浙江萧山中学自主招生考试数学试卷(含答案)

合集下载

浙江省杭州市萧山中学自主招生考试数学试卷_22

浙江省杭州市萧山中学自主招生考试数学试卷_22

2012年浙江省杭州市萧山中学自主招生考试数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)(2012•萧山区校级自主招生)下列计算中,结果正确的是()A.(a2)3=a5 B.20﹣1=﹣1 C.D.a6÷a2=a32.(3分)(2015•永春县自主招生)如图,在4×4的正方形网格中,cosα=()A.B.2 C. D.3.(3分)(2012•萧山区校级自主招生)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的直径等于()A.8 B.2 C.10 D.54.(3分)(2011•遵义)若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.65.(3分)(2012•萧山区校级自主招生)如图,下列四个几何体中,其各自的主视图、左视图、俯视图中有两个相同,而另一个不同的是()A.①②B.②③C.②④D.③④6.(3分)(2012•萧山区校级自主招生)杭州市某公交站每天6:30~7:30开往某学校的三辆班车票价相同,但车的舒适程度不同.学生小杰先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,则小杰坐上优等车的概率是()A.B.C.D.7.(3分)(2012•萧山区校级自主招生)下列说法错误的有()个①无理数包括正无理数、零、负无理数;②3.0×104精确到千位,有2个有效数字③命题“若x2=1,则x=1”的逆命题是真命题;④若等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的底角为30°和60°;⑤若两数和为﹣6,两数积为﹣1,则以这两数为根的一元二次方程的一次项系数为6.A.1 B.2 C.3 D.48.(3分)(2012•萧山区校级自主招生)如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是()A.4﹣π B.πC.12+π D.9.(3分)(2012•萧山区校级自主招生)边长为1的正方形OABC的顶点A在x正半轴上,点C在y正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为()A.B.﹣1 C.D.10.(3分)(2012•萧山区校级自主招生)已知在△ABC中,∠BAC=90°,M是边BC的中点,BC的延长线上的点N满足AM⊥AN.△ABC的内切圆与边AB、AC的切点分别为E、F,延长EF分别与AN、BC的延长线交于P、Q,则=()A.1 B.0.5 C.2 D.1.5二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2013•巴中)分解因式:2a2﹣8=.12.(4分)(2011•衡阳)甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是.13.(4分)(2015•永春县自主招生)若二次函数y=ax2+bx+c(a≠0)图象的最低点的坐标为(1,﹣1),则关于x的一元二次方程ax2+bx+c=﹣1的根为.14.(4分)(2009•深圳)如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.15.(4分)(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为.16.(4分)(2012•萧山区校级自主招生)若D是等边三角形ABC的内心,点E,F分别在AC、BC上,且满足CD=,∠DEF=60°,记△DEF的周长为C,则C的取值范围是.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2012•萧山区校级自主招生)先化简,再求值:,其中x=﹣4.18.(8分)(2012•萧山区校级自主招生)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并说明反比例函数的增减性;(3)直接写出当y2<2时自变量x的取值范围.19.(10分)(2012•萧山区校级自主招生)一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次.小丽按以下方法计算参加测试学生跳绳次数的平均数是:(137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?20.(10分)(2012•萧山区校级自主招生)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?21.(10分)(2015•永春县自主招生)定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2﹣2x+3的“特征数”是{1,﹣2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=﹣x的“特征数”是{0,﹣1,0}(1)将“特征数”是的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是y=;(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是的函数图象的有交点,求满足条件的实数b的取值范围.22.(10分)(2012•萧山区校级自主招生)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)过点O作线段AC的垂线OE,垂足为点E(尺规作图,保留作图痕迹,不写作法);(3)若CD=4,AC=4,求垂线段OE的长.23.(12分)(2012•萧山区校级自主招生)已知二次函数y=x2﹣2mx﹣2m2(m≠0)的图象与x轴交于A、B两点,它的顶点在以AB为直径的圆上.(1)证明:A、B是x轴上两个不同的交点;(2)求二次函数的解析式;(3)设以AB为直径的圆与y轴交于C,D,求弦CD的长.2012年浙江省杭州市萧山中学自主招生考试数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)(2012•萧山区校级自主招生)下列计算中,结果正确的是()A.(a2)3=a5 B.20﹣1=﹣1 C.D.a6÷a2=a3【解答】解:A、根据幂的乘方法则,(a2)3=a6,故不对;B、因为0任何不等于0的数的0次幂等于1,所以20﹣1=1﹣1=0,故不对;C、把二次根式化简,故正确;D、a6÷a2=a4,故不对.故选C.2.(3分)(2015•永春县自主招生)如图,在4×4的正方形网格中,cosα=()A.B.2 C. D.【解答】解:∵BC=1,AB=2,∴AC=,∴cosα==,故选D.3.(3分)(2012•萧山区校级自主招生)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的直径等于()A.8 B.2 C.10 D.5【解答】解:连接OA,∵弦AB=8,M是AB的中点,∴OM⊥AB,AM=AB=×8=4,在Rt△OAM中,∵OA===5,∴⊙O的直径=2OA=10.故选C.4.(3分)(2011•遵义)若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.6【解答】解:a、b均为正整数,且,∴a的最小值是3,b的最小值是:1,则a+b的最小值4.故选B.5.(3分)(2012•萧山区校级自主招生)如图,下列四个几何体中,其各自的主视图、左视图、俯视图中有两个相同,而另一个不同的是()A.①②B.②③C.②④D.③④【解答】解:①正方体的主视图、左视图、俯视图都是正方形;②球的主视图、左视图、俯视图都是圆形;③圆锥的主视图和左视图是三角形,俯视图是圆,圆心处有一点;④圆柱的主视图是和俯视图都是矩形,左视图是圆;故选D.6.(3分)(2012•萧山区校级自主招生)杭州市某公交站每天6:30~7:30开往某学校的三辆班车票价相同,但车的舒适程度不同.学生小杰先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,则小杰坐上优等车的概率是()A.B.C.D.∴小杰坐上优等车的概率是:=.故选A.7.(3分)(2012•萧山区校级自主招生)下列说法错误的有()个①无理数包括正无理数、零、负无理数;②3.0×104精确到千位,有2个有效数字③命题“若x2=1,则x=1”的逆命题是真命题;④若等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的底角为30°和60°;⑤若两数和为﹣6,两数积为﹣1,则以这两数为根的一元二次方程的一次项系数为6.A.1 B.2 C.3 D.4【解答】解:①、0是有理数,故①选项错误;②、3.0×104是精确到千位,且有两位有效数字,故②选项正确;③命题“若x2=1,则x=1”的逆命题是“若x=1,则x2=1”,此逆命题是真命题,故③选项正确;④分两种情况:第一种情况,当高在三角形内部,在Rt△ABD中,由于BD=AB,可知∠BAD=30°,那么等腰三角形ABC的底角=75°;第二种情况,当高在三角形的外部,在Rt△ABD中,由于BD=AB,那么∠BAD=30°,那么等腰三角形ABC的底角=15°.故答案应该是15°或75°,此选项错误;⑤若两数和为﹣6,两数积为﹣1,则以这两数为根的一元二次方程的一次项系数为6.此选项错误.故选C.8.(3分)(2012•萧山区校级自主招生)如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是()A.4﹣π B.πC.12+π D.【解答】解:∵正方形的面积是:4×4=16;扇形BAO的面积是:==,∴则这张圆形纸片“不能接触到的部分”的面积是4×1﹣4×=4﹣π,∴这张圆形纸片“能接触到的部分”的面积是16﹣(4﹣π)=12+π,故选C.9.(3分)(2012•萧山区校级自主招生)边长为1的正方形OABC的顶点A在x正半轴上,点C在y正半轴上,将正方形OABC绕顶点O顺时针旋转75°,如图所示,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为()A.B.﹣1 C.D.【解答】解:如图,作BE⊥x轴于点E,连接OB,∵正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∵∠AOB=45°,∴∠BOE=30°,∵OA=1,∴OB=,∵∠BEO=90°,∴BE=OB=,∴OE=,∴点B坐标为(,﹣),代入y=ax2(a<0)得a=﹣,∴y=﹣x2.