蔡氏电路混沌演化研究
蔡氏混沌电路简介——Chua's Circut

2018/6/20
蔡 氏 电 路 简 介 及 分 析
R很大的情况,电路状态变化中v1与v2相图为稳 定焦点,呈蝌蚪形,为衰减振荡,这就是不动点 。
R1
R
220 15V
R4 22k
R逐渐减小至1.911kΩ时,等幅振荡
R逐渐减小至1.910kΩ时,增幅振荡开始 R为1.918 kΩ~1.820kΩ,周期2
clear all; [T,Y]=ode45('chua',[0,300],[0.1,0.1,0.1]);%解微分 方程 figure(1); plot3(Y(:,1),Y(:,2),Y(:,3),'-'); xlabel('x'); ylabel('y'); zlabel('z'); title('x-y-z立体相图'); figure(2); plot(T,Y(:,1),'-'); xlabel('t/s'); ylabel('x'); title('x时域波形'); figure(3); plot(T,Y(:,2),'-'); xlabel('t/s'); ylabel('y'); title('y时域波形'); figure(4);plot(T,Y(:,3),'-'); xlabel('t/s'); ylabel('z'); title('z时域波形'); figure(5); plot(Y(:,1),Y(:,2),'-'); xlabel('x'); ylabel('y'); title('x-y平面相图'); figure(6); plot(Y(:,1),Y(:,3),'-'); xlabel('x'); ylabel('z'); title('x-z平面相图');
变形蔡氏电路的混沌仿真研究

始值 固定 ,系统参数取不 同值的时候 ,随着参数的变化 ,系统的混沌吸引子也会有不 同的变
化。
关键 词 :变形蔡 氏电路 ;混沌 ;稳 定性 分析 中 图分类 号 : 4 5 5 O 1 . 文献 标识 码 : A 文章 编号 :6 3—0 6 ( 0 1 0 0 2 0 17 5 9 2 1 ) 1— 0 7— 4
Absr c :Th i e rsa lt n lsso h i e u Sc r uth s b e d ta t e ln a tbi y a a y i ft e mdf d Ch a’ ic i a e n ma e,a d t e prpet f i i n h o ry o b ln e p i th s as e n gv n Th h oi h n me n r p ri s o e s se h v e n su id a a c o n a lo b e ie . e c a tc p e o na a d p o e te f t y t m a e b e t d e h t r u h t o u e i lt n . e r s ls s o t t te s se i e stv o t e i iil v u s,a d t e h o g he c mp t r smu ao s T e u t h w ha h y tm s s n i e t h n ta a e n h i l h
2 9
2 2变形 蔡 氏 电路 系统 随参 数 的变化 .
当参 数一 定 时 , 随着 初始 值 的不 同 , 系统会 出现 了不 同 的混 沌 吸 引子 , 么 当初 始 值一 定 时 , 统 的 那 系
混沌 吸 引子会 随着 参数 值 的不 同而有 不 同的 变化 。
蔡氏电路毕业设计论文[管理资料]
![蔡氏电路毕业设计论文[管理资料]](https://img.taocdn.com/s3/m/99f3b0bf2b160b4e777fcf9b.png)
目录前言 (4)第一章混沌学基本理论 (4) (5)混沌的定义 (5)混沌的主要特征 (6)混沌的意义 (7)混沌的发展与前景展望 (7)蔡氏电路简介 (8)软件介绍 (8)第二章蔡氏电路理论分析 (10)蔡氏电路构成及蔡氏二极管 (10)蔡氏电路的数学模型 (14) (14)平衡点及稳定性 (15)第三章蔡氏电路的电路实验 (19)典型蔡氏电路仿真 (19)振荡吸收器 (23)等效电感 (31)第四章结束语 (34)第五章总结与心得 (36)参考文献 (39)致谢 (40)附录 (41)蔡氏电路混沌特性的实验研究摘要:混沌现象是一种确定性的非线性运动,在非线性控制领域,混沌控制的研究受到人们越来越多的关注。
典型蔡氏电路结构简单,但有复杂的混沌动力学特征,因而在混沌控制领域中成为研究的重要对象。
本次设计简单介绍了混沌学基本理论,从理论分析和仿真实验两个角度分别研究Chua's Circuit的混沌行为,用Multisim 软件对电路进行仿真实验,通过改变参数,得到了系统各周期的相轨图,并对实验中遇到的现象进行简单的讨论,将蔡氏电路与一个线性二阶电路耦合,得到了更加丰富的混沌行为。
由于普通蔡氏电路在产生混沌现象时,其元件参数可调范围很小,且对初始条件极为敏感,不易于搭建实验电路。
所以引入了电感等效电路,在本文的最后将蔡氏电路中的电感用等效电路替代,从而实现了无感蔡氏电路。
关键词:混沌;蔡氏电路;Multisim;振荡吸收器;等效电感Experimental Study of Chua's Circuit ChaoticAbstract:Chaos is a deterministic non-linear movement, in the field of nonlinear control, chaotic control get more and more attention by people. Typical Chua's circuit is simple, but complex and chaotic dynamics characteristics, so become an important research object in the field of chaos control . The design simple introduced the basic theory of chaos, study the chaotic behavior of Chua's Circuit from two angles of the theoretical analysis and experimental with Multisim circuit simulation software, by changing the parameters, get each cycle tracks phase diagram of the system, simple discuss the experimental phenomena encountered, couple the second-order Chua's circuit with a linear circuit ("oscillation absorber"), get even more chaotic behavior of the rich. As the general chaos in Chua's circuit in the production, its range of component parameters adjustable is very small, and extremely sensitive to initialconditions, hard to set up experimental circuit. Therefore introduce the inductor equivalent circuit, in this final, change the inductor of Chua's circuit with the equivalent circuit, thus achieving non- inductor of Chua's circuit.Key words:chaos; Chua's circuit; Multisim; vibration absorber; equivalent inductance前言“1979年12月,洛伦兹在华盛顿的美国科学促进会的一次讲演中提出:一只蝴蝶在巴西扇动翅膀,有可能会在美国的德克萨斯引起一场龙卷风。
混沌电路

