4)由于[*].所以图形有一条水平渐近线y=2和一条铅直渐近线x=-1.(5)补充几个点,如算出x=1,x=2处的函数值.[*]从而得图形上的两个点[*].又由于f(0)=2,[*],f(-2)=-4,f(-4)=[*],从而得图形上的4个点.M3(0,2),[*],M5(-2,-4),[*]函数[*]的图形如下图所示.[*])解析:(7).欲用围墙围成面积为216m2的一块巨型的地,并在正中间用一堵墙将其隔成两块.问这块土地的长和宽选取多大尺寸时,才能使所用建筑材料最省?(分数:2.50)正确答案:(设s为围墙总长,长为x,宽为y.则x·y=216所以[*].因为s=2x+3y=2x+[*],所以令[*],得x=18(为x=-18舍去).且x=18是函数的唯一驻点.由结论知x=18是极小值点,也是最小值点.所以当x=18m,[*]时,所用材料最省.)解析:(8).y=x的交点处的切线方程.(分数:2.50)__________________________________________________________________________________________ 正确答案:(由[*]得交点(1,1).再由[*],得切线方程为 [*])解析:(9). 2.50)__________________________________________________________________________________________ 正确答案:(定义域为x≠-1.由[*],得x=0,x=-2.列表讨论(见下表).x (-∞,-2) (-2.-1) (-1,0) (0,+∞)f'(x) + - - +f(x) [*] [*] [*] [*]所以函数的单调递增区间为(-∞,-2)和(0,+∞);单调递减区间为(-2,-1)和(-1,0).)解析:求下列函数的极值.(分数:35.00)(1).y=e x cosx(分数:2.50)__________________________________________________________________________________________ 正确答案:(y'=e x cosx-e x sinx=e x(cosx-sinx),令y'=0得x=kπ+[*].又y"=-2e x sinx,当[*]时,[*],函数有极大值[*]当[*]时,[*],函数有极小值[*])解析:2.50)__________________________________________________________________________________________ 正确答案:([*],令f'(x)=0,得驻点x=1,不可导点x=0.列表讨论(见下表).x (-∞,0) 0 (0,1) 1 (1,+∞)f’(z)+ - 0 +l厂(z) [*] 极大值点[*] 极小值点[*]故极大值f(0)=0,极小值[*].)解析:(3).试证明:如果函数y=ax3+bx2+cx+d满足条件b2-3ac<0,那么这个函数没有极值.(分数:2.50)__________________________________________________________________________________________ 正确答案:(证明:因y'=3ax2+2bx+c,要使可导函数没有极值,必使y'=0恒不成立.即使3ax2+2bx+c=0没有实数解,从而必须使一元二次方程的判别式Δ=(26)2-4·3ac<0即b2-3ac<0.) 解析:(4).试问a为何值时,函数f(x)=asinx+sin3x?它是极大值还是极小值?并求此极值.(分数:2.50)正确答案:(f'(x)=acosx+cos3x,当[*]时,f'(x)=0,得acos[*]+cosπ=0,从而a=2.又f"(x)=-asinx-3sin3x,[*],所以有极大值[*][*])解析:(5).问函数y=x2<0)在何处取得最小值?并求出最小值.(分数:2.50)__________________________________________________________________________________________正确答案:([*],令y'=0得x=-3.又[*].所以在x=-3时y有最小值,其值为27.)解析:(6).求函数-3,3]的最大值和最小值.(分数:2.50)__________________________________________________________________________________________正确答案:(由[*]得驻点x=-2,不可导点x=-5,x=1.而f(-3)=4,f(-2)=[*],f(1)=0,f(3)=[*].所以最大值是f(3)=[*],最小值是f(1)=0.)解析:(7).求函数y=x2e-x的凹凸区间和拐点.(分数:2.50)__________________________________________________________________________________________正确答案:(因为y'=2xe-x-x2e-x=e-x(2x-x2)y"=e-x(2x-x2)+e-x(2-2x)=e-x(x2-4x+2)令y"=0解得[*].易判定[*]都是拐点.凹区间是(-∞,2-[*])∪(2+[*],+∞),凸区间是(2-[*],2+[*]).)解析:(8).描绘函数y=e-x2的图形.(分数:2.50)__________________________________________________________________________________________正确答案:(对于[*](1)定义域为R.(2)易知其为偶函数,图像关于y轴对称,且有y'=-2xe-x2,y"=(4x2-2)e-x2令y'=0,得x1=0;令y"=0,得[*].因此没有使y',y"不存在的点.(3)讨论函数的性质,如下表所示.x [*] [*] [*] 0 [*] [*] [*]f'(x) + + + 0 - - -f"(x) + 0 - - - 0 +f(x) [*] 拐点[*] 极大值点[*] 拐点[*]可见,有两个拐点[*]≈(-0.7,0.6),[*]≈(0.7,0.6).一个极大值点(0,1).(4)因[*],所以有水平渐近线y=0.)解析:(9). 2.50)__________________________________________________________________________________________正确答案:([*])解析:(10).某工厂每天生产x支产品的总成本为元).该产品独家经营,市场需求规律为x=75-3P,其中P为每支售价,问每天生产多少支时获利润最大?此时的每支售价为多少?(分数:2.50)正确答案:(设利润为L(x),[*],则L(x)=px-C(x)=[*]x2+32x-75求导得L'(x)=[*]+32,令L'(x)=0,得[*]+32=0,x=36,从而[*].又L"(x)=[*]<0,所以当每天生产36支时,获利润最大,此时每支售价为13元.)解析:(11).设计一个容积为Vm3的圆柱形无盖容器,已知每平方米侧面材料的价格是底面材料价格的1.5倍,问容器的底半径r与高h为多少时,材料总造价y最小?(分数:2.50)__________________________________________________________________________________________正确答案:(在不影响问题解答的前提下,不妨设底面材料价格为1个单位.则y=πr2+2πrh·1.5由于V=πr2h,得[*],代入上式得y=πr2+[*].求导得y'=2πr-[*],令y'=0,解得3V=2πr3.联立V=πr2h。