故选:D.10.(3分)(2012•萧山区校级自主招生)已知在△ABC中,∠BAC=90°,M是边BC的中点,BC的延长线上的点N满足AM⊥AN.△ABC的内切圆与边AB、AC的切点分别为E、F,延长EF分别与AN、BC的延长线交于P、Q,则=()A.1 B.0.5 C.2 D.1.5【解答】解:取△ACB的内切圆的圆心是O,连接OE、OF,作NA的延长线AG,则OE⊥AB,OF⊥AC,OE=OF,∵∠BAC=90°,∴四边形AEOF是正方形,∴AE=AF,∴∠AEF=∠AFE,∵∠BAC=90°,M为斜边BC上中线,∴AM=CM=BM,∴∠MAC=∠MCA,∵∠BAC=90°,AN⊥AM,∴∠BAC=∠MAG=∠MAN=90°,∴∠GAE+∠EAM=90°,∠EAM+∠MAC=90°,∠MAC+∠CAN=90°,∴∠GAE=∠MAC=∠MCA,∠EAM=∠CAP,∵∠GAE=∠APE+∠AEP,∠MCA=∠Q+∠CFQ,∵∠AEF=∠AFE=∠CFQ,∠EPA=∠NPQ,∴∠Q=∠NPQ,∴PN=QN,∴=1,故选A.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2013•巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).12.(4分)(2011•衡阳)甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是乙.【解答】解:甲的平均数=(3+0+0+2+0+1)=1,乙的平均数=(1+0+2+1+0+2)=1,∴S2甲=[(3﹣1)2+3×(0﹣1)2+(2﹣1)2+(1﹣1)2]=S2乙=[(2×(1﹣1)2+2×(0﹣1)2+2×(2﹣1)2]=,∴S2甲>S2乙,∴乙台机床性能较稳定.故答案为乙.13.(4分)(2015•永春县自主招生)若二次函数y=ax2+bx+c(a≠0)图象的最低点的坐标为(1,﹣1),则关于x的一元二次方程ax2+bx+c=﹣1的根为x1=x2=1.【解答】解:∵二次函数y=ax2+bx+c(a≠0)图象的最低点的坐标为(1,﹣1),∴二次函数y=ax2+bx+c(a≠0)图象经过点(1,﹣1),关于x的一元二次方程ax2+bx+c=﹣1有两个相等的实数根x1=x2=1;∴当y=﹣1,即ax2+bx+c=﹣1时,x1=x2=1,故答案是:x1=x2=1.14.(4分)(2009•深圳)如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.【解答】解:如图,连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,∵AG==2,AF==4,∴AF2=AD2+DF2=(AG+GD)2+FD2=AG2+GD2+2AG•GD+FD2,GD2+FD2=FG2∴AF2=AG2+2AG•GD+FG2∴32=20+2×2×GD+4,∴GD=,FD=,∵∠BAE+∠AEB=90°=∠FEC+∠AEB,∴∠BAE=∠FEC,∵∠B=∠C=90°,AE=EF,∴△ABE≌△ECF(AAS),∴AB=CE,CF=BE,∵BC=BE+CE=AD=AG+GD=2+,∴AB+FC=2+,∴矩形ABCD的周长=AB+BC+AD+CD=2BC+AB+CF+DF=2++2++2++=8.故答案为:8.15.(4分)(2011•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.【解答】解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.16.(4分)(2012•萧山区校级自主招生)若D是等边三角形ABC的内心,点E,F分别在AC、BC上,且满足CD=,∠DEF=60°,记△DEF的周长为C,则C的取值范围是3≤c≤3+.【解答】解:当DE或DF与等边三角形ABC的一边垂直(E或F与点C重合)时,△DEF 的周长C最大,C=3+;当DE或DF与等边三角形ABC的比边不垂直且△DEF为等边三角形时,△DEF的周长C最小,此时C=3.所以C的取值范围是:3≤c≤3+,故答案为:.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2012•萧山区校级自主招生)先化简,再求值:,其中x=﹣4.【解答】解:原式=,==;当时,原式=.18.(8分)(2012•萧山区校级自主招生)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并说明反比例函数的增减性;(3)直接写出当y2<2时自变量x的取值范围.【解答】解:(1)∵直线y1=﹣2x经过点P(﹣2,a),∴a=﹣2×(﹣2)=4,∴点P(﹣2,4),∴点P关于y轴的对称点P′,∴P'(2,4);(2)∵P'(2,4)在反比例函数(k≠0)的图象上,∴k=2×4=8,∴反比例函数关系式为:,在每个象限内,y随着x的增大而减小;(3)x<0或x>4.19.(10分)(2012•萧山区校级自主招生)一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次.小丽按以下方法计算参加测试学生跳绳次数的平均数是:(137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?【解答】解:(1)从图中可知,总人数为4+6+8+12+20=50人,自左至右最后一组的频率=12÷50=0.24;(2)不正确.正确的算法:(137×4+146×6+156×8+164×20+177×12)÷50;(3)∵组距为10,∴第四组前一个边界值为160,又∵第一、二、三组的频数和为18,第25,26个数据的平均数是中位数,∴50÷2﹣18+1=8,即次数为160次的学生至少有8人.20.(10分)(2012•萧山区校级自主招生)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?【解答】解:(1)设一月Iphone4手机每台售价为x元,由题意得:=,解得x=4500.经检验x=4500是方程的解.答:故一月Iphone4手机每台售价为4500元;(2)设购进Iphone4手机m台,由题意得,74000≤3500m+4000(20﹣m)≤76000,解得:8≤m≤12.∵m只能取整数,∴m取8、9、10、11、12,共有5种进货方案,答:共有5种进货方案;(3)二月Iphone4手机每台售价是:4500﹣500=4000(元),设总获利W元,则W=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(100﹣a)m+8000.100﹣a=0,解得:a=100,答:当a=100时,(2)中所有的方案获利相同.21.(10分)(2015•永春县自主招生)定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2﹣2x+3的“特征数”是{1,﹣2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=﹣x的“特征数”是{0,﹣1,0}(1)将“特征数”是的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是y=;(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是的函数图象的有交点,求满足条件的实数b的取值范围.【解答】解:(1)y=(1分)“特征数”是的函数,即y=+1,该函数图象向下平移2个单位,得y=.(2)由题意可知y=向下平移两个单位得y=∴AD∥BC,AB=2.∵,∴AB∥CD.∴四边形ABCD为平行四边形.,得C点坐标为(,0),∴D()由勾股定理可得BC=2∵四边形ABCD为平行四边形,AB=2,BC=2∴四边形ABCD为菱形.∴周长为8.(3)二次函数为:y=x2﹣2bx+b2+,化为顶点式为:y=(x﹣b)2+,∴二次函数的图象不会经过点B和点C.设二次函数的图象与四边形有公共部分,当二次函数的图象经过点A时,将A(0,1),代入二次函数,解得b=﹣,b=(不合题意,舍去),当二次函数的图象经过点D时,将D(),代入二次函数,解得b=+,b=(不合题意,舍去),所以实数b的取值范围:.22.(10分)(2012•萧山区校级自主招生)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)过点O作线段AC的垂线OE,垂足为点E(尺规作图,保留作图痕迹,不写作法);(3)若CD=4,AC=4,求垂线段OE的长.【解答】解:(1)证明:连接OC,∵CD切⊙O于点C,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)点O作线段AC的垂线OE,如图所示:∴直线OE为所求作的直线;(3)在Rt△ACD中,CD=4,AC=4,根据勾股定理得:AD==8,∵OE⊥AC,∴AE=EC=2,∵∠OAE=∠CAD,∠AEO=∠ADC,∴△AEO∽△ADC,∴=,∴OE===,即垂线段OE的长为.23.(12分)(2012•萧山区校级自主招生)已知二次函数y=x2﹣2mx﹣2m2(m≠0)的图象与x轴交于A、B两点,它的顶点在以AB为直径的圆上.(1)证明:A、B是x轴上两个不同的交点;(2)求二次函数的解析式;(3)设以AB为直径的圆与y轴交于C,D,求弦CD的长.【解答】(1)证明:∵y=x2﹣2mx﹣2m2(m≠0),∴a=1,b=﹣2m,c=﹣2m2,△=b2﹣4ac=(﹣2m)2﹣4×1×(﹣2m2)=4m2+8m2=12m2,∵m≠0,∴△=12m2>0,∴A,B是x轴上两个不同的交点;(2)设AB点的坐标分别为A(x1,0),B(x2,0),则x1+x2=﹣=2m,x1•x2==﹣2m2,∴AB=|x1﹣x2|==2|m|,∵抛物线的顶点坐标为:(m,﹣3m2),且在以AB为直径的圆上,∴AB=2×3m2,∴2|m|=6m2,∴m=±,∴y=x2±x﹣;(3)根据(2)的结论,圆的半径为×6m2=×2=1,弦CD的弦心距为|m|=,∴CD==,∴CD=.参与本试卷答题和审题的老师有:算术;lf2-9;lanchong;ZJX;lantin;sd2011;zcx;王岑;wd1899;zjx111;HJJ;gsls;dbz1018;ln_86;zhehe;HLing;gbl210;wdxwzk;sks(排名不分先后)菁优网2016年4月26日。