混沌非线性电路及其研究摘要:在混沌电路的研究中,前人关于混沌电路中蔡氏电路(非线性电路)的建模已趋成熟。
所以本次实验通过研究混沌非线性电路,借助Multisims 10仿真软件对电路进行研究,从而得出蔡氏电路(非线性电路)中一些基本结论,加深对其的了解。
关键词:混沌非线性电阻特性曲线引言:混沌电路与系统理论经过3O多年的发展,在科学和工程中得到了广泛的应用。
混沌信号由于具有伪随机似噪声和宽频带特性,在保密通信领域获得了广泛的重视与研究。
在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究。
蔡氏混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究是熟悉和理解混沌现象的一个基本的典型电路。
本文以蔡氏混沌电路为例进行仿真研究。
首先,借助Multisims 10仿真软件直接显示非线性电路的伏安特性曲线,再通过点测法来观察所做的图与示波器上观察到的图的吻合度来验证蔡氏电路。
其次,通过对混沌电路实验中的某几个元件进行研究,再得出其对混沌非线性电路的影响,从实验角度论证了蔡氏电路参数的非唯一性和蔡氏电路混沌状态对赋值的敏感性。
正文:非线性电路中的混沌现象是最早引起人们关注的现象之一,而迄今为止,最好的混沌实验结果也是在非线性电路中得到的.因为仿真电路实验有许多优点,如方程比较容易实现,仿真实验的条件可以以精确控制,数据精确度较高等.因此,非线性电路的仿真实验能够给出较好的定量结果,观察到比较单纯的、接近理论模式的混沌行为.因此,在混沌的研究中,仿真电路充当一个非常重要的角色.这里我们借助MULTISIM仿真软件进行仿真实验研究.蔡氏混沌电路是一个典型的非线性电路,它在一定的参数空间内,能够产生混沌信号,在实际中已获得大量应用。
本节以蔡氏电路为例,研究其产生的混沌特性。
(一)利用非线性负电阻电路,测量非线性伏安特性曲线。
仿真蔡氏电路混沌效应的教学讨论

仿真蔡氏电路混沌效应的教学讨论
蔡氏电路是一种混沌系统,其混沌现象在模拟电路领域非常重要。
仿真蔡氏电路的混沌效应,是电路仿真教学中的一个重要课题。
首先,混沌效应的探究是基于学生对混沌学理论的掌握和电路
仿真工具的运用。
因此,在教学过程中,应先向学生介绍混沌现象
和蔡氏电路的基本原理,让学生理解混沌是一种非周期性且不可预
测的现象,而蔡氏电路是一种具有三个不同周期的振荡器。
接着,教师可以使用仿真软件(如Multisim或LTSpice)进行
电路仿真,让学生通过仿真实验的方式来观察混沌效应。
学生可以
通过改变电路元件的参数(如电容、电阻等)来观察混沌效应的变化。
同时,学生也能够通过仿真实验来了解混沌系统的稳定性和可
控性。
在教学过程中,教师可以提供一些课堂讨论或小组讨论的环节,让学生可以对混沌效应进行深入的探究和分析。
例如,让学生讨论
如何通过改变蔡氏电路中的元件来改变电路的混沌状态,或者讨论
混沌现象在日常生活中的应用。
最后,在教学结束后,教师可以要求学生进行实验报告的书写,来总结混沌电路的基本原理、仿真过程、结果分析以及对混沌现象
的理解和探究。
通过这种方式,学生能够获得更深入的学习和理解,也能够提高其电路仿真和实验技能。
仿真蔡氏电路的混沌效应是电路仿真教学中一个重要的课题,
通过深入的探讨和分析,将有助于学生加深对混沌系统的理解和掌
握,提高其仿真和实验技能,也有助于学生将所学知识转化为现实应用。
蔡氏电路

2.6.3蔡氏电路中混沌现象的观察研究混沌是自然界客观存在的一种现象,而混沌电路是至今为止最方便有效的一种实验观察手段。
由于混沌现象对电路参数的极度敏感性,用一般电路实验手段来观察,其参数调节比较困难,相比之下在Multisim 环境下进行仿真观察是非常容易实现的。
用来实现混沌现象的混沌电路很多,其中以著名的美藉华裔学者蔡少棠1984 年提出的一种三阶非线性自治电路(称之蔡氏电路)最为典型。
该电路具有电路结构简单,混沌现象丰富等特点,因而得到了广泛的学术研究和工程应用。
蔡氏电路的理论模型如图2-70 所示。
R CLC2100nFC1 10nF17. H4mR图2-70蔡氏电路的理论模型图中,C1、C2 为两个线性电容,L 为线性电感,R C 为线性电阻,而R 则为一非线性电阻(R 习惯被称之为蔡氏二极管,Chua’s diode),具有图2-71 所示的压控特性,R 可由五段分段线性的线性电阻构成。
U R图2-71蔡氏电路非线性电阻的特性实现该非线性电阻R 的方案也很多,典型的电路之一如图2-72 所示,由双运放与 6 只线性电阻构成。
I R R3 22kΩR6 220ΩA1 LM224A1 LM224U RR1R2 22kΩR42.2kΩR5 220Ω3.3kΩ图2-72由双运放构成的蔡氏二极管将图2-70 所示电路中的R C 分成两电阻串联,R c = R1 + R2 ,即其中R2 = 1kΩ, 1 是1kΩR的可调电位器。
我们就可以在基于上述参数的蔡氏电路上,通过Multisim 的仿真,清楚的观察到倍周期分岔、阵发混沌以及奇怪吸引子等一系列混沌所特有的现象。
1.编辑原理图首先编辑非线性电阻R 构成电路,如图2-73 (a)所示。
在这个图中取用两个输入接线端,是为了把该电路设置成如图2-73 (b)所示的R 子电路。
(a)图2-73(b) Multisim 中编辑出的非线性电阻R 及其子电路子电路的创建方法是在选中图中所有的部分(按住鼠标,拖一个把该电路部分全部包围进去的方框,如电路窗口中仅有这部分电路,也可选择Edit/Select All 命令),启动Place/Replace by Subcricuit 命令,即可得。
蔡氏混沌非线性电路的研究