专升本高等数学【导数与微分】知识点及习题库

专升本高等数学【导数与微分】知识点及习题库

第二章导数与微分【考试要求】关注公众号:学习吧同学获取更多升本资料1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法.4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.5.理解高阶导数的概念,会求简单函数的n 阶导数.6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.【考试内容】关注公众号:学习吧同学获取更多升本资料一、导数(一)导数的相关概念1.函数在一点处的导数的定义设函数()y f x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记为0()f x ',即00000()()()lim limx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆,也可记作x x y =',x x dy dx=或()x x df x dx=.说明:导数的定义式可取不同的形式,常见的有0000()()()limh f x h f x f x h→+-'=和000()()()limx x f x f x f x x x →-'=-;式中的h 即自变量的增量x ∆.2.导函数上述定义是函数在一点处可导.如果函数()y f x =在开区间I 内的每点处都可导,就称函数()f x 在区间I 内可导.这时,对于任一x I ∈,都对应着()f x 的一个确定的导数值,这样就构成了一个新的函数,这个函数就叫做原来函数()y f x =的导函数,记作y ',()f x ',dy dx 或()df x dx.显然,函数()f x 在点0x 处的导数0()f x '就是导函数()f x '在点0x x =处的函数值,即00()()x x f x f x =''=.3.单侧导数(即左右导数)根据函数()f x 在点0x 处的导数的定义,导数0000()()()lim h f x h f x f x h→+-'=是一个极限,而极限存在的充分必要条件是左右极限都存在并且相等,因此0()f x '存在(即()f x 在点0x 处可导)的充分必要条件是左右极限000()()lim h f x h f x h-→+-及000()()lim h f x h f x h+→+-都存在且相等.这两个极限分别称为函数()f x 在点0x 处的左导数和右导数,记作0()f x -'和0()f x +',即0000()()()lim h f x h f x f x h--→+-'=,0000()()()lim h f x h f x f x h ++→+-'=.现在可以说,函数()f x 在点0x 处可导的充分必要条件是左导数0()f x -'和右导数0()f x +'都存在并且相等.说明:如果函数()f x 在开区间(,)a b 内可导,且()f a +'及()f b -'都存在,就说()f x 在闭区间[,]a b 上可导.4.导数的几何意义函数()y f x =在点0x 处的导数0()f x '在几何上表示曲线()y f x =在点00(,())M x f x 处的切线的斜率,即0()tan f x α'=,其中α是切线的倾角.如果()y f x =在点0x 处的导数为无穷大,这时曲线()y f x =的割线以垂直于x 轴的直线0x x =为极限位置,即曲线()y f x =在点00(,())M x f x 处具有垂直于x 轴的切线0x x =.根据导数的几何意义及直线的点斜式方程,可得曲线()y f x =在点00(,)M x y 处的切线方程和法线方程分别为:切线方程:000()()y y f x x x '-=-;法线方程:0001()()y y x x f x -=--'.5.函数可导性与连续性的关系如果函数()y f x =在点0x 处可导,则()f x 在点0x 处必连续,但反之不一定成立,即函数()y f x =在点0x 处连续,它在该点不一定可导.(二)基本求导法则与导数公式1.常数和基本初等函数的导数公式(1)()0C '=;(2)1()xx μμμ-'=;(3)(sin )cos x x '=;(4)(cos )sin x x'=-;(5)2(tan)sec x x'=;(6)(cot)csc x x'=-;(7)(sec )sec tan x x x '=;(8)(csc )csc cot x x x'=-;(9)()ln xx aa a'=;(10)()xxee '=;(11)1(log )ln a x x a'=;(12)1(ln )x x'=;(13)(arcsin )x '=;(14)(arccos )x '=;(15)21(arctan )1x x '=+;(16)21(arccot )1x x '=-+.2.函数的和、差、积、商的求导法则设函数()u u x =,()v v x =都可导,则(1)()uv u v '''±=±;(2)()Cu Cu ''=(C 是常数);(3)()uv u v uv '''=+;(4)2(u u v uv v v ''-'=(0v ≠).3.复合函数的求导法则设()y f u =,而()u g x =且()f u 及()g x 都可导,则复合函数[()]y f g x =的导数为dy dy dudx du dx=⋅或()()()y x f u g x '''=⋅.(三)高阶导数1.定义一般的,函数()y f x =的导数()y f x ''=仍然是x 的函数.我们把()y f x ''=的导数叫做函数()y f x =的二阶导数,记作y ''或22d y dx ,即()y y ''''=或22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭.相应地,把()y f x =的导数()f x '叫做函数()y f x =的一阶导数.类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数, ,一般的,(1)n -阶导数的导数叫做n 阶导数,分别记作y ''',(4)y , ,()n y 或33d y dx ,44d y dx , ,n nd ydx .函数()y f x =具有n 阶导数,也常说成函数()f x 为n 阶可导.如果函数()f x 在点x 处具有n 阶导数,那么()f x 在点x 的某一邻域内必定具有一切低于n 阶的导数.二阶及二阶以上的导数统称为高阶导数.(四)隐函数的导数函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.隐函数的求导方法主要有以下两种:1.方程两边对x 求导,求导时要把y 看作中间变量.例如:求由方程0yexy e +-=所确定的隐函数的导数dy dx.解:方程两边分别对x 求导,()(0)yx xexy e ''+-=,得0ydy dy e y x dx dx ++=,从而ydy ydx x e =-+.2.一元隐函数存在定理x y F dydx F '=-'.例如:求由方程0yexy e +-=所确定的隐函数的导数dydx.解:设(,)y F x y e xy e =+-,则()()yx yy y e xy e F dy y x dx F e x e xy e y∂+-'∂=-=-=-∂'++-∂.(五)由参数方程所确定的函数的导数一般地,若参数方程()()x t y t ϕφ=⎧⎨=⎩确定y 是x 的函数,则称此函数关系所表达的函数为由该参数方程所确定的函数,其导数为()()dy t dx t φϕ'=',上式也可写成dy dy dt dxdx dt=.其二阶导函数公式为223()()()()()d y t t t t dx t φϕφϕϕ''''''-='.(六)幂指函数的导数一般地,对于形如()()v x u x (()0u x >,()1u x ≠)的函数,通常称为幂指函数.对于幂指函数的导数,通常有以下两种方法:1.复合函数求导法将幂指函数()()v x u x 利用指数函数和对数函数的性质化为()ln ()v x u x e的形式,然后利用复合函数求导法进行求导,最后再把结果中的()ln ()v x u x e 恢复为()()v x u x 的形式.例如:求幂指函数xy x =的导数dydx.解:因ln x x xx e =,故()ln ln (ln )(1ln )x xx x x dy d e e x x x x dx dx'==⋅=+.2.