浙江杭州萧山区2024年九年级10月月考数学试卷

浙江杭州萧山区2024年九年级10月月考数学试卷

2024年(下)九年级10月份数学“独立作业”考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷I (选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷I 的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹的钢笔或签字笔写在答题纸的相应位置上.3.请用黑色字迹的钢笔或签字笔在答题纸上先填写姓名和准考证号.4.本次考试不得使用计算器.卷Ⅰ一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线22y x =−−的顶点坐标是( ) A.()2,0−B.()2,0C.()0,2D.()0,2−2.要得到抛物线()2423y x =−−,可以将抛物线24y x =( ) A.向右平移2个单位,再向下平移3个单位 B.向左平移2个单位,再向下平移3个单位 C.向左平移2个单位,再向上平移3个单位 D.向右平移2个单位,再向上平移3个单位3.小明观察某个路口的红绿灯,发现该红绿灯的时间设置为:红灯20秒,黄灯5秒,绿灯15秒.当他下次到达该路口时,遇到绿灯的概率是( ) A.13B.12C.38D.234.已知抛物线2y x bx c =−+与x 轴交于点()1,0A −,()3,0B ,则关于x 的方程20x bx c −+=的解是( )A.11x =−,23x =−B.11x =−,23x =C.11x =,23x =−D.11x =,23x =5.如果二次函数24y x x c =−+的最小值为0,那么c 的值等于( ) A.2B.4C.-2D.06.在同一坐标系中,一次函数2y mx n =+与二次函数2y x m =−的图象可能是( )A. B. C.D.7.若()10,A y ,()23,B y ,()34,C y 为二次函数()23y x m =−+图象上的三点,则1y ,2y ,3y 的大小关系为( ) A.231y y y <<B.312y y y <<C.213y y y <<D.132y y y <<8.如图,抛物线()20y ax bx c a ++≠与x 轴的两个交点分别为()1,0A −和()2,0B ,当0y <时,x 的取值范围是( )A.1x <−或2x <B.1x <−或2x >C.12x −<<D.1x >−或2x >9.某数学兴趣小组借助数学软件探究函数()2yax x b −的图象,输入了一组a ,b 的值,得到了它的函数图象如图所示,借助学习函数的经验,可以推断输入的a ,b 的值满足( )A. 0a <,0b <B.0a >,0b <C.>0a ,<0bD.0a >,0b >10.如图,正方形OABC 的顶点B 在抛物线2y x =的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,点C 的横坐标为-1,则点A 的横坐标为( )A.3B.4C.3.5D.2卷Ⅱ二、填空题(本大题有6个小题,每小题3分,共18分)11.欢欢抛一枚质地均匀的硬币14次,有9次正面朝上,当他抛第15次时,正面朝上的概率为________. 12.抛物线2421y x x =−−+的对称轴为________.13.从-2,0,1三个数中随机抽取一个数记为a ,不放回,再抽取一个数记为b ,则抽出的数(),a b 是二次函数22y x =−图象上的点的概率为_______.14.将抛物线()221y x =−+绕原点O 旋转180,则得到的抛物线的函数表达式为______.15.如图,同学们在操场上玩跳大绳游戏,绳甩到最高处时的形状是抛物线,摇绳的两名同学拿绳的手的间距为6米,到地面的距离AO 与BD 均为1.1米,绳子甩到最高点C 处时,最高点距地面的垂直距离为2.0米.身高为1.6米的小吉站在距点O 水平距离为m 米处,若他能够正常跳大绳(绳子甩到最高时超过他的头顶),则m 的取值范围是__________.16.已知抛物线241y x x =−−上有且只有三个点到x 轴的距离等于k ,点(),A a b 在抛物线上,且点A 到y 轴的距离小于3.(1)k =__________.(2)b 的取值范围是__________.三、解答题(本大题有8个小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本题8分)一个不透明的布袋里只有2个红球和2个白球(仅颜色不同). (1)若从中任意摸出一个球,是红球的概率为多少?(2)若从中任意摸出一个球,记下颜色后放回,再摸出一个球,两个都是红球的概率为多少?(请用列表或画树状图的方法来表示)18.(本题8分)已知二次函数的图象经过点()0,6−,且当2x =时,有最大值-2. (1)求该二次函数的表达式.(2)判断点()1,2P −是否在抛物线上,并说明理由.19.(本题8分)已知二次函数()226y x k x k +++−与x 轴只有一个交点. (1)求k 的值.(2)从3k +,3k −中任选一个数记做a ,求使二次函数2y ax =的图象开口方向向上的概率.20.(本题8分)如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光.(1)求任意闭合其中一个开关小灯泡发光的概率. (2)求任意闭合其中两个开关小灯泡发光的概率.21.(本题8分)第33届夏季奥运会在法国巴黎举行,北京时间8月3日中国女篮对阵波多黎各女篮,以80比58收获小组赛首胜.如图,一名中国运动员在距离篮球框中心A 点4m (水平距离)远处跳起投篮,篮球准确落入篮框,已知篮球运行的路线为抛物线,当篮球运行的水平距离为2.5m 时,篮球到达最大高度B 点处,且最大高度为3.5m .以地面水平线为x 轴,过最高点B 且垂直地面的直线为y 轴建立平面直角坐标系,如果篮框中心A 距离地面3.05m .(1)求该篮球运行路线(抛物线)的函数表达式. (2)求出篮球在该运动员出手时(点C )的高度.22.(本题10分)设二次函数22y ax bx ++(0a ≠,b 是实数),已知函数值y 和自变量x 的部分对应取值如表所示:x 1−0 2 4 5 ym2n2p(1)若4m =,求二次函数的表达式.(2)在(1)的条件下,写出一个符合条件的x 的取值范围,使得y 随x 的增大而增大. (3)若在m ,n ,p 这三个实数中,只有一个是负数,求a 的取值范围.23.(本题10分)某款网红产品很受消费者喜爱,每个产品的进价为40元,规定销售单价不低于44元,且不高于52元.某商户在销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天的销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元. (1)直接写出y 与x 之间的函数关系式和自变量x 的取值范围.(2)将产品的销售单价定为多少元时,商家每天销售产品获得的利润w (元)最大?最大利润是多少元?(3)该商户从每天的利润中捐出200元做慈善,为了保证捐款后每天剩余利润等于2200元,求销售单价x 的值.24.(本题12分)如图,已知二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,其中()3,0A −,()0,3C −.(1)求二次函数的表达式.(2)若P 是二次函数图象上的一点,直线PC 交x 轴于点D ,PDB △的面积是CDB △面积的2倍,求点P 的坐标.(3)对于一个二次函数()()20y a x m k a =−+≠中存在一点(),Q x y ′′,使得0x m y k ′−=−≠′,则称2x m ′−为该抛物线的“开口大小”,求(1)中抛物线关于x 轴对称的抛物线的“开口大小”.2024年(下)九年级10月份数学“独立作业”参考答案一、选择题(本大题有10个小题,每小题3分,共30分) 1-5:DACBB 6-10:DABDA二、填空题(本大题有6个小题,每小题3分,共18分) 11.12 12.14x =− 13.1614.()221y x =−+− 15.15m <<. 16.(1)5 (2) 520b −≤< 三、解答题(本大题有8个小题,共72分) 17.解:(1)摸出红球的概率为12P =. (2)列表得:∴两个都是红球的概率为14P =. 18.解:(1)由题意得顶点为()2,2−,∴设()222y a x =−−,把()0,6−代入,得()26022a −=−−, 解得1a =−.∴该二次函数的表达式为()222y x =−−−. (2)不在,理由如下:把1x =−代入()222y x =−−−, 得()2122112y =−−−−=−≠,∴点()0,6P −不在该抛物线上.(3分)19.解:(1)由题意可知()2260x k x k +++−=有两个相等的实数根,()()2242460b ac k k ∴=−=+−−=△,10k ∴=−或2k =.(2)由(1)可知10k =−或2k =,3k ∴+,3k −对应的所有值为-7,-13,5,-1.∴二次函数2y ax =的图象开口方向向上的概率为14.20.解:(1)14P =. (2)12P =. 21.解:(1)根据题意,得()0,3.5B ,()1.5,3.05A ,点C 的横坐标为-2.5. 设该篮球运行路线的函数表达式为23.5y ax =+,把点()1.5,3.05A 代入,得23.051.5 3.5a =+, 解得0.2a =−.∴该篮球运行路线的函数表达式为20.2 3.5y x =−+. (2)由(1)知20.2 3.5y x =−+令 2.5x =−,则()20.2 2.5 3.5 2.25y =−×−+=.∴篮球在该运动员出手时(点C )的高度是2.25m .22.解:(1)由题意得42,21642,a b a b =−+=++解得2,58,5a b= =−∴二次函数的表达式是228255y x x −+. (2)()222822225555yx x x =−+=−+ ,∴抛物线开口向上,对称轴为直线2x =,∴当2x >时,y 随x 的增大而增大.(答案不唯一)(3)0x = 和4x =时的函数值都是2,∴抛物线的对称轴为直线22b x a=−=, ()2,n ∴是顶点,()1,m −和()5,p 关于对称轴对称,m p ∴=. 在m ,n ,p 这三个实数中,只有一个是负数,则抛物线必须开口向上,且<0n ,>2m p =.22ba−= , 4b a ∴=−,∴二次函数为242y ax ax =−+,482<0n a a ∴=−+,42>2m a a =++,12a ∴>. 23.解:(1)根据题意,得()300104410740y x x =−−=−+,y ∴与x 之间的函数关系式为()107404452y x x =−+≤≤.(2)根据题意,得()()()2104010572890w x x x =−+−=−−+. 100−< ,又对称轴57x =,且4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将产品的销售单价定为52元时,商家每天销售产品获得的利润w (元)最大,最大利润是2640元.(3)依题意可得剩余利润为()200w −元.捐款后每天剩余利润等于2200元,2002200w ∴−=,即()2105728902002200x −−+−=,解得50x =或64x =(舍去),∴为了保证捐款后每天剩余利润等于2200元,销售单价为50元.24.解:(1)由题意,将()()3,0,0,3A C −−代入2y x bx c =++,得093,3,b c c =−+=−解得2,3,b c ==−∴二次函数的表达式为223y x x =+−.(2)由题意,设(),P m n .PDB △与CDB 同底,且PDB △的面积是CDB △面积的2倍,26n CO ∴==.当2236m m +−=时,11m =−,21m −此时点P 的坐标为)1,6−或()1,6−;当2236m m +−=−时,m 无解.综上所述,点P 的坐标为)1,6或()1,6−.(3) 抛物线()222314y x x x =+−=+−,∴抛物线()222314y x x x =+−=+−关于x 轴对称的抛物线为()214y x =−++. 0x m y k ′′−=−≠ ,()211440x x ∴+=−++−′≠′,解得11x ′+=−.∴抛物线223y x x =+−关于x 轴对称的抛物线的“开口大小”为21212x +′×−.。