蔡氏混沌非线性电路的研究摘要本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。
通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。
最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。
关键词:混沌;蔡氏电路;MATLAB仿真AbstractThis paper introduces the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed.Key words:chaos phenomenon;Chua’s circuit;simulation一.引言:混沌是一种自然界普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用已成为自然科学和社会科学领域的一个重点研究对象。
混沌电路

现代电路理论混沌电路设计实验姓名:高振新学号:114104000455指导老师:孙建红用Multisim 仿真混沌电路一.混沌实验目的1.了解混沌现象和混沌电路2.使用软件仿真电路,能使用示波器观察混沌电路现象,通过实验感性认识混沌现象3.研究混沌电路敏感参数对混沌现象的影响二.混沌电路的原理和设计1.蔡氏电路本实验采用蔡氏电路,蔡氏电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简单的自制电路,为混沌电路的典型例子,其结构简单,现象明晰,被广泛用于高校的实验教学中。
蔡氏电路原理图如图1所示,电路由1个线性电感L,2个线性电容C1,C2,1个线性电阻R0,一个非线性电阻R构成,为三阶自制动态电路,即分为LC振荡电路,RC分相电路电路和分线性元件三部分。
电阻R0起调节C1,C2的相位差。
非线性电阻R为分段线性电阻,福安特性i R=g(U R)图1 蔡氏电路基本原理图根据基尔霍夫定律,由图1可得电路状态方程:由于R是非线性电阻,上述方程没有解析解。
该电路在特定的参数条件下出现自己振荡动态过程,出现混沌现象。
三.混沌电路的构建与仿真为了实现有源非线性负阻元件,可以使用以下电路采用两个运算放大器和六个配置电阻来实现,这主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使震荡周期产生分岔和混沌等一系列非线性现象3.1实验电路的构建1.运行Multisim,建立仿真文件,构建如下图所示的电路图,为了观察混沌电路的波形,在仿真平台上添加虚拟示波器,将示波器A,B两个输入通道与需要观测的电路节点相连,通道A观测电容C2两端的电压信号;通道B观测电容C1两端的电压信号。
3.2 实验电路仿真:运行软件,观察示波器,在示波器窗口上选择“Y/T”模式,进行波形的时域分析;选择“A/B”模式,则显示李萨如图形,进行波形的相位测试。
R0的作用是移相,使电容C1,C2两端的电压信号产生相位差,运放的前级和后级的正,负反馈同时存在,正反馈的大小程度与R0,R3,R6有关,负反馈大小与R1,R2,R5,R4有关,若调节R0的阻值大小,正反馈大小程度就会发生变化,当正反馈程度大于负反馈程度时,电路才能处于震荡状态。
对于仿真蔡氏电路混沌效应的教学讨论

对于仿真蔡氏电路混沌效应的教学讨论物理实验中混沌实验是启迪大学生探索自然界非线性动力学的重要途径。
传统的混沌实验仪器往往受到场地、设备和操作等的局限,不能很好的培养学生分析问题和解决问题能力。
本文结合蔡氏电路的原理,阐述如何实现非线性现象中倍周期分岔相图的数值模拟;并指出以上过程中实现培养学生兴趣、动手能力和创新意识的注意事项,为大学物理实验教学改革提供新思路。
:混沌效应,蔡氏电路,仿真,注意事项,教学讨论大学物理实验中混沌实验有助于提高学生的学习主动性、积极性,激发学生的学习兴趣。
但由于传统的混沌实验仪器(蔡氏电路)往往受到场地、设备和操作等的局限,不能很好的培养学生分析问题和解决问题能力。
因此,利用软件仿真混沌实验提高实验教学质量摆在了物理实验教学工作者的面前。
目前有很多人对混沌仿真实验进行着有意义的讨论与实践。
高英俊[1]等人认为混沌中利用仿真中可以结合专业特点, 适当延伸到声学混沌, 光学湍流等,实现有效教学。
张建忠[2]认为利用Matlab数值模拟观察李萨如图形能让学生理性地理解非线性混沌现象,并可以指导学生在实验中更加有效地调节非线性电路混沌仪。
苗明川[3]等人认为仿真混沌实验可以让学生既了解了混沌的概念, 又能掌握数据处理、电脑编程等方面的知识,又增加了学习兴趣。
由最近的研究进展可以看出,尽管很多大学物理实验教学者认识到仿真混沌实验在提高学习兴趣,培养对混沌的认识有重要作用。
然而,对于如何在培养学生认识非线性动力学的过程中注意事项,提高大学生的独立思考能力以及创新能力方面探讨较少。
本文结合蔡氏电路的原理,阐述如何通过Matlab软件实现非线性现象中倍周期分岔相图的数值模拟。
并指出以上过程中实现培养学生动手能力和创新意识的注意事项,为大学物理实验教学改革提供新思路。
1蔡氏电路模型、仿真原理以及结果三阶蔡氏电路模型如图1所示,其中R为有源非线性电阻,其伏安特性如图2所示,Ga为中间线段斜率,Gb为两段直线斜率。
模电期末论文《蔡氏电路混沌特性的研究》2009013157.docx