对数求导法对原函数两边取自然对数,然后看成隐函数来求y 对x 的导数.例如:求幂指函数x y x =的导数dy dx.解:对幂指函数x y x =两边取对数,得ln ln y x x =,该式两边对x 求导,其中y 是x的函数,得11ln dyx y dx⋅=+,故(1ln )(1ln )x dy y x x x dx =+=+.二、函数的微分1.定义:可导函数()y f x =在点0x 处的微分为00()x x dyf x dx='=;可导函数()y f x =在任意一点x 处的微分为()dy f x dx '=.2.可导与可微的关系函数()y f x =在点x 处可微的充分必要条件是()y f x =在点x 处可导,即可微必可导,可导必可微.3.基本初等函数的微分公式(1)()0d C dx=;(2)1()d xx dxμμμ-=;(3)(sin )cos d x xdx =;(4)(cos )sin d x xdx =-;(5)2(tan )sec d x xdx=;(6)(cot )csc d x xdx=-;(7)(sec )sec tan d x x xdx=;(8)(csc )csc cot d x x xdx=-;(9)()ln xx d aa adx =;(10)()xx d ee dx=;(11)1(log )ln ad x dx x a =;(12)1(ln )d x dx x=;(13)(arcsin )d x =;(14)(arccos )d x =-;(15)21(arctan )1d x dx x=+;(16)21(arccot )1d x dx x=-+.4.函数和、差、积、商的微分法则设函数()u u x =,()v v x =都可导,则(1)()d uv du dv±=±;(2)()d Cu Cdu =(C 是常数);(3)()d uv vdu udv=+;(4)2()u vdu udv d v v -=(0v≠).5.复合函数的微分法则设()y f u =及()u g x =都可导,则复合函数[()]y f g x =的微分为()()x dy y dx f u g x dx '''==.由于()g x dx du '=,所以复合函数[()]y f g x =的微分公式也可写成()dyf u du'=或udy y du '=.由此可见,无论u 是自变量还是中间变量,微分形式()dyf u du '=保持不变.这一性质称为微分形式的不变性.该性质表明,当变换自变量时,微分形式()dy f u du '=并不改变.【典型例题】关注公众号:学习吧同学获取更多升本资料【例2-1】以下各题中均假定0()f x '存在,指出A 表示什么.1.000()()limx f x x f x A x∆→-∆-=∆.解:根据导数的定义式,因0x∆→时,0x -∆→,故0000000()()()()limlim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆,即0()A f x '=-.2.设0()limx f x A x→=,其中(0)0f =,且(0)f '存在.解:因(0)0f =,且(0)f '存在,故00()()(0)lim lim (0)0x x f x f x f f x x →→-'==-,即(0)A f '=.3.000()()limh f x h f x h A h→+--=.解:根据导数的定义式,因0h →时,0h -→,故00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h h →→+--+-+--=00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim lim h h f x h f x f x h f x h h →→+---=+-000()()2()f x f x f x '''=+=,即02()A f x '=.【例2-2】分段函数在分界点处的导数问题.1.讨论函数322,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩在1x =处的可导性.解:根据导数的定义式,3211122()(1)233(1)lim lim 1)2113x x x x f x f f x x x x ----→→→--'===++=--,2112()(1)3(1)lim lim11x x x f x f f x x +++→→--'===+∞--,故()f x 在1x =处的左导数(1)2f -'=,右导数不存在,所以()f x 在1x =处不可导.2.讨论函数21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x=处的可导性.解:因20001sin()(0)1(0)limlim lim sin 0x x x x f x f x f x x x x→→→--'====-,故函数()f x 在0x =处可导.3.已知函数2,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =处连续且可导,求常数a 和b 的值.解:由连续性,因(1)1f =,211(1)lim ()lim 1x x f f x x ---→→===,11(1)lim ()lim()x x f f x ax b a b +++→→==+=+,从而1a b += ①再由可导性,2111()(1)1(1)lim lim lim(1)211x x x f x f x f x x x ----→→→--'===+=--,11()(1)1(1)lim lim 11x x f x f ax b f x x +++→→-+-'==--,而由①可得1b a =-,代入(1)f +',得11()(1)(1)lim lim 11x x f x f ax a f a x x +++→→--'===--,再由(1)(1)f f -+''=可得2a =,代入①式得1b =-.【例2-3】已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求()f x '.解:当0x <时,()(sin )cos f x x x ''==,当0x ≥时,()()1f x x ''==,当0x =时的导数需要用导数的定义来求.0()(0)sin (0)lim lim 10x x f x f x f x x ---→→-'===-,0()(0)0(0)lim lim 10x x f x f x f x x+++→→--'===-,(0)(0)1f f -+''==,故(0)1f '=,从而cos ,0()1,0x x f x x <⎧'=⎨≥⎩.【例2-4】求下列函数的导数.1.(sin cos )x y e x x =+.解:()(sin cos )(sin cos )x x y e x x e x x '''=+++(sin cos )(cos sin )x x e x x e x x =++-2cos x e x =.2.2sin1y x =+.解:222222sin cos 111x x x y x x x ''⎛⎫⎛⎫'==⋅ ⎪ +++⎝⎭⎝⎭2222222(1)(2)cos 1(1)x x x x x +-=⋅++22222(1)2cos (1)1x x x x -=++.3.ln cos()x y e =.解:1ln cos()cos()cos()xxx y e e e '''⎡⎤⎡⎤==⋅⎣⎦⎣⎦1sin()()cos()x xx e e e '⎡⎤=⋅-⋅⎣⎦1sin()cos()x x x e e e ⎡⎤=⋅-⋅⎣⎦tan()x x e e =-.4.ln(yx =+.解:ln((y x x '⎡⎤''=+=+⎣⎦21⎡⎤'=+⎢⎣1⎡⎤=+⎢⎣==.【例2-5】求下列幂指函数的导数.1.sin x y x =(0x >).解:sin sin ln sin ln ()()(sin ln )x x x x x y x e e x x ''''===⋅sin ln 1(cos ln sin )x xex x x x=⋅+⋅sin sin (cos ln )x xx x x x=+.说明:本题也可采用对数求导法,即:对幂指函数sin x y x =两边取对数,得ln sin ln y x x =,该式两边对x 求导,其中y 是x 的函数,得11cos ln sin y x x x y x'⋅=+⋅,故1(cos ln sin )y y x x x x '=+⋅sin sin (cos ln )xx x x x x =+.2.1xx yx ⎛⎫= ⎪+⎝⎭(0x >).