2020届浙江省杭州市萧山中学高三下学期开学考试数学试卷及解析

2020届浙江省杭州市萧山中学高三下学期开学考试数学试卷及解析

2020届浙江省杭州市萧山中学高三下学期开学考试数学试卷★祝考试顺利★(解析版)一、选择题1.已知,x y R ∈,设集合(){}2ln 1A x y x ==-,(){}2ln 1B y y x ==-,则 R B A ⋂=( )A. ()0,1B. (],1-∞-C. [)0,1D. (),1-∞-【答案】A【解析】 由题意{}11A x =-<<,{}0B y y =≤,利用补集和交集的概念计算即可.【详解】由题意(){}{}{}22ln 11011A x y x x x x ==-=->=-<<, (){}{}{}2ln 1ln10B y y x y y y y ==-=≤=≤, 所以() 0,R B =+∞,() 0,1R B A ⋂=.故选:A.2.下列通项表达式中能表达数列,1,,1,,1,, 1......i i i i ----的是( )A. n iB. n i -C. 3n iD. 3n i -【答案】D【解析】根据数列中的项和通项公式逐项排除即可得解.【详解】当1n =时,1a i =,而1i i -=-,3i i =-,故排除B 、C 选项;当2n =时,21a =,而21i =-,故可排除A 选项.故选:D.3.某几何体三视图如图所示(单位:cm ),其左视图为正方形,则该几何体的体积(单位:cm 3)是( )A. 8243π-B. 16243π-C. 8303π-D. 16303π- 【答案】C【解析】由三视图还原出几何体为一个长方体截去一个三棱锥和一个半圆柱构成,分别求出各部分体积即可得解.【详解】由三视图可知,该几何体是由一个长方体截去一个三棱锥和一个半圆柱构成, 长方体的体积为134336V =⨯⨯=;截去的三棱锥有三个两两垂直的棱,长度分别为3,3,4, 则截去的三棱锥体积为211334632V =⨯⨯⨯⨯=; 截去的半圆柱的底面半径r 满足()11543422r ⋅+=⨯⨯即43r =,高为3, 则截去的半圆柱的体积为231483233V ππ⎛⎫=⋅⋅= ⎪⎝⎭; 所以该几何体体积123883663033V V V V ππ=--=--=-. 故选:C.4.以下不是立体几何公理的是( )A. 如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内B. 如果两个不重合的平面有一个公共点,那么它们有且仅有一条经过该点的公共直线C. 经过一条直线和这条直线外一点,有且仅有一个平面D. 经过不在一条直线上的三点,有且只有一个平面。