模电期末论文《蔡氏电路混沌特性的研究》2009013157模电期末论文——关于蔡氏电路混沌现象的研究2009013157 生医9 王颖奇*所有仿真结果均于2010年12月24日完成在上学期的大学物理教材中,混沌现象就曾经被老师提起。
书中介绍,混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。
进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
牛顿确定性理论能够充分处理的多为线性系统,而线性系统大多是由非线性系统简化来的。
因此,在现实生活和实际工程技术问题中,混沌是无处不在的。
“ 混沌”是近代非常引人注目的热点研究,它掀起了继相对论和量子力学以来基础科学的第三次革命。
科学中的混沌概念不同于古典哲学和日常语言中的理解,简单地说,混沌是一种确定系统中出现的无规则的运动。
混沌理论所研究的是非线性动力学混沌,目的是要揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。
那么这种现象在电路有什么应用呢?传统上,人们把信号分为两大类:确定性信号这种信号所有时刻的波形都是确定的;随机过程它的波形由概率分布确定。
然而,这样的分类忽略了另一类极为重要的信号——混沌信号。
混沌信号的波形是非常不规则的,表面上看来就象噪声,但实际上它却是由确定性的规则所产生的,这种规则有时是很简单的。
正是这种简单的规则产生出复杂的波形激发了人们对它极大的兴趣。
在图(1-2)中,我们向大家展示了由Logistic映射所生成的混沌信号与白噪声信号,从表面上我们是无法判断出噪声与混沌的。
让人兴奋的是:实践证明,在大量的物理系统和自然系统中都存在着混沌信号!虽然,混沌现象的出现使我们无法对系统的长期行为进行预测,但是我们完全可以利用混沌的规律对系统进行短期的行为预测,这样比传统的统计学方法更加有效。
在工程学中,混沌现象主要有以下两方面的应用。
蔡氏混沌电路分析研究

蔡氏混沌电路分析研究蔡氏混沌电路分析研究摘要:众所周知,蔡氏电路是一种简单的非电子性电路设计,它可以表现出标准的混沌理论行为。
混沌是一种发生在确定系统中的不确定行为,表现为不同于平衡状态、周期状态和拟周期状态的这三种状态外的另一种状态,产生的混沌现象极为丰富。
随着社会的开展,混沌动力学以其内容丰富的特点,成为了一个被广泛研究应用的知识学科。
混沌现象是产生于确定性的状态方程中的一种相似随机的运动,在我们现实生活中较为广泛的存在。
在工程和电工电子学科上最近几年的开展前景也越来越开阔和活泼。
随着时代开展,在现实生活中,混沌应用取得了很大的成果,得到了广泛的成果研究。
尤其是混沌独电路这一局部,其中包括混沌压缩、混沌保密通信、混沌加密和混沌同步。
但是还有一些实际问题需要探讨和研究,作者通过文章来介绍蔡氏混沌电路的电路设计根底与存在的问题及其面临的挑战与机遇。
关键词:混沌电路;广泛;开展;问题文章着重介绍了蔡氏混沌电路的根本设计思路与混沌系统分析方法和混沌电路的根底设计,依据国内外对电路的研究,分析当前各种混沌系统,总结得出混沌电路的开展历史。
文章在理论根底的分析和参考文献研的前提下,对混沌电路的动力学行为的复杂性提出了一种具有多方向多漩涡吸引子的可扩展的蔡氏电路;对混沌振荡的频率那么提出了如MOS管的Colpitts振荡电路设计和同步的一种方法。
20年的时间,人们对蔡氏混沌电路的深入研究与探究,我们发现在蔡氏电路里呈现出来一种丰富的混沌力学行为。
且蔡氏混沌电路已经在保密通讯领域具备了一定的应用能力。
混沌学,是继量子论、相对论的20世纪第三次物理革命产物。
法国数学家在19世纪末期首次发现了动力学系统中的异归宿轨迹和同归宿轨迹,混沌现象作为存在在非线性动力学系统中的一种现象,虽没有复杂的运动形式,但具有普遍性的规律。
1 蔡氏混沌电路工作原理的介绍与研究意义蔡氏混沌电路由线性电感、线性电阻、非线性电阻各一个和线性电容两个组成的三阶段自治动态电路,非线性电阻的伏特安特性,是一个分段型函数,电路中电感L和电容LC振荡电路,有原型的电阻R和电容做成了一个源RC滤波电路。
混沌电路实验报告