解:ln ln 11ln 11x x x x x xx x x y e e x x x ++'''⎡⎤⎡⎤⎛⎫⎛⎫'===⋅⎢⎥ ⎪ ⎢⎥++⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦ln 11ln 11xx xx x x ex xx x +⎡⎤'+⎛⎫⎢⎥=⋅+⋅⋅ ⎪++⎢⎥⎝⎭⎣⎦()ln1211ln 11x x xx x x x ex x x x +⎡⎤++-=⋅+⋅⋅⎢⎥++⎢⎥⎣⎦1ln 111xx x x x x ⎛⎫⎛⎫=+ ⎪ ⎪+++⎝⎭⎝⎭.说明:本题也可采用对数求导法,即:对幂指函数1xx y x ⎛⎫= ⎪+⎝⎭两边取对数,得ln ln 1xy x x=+,该式两边对x 求导,其中y 是x 的函数,得111ln ln 1111x x x x y x y x x x x x'+⎛⎫'⋅=+⋅⋅=+ ⎪++++⎝⎭,故11ln ln 11111xx x x y y x x x x x ⎛⎫⎛⎫⎛⎫'=+=+ ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭.【例2-6】用对数求导法求下列函数的导数.1.xy yx =(0x >).解:等式两边取对数,得lnln x y y x =,两边对x 求导,注意y 是x 的函数,得ln ln x y y y y x y x ''+⋅=+,整理得(ln )ln x yx y y y x'-=-,则22ln ln ln ln yy y xy yx y xx xy x x y --'==--.2.y=.解:等式两边取对数,得21ln lnln 2y ==,即2212ln ln(1)ln(2)5y x x =+-+,也即2210ln 5ln(1)ln(2)y x x =+-+,两边对x 求导,注意y 是x 的函数,得221010212x x y y x x '=-++,故222210*********y x x x x y x x x x ⎛⎫⎛⎫'=-=- ⎪ ⎪++++⎝⎭⎝⎭.【例2-7】求下列抽象函数的导数.1.已知函数()yf x =可导,求函数1sin ()xy f e=的导数dy dx.解:111sin sin sin ()()()x x x dy d f e f e e dx dx ⎡⎤'==⋅⎢⎥⎣⎦11sin sin 1()()sin x x f e e x '=⋅⋅1111sin sin sin sin 22cos cos ()()sin sin xxx x x x f eef e x x-=⋅⋅=-.2.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数dy dx.解:22()()f x g x dy d dx dx '⎡⎤+==''''==.【例2-8】求由下列方程所确定的隐函数()y y x =的导数.1.220xxy y -+=.解:方程两边分别对x 求导,得220dy dyx y x y dx dx--⋅+⋅=,整理得(2)2dy x y x y dx -=-,故22dy x ydx x y-=-.说明:此题也可用隐函数存在定理来求解,即:设22(,)F x y x xy y =-+,则2222x y F dy x y x y dx F x y x y '--=-=-='-+-.2.1y yxe =+.解:方程两边分别对x 求导,得0y y dy dye xe dx dx=++⋅,整理的(1)y y dy xe e dx -=,故1yydy edx xe =-.说明:此题也可用隐函数存在定理来求解,即:设(,)1y F x y xe y =+-,则11y yx y yy F dy e e dx F xe xe '=-=-='--.【例2-9】求由下列参数方程所确定的函数()y y x =的导数.1.2t tx e y e -⎧=⎨=⎩.解:()()21222t t ttt dye dy e dt dx dx e e e dt--'-====-'.2.111x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩.解:()()2211111111t t t dy t dy t dt dx dx dt t t '+-⎛⎫ ⎪++⎝⎭====--'⎛⎫ ⎪++⎝⎭.【例2-10】求下列函数的微分.1.22()tan (12)f x x =+.解:因22222()tan (12)2tan(12)sec (12)4f x x x x x ''⎡⎤=+=+⋅+⋅⎣⎦,故222()8tan(12)sec (12)dy f x dx x x x dx '==++.2.()f x =.解:因()()f x ''==⋅=-故()dy f x dx '==-.3.2()arctan f x x =解:因(22()arctan 2arctan f x x x x ''==,故2()2arctan dy f x dx x dx ⎡'==⎢⎣.4.22()sin ln(1)f x x x =+.解:因222222()sin ln(1)2sin cos ln(1)sin 1xf x x x x x x x x ''⎡⎤=+=++⎣⎦+,故2222sin ()sin 2ln(1)1x x dy f x dx x x dx x ⎡⎤'==++⎢⎥+⎣⎦.【例2-11】求曲线x y xe -=在点(0,1)处的切线方程和法线方程.解:()x x x y xe e xe ---''==-,01x y ='=,故曲线在点(0,1)处的切线方程为11(0)y x -=⋅-,即10x y -+=;法线方程为11(0)y x -=-⋅-即10x y +-=.【例2-12】求曲线224xxy y ++=在点(2,2)-处的切线方程和法线方程.解:这是由隐函数所确定的曲线,按隐函数求导数,有220x y xy y y ''+++⋅=,即22x y y x y+'=-+;由导数的几何意义,曲线在点(2,2)-处的斜率为2222212x x y y x y y x y===-=-+'=-=+,故曲线在点(2,2)-处的切线方程为21(2)y x +=⋅-,即40x y --=;法线方程为21(2)y x +=-⋅-,即0x y +=.【例2-13】求椭圆2cos 4sin x t y t=⎧⎨=⎩在点4t π=处的切线方程和法线方程.解:将4t π=代入椭圆方程,得曲线上对应的点为,又4cos 2cot 2sin t t y t y t x t''===-'-,切线斜率为442cot 2t t y tππ=='=-=-,故所求切线方程为2(y x -=--,即20x y +-=;所求法线方程为1(2y x -=--,即20x y +-=.【历年真题】关注公众号:学习吧同学获取更多升本资料一、选择题1.(2010年,1分)已知(1)1f '=,则0(12)(1)limx f x f x∆→-∆-∆等于()(A )1(B )1-(C )2(D )2-解:根据导数的定义,00(12)(1)[1(2)](1)lim2lim2x x f x f f x f x x∆→∆→-∆-+-∆-=-∆-∆2(1)2f '=-=-,选(D ).2.(2010年,1分)曲线2y x =在点(1,1)处的法线方程为()(A )y x =(B )322x y =-+(C )322x y=+(D )322x y =--解:根据导数的几何意义,切线的斜率1122x x ky x =='===,故法线方程为11(1)2y x -=--,即322x y =-+,选(B ).3.(2010年,1分)设函数()f x 在点0x 处不连续,则()(A )0()f x '存在(B )0()f x '不存在(C )lim()x f x →∞必存在(D )()f x 在点0x 处可微解:根据“可导必连续”,则“不连续一定不可导”,选项(B )正确.4.(2009年,1分)若000()()lim h f x h f x h A h→+--=,则A =()(A )0()f x '(B )02()fx '(C )0(D )01()2f x '解:000()()limh f x h f x h A h→+--=00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim lim h h f x h f x f x h f x h h →→+---=+-000()()2()f x f x f x '''=+=,选项(B )正确.5.