重点高中自主招生考试数学试卷集(大全集)

重点高中自主招生考试数学试卷集(大全集)

6。

如图,点在函数的图象上,过点 A 作垂直轴,垂足为,过点作垂直轴,垂足为,则矩形的面积是……( )A 。

B 。

C 。

D 。

不能确定7。

用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的正视图和俯视图如图 所示,则搭成这样的一个几何体至少需要小正方体木块的个数为………………( )A.个 B 。

个C 。

个D 。

个8。

用半径为、圆心角为的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( )A 。

cmB 。

cm C.cm D 。

cm9。

若为整数,则能使也为整数的的个数有 ……………………( )A 。

1个 B.2个 C 。

3个 D 。

4个10。

已知为实数,则代数式的最小值为………………( )A 。

B 。

C 。

D.14。

如图,正方形的边长为cm,正方形的边长为cm .如果正方形绕点旋转,那么、两点之间的最小距离为 cm .15.若规定:①表示大于的最小整数,例如:,;②表示不大于的最大整数,例如:,。

则使等式成立的整数... 16。

如图,、分别是的点,与相交于点,与相交于 点,若△APD ,△BQC , 则阴影部分的面积为 .。

19.将背面相同,正面分别标有数字、、、的四张卡片洗匀后,背面朝上放在桌面上。

(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明。

20。

为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排人,则还剩人;若每处安排人,则有一处的人数不足人,但不少于人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数。

21。

如图,四边形是正方形,点是的中点,是边上不同于点、的点,若,求证:.22。

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

§15.4.2.1 整式的除法(一)教学目标1.单项式除以单项式的运算法则及其应用.2.单项式除以单项式的运算算理.教学重点;单项式除以单项式的运算法则及其应用.教学难点:探索单项式与单项式相除的运算法则的过程.教学过程Ⅰ.提出问题,创设情境问题:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗?[生]这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.继续播放:讨论:(1)计算(1.90×1024÷(5.98×1021).说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;5x3y÷3xy;12a3b2x3÷3ab2.(3)你能根据(2)•说说单项式除以单项式的运算法则吗?Ⅱ.导入新课[师]观察讨论(2)中的三个式子是什么样的运算.[生]这三个式子都是单项式除以单项式的运算.[师]前一节我们学过同底数幂的除法运算,•同学们思考一下可不可以用自己现有的知识和数学方法解决“讨论”中的问题呢?(学生以小组为单位进行探索交流,教师可参与到学生的讨论中,对遇到困难的同学及时予以启发和帮助)讨论结果展示:可以从两方面考虑:1.从乘法与除法互为逆运算的角度.(1)我们可以想象5.98×1021·()=1.90×1024.根据单项式与单项式相乘的运算法则:单项式与单项式相乘,是把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变作为积的因式,可以继续联想:所求单项式的系数乘以5.98•等于1.90,所以所求单项式系数为1.90÷5.98≈0.318,•所求单项式的幂值部分应包含1024÷1021即103,由此可知5.98×1021·(0.318×103)=1.90×1024.所以(1.90×1024)÷(5.98×1021)=0.38×103.(2)可以想象2a·()=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2即2a·(4a2)=8a3.所以8a3÷2a=4a2.同样的道理可以想象3xy·()=6x3y;3ab2·()=12a3b2x3,考虑到6÷3=2,x3÷x=x2,y÷y=1;12÷3=4,a3÷a=a2,b2÷b2=1.•所以得3xy·(2x2)=6x3y;3ab2·(4a2x3)=12a3b2x3.所以6x3y÷3xy=2x2;12a3b2x3÷3ab2=4a2x3.2.还可以从除法的意义去考虑.(1)(1.90×1024)÷(5.98×1021)=242421211.9010 1.90105.9810 5.9810⨯=⨯=0.318×103.(2)8a3÷2a=338822a aa a= =4a.6x3y÷3xy=336633x y x yxy x y= =2x2.12a3b2x3÷3ab2=3233222121233a b x a bab a b= ·x3=4a2x3.上述两种算法有理有据,所以结果正确.[师]请大家考虑运算结果与原式的联系.[生甲]观察上述几个式子的运算,它们有下列共同特征:(1)都是单项式除以单项式.(2)运算结果都是把系数、同底数幂分别相除后作为商的因式;•对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法基础上进行的.[生乙]其实单项式除以单项式可以分为系数相除;同底数幂相除,只在被除式里含有的字母三部分运算.[师]同学们总结得很好.•能用很条理的语言描述单项式与单项式相除的运算法则,而且能抓住法则的实质所在,这是数学能力的提高与体现,老师为你们骄傲.下面我们应用单项式与单项式相除的运算法则解决一些计算问题,•进一步体会运算法则的实质所在.1.例:计算(1)28x4y2÷7x3y(2)-5a5b3c÷15a4b(3)(2x2y)3·(-7xy2)÷14x4y3(4)5(2a+b)4÷(2a+b)2分析:(1)、(2)直接运用单项式除法的运算法则;(3)要注意运算顺序:先乘方,•再乘除,再加减;(4)鼓励学生悟出:将(2a+b)视为一个整体来进行单项式除以单项式的运算.解:(1)28x4y2÷7x3y=(28÷7)·x4-3·y2-1=4xy.(2)-5a5b3c÷15a4b=(-5÷15)a5-4b3-1c=-13ab2c.(3)(2x2y)3·(-7xy2)÷14x4y3=8x6y3·(-7xy2)÷14x4y3=[8×(-7)]·x6+1y3+2÷14x4y3=(-56÷14)·x7-4·y5-3=-4x3y2.(4)5(2a+b)4÷(2a+b)2=(5÷1)(2a+b)4-2=5(2a+b)2=5(4a2+4ab+b2)=20a2+20ab+5b2Ⅲ.随堂练习课本练习1、2.Ⅳ.课时小结1.单项式的除法法则是_________________.2.应用单项式除法法则应注意:①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.Ⅴ.课后作业。

2020年浙江省“三位一体”自主招生数学测试试卷(72)(有答案解析)