一、实验目的1. 理解混沌现象的产生原理及其在电路中的应用。
2. 掌握混沌电路的基本搭建方法。
3. 通过实验观察混沌现象,并分析其特性。
4. 研究混沌电路在通信、加密等领域的应用潜力。
二、实验原理混沌现象是指在确定性系统中,由于初始条件的微小差异,导致系统行为表现出高度复杂、不可预测的特性。
混沌电路是一种模拟混沌现象的电路系统,通过非线性元件和反馈环路实现。
本实验采用蔡氏电路(Chua’s circuit)作为研究对象。
蔡氏电路是一种三阶互易非线性自治电路,由电阻、电容和电感元件组成,其中包含一个有源非线性元件。
通过改变电路参数,可以观察到混沌现象的产生。
三、实验仪器与设备1. 蔡氏电路实验板2. 双踪示波器3. 数字万用表4. 信号发生器5. 计算机及数据采集软件四、实验步骤1. 搭建蔡氏电路,确保电路连接正确。
2. 使用示波器观察电路的输出波形,记录初始状态下的波形特征。
3. 改变电路参数,如电阻、电容或电感,观察波形变化。
4. 逐步调整参数,观察混沌现象的产生、发展及消失过程。
5. 使用数字万用表测量电路关键参数,如电压、电流等。
6. 使用信号发生器输入不同频率的信号,观察电路对不同信号的响应。
五、实验结果与分析1. 混沌现象的产生:当电路参数调整至一定范围时,输出波形呈现出复杂、无规律的特性,即混沌现象。
2. 混沌现象的特性:敏感依赖初始条件:混沌现象对初始条件非常敏感,微小差异会导致截然不同的结果。
长期行为的不可预测性:混沌现象的长期行为具有不可预测性,即使初始条件相同,系统的状态也会随时间演化而发生变化。
分岔现象:混沌现象的产生与分岔现象密切相关。
当电路参数发生变化时,系统状态会出现分岔,从而产生混沌现象。
3. 混沌电路的应用:通信:混沌通信利用混沌信号的自相似性和非线性特性,实现信号的加密和解密。
加密:混沌密码学利用混沌现象的复杂性和不可预测性,设计出具有较高安全性的加密算法。
控制:混沌控制利用混沌现象的特性,实现对系统的精确控制。
基于蔡氏电路的混沌仿真研究

式中微分都是相对变量!。 将 (() 式可以化为: / 2! / 2# $ / 2( ’"
通过调整系统初始值或 + 的阻值, 可以观察到蔡氏电路丰富 的非线性动态特性。 仿真中步长定为 " ? "! 秒, 运行 #"""" 次。 ( 3 /! ) ()) " 当系统初始值为 "# $ " ? ""!, + 固定为 ! ? ’#+4, "# $ ", !. $ ! # 出现双涡卷混沌吸引子, 如图 ’ 所示; 当初始值为 "# $ " 时, ! 出现如图 ) 所示的稳 ( ? ",,(#, "# $ ’ ! ? "’#(,!. $ * ? +(!)), # 定周期轨道。 当固定初始值为 "# $ " ? ""!, "# $ ", !. $ " 时, ! # 当 + $ ! ? #,)4 时, 开始出现稳定周期轨道; 当+ + 由小变大, 开始出现双涡卷混沌吸引子。 $ ! ? ’#+4 时, (*)
# ,( " )$ ( "## ! ,- #! ( "# ! ## ,( "# )$ # , ,!. . ,- $ ’ "##
#
’ "#! ) ! "# ) ’( ! + ’ "## ) & !. +
{
( ( 6 ’ <) 1) = ", #, ( = 0) 6 ", #, ( ( 6 & <) = 1) ", #,
蔡氏电路及混沌现象研究

蔡氏电路及混沌现象研究一、引言在非线性电路中蔡氏电路是迄今为止产生复杂动力学行为的最为有效和较为简单的电路之一。
混沌(chaos)现象的研究是非线性系统理论研究中的前沿课题之一,混沌现象普遍存在物理、化学、生物学,以及社会科学等等各个学科领域中,是在确定性系统中出现的一种貌似无规则、类似随机的现象,是非线性动力学系统特有的一种运动形式。
蔡氏电路是一个能产生混沌现象的最简单三阶自治电路[1]。
1983年,美籍华裔科学家蔡少棠教授首次提出了著名的蔡氏电路(chua’s circuit)。
它是历史上第一例用电子电路来证实混沌现象的电路,也是迄今为止在非线性电路中产生复杂动力学行为的最为有效和较为简单的电路之一。
通过改变蔡氏电路的拓扑结构或电路参数,可以产生倍周期分叉、单涡卷、周期3、双涡卷吸引子、多涡卷吸引子等十分丰富的混沌现象。
因此,蔡氏电路开启了混沌电子学的大门,人们已围绕它开展了混沌机理的探索、混沌在保密通信中的应用研究,并取得了一系列丰硕的成果。
图1(a)是蔡氏电路的电路拓扑图,它是一个三阶电路,有两个电容、一个电感、一个线性电阻,并含有一个非线性电阻元件N R,它的伏一安特性曲线如图1 (b)所示,是一个分段线性函数,中间一段呈现负电阻的特征,它可以用开关电源等电子电路来实现。
考虑图1(a)的电路,非线性电阻的伏安特性曲线由图1(b)给出。
蔡氏电路的动力学特性由下列各式描述:其中v c1,v c2和i L分别是C1,C2两端的电压以及流过£的电流,g(vc1)是图(6)所示的分段线性化函数,G=1/R。
该电路描述可以写成无量纲的形式(即下面的正规化状态方程):其中,α1和α2是参数,K(·)是非线性函数,满足如下方程:其中m0和m1是参数。
给定适当的参数,该系统表现出混沌行为。
方程(2)是非线性的微分方程组,一般需要用四阶龙格一库塔算法这样的数值方法求解。
其算法思想如下:基于Tavlor级数展开的方法,利用f在某些点处函数值的线性组合构造差分方程,从而避免高阶导数的计算。
蔡氏电路的混沌仿真研究