(2008年,3分)函数()f x x =,在点0x =处()f x ()(A )可导(B )间断(C )连续不可导(D )连续可导解:由()f x x =的图象可知,()f x 在点0x =处连续但不可导,选项(C )正确.说明:()f x x =的连续性和可导性,也可根据连续和导数的定义推得.6.(2008年,3分)设()f x 在0x 处可导,且0()0f x '≠,则0()f x '不等于()(A )000()()limx x f x f x x x →--(B )000()()limx f x x f x x∆→+∆-∆(C )000()()limx f x x f x x∆→-∆-∆(D )000()()lim()x f x x f x x ∆→-∆--∆解:根据导数的定义,选项(C )符合题意.7.(2007年,3分)下列选项中可作为函数()f x 在点0x 处的导数定义的选项是()(A )001lim [()()]n n f x f x n →∞+-(B )000()()limx x f x f x x x →--(C )000()()limx f x x f x x x ∆→+∆--∆∆(D )000(3)()limx f x x f x x x∆→+∆-+∆∆解:选项(A )000001(()1lim [()()]lim()1n n f x f x n n f x f x f x nn+→∞→∞+-'+-==,选项(C )0000()()lim2()x f x x f x x f x x∆→+∆--∆'=∆,选项(D )0000(3)()lim 2()x f x x f x x f x x∆→+∆-+∆'=∆,故选(B ).8.(2007年,3分)若()f u 可导,且(2)x y f =,则dy =()(A )(2)x f dx '(B )(2)2x x f d '(C )[(2)]2x xf d '(D )(2)2x x f dx'解:因(2)(2)2(2)2ln 2x x x x x dy df f d f dx''===,故选项(B )正确.9.(2006年,2分)设()u x ,()v x 为可导函数,则(ud v =()(A )du dv(B )2vdu udv u -(C )2udv vdu u +(D )2udv vdu u -解:222()(u u u v uv u vdx uv dx vdu udvd dx dx v v v v v ''''---'====,选(B ).10.(2005年,3分)设()(1)(2)(99)f x x x x x =--- ,则(0)f '=()(A )99!-(B )0(C )99!(D )99解:当0x=时,()f x '中除(1)(2)(99)x x x --- 项外,其他全为零,故(0)(01)(02)(099)99!f '=---=- ,选项(A )正确.11.(2005年,3分)设ln y x =,则()n y =()(A )(1)!nnn x --(B )2(1)(1)!nn n x ---(C )1(1)(1)!n nn x ----(D )11(1)!n n n x --+-解:由ln y x =可得,1y x '=,21y x''=-,433222!x y x x x-'''=-==,2(4)64233!x yx x⋅=-=-, ,对比可知,选项(C )正确.12.(2005年,3分)2sin ()d xd x =()(A )cos x(B )sinx-(C )cos 2x (D )cos 2x x解:2sin cos cos ()22d x xdx xd x xdx x==,选项(D )正确.二、填空题1.(2010年,2分)若曲线()yf x =在点00(,())x f x 处的切线平行于直线23y x =-,则0()f x '=.解:切线与直线平行,则切线的斜率与直线的斜率相等,故0()2f x '=.2.(2010年,2分)设cos(sin )y x =,则dy =.解:cos(sin )sin(sin )cos dyd x x xdx ==-.3.(2008年,4分)曲线21y x =+在点(1,2)的切线的斜率等于.解:由导数的几何意义可知,切线斜率(1,2)(1,2)22k y x'===.4.(2008年,4分)由参数方程cos sin x t y t=⎧⎨=⎩确定的dy dx=.解:(sin )cos cot (cos )sin t t y dy t t t dx t tx ''====-'-'.5.(2006年,2分)曲线2sin y x x =+在点(,1)22ππ+处的切线方程是.解:切线的斜率(,1)(,1)2222(12sin cos )1k y x x ππππ++'==+=,故切线方程为(11()22y x ππ-+=⋅-,即1y x =+.6.(2006年,2分)函数2()(1)f x x x x=-不可导点的个数是.解:2222(1),0()(1),0x x x f x x x x ⎧+≥=⎨-+<⎩,显然,当0x ≠时,()f x 可导;当0x=时,2200()(0)(1)(0)lim lim 00x x f x f x x f x x+++→→-+'===-,2200()(0)(1)(0)lim lim 00x x f x f x x f x x-+-→→--+'===-,故(0)0f '=.故函数()f x 的不可导点的个数为0.7.(2006年,2分)设1(1xy x=+,则dy =.解:因11ln(1)ln(1)21111[(1)][][ln(1)()]11x x x x x y e e x x x x x++'''=+==++⋅⋅-+111(1)[ln(1)]1x x x x =++-+,故111(1)[ln(1)]1x dy dx x x x =++-+.三、计算题1.(2010年,5分)设函数()y y x =由方程2xy x y =+所确定,求x dydx=.解:方程2xyx y =+两边对x 求导,考虑到y 是x 的函数,得2ln 2()1xy dy dy y xdx dx ⋅+=+,整理得2ln 22ln 21xy xydy dy y x dx dx+⋅=+,故2ln 2112ln 2xy xydy y dx x -=-.当0x =时,代入原方程可得1y =,所以0012ln 21ln 21ln 2112ln 21xy x x xy y dy y dx x ===--===--.说明:当得到2ln 2()1xydy dyy xdx dx⋅+=+后,也可直接将0x =,1y =代入,得ln 21dy dx =+,故0ln 21x dydx==-.2.(2010年,5分)求函数sin x y x =(0x >)的导数.解:sin sin ln sin ln sin ln 1()()()(cos ln sin )x x x x x x xy x e e e x x x x ''''====+⋅sin sin (cos ln )x xx x x x=+.3.(2009年,5分)设22sin1xy x =+,求dy dx.解:因22sin1x y x =+,故22(sin )1dy x dx x'=+2222222222(1)22222cos cos 1(1)(1)1x x x x x x x x x x +-⋅-=⋅=++++.4.(2006年,4分)设()f x可导,且()f x '=,求df dx .解:df f dx ''=⋅2x x==-.5.(2005年,5分)已知sin ,0(),0x tdtx f x xa x ⎧⎪≠=⎨⎪=⎩⎰.(1)()f x 在0x =处连续,求a ;(2)求()f x '.解:(1)因sin lim ()limlimsin 0xx x x tdt f x x x→→→===⎰,故由()f x 在0x =处连续可得,0lim()(0)x f x f →=,即0a =.(2)当0x ≠时,002sin sin sin ()x x tdt x x tdt f x x x '⎛⎫- ⎪'== ⎪⎝⎭⎰⎰;当0x =时,2000sin sin ()(0)(0)lim limlimxxx x x tdt tdt f x f xf x xx →→→-'===-⎰⎰0sin 1lim22x x x →==.故2sin sin,0 ()1,02xx x tdtxxf xx⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰.关注公众号:学习吧同学获取更多升本资料。