2020年浙江省“三位一体”自主招生数学测试试卷(72)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(72)一、选择题(本大题共6小题,共24.0分)1.已知当时,,那么,当时,A. B. C. D. 72.在中,,的平分线交AC于则A. sin BB. cos BC. tan BD. cot B3.四条直线,,,围成正方形现掷一个均匀且各面上标有1,2,3,4,5,6的立方体,每个面朝上的机会是均等的.连掷两次,以面朝上的数为点P的坐标第一次得到的数为横坐标,第二次得到的数为纵坐标,则点P落在正方形面上含边界的概率是A. B. C. D.4.已知函数,当时,则函数的图象可能是下图中的A. B.C. D.5.有一堆形状大小都相同的珠子,其中只有一粒比其它都轻些,其余一样重.若利用天平不用砝码最多两次就找出了这粒较轻的珠子,则这堆珠子最多有A. 8粒B. 9粒C. 10粒D. 11粒6.在中,,,且a、b、c满足:,,,则A. 1B.C. 2D.二、填空题(本大题共6小题,共30.0分)7.已知,化简______ .8.若关于x的方程有四个不同的解,则k的取值范围是______ .9.对于大于或等于2的自然数m的n次幂进行如下方式的“分裂”:仿上,的“分裂”中最大的数是______,若的“分裂”中最小数是21,则______.10.已知,则______.11.如图,在中,,为AB上一点,以O为圆心,OB为半径的圆交BC于D,且与AC相切.则D到AC的距离为______ .12.在十进制的十位数中,被9整除并且各位数字都是0或5的数有______个.三、计算题(本大题共1小题,共11.0分)13.甲,乙两辆汽车同时从同一地点A出发,沿同一方向直线行驶,每辆车最多只能带240L汽油,途中不能再加油,每升油可使一辆车前进12km,两车都必须沿原路返回出发点,但是两车相互可借用对方的油.请你设计一种方案,使其中一辆车尽可能地远离出发地点A,并求出这辆车一共行驶了多少千米?四、解答题(本大题共5小题,共55.0分)14.用1,2,3三个数字组成六位数,若每个数字用两次,相邻位不允许用相同的数字.试写出四个符合上述条件的六位数;请你计算出符合上述条件的六位数共有多少个?15.已知关于x的方程:有一个增根为b,另一根为二次函数与x轴交于P和Q两点.在此二次函数的图象上求一点M,使得面积最大.16.如图,已知锐角的外心为O,线段OA和BC的中点分别为点M,若,求的大小.17.已知实数a,b,c满足:,又,为方程的两个实根,试求的值.18.如图,已知菱形ABCD,,内一点M满足,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线.答案和解析1.【答案】C【解析】解:把,代入得:,即把代入得:故选C.把代入解得,把当成一个整体代入后面式子即可解答.能够根据指数的意义发现代数式之间的关系,然后整体代值计算.2.【答案】A【解析】【分析】此题主要考查角平分线的性质和三角函数的定义.根据角平分线上的任意一点到角的两边距离相等计算.【解答】解:过点D作于E.则.可证≌,.,又,,,.故选A.3.【答案】D【解析】解:连掷两次,以面朝上的数为点P的坐标第一次得到的数为横坐标,第二次得到的数为纵坐标,共种;符合题意的有:共15个,概率是.故选:D.首先确定点P的坐标,根据这个坐标可求出点P落在正方形面上含边界的概率.本题将概率的求解设置于点P的坐标中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率所求情况数与总情况数之比.4.【答案】A【解析】解:因为函数,当时,所以可判断,可知,所以可知,,则,不妨设则函数为函数即则可判断与x轴的交点坐标是,,故选A.当时,,所以可判断,可知,,所以可知,,则,不妨设进而得出解析式,找出符合要求的答案.要考查了从图象上把握有用的条件,准确选择数量关系解得a,b,c的值.从条件可判断出,可知,;所以可知,,,从而可判断后一个函数图象.5.【答案】B【解析】解:这堆珠子最多有9个.将这堆珠子平均分成3组,将其中的两组放在天平的两边进行第一次测量;若天平平衡,那么较轻的珠子在没称的那堆珠子里;若天平不平衡,那么较轻的珠子就在较轻的那堆珠子里;然后将较轻的那堆珠子进行第二次测量,同第一次测量一样,将其中两个放在天平的两端;若天平平衡,那么没称的珠子就是所找的珠子;若天平不平衡,那么较轻的珠子就是所找的珠子.因此最多用两次即可找出较轻的珠子.故选B.已知最多两次就找出这粒较轻的珠子,那么第二次所测的珠子的个数最多为3个;即将其中的两个放在天平的两边,若天平平衡,那么不在天平中的珠子就是最轻的珠子,如果天平不平衡,很较轻的珠子就是所找的珠子.同理,在第一次测量中,最多可测出三组珠子,因此这堆珠子最多有9个.本题的解答关键是找出每次能测量出的珠子堆的最多的个堆数.6.【答案】C【解析】解:,,,,,,,,,这个三角形的形状是直角三角形,,故选:C.利用完全平方公式把这个式子写成平方几个非负数的和的形式,求得a,b,c的值,进而判断出三角形的形状即可.再运用三角函数定义求解即可.本题考查完全平方公式和勾股定理的逆定理在实际中的运用,注意运用几个非负数的和为0,那么这几个数均为0这个知识点是解题关键.7.【答案】【解析】解:,,原式.因为,,又,所以,即.注意当时,.8.【答案】【解析】解:关于x的方程有四个不同的解,,即,解得或,而时,的值不可能等于0,所以.故填空答案:.因为关于x的方程有四个不同的解,所以,即,解得或;又因为方程中一次项中未知数带着绝对值符号,一次项的系数不能为正数,否则等式不成立.所以当时,不符合题意,故取.本题考查了一元二次方程根的判别式的应用,也涉及了绝对值方程的应用,同时注意通过根与系数的关系求出的k值一定要代入到原方程检验,把不符合题意的值舍去.本题最后舍去是最容易出错的地方,要求具有严谨的数学思维.9.【答案】9 5【解析】解:中,最大数是;若的“分裂”中最小数是21,则,或负数舍去.根据所给的数据,不难发现:在中所分解的最大的数是;在中,所分解的最小数是根据发现的规律,则中,最大数是;若的“分裂”中最小数是21,则,或负数舍去.此题首先要根据所提供的数据具体发现规律,然后根据发现的规律求解.规律为:在中所分解的最大的数是;在中,所分解的最小数是.10.【答案】0【解析】解:,,即,整理得,.本题不应考虑直接求出与的值,而应根据已知等式的特点,用配方法进行求解.本题考查了完全平方公式,根据式子特点,等式两边都减去,转化为完全平方式是解题的关键.11.【答案】15【解析】解:连接OD、OE,则;,;,,;;因此OE即为所求的D到AC的距离.,,解得:.故D到AC的距离为15.设AC与的切点为E,连接OE、OD;在等腰和等腰中,可求得,由此可证得;由于AC与相切,所以,那么OE即为所求的D到AC的距离.在中,已知了斜边OA的长和的正弦值,即可求出OE的长.本题考查了切线的性质、等腰三角形的性质、平行线的判定、正弦的概念等知识的综合应用能力.12.【答案】9【解析】解:只能出现0或5,因此必须有9个5,0不能出现在首位,因此共有9个.故答案为9.被9整除的数,数字和一定是9的倍数.只能出现0或5,因此必须有9个5,0不能出现在首位,因此共有9个.解决本题的关键是得到被9整除的十位数的特点.13.【答案】解:设尽可能远离A地的甲汽车共走了x千米,乙汽车共走了y千米,则,且所以x最大为4320千米.设从A到尽可能的离A的距离是m千米,其中借给对方油的那辆车走了n千米后停下,那么千米那么需要用油升,那么就是走这个最远距离一次单趟需要120升油,那么可得出的方案是:甲,乙共同走720千米,乙停下等甲,并且给甲60升汽油,甲再走1440千米后回头与乙会合,乙再给甲60升汽油后,两车同时回到A地.也可画图表示为:如右图.【解析】本题中由于两车相互借对方的油,那么他们所走的距离和,他们所走的距离差由此可得出自变量的取值范围.如果要让一辆车尽可能的远离A地并同时返回,那么就必须让一辆车行驶一段后,把油给对方要刚好留下回A地的油,让对方走掉加的这些油后开始向A地返回,两者碰头后一起回A地.那么这个离A地最远的距离就应该是车行驶一段的距离停下后给对方的油量可行驶的距离要留下回A地的油根据此关系可求出走这个最远距离所需的油量,然后进行分配即可.本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.【答案】解:以1开头的数有等10个数;,131232,123123,123132,121323,121332,132123,132132,123213,132312,213123,213132,312123,312132,212313,213213,312312,313212,213231,312321,231213,231312,321213,321312,231231,231321,321231,321321,232131,323121则共30个符合条件的六位数.【解析】为了让相邻位不允许用相同的数字,可以依次对1、2、3进行排列.如123123,132132等;根据要求,先确定1的位置,再依次确定2,3的位置,从而求解.解决问题的关键是读懂题意,要特别注意:相邻位不允许用相同的数字.15.【答案】解:由题意可得,代入方程得.二次函数为与x轴的交点为,,当点M的横坐标为或或时,的面积可能取最大,经比较可得时,的面积取最大,此时即点,.【解析】方程可化简为方程只有时才有增根,可推出;将代入方程得即,再根据a的值求出c并确定解析式,再根据顶点坐标公式和x的取值范围确定面积最大时M点的坐标.学会巧妙地利用分式方程的性质来解决问题,同时要明确增根问题可按如下步骤进行:确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.16.【答案】解:设,则,;,,,为等腰三角形,;,,.【解析】设,则,根据三角形的外心到三角形三个顶点的距离相等,得根据等腰三角形的三线合一和等边对等角的性质和三角形的内角和定理,分别表示出和,进一步计算出发现等腰三角形则ON是OB的一半,根据直角三角形的性质可以求得度.再求得的大小.综合运用了等腰三角形和直角三角形的性质.要熟练掌握三角形和圆的有关性质才能灵活解题.17.【答案】解:,,,2ab为方程的二根,,由得,或把两组值代入原方程得到的方程相同.即,.【解析】把,2ab分别看作一个整体,利用一元二次方程根与系数的关系解答则可.本题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.【答案】证明:连接PD,DQ,由已知,,∽,∽.,.,又.,又,∽,.,,D,Q三点共线.【解析】求证:P,D,Q 三点共线就是证明平角的问题,可以求证,根据∽,∽,可以得出;进而证明∽,得出,则结论可证.本题是证明三点共线的问题,这类题目可以转化为求证平角的问题.并且本题利用相似三角形的性质,对应角相等.第11页,共11页。