蔡氏电路的混沌仿真研究摘要:蔡氏电路是能产生混沌现象的典型且最简单三阶自治电路。
该文通过对该非线性电路建立数学模型,解释了产生混沌现象的原因,由李雅普诺夫指数分析了系统的动力学行为,从理论分析和Matlab仿真两个方面分别进行了研究。
结果表明,在一定条件下蔡氏电路能够产生双涡旋混沌吸引子,混沌行为复杂,从而理论分析在仿真实验中得到了证实。
关键词:蔡氏电路;李雅普诺夫指数;混沌1引言物理、化学、生物学,以及社会讲科学等等各个学科领域中都有混沌现象。
作为一种普遍存在的非线性现象,今年来许多专家和学者对非线性电路的混沌行为进行了广泛研究[1-6],其中最典型的是由美国Berkeley大学的Leon.O.Chua提出的蔡氏电路(Chua’sCircuit),它是能产生混沌行为的最小、最简单的三阶自治电路[7],其非线性动力学行为复杂丰富,这使得该混沌电路有可能在更广的领域得到应用,如混沌保密通信技术,传感器应用,混沌扩频通信技术等。
基于这些特点,对蔡氏电路的讨论和研究也有较高的实践意义。
2蔡氏电路模型一般自治动力系统产生混沌现象需要具备一定的条件:系统至少有三个状态变量,并且存在一定的非线性环节[8]。
蔡氏电路使用三个储能元件(电感L、两个电容C1和C2)和一个非线性电阻NR,电路如图1所示。
由Kirchhoff电流定律(KCL)和Kirchhoff电压定律(KVL),可推出图1电路的状态方程为:(1)其中,VC1为电容C1两端的电压,VC2为电容C2两端的电压,iL为通过电感L的电流,i(VC1)为非线性电阻NR的伏安特性函数:(2)非线性电阻NR是分段线性的蔡氏二极管,是核心元件,它由两个非线性电阻RN1与RN2并联构成,每个非线性电阻又分别由1个运算放大器和3个电阻组成,两个非线性电阻及其伏安特性如图2所示。
当适当选取电阻的参数值,使E2>>E1,同时也使E2远大于蔡氏电路正常工作时|VC1|的变化范围,则在电路工作范围内,RN2是一个线性负电阻,RN1与RN2并联后可实现非线性电阻NR的伏安特性,其中,,,。
蔡氏电路混沌现象仿真

引言混沌研究最先起源于 Lorenz研究天气预报时用到的三个动力学方程.后来的研究表明,无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨,但实际是非周期有序运动,即混沌现象.现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术的众多学科,并对这些学科的发展产生了深远影响.随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。
而非线性电路是混沌及混沌同步应用研究的重要途径之一。
其中一个最典型的电路是三阶自治蔡氏电路,这个电路是由加州大学伯克利分校的蔡少棠首先发起研究的。
在这个电路中观察到了混沌吸引子。
蔡氏电路是能产生混沌行为最简单的自治电路,所有应该从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。
蔡氏电路虽然简单,但其中蕴含着丰富和复杂的非线性现象。
不须改变电路系统结构,只调整控制参数R,就能获得电路系统不同状态的响应输出信号[1]。
该文对产生混沌现象的蔡氏电路进行了研究,建立了数学模型,分析了产生混沌的原因,并根据建立的数学模型,利用MATLAB进行了仿真研究,仿真结果表明在一定的条件下该电路能够出现混沌双涡卷吸引子和稳定周期轨道。
+1 混沌学概述1.1混沌与非线性科学混沌学于上世纪六十年代初在美国兴起。
它是非线性系统中存在的一种普遍现象,也是非线性系统所特有的一种复杂状态。
所以我在论文中研究的蔡氏电路必然是一个非线性系统,确切地说是一个非线性动力系统。
从函数构造的角度来说,非线性系统要比“线性系统”更多、更普遍。
“线性系统”与“非线性系统”的不同之处至少有两个方面。
第一:线性系统可以使用叠加原理,而非线性系统则不能。
第二:(也就是最本质的)非线性系统对初值极敏感,而线性系统则不然。
1.2混沌的含义混沌到目前为止,还没有一个统一的、有足够数学定理支持的、普遍适用和完美的混沌理论,所以只能通过混沌系统所表现出的一些普遍现象总结归纳出其所谓的本质。
蔡氏混沌实验报告

#### 实验背景混沌理论作为非线性动力学的一个分支,近年来在物理学、数学、生物学等多个领域都得到了广泛的研究和应用。
蔡氏电路(Chua's circuit)作为混沌现象的一个典型模型,因其简单性、可控性和易于实验验证的特点,成为了混沌研究的重要工具。
本实验旨在通过搭建蔡氏电路,观察并分析其混沌现象,加深对混沌理论的理解。
#### 实验目的1. 搭建蔡氏电路,观察其混沌现象。
2. 分析蔡氏电路混沌产生的条件及影响因素。
3. 研究蔡氏电路混沌同步现象。
#### 实验原理蔡氏电路是一种典型的三阶非线性自治电路,包含电阻、电容和电感三个基本元件,以及一个非线性电阻元件。
非线性电阻元件的电压-电流特性为三段线性函数,使得电路能够产生复杂的混沌行为。
蔡氏电路的数学模型由三个一阶常微分方程组成,分别描述电容C1和C2上的电压,以及电感L1上的电流强度。
方程如下:\[\begin{align}\frac{dV_1}{dt} &= \frac{1}{C_1}(I_L - I_R) \\\frac{dV_2}{dt} &= \frac{1}{C_2}(I_R - I_L) \\\frac{dI_L}{dt} &= \frac{1}{L_1}(V_1 - V_2) \\I_R &= f(V_1)\end{align}\]其中,\(I_L\)、\(V_1\)、\(V_2\) 分别表示电感L1上的电流、电容C1上的电压和电容C2上的电压,\(I_R\) 表示非线性电阻元件的电流,\(f(V_1)\) 表示非线性电阻元件的电压-电流特性。
#### 实验设备1. 蔡氏电路实验板2. 信号发生器3. 示波器4. 计算机及仿真软件(如MATLAB)#### 实验步骤1. 按照实验板说明书,搭建蔡氏电路。
2. 使用信号发生器为电路提供激励信号,调节信号参数。
3. 使用示波器观察电路输出信号,记录数据。
蔡氏混沌电路分析研究