专升本高等数学的教材答案

专升本高等数学的教材答案

专升本高等数学的教材答案本文为《专升本高等数学的教材答案》。

第一章:导数与微分1. 计算下列函数的导数:a) f(x) = 3x^2 + 2x - 1b) g(x) = sin(x) + cos(x)c) h(x) = ln(x^2 + 1)2. 求下列函数在给定点处的导数:a) f(x) = x^3 - 2x^2 + x, 求 f'(2) 的值b) g(x) = e^x + 2x, 求 g'(0) 的值c) h(x) = tan(x) - 2sin(x), 求h'(π/4) 的值3. 证明下列函数具有一阶导数:a) f(x) = x^2 - 2x + 1b) g(x) = √(x + 1)第二章:积分与不定积分1. 计算下列函数的不定积分:a) ∫(3x^2 + 2x - 1) dxb) ∫(sin(x) + cos(x)) dxc) ∫(ln(x^2 + 1)) dx2. 求下列函数在给定区间上的定积分:a) ∫[0, 2] (x^3 - 2x^2 + x) dxb) ∫[0, π] (e^x + 2x) dxc) ∫[0, π/2] (tan(x) - 2sin(x)) dx3. 利用定积分计算下列求和:a) ∑[k=1, 5] (2k + 1)b) ∑[k=1, 6] (k^2 + 3k)c) ∑[k=1, 10] (√k)第三章:微分方程1. 解下列微分方程:a) dy/dx = 2xb) dy/dx + y = e^xc) d^2y/dx^2 + 4y = 02. 求解给定初值条件的初值问题:a) dy/dx = x^2, y(0) = 1b) dy/dx = e^x - y, y(0) = 0c) d^2y/dx^2 + 4y = 0, y(0) = 1, y'(0) = 23. 求解下列二阶齐次常系数线性微分方程:a) d^2y/dx^2 + 4dy/dx + 4y = 0b) d^2y/dx^2 - dy/dx - 2y = 0c) d^2y/dx^2 + 9y = 0第四章:级数1. 判断下列级数的敛散性:a) ∑(1/n^2), n从1到∞b) ∑(n/2^n), n从1到∞c) ∑(1/n!), n从1到∞2. 计算下列级数的和:a) ∑(1/2^n), n从1到∞b) ∑(n/(n^2 + 1)), n从1到∞c) ∑(1/(3^n + 2)), n从1到∞3. 判断下列幂级数的收敛半径:a) ∑(x^n/n), n从1到∞b) ∑((x-1)^n/n), n从1到∞c) ∑(n!(x-2)^n), n从1到∞第五章:多元函数与偏导数1. 计算下列函数的偏导数:a) f(x, y) = x^2y - xy^2b) g(x, y) = sin(x)cos(y)c) h(x, y) = ln(x^2 + y^2)2. 求下列函数在给定点处的偏导数:a) f(x, y) = 3x^2y - 2xy^2, 求∂f/∂x (1, 2) 的值b) g(x, y) = e^xsin(y), 求∂g/∂y (0, π/4) 的值c) h(x, y) = x^2 + y^2 + 2xy, 求∂h/∂y (2, 3) 的值3. 计算下列函数的二阶偏导数:a) f(x, y) = x^3y - 2x^2y^2 + xy^3b) g(x, y) = cos(xy) + sin(x^2)c) h(x, y) = ln(x^2 + y^2)最后总结:通过本套教材答案,你可以系统地学习和掌握专升本高等数学的重要知识点,包括导数与微分、积分与不定积分、微分方程、级数以及多元函数与偏导数。

高职专升本高等数学试题及答案(2).docx

高职专升本高等数学试题及答案(2).docx

《高等数学》试卷 2 (闭卷 )适用班级:选修班 (专升本 )班级:学号:姓名:得分:﹒﹒一、选择题(将答案代号填入括号内,每题 3 分,共 30 分) .1.下列各组函数中,是相同的函数的是()(A )f x ln x2和 g x2ln x(B)f x| x | 和 g x x2(C)f x x2(D)f x| x |和 g x和 g x x1xsin x42x02.函数f x ln 1x在 x 0 处连续,则a().a x0(A )0(B)1(C) 1(D)2 43.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为().(A )y x 1(B)y( x 1)(C)y ln x 1 x 1(D)y x 4.设函数f x| x |,则函数在点 x0 处().(A )连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点x0是函数 y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1的渐近线情况是(). | x |(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.f112 dx 的结果是().x x(A )f 1C(B)f1C x x(C)f 1C1C x( D)fxdx的结果是().8.e x e x(A )arctan e x C(B)arctan e x C (C)e x e x C(D)ln( e x e x ) C 9.下列定积分为零的是().(A )arctanx(B)4x arcsinx dx 41x2 dx44(C)1e x e x1x2x sin x dx12dx(D)110.设f x1为连续函数,则 f 2x dx 等于() .(A )f 2 f 0(B)1f 11 f 0 2( C)1f 2 f 0(D)f 1 f 0 2二、填空题(每题 3 分,共 15 分)1.设函数f x e 2 x 1x00 处连续,则 a.x在 xa x02.已知曲线y f x 在 x 2 处的切线的倾斜角为5.,则 f 263.y x的垂直渐近线有条.2x14.dx.ln2 xx 15.2x4 sin x cosx dx.2三、计算题(共55 分)1.求极限1 x2 xx sin x (3分)①lim(3 分)②limx x e x2x x 012. 已知lim x2ax b 2 求a与b(4分)x 2 x2x23. 设f ( x)cos2 x sin x2求 f ( x) (3分)4.求方程y ln x y 所确定的隐函数的导数y x.(4分)5. . 确定曲线y xe x的凹凸区间及拐点(4分)6.求不定积分dx e2dx(2)(1)x 1 x 31x 1 ln xdx x 1(3)(4) 计算定积分| x | e x dx1e17. 计算由曲线y x2, y 2 x所围平面图形的面积.(4分)8.求由曲线y2x, y 0, x 1 所围图形绕x轴旋转而成的旋转体的体积(4 分)9. 设有底为等边三角形的直柱体,体积为 V ,要使其表面积最小,问底的边长为何?( 6 分)参考答案:一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.33. 24.arctanln x c5.2 3三.计算题1① e2②1 2. 3. 4. y x1 5.6x y16. (1)1ln |x1| C(2) (3)(4) 22 2x3e7.8.9.。

专升本求导练习题及答案

专升本求导练习题及答案

专升本求导练习题及答案### 专升本求导练习题及答案#### 练习题一:基本求导公式题目:求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

解答:根据求导的基本公式,\( (x^n)' = nx^{n-1} \),我们可以逐项求导:- 对于 \( 3x^2 \),导数为 \( 2 \times 3x = 6x \)。

- 对于 \( 2x \),导数为 \( 1 \times 2 = 2 \)。

- 对于常数项 \( -5 \),导数为 \( 0 \)。

因此,\( f'(x) = 6x + 2 \)。

#### 练习题二:复合函数求导题目:求函数 \( g(x) = (2x^3 - 1)^4 \) 的导数。

解答:使用链式法则求导,设 \( u(x) = 2x^3 - 1 \),则 \( g(x) = u^4 \)。

- 首先求 \( u(x) \) 的导数:\( u'(x) = 6x^2 \)。

- 然后应用链式法则:\( g'(x) = 4u^3 \cdot u'(x) \)。

- 代入 \( u(x) \) 和 \( u'(x) \) 的值:\( g'(x) = 4(2x^3 -1)^3 \cdot 6x^2 \)。

#### 练习题三:隐函数求导题目:已知 \( xy^3 + y\sin(x) = 1 \),求 \( y \) 关于 \( x \) 的导数 \( \frac{dy}{dx} \)。

解答:首先对等式两边同时对 \( x \) 求导:- 对 \( xy^3 \) 求导,使用乘积法则:\( y^3 + 3xy^2 \cdot\frac{dy}{dx} \)。

- 对 \( y\sin(x) \) 求导,同样使用乘积法则:\( \sin(x) +y\cos(x) \cdot \frac{dy}{dx} \)。

将求导结果代入原方程,得到:\[ y^3 + 3xy^2 \cdot \frac{dy}{dx} + \sin(x) + y\cos(x) \cdot \frac{dy}{dx} = 0 \]将含有 \( \frac{dy}{dx} \) 的项移到方程一边,解出\( \frac{dy}{dx} \):\[ \frac{dy}{dx} (3xy^2 + y\cos(x)) = -y^3 - \sin(x) \]\[ \frac{dy}{dx} = \frac{-y^3 - \sin(x)}{3xy^2 + y\cos(x)} \]#### 练习题四:参数方程求导题目:已知参数方程 \( x = t^2 \),\( y = \sin(t) \),求 \( y \) 关于 \( x \) 的导数 \( \frac{dy}{dx} \)。