浙江省杭州市萧山区重点达标名校2024届中考联考数学试卷含解析

浙江省杭州市萧山区重点达标名校2024届中考联考数学试卷含解析

浙江省杭州市萧山区重点达标名校2024年中考联考数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( )A .1k <B .1kC .1k >D .1k <2.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .93.对于非零的两个实数a 、b ,规定11a b b a ⊗=-,若1(1)1x ⊗+=,则x 的值为( ) A .32B .13C .12D .12-4.如图图形中是中心对称图形的是( )A .B .C .D .5.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线( ) A .x=1B .x=49C .x=﹣1D .x=﹣496.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 23 23.5 24 24.5 25 销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( ) A .24.5,24.5B .24.5,24C .24,24D .23.5,247.计算:()()223311aa a ---的结果是( )A .()21ax -B .31a -. C .11a - D .31a + 8.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2b a=1 C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根9.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .5210.若kb <0,则一次函数y kx b =+的图象一定经过( ) A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限11.-3的相反数是( ) A .13B .3C .13-D .-312.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( ) A .甲B .乙C .甲乙同样稳定D .无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC 中,AB =5,AC =6,将△ABC 翻折,使得点A 落到边BC 上的点A′处,折痕分别交边AB 、AC 于点E ,点F ,如果A′F ∥AB ,那么BE =_____.14.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.15.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.16.下面是“作已知圆的内接正方形”的尺规作图过程. 已知:⊙O .求作:⊙O 的内接正方形. 作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于AB 的长为半径作弧,两弧分别相交于M 、N 两点;(3)作直线MN 与⊙O 交于C 、D 两点,顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形. 请回答:该尺规作图的依据是_____.17.在直角三角形ABC 中,∠C=90°,已知sinA=,则cosB=_______.18.因式分解3-=.4x x三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.20.(6分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 n根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.21.(6分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.22.(8分)[阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求as的值.23.(8分)解不等式组4623x xxx+>⎧⎪+⎨≥⎪⎩并写出它的所有整数解.24.(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.25.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.26.(12分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.27.(12分)已知:如图,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解题分析】求出不等式组的解集,根据已知得出关于k 的不等式,求出不等式的解集即可. 【题目详解】 解:解不等式组29611x x x k +>+⎧⎨-<⎩,得21x x k <⎧⎨<+⎩.∵不等式组29611x x x k +>+⎧⎨-<⎩的解集为x <2,∴k +1≥2, 解得k≥1. 故选:B . 【题目点拨】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k 的不等式,难度适中. 2、A 【解题分析】 解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3; 故选A .3、D 【解题分析】试题分析:因为规定11a b b a ⊗=-,所以11(1)111x x ⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D.考点:1.新运算;2.分式方程. 4、B 【解题分析】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形. 【题目详解】解:根据中心对称图形的定义可知只有B 选项是中心对称图形,故选择B. 【题目点拨】本题考察了中心对称图形的含义. 5、D 【解题分析】 设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴. 【题目详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab aa ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x =﹣49. 故选D . 【题目点拨】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系. 6、A 【解题分析】【分析】根据众数和中位数的定义进行求解即可得.【题目详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【题目点拨】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键. 7、B 【解题分析】根据分式的运算法则即可求出答案. 【题目详解】 解:原式=()23-31a a -=()23-11a a -()=31a - 故选;B 【题目点拨】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型. 8、D 【解题分析】试题分析:根据图像可得:a <0,b >0,c <0,则A 错误;12ba->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D . 9、C 【解题分析】连接AE ,根据余弦的定义求出AB ,根据勾股定理求出BC ,根据直角三角形的性质求出CD ,根据面积公式出去AE ,根据翻转变换的性质求出AF ,根据勾股定理、三角形中位线定理计算即可. 【题目详解】 解:连接AE ,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,22AB AC-2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×22,∵点D为AB的中点,∴S△ACD=12S△ABC=922,由翻转变换的性质可知,S四边形ACED2AE⊥CD,则12×CD×2,解得,2,∴2,由勾股定理得,22AD AF-72,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【题目点拨】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、D【解题分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k、b异号。

浙教版2019-2020学年重点高中自主招生数学模拟试卷(含答案)

浙教版2019-2020学年重点高中自主招生数学模拟试卷(含答案)