的电阻 R ( 蔡 氏二极管 ) 和电容做成 了一个源 R C滤波电路 。它们通 被 一 个 叫蔡 少 棠 ( C h u a ) 的美 国华裔 教 授设 计 并 提 出来 。 过一个 电阻 R线性 紧密配合 , 形成 了一个只需要五个 电路元件就可 以产生复杂的混沌现象的非线性电路 。
继量子论 、相对论 的 2 0世纪第 三次物理革命产物。法 国数学家在 法 和 微 分等 功 能 ; 第 二个 优 势 是 能够 轻 松 稳 定 的通 过 实 验 的利 用 各
1 9世 纪 末 期 首 次 发 现 了 动力 学 系 统 中 的异 归 宿 轨 迹 和 同 归 宿 轨 种测量仪进行观测混沌信号。 混沌电路 的研究在 电路系统领域和其 迹, 混 沌 现 象 作 为 存 在 在 非 线 性 动 力 学 系 统 中 的一 种现 象 , 虽 没 有 他 混 沌 领 域 的 研 究 都 有着 非 常 重 大 的意 义 也 能 从 研 究 中得 到 很 多 复杂 的运 动形 式 , 但 具 有 普遍 性 的规律 。 1蔡 氏混 沌 电 路 工作 原 理 的介 绍 与 研究 意 义 的经验 。著名 法方程 V a n d e r p o l 是 欧洲著 名物 理学 家 范德坡 ( B . V a n d e r p o 1 )在 1 9 2 7年 实 验 正 弦 电 压源 驱 动 氖 等 R C张驰 振 荡 器 的
的分 析 和 参考 文 献 研 的前 提 下 , 对 混 沌 电路 的 动力 学 行 为 的 复 杂性 有着举足轻重的地位 。 混沌电路在发展初期就在所有 的非线性混沌
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 1.1-1 蔡氏电路方框图
1.2 蔡氏电路的特点
蔡氏电路中的非线性元件可用多种方法实现,电路的主要特点也与 RN 有关。蔡氏电路的运动形电 压控制非线性元件 RN 的驱动点特征应符合至少有两个不稳定平衡点的要求。因此,蔡氏电路至少是三 阶以上的自洽电路。 因元件参数值的不同而有本质的不同, 可以把电路元件参数值看作控制参数而使蔡氏电路工作在不 同的状态。现以图 1.1-1 为例,假设非线性元件为蔡氏二极管,L、C1、C2 为线性储能元件,说明电路 的状态与电路元件参数的关系。假设以线性电阻 R 为控制参量, R 将线性元件 C 2 、L 连接在 C1、RN 两端,蔡氏二极管是放能元件,只有 R 是耗能元件。不断地改变电阻 R 的数值,可以得到各种周期相 图和吸引子。
(1.3-1)
VC1 E ( VD VB ) VC1 E VC1 E
D1 截止, D2 导通 D1 , D2 截止 D1 导通, D2 截止
i 1 R 2 VC1 R5 R1R3 i R m1 2 VC1 R1R3 i 1 R m2 2 m0 VC1 R4 R1R3 m0
式(1.3-2)一般可以表示为:
(1.3-2)
i (uc1 ) mo uc1 ( m1 m0 )( uc1 E ) uc1 E ) /2
(1.3-3)
这样就可以得到如图 1.3-2 所示的非线性电阻 RN 伏安特性曲线。整个曲线为折线型,转折点处可 能会出现电路状态的变化。
1
1.3 简单蔡氏电路设计及电路模型
下面我们按图 1.1-1,设计一种简单蔡氏电路如图 1.3-1,电路元件参数见表 1.3-1。电路中非线性电 阻采用一个运算放大器 LM741,两个二极管 LN4148 和七个电阻组成。为了观察混沌现象的演化过程, 线性电阻 R 采用可变电阻,调节范围 0-3k。
图 1.3-1 简单蔡氏电路结构图:(a)电路框架图;(b)非线性电阻 RN 等效电路图。 表 1.3-1 电路元件具体参数 元件 参数
P (k , o,k ) D1 0 (0,0,0) D0 P (k ,0, k ) D1
T
(其中: k
(b a ) E ) (b 1)
(1.4-5)
在三个子空间中,式(3.4-2)为线性方程。令 K ( k ,0, k ) , (1.4-2)可改写为:
根据 f(x1)的不同形式,在 R3 的三个子空间:
(1.4-3)
2
D1 ( x1 , x 2 , x3 ), x1 E
D 2 ( x1 , x 2 , x3 ), x1 E
(1.4-4)
D3 ( x1 , x 2 , x3 ), x1 E
式中有唯一的平衡点,分别是:
(注:式中微分都是相对变量 )
这样,式(1.4-1)可以化为:
x2 1 . 0 x3
.
x1
.
1
0 x1 f ( x1 ) 1 x2 0 x3 0
(1.4-2)
令 X= ( x1 , x 2 , x3 ) 考虑到平衡态 X=0,即:
T
x1 f ( x1 ) 0 x2 0 x x 0 3 1
VA VE R4 ( R4 R6 ) VB VC R5 ( R5 R7 )
下面将调节电阻 R,实现对二极管 D1 和 D2 状态与非线性电阻输出端状态列表 1.3-2。
表 1.3-2 电阻 R,对二极管 D1 和 D2 状态与非线性电阻输出端状态控制表 条件 二极管 D1 和 D2 状态 非线性电阻输出端状态
个过程:稳定态,周期态,混沌态,负阻尼振荡态(各态间存在过渡态) 。
2.3.1 稳定态
当 R>2285 时,方程的解趋近于初始值所在的子空间的平衡点。对应于电路中,电路初始经历一 段阻尼振荡,最终停在一个稳定态。此时电路等效电容为零,在相图上,轨线趋近于一稳定焦点如图所 示。
图 2.3.1-1 R>2285 时,电路处于稳定态相图