江苏专转本高等数学导数计算及应用例题加习题

江苏专转本高等数学导数计算及应用例题加习题

23 / 55第二章导数计算与应用本章主要知识点● 导数定义● 复合函数求导,高阶导数,微分● 隐函数,参数方程求导● 导数应用一、导数定义函数()y f x =在0x x =处导数定义为hx f h x f x f h )()(lim)(0000-+='→ 左导数hx f h x f x f h )()(lim )(0000-+='+→+ 右导数h x f h x f x f h )()(lim )(0000-+='-→- 导数)(0x f '存在)(),(00x f x f -+''⇔有限且)()(00x f x f -+'='分段点求导必须应用定义。

两个重要变形: 1. 0000()())lim x x f x f x f x x x →-'=-( 2. 若)(0x f '存在,)()()()(lim0000x f n m hnh x f mh x f h '-=+-+→ 例2.1. 若(1)2f '=-,求00(12)(5)lim h f h f x h h→--+ 解:00(12)(5)lim h f h f x h h →--+=(25)(1)14f '--= 例2.2. 若(0)2,(0)0,f f '==求0x →解:0x →00(2)(0)(2)(0)48lim 2lim (0)1333sin 32x x f x f f x f f x x →→--'=-=-=-- 例2.3.23,0()2,0x x x f x x x x ⎧+≥=⎨-<⎩求(0)f ' 解:200(0)(0)0(0)lim lim 1h h f h f h h f h h+→+→++-+-'=== 300(0)(0)2(0)lim lim 2h h f h f h h f h h-→-→-+--'=== (0)(0)f f +-''≠所以'(0)f 不存在.例2.4.||()2x f x =,求()0f ' 解:2,0()2,0x x x f x x -⎧≥=⎨<⎩ ln 20000(0)(0)211ln 2(0)lim lim lim lim ln 2h h h h h h f h f e h f h h h h+→+→+→+→++---'===== 00(0)(0)21(0)lim lim ln 2h h h f h f f h h-→-→-+--'===- 所以(0)f '不存在。

最新安徽成人高考专升本高等数学( 二)真题及答案

最新安徽成人高考专升本高等数学( 二)真题及答案

最新安徽成人高考专升本高等数学( 二)真题及答案一、选择题:1-10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,将近选项前的字母填涂在答题卡相应题号的信息点上。

确答案:A【解析】根据函数的连续性立即得出结果【点评】这是计算极限最常见的题型。

在教学中一直被高度重视。

正确答案:【解析】使用基本初等函数求导公式【点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

正确答案:C【解析】使用基本初等函数求导公式【点评】基本初等函数求导公式是历年必考的内容,我们要求考生必须牢记。

【答案】D【解析】本题考查一阶求导简单题, 根据前两个求导公式选D正确答案:D【解析】如果知道基本初等函数则易知答案;也能根据导数的符号确定【点评】这是判断函数单调性比较简单的题型。

正确答案:A【解析】基本积分公式【点评】这是每年都有的题目。

【点评】用定积分计算平面图形面积在历年考试中,只有一两年未考。

应当也一直是教学的重点正确答案:C【解析】变上限定积分求导【点评】这类问题一直是考试的热点。

正确答案:D【解析】把x看成常数,对y求偏导【点评】本题属于基本题目,是年年考试都有的内容【点评】古典概型问题的特点是,只要做过一次再做就不难了。

二、填空题:11-20小题,每小题4分,共40分,把答案写在答题卡相应题号后。

【解析】直接代公式即可。

【点评】又一种典型的极限问题,考试的频率很高。

【答案】0【解析】考查极限将1代入即可,【点评】极限的简单计算。

【点评】这道题有点难度,以往试题也少见。

【解析】求二阶导数并令等于零。

解方程。

题目已经说明是拐点,就无需再判断【点评】本题是一般的常见题型,难度不大。

【解析】先求一阶导数,再求二阶【点评】基本题目。

正确答案:2【解析】求出函数在x=0处的导数即可【点评】考查导数的几何意义,因为不是求切线方程所以更简单了。

【点评】这题有些难度。

很多人不一定能看出头一步。

专升本高等数学第二章 导数与微分习题练习题

专升本高等数学第二章 导数与微分习题练习题

第二章 导数与微分1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.1arctany x =,则='y ( )A .211x +-B .211x+ C .221x x +- D . 221x x + 11.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 12.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在13.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。

专升本高数第二章导数

专升本高数第二章导数
专升本高数第二章主要讲述了导数的相关知识。首先引入了导数的概念,通过极限来研究变量变化的快慢程度,给出了பைடு நூலகம்数的定义及其等价形式,并介绍了左导数和右导数的概念。接着阐述了函数在某点可导的充要条件是左右导数均存在且相等。此外,还探讨了导数的几何意义,即曲线在某点的切线斜率,并推导了切线方程和法线方程。最后,文档列出了基本导数表和函数和、差的求导规则,为求解复杂函数的导数提供了基础。这些考点涵盖了专升本考试中导数部分的主要内容,要求考生熟练掌握并灵活运用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用数学习题集第二章导数及其应用一.选择题1.若)(x f 在x 0处可导,则以下结论错误的是( D )。

A )(x f 在x 0处有极限; B )(x f 在x 0处连续; C )(x f 在x 0处可微; D )(lim )('x f x f x x 0→0=必成立。

2.若)(x f 在x 0处可导,则( B )是错误的。

(02-03电大试题) A 函数)(x f 在点x 0处有定义; B A x f x x =→)(lim 0,但)(0x f A ≠;C 函数)(x f 在x 0处连续;D 函数)(x f 在x 0处可微。

3.)(x f 在x 0处不连续,则)(x f 在x 0处( A )A 必不可导;B 有时可导;C 必无定义;D 必无极限。

4.函数)(x f =|2x|在x=0处的导数( D )。

A 等于0;B 等于2;C 等于-2;D 不存在。

5.函数)(x f =|sinx|在点x=0处的导数( D )。

A 等于-1;B 等于0;C 等于1 ;D 不存在。

6.||ln x y =,则y’=( B )。

A ||1x -; B x 1; C x1-; D ||1x 。

7.曲线y=sinx 在点(0,0)处的切线方程是( C )。

A y=2x B x y 21=C y=xD y=-x 8.x x x f cos )(=,则)("x f =( D )。

(02-03电大试题) A cosx+xsinx B cosx-xsinx C 2sinx+xcosx D -2sinx-xcosx9.函数中在[1,e]上满足Lagrange 定理条件的函数是( B )。

A y=ln(lnx); B y=lnx ; C y=xln 1; D y=ln(2-x)。

10.若)(x f 在[a,b]上连续,在(a,b)内可导,Lagrange 定理的结论是至少存在一点ξ,使( A )。

A ab a f b f f --=ξ)()()('; B 0=ξ)('f ;C ))((')()(a b f a f b f +ξ+=;D 2-=ξ)()()('a f b f f 。

11.0)('0=x f ,则x 0是函数)(x f 的( D )。

(02-03电大试题)A.极大值点;B.最大值点;C.极小值点;D.驻点。

12.x 0是连续函数)(x f 在(a,b)内的极小值点,则( C )。

A 必有0)('0=x f ;B )('0x f 必不存在;C 0)('0=x f 或)('0x f 不存在;D x ∈(a,b)时,必有)()(0x f x f ≥。

13.y=arctane x ,则dy=( C )。

A x x e e 21+;B x e 211+;C x x e dx e 21+;D xedx 21+。

14.设2cos )(x x x f +=,则)('x f =( C )。

A 1-sinx 2;B 1+sinx 2;C 1-sinx 2·2x ;D (1-sinx 2)·2x 。

15.设1)(2-=t tt f ,则)('t f =( B )。

A t 21; B 222)1(1-+-t t ; C 222)1(13--t t ; D 1122-+-t t 。

16.)0(lim >--→a ax x a ax a x 的值是( D )。

A 0;B 1;C ∞;D )1ln (-a a a。

17.若x 1与x 2分别是函数)(x f 在(a,b)内的一个极大点和一个极小点,则( D )必成立。

A )()(21x f x f >; B 0)(')('21==x f x f ;C 对∀x ∈(a,b),)()(1x f x f ≤,)()(2x f x f ≥;D )('1x f 、)('2x f 可能为0,也可能不存在。

18 若1)()()(lim2000-=--→x x x f x f x x ,则)(0x f 一定是)(x f 的( D )。

A 最大值;B 极小值;C 最小值;D 极大值。

二.填空题:1.已知)(x f =lnx ,则0lim→∆x x x x x ∆-∆+ln )ln(=x1。

2.若函数3ln =y ,则y’= 0 。

3.曲线y=x 3+4在点 (0,4) 处的切线平行于x 轴。

4.抛物线y=x 2在点 (1/2,1/4) 处的切线的倾斜角是45°。

5.已知)(x f =x·sinx ,则)("0f = 2 。

6.方程xy exy=所确定的隐函数的导数dx dy =xy-。

7.若函数)(x f 在x=0处可微,则)(lim 0x f x →=)0(f 。

8.)ln(sin x d =xdx cot 。

9.)ln(cos x d =xdx tan -。

10.=)(sin xe d dx e e x x cos 。

11.半径为x 的金属圆片,面积为S(x)。

加热后半径伸长了△x ,应用微分方法求出△S ≈ S ’(x)△x 。

12.=+∞→xx e xln lim0 。

13.函数y=arctan(x 2+1)的递增区间是),0(∞+。

14.函数y=ln(2x 4+8)的递减区间是)0,(-∞。

15.函数y=sinx-x 在其定义域内的单调性是 单调减少 。

16.极值存在的必要条件:如果)(x f 在点x 0处取得极值且在点x 0处可导,则0)(=x f 。

17.若函数)(x f 在[a,b]上连续,在(a,b)内0)('<x f ,则函数的最小值为)(b f 。

18.设函数)(x f y =二阶可导,若0)('0=x f 、0)("0<x f ,则)(0x f 是)(x f 的 极大值 。

19.已知生产某种产品的成本函数为q q C 280)(+=,则产量50=q 时,该产品的平均成本为 3.6 。

20.微分近似计算函数值公式x x f x f x x f ∆+≈∆+)(')()(。

三、解答题:1.求函数xx y -++=1111的导数。

解:因为xxxy -=-++=121111,所以22)1(2)1()1(2'x x y -=---=。

2.求函数xxy sin ln =的导数。

解:xx xx x x x xx x x x x x x x y 222sin cos ln sin sin cos ln sin 1sin )'(sin ln sin )'(ln '-=-=-=。

3.求函数x e x y xcos ⋅⋅=的导数。

解:)sin cos (cos sin cos cos 'x x x x x e x xe x xe x e y xx x x -+=-+=。

4.求方程2x y =在点)9,3(处的切线方程。

解:曲线2x y =在点)9,3(处的切线的斜率为2x y =在点)9,3(处的导数 因为6|2|'33====x x x y ,所以切线的方程为)3(69-=-x y即 096=--y x5.求函数x x y 2cos sin 2=的导数。

解:2)2sin (sin 2cos )'(sin sin 2'2⋅-+⋅=x x x x x yx x x x x 2sin sin 22cos cos sin 22-=x x x x x x x x 3cos sin 2)2sin sin 2cos (cos sin 2=-=。

6.求函数2tanln xy =的导数。

解:x x x x x y sin 12cos 2sin 21212sec 2tan 1'2==⋅⋅=。

7.求函数xy n cos 1=的导数。

解:xxn x x n x y n n n 11cos sin )'(cos cos )'(cos '+---=-==。

8.利用对数求导法求函数xx y sin )(cos =的导数。

解:两边取自然对数,得x x y cos ln sin ln =两边对x 求导,得xx x x x y y cos sin sin cos ln cos '-⋅+= )tan sin cos ln (cos )(cos )tan sin cos ln (cos 'sin x x x x x x x x x y y x -=-=。

9.利用对数求导法求函数xx y ln )(sin =的导数。

解:两边取自然对数,得x x y sin ln ln ln =两边对x 求导,得xx x x x y y sin cos ln sin ln 1'⋅+= ⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=x x x x x x x x x y y x cot ln sin ln 1)(sin cot ln sin ln 1'ln10.求方程xyy x =所确定的隐函数的导数dxdy。

解:两边取自然对数,得y x x y ln ln =两边对x 求导,得yy x y x y x y 'ln 1ln '⋅+=⋅+ 整理,得)ln ()ln (x x y x y y x y dx dy --=。

11.求方程22ln arctany x x y +=所确定的隐函数的导数dxdy。

解:两边对x 求导,得2222222'221'11yx yy x yx xyx y x y ++⋅+=-⋅⎪⎭⎫⎝⎛+整理,得yx y x dx dy -+=。

12.求方程xyye xe =所确定的隐函数的导数dxdy 。

解:两边对x 求导,得x x y y ye e y y xe e +=+''整理,得 y x xy xee ye e dx dy --= 13.己知函数xxe y =,求y (n)。

解:因为)1('+=+=x e xe e y xxx,)2()1(''+=++=x e e x e y x x x , )3()2('''+=++=x e e x e y x x x ,……………………………………所以, )()(n x e yx n +=14.已知xx y n ln )2(=-,求)(n y 。

解:x x x x x x y n 22)1(ln 1ln ln 1ln -=⋅-=+, xx x x x x x x xy n 342)(ln ln 2ln 1ln 2)1ln (ln 1-=⋅--⋅=。

相关文档
最新文档