蔡氏电路的混沌演化
摘要:本文简要介绍了混沌及其特征,产生的机理和条件,并从理论分析与 MATLAB 仿真两个角度 分别研究了简单蔡氏电路混沌现象演化过程。研究结果表明,蔡氏电路中元件参数影响电路混沌状态 的演化,随着线性电阻阻值的减小电路状态大致经历:稳定态,周期态,混沌态,负阻尼振荡态。 关键词:蔡氏电路;混沌演化; MATLAB 仿真
0 1 0
a ,子空间 D1 和 D1 中 c b 。电路的平衡点在外部区为 P+,P-,在内部区为 0。根据前
面电路的参数可以求得: , 分别为 10,16。)
由此得出三个子空间中的平衡点都是鞍点。到目前为止,还不知道系统是否会出现混沌现象,还需 要进一步判断。Lyapunov 是指数判断系统混沌现象的最常见方法,它能够定量地描述动力系统在相空 间中相邻轨道的发散程度。若动力系统在一定区域内的第一个 Lyapunov 指数 1 >0,则动力系统在这个 区域上出现混沌现象,并且对于初值是敏感的。
r
20
C1
10nF
C2
103k
R2 R3
22 k
R4 = R6
2.2k
R5 = R7
220
VC VE
1.85V
下面分析非线性电阻的伏安特性。非线性电阻中的运算放大器LM741工作在线性放大区域中,由它 及和其相连的电阻组成线性负阻,运放本身并没有产生非线性。 非线性的产生是通过调节电阻R 的阻值, 改变二极管 D1 和 D2 的状态来改变 uc1 的大小实现的。 当二极管 D1 和 D2 都截止时,AB 两点的电压为:
1 >0,蔡氏电路的运动处于混沌状态。
在平衡点处的局部区域内计算以上蔡氏电路的第一个 Lyapunov 指数,可以得到: 1 3.83 ,可见
2 基于 MATLAB 的蔡氏电路仿真及结果分析
2.1 仿真软件选择
对于蔡氏电路仿真软件一般用 EWB, Pspice,Matlab,VB 等等[20]。软件选择很多,但都不完美, 表 2.1-1 列出了一些软件在蔡氏电路仿真方面的应用情况。
y ( xi 1 ) y ( xi ) hf ( xi h, y ( xi h))
(这里 K
* *
(2.2-2)
f ( xi h, y ( xi h)) 称作区间 xi , xi 1 上的平均斜率)
因此只要对平均斜率 K 提供一种算法, 便可以得到一个微分方程的数值计算公式。 如果 xi , xi 1 在 上多预置几个点的斜率值, 然后将它们的加权平均作为近似值, 则就可以构造出高精度的数值计算公式。 四阶龙格-库塔算法的计算公式就是按照这一思路推导出来的,它有多种形式,其标准的数学描述如下:
2.3.2 周期态 当 2265 <R<2285 时,方程的解趋近于维数大于零的吸引子中。对应于电路中,经过一段暂态
后,电路进行周期和概周期振荡,R 的极小变化就会使周期发散为概周期。在相空间中,轨线趋近于一 个稳定的空间极限环或稳定环面 (分别对应于周期振荡和概周期振荡) , 如图 2. 2 .3 给出了振荡的相图。
表 2.1-1 蔡氏电路仿真软件特点对比一览表 软件名称 Protel Pspice EWB VewSystem Matlab VB VC 功能原理图 最好 好 好 好 很好 无 无 电路原理图 最好 好 好 好 无 无 无 波形图 好 好 好 好 很好 编程技巧 编程技巧 相图 无 好 很好 很好 很好 编程技巧 编程技巧 频谱图 好 很好 很好 很好 编程 编程 编程 管理界面 无 无 无 无 编程 编程技巧 编程技巧
y n1 y n h ( K1 2 K 2 2 K 3 K 4 ) / 6 K1 f ( xn , y n ) K 2 f ( xn h / 2, y n K1 h / 2) K 3 f ( xn h / 2, y n K 2 h / 2)
注: VD 为二极管导通电压, VC1 为电容 C1 两端的电压
这样,电流 i 对于电压 uC1 的函数可以表示为:
m 0 u c 1 E ( m 1 m 0 ), u c 1 E i (V C 1 ) m 1 u c 1 , u c 1 E m u E ( m m ), u E 1 0 c1 0 c1
A( , , b)( X K ), X D1 X A( , , a ) X , X D0 A( , , b)( X K ), X D 1
其中:
(1.4-6)
(c 1) A( , , c) 1 1 0
(注:在子空间 D0 中 c
其中 uc1 为电容 C1 两端的电压, uc 2 为电容 C2 两端的电压, iL 为电感 L 的电流。
(1.3-4)
1. 4 简单蔡氏电路数学模型及其分析 2 取 x1 = uc1 ,x2 = uc 2 ,x3 = iL R , iL R C2 ,a=m1R,b=m0R, C2 C1 , R C2 L ,其中 x1 ,
1 简单蔡氏电路设计及模型分析
1.1 蔡氏电路的提出
蔡氏电路是一个典型的混沌电路,最早由著名华裔科学家、美国加州大学蔡少堂教授设计。他证明 了在满足以下条件时能够产生混沌现象: (1) 非线性元件不少于1 个; (2) 线性有效电阻不少于1 个; (3) 储能元件不少于3 个。 根据以上条件,在图1.1-1中给出蔡氏电路方框图。图中R为线性有效电阻,L、C1、C2为储能元件, RN为非线性元件。
x2 ,x3 为系统状态变量,自变量为 为时间,x1,x2,x3 分别对 求导,可以得到电路的数学模型:
1 ( x2 x1 f ( x1 )) x 2 x1 x2 x3 x x 3 x2