浙教版2019-2020学年重点高中自主招生数学模拟试卷一、选择题:(共15个小题,每小题4分,共60分,将所选答案填在机读卡上)1.(4分)在3.14,,,,,sin60°这6个数中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm23.(4分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x4.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,35.(4分)若代数式y2+y﹣2=0,则代数式y3+4y2+y+2014的值为()A.2020 B.2025 C.2014 D.20156.(4分)下列命题正确的是()A.对角线相等的四边形是矩形B.相邻的两个角都互补的四边形是平行四边形C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.三点确定一个圆7.(4分)已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形8.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.(4分)阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米10.(4分)如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF =90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF 上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是()A.B.C.D.11.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B.C.D.12.(4分)如图,AB是圆O的直径,弦AC,BD相交于点E,AC=BD,若∠BEC=60°,C是的中点,则tan∠ACD值是()A.B.C.D.13.(4分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.314.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.315.(4分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4二、填空题(共6个小题,每小题4分,共24分,将答案直接写在横线上)16.(4分)已知关于x的方程﹣2=有一个正数解,则m的取值范围.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.18.(4分)如图,在△ABC中,∠C=90°,AB=10,tan A=,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于.19.(4分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.20.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.21.(4分)当n=1,2,3,…,2017时.则所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和为.三、解答题(共6个小题,共66分,解答时需写出必要的步骤和文字说明)22.(10分)(1)计算:﹣22﹣+|1﹣4sin45°|+(1﹣)0+(2)先化简,再求值:÷(a+)•(+),其中a,b是方程x2﹣2﹣1=0的两个根.23.(10分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能情况?请你列举出来.(2)你认为甲、乙两采用的方案,哪一种方案使自己乘坐舒适程度为上等的车的可能性大?为什么?24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.(10分)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x 轴交双曲线于点E,交BD于点C.(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.26.(12分)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,P A 与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.27.(14分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=4a,连接KB并延长交抛物线于点Q,求PQ的长.参考答案与试题解析一、选择题:(共15个小题,每小题4分,共60分,将所选答案填在机读卡上)1.(4分)在3.14,,,,,sin60°这6个数中,无理数的个数是()A.1 B.2 C.3 D.4【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.【解答】解:在3.14,,,,,sin60°这6个数中,无理数有:,,sin60°,共3个.故选:C.【点评】此题主要考查了无理数的定义.解决问题的关键是会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(4分)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm2【分析】根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.【解答】解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选:A.【点评】本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.3.(4分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【分析】采取取特殊值法,取x=,求出x2和的值,再比较即可.【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.【点评】本题考查了不等式的性质,有理数的大小比较的应用,能选择适当的方法比较整式的大小是解此题的关键.4.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,3【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案.【解答】解:∵这组数据的平均数是37,∴编号3的得分是:37×5﹣(38+34+37+40)=36;被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;故选:B.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.(4分)若代数式y2+y﹣2=0,则代数式y3+4y2+y+2014的值为()A.2020 B.2025 C.2014 D.2015【分析】由代数式y2+y﹣2=0,求得y的值,带入后即可.【解答】解,∵y2+y﹣2=0,∴y=1或﹣2将y值代入y3+4y2+y+2014得2020,故选:A.【点评】本题主要考查一元二次方程的求解方法.熟练掌握一元二次方程的求解方法是解答本题的关键6.(4分)下列命题正确的是()A.对角线相等的四边形是矩形B.相邻的两个角都互补的四边形是平行四边形C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.三点确定一个圆【分析】根据矩形、平行四边形、垂径定理、过三点的圆的有关知识即可作出判断.【解答】解:A、对角线相等的四边形不一定是矩形,例如等腰梯形;B、正确;符合平行四边形的判定定理;C、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;D、不在同一直线上的三点确定一个圆;故选:B.【点评】要明确命题的概念:一般的,在数学中我们把用语言、符号或式子表达的可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.7.(4分)已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形【分析】把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【解答】解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选:C.【点评】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.8.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.【点评】此题考查了一元二次方程根的判别式,一元二次方程根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次不等式的解法.9.(4分)阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米【分析】作辅助线,连接AE和BD,根据题意知:=,可将窗口底边离地面的高BC求出.【解答】解:连接AE、BD,∵光是沿直线传播的,∴AE∥BD,∴△BCD∽△ACE,∴=即=解得:BC=4.故选:A.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可.10.(4分)如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF =90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF 上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是()A.B.C.D.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:本题的运动过程应分两部分,从开始到两三角形重合,另一部分是从重合到分离;在第一部分,三角形ABC在直线EF上向右作匀速运动,则重合部分面积的增加速度不断变快;而另一部分面积的减小速度越来越小.故选:C.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B.C.D.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故选:B.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.12.(4分)如图,AB是圆O的直径,弦AC,BD相交于点E,AC=BD,若∠BEC=60°,C是的中点,则tan∠ACD值是()A.B.C.D.【分析】连接AD、BC,根据圆周角定理,三角函数的定义即可得到结果.【解答】解:连接AD、BC.∵AB是圆O的直径,∴∠ADB=∠ACB=90°.在Rt△ADB与Rt△BCA中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC是等腰三角形,∵∠BEC=60°是△DEC的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.【点评】本题考查了圆周角定理即同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识.13.(4分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD 以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE+S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选:C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.14.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3【分析】大致画出两抛物线,注意取值范围,可得到它们的交点为(3,3),所以直线y=3与两抛物线有三个交点,则得到k=3.【解答】解:如图,当y=k成立的x值恰好有三个,即直线y=k与两抛物线有三个交点,而当x=3,两函数的函数值都为3,即它们的交点为(3,3),所以k=3.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y 随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.15.(4分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF,连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系,过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG =4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△F AD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.故①正确;∴DG=GE=DF=EF.∴四边形EFDG为菱形,故②正确;如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DF A,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.故③正确;如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△F AD.∴=,即=,∴GH=,∴BE=AD﹣GH=4﹣=.故④正确.故选:D.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.二、填空题(共6个小题,每小题4分,共24分,将答案直接写在横线上)16.(4分)已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3.【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.18.(4分)如图,在△ABC中,∠C=90°,AB=10,tan A=,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于 4.8.【分析】连接EF,CP,由题意可得EF=CP,AC=8,BC=6,根据垂线段最短可得当CP⊥AB 时,CP的长度最小,即可求EF的最小值.【解答】解:如图:连接EF,CP∵∠ACB=90°,AB=10,tan A=,∴=,BC2+AC2=AB2=100∴BC=6,AC=8∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°∴四边形ECFP是矩形∴EF=CP∴当CP⊥AB时,CP的长度最小,即EF的长度最小.即此时,S△ABC=AC×BC=×AB×CP∴CP=4.8∴EF最小值为4.8故答案为:4.8【点评】本题考查了矩形的性质和判定,垂线段最短,锐角三角函数,熟练运用矩形的性质是本题的关键.19.(4分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行3次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.20.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.【分析】过P作PQ垂直于MN,利用三线合一得到Q为MN中点,求出MQ的长,在直角三角形OPQ中,利用30度所对的直角边等于斜边的一半求出OQ的长,由OQ﹣MQ求出OM的长,然后根据平行线分线段成比例即可得到结论.【解答】解:过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=,在Rt△OPQ中,OP=10,∠AOB=60°,∴∠OPQ=30°,∴OQ=5,则OM=OQ﹣QM=,∵CD∥ON,∴,∴==,故答案为;.【点评】此题考查了平行线分线段成比例,勾股定理,等腰三角形的性质,以及含30度直角三角形的性质,熟练掌握勾股定理是解本题的关键.21.(4分)当n=1,2,3,…,2017时.则所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和为.【分析】由题意可求抛物线与x轴交点(,0),(,0),即可求二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度=﹣,则可求线段和.【解答】解:∵y=(n2+n)x2﹣(2n+1)x+1=(nx﹣1)[(n+1)x﹣1]∴抛物线与x轴交点(,0),(,0)∴二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度=﹣当n=1,2,3,…,2017时,所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和=+…+=1﹣=故答案为:【点评】本题考查了抛物线与x轴的交点,找出图象被x轴所截得的线段长度的规律是本题的关键.三、解答题(共6个小题,共66分,解答时需写出必要的步骤和文字说明)22.(10分)(1)计算:﹣22﹣+|1﹣4sin45°|+(1﹣)0+(2)先化简,再求值:÷(a+)•(+),其中a,b是方程x2﹣2﹣1=0的两个根.【分析】(1)根据二次根式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再由根与系数的关系得出ab=﹣1,代入计算可得.【解答】解:(1)原式=﹣4﹣+|1﹣4×|+1++1=﹣4﹣+2﹣1+1++1=﹣3+;(2)原式=÷•=﹣••=﹣,∵a,b是方程x2﹣2﹣1=0的两个根,∴ab=﹣1,则原式=1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算顺序和运算法则,一元二次方程根与系数的关系.23.(10分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能情况?请你列举出来.(2)你认为甲、乙两采用的方案,哪一种方案使自己乘坐舒适程度为上等的车的可能性大?为什么?【分析】(1)利用列举法整数展示所有6种可能的结果;(3)利用列表法展示甲乙乘车的所有结果,然后计算他们乘坐上等车的概率,再比较概率的大小.【解答】解:(1)三辆车开来的先后顺序有6种可能:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);(2)列表如下:甲乘上、中、下三辆车的概率都是;而乙乘上等车的概率==,所以乙乘坐舒适程度为上等的车的可能性大.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【分析】(1)根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x 为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.25.(10分)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A 点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x 轴交双曲线于点E,交BD于点C.(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.【分析】(1)根据B点的横坐标为﹣8,代入中,得y=﹣2,得出B点的坐标,即可得出A点的坐标,再根据k=xy求出即可;(2)根据S矩形DCNO=2mn=2k,S△DBO=,S△OEN=,即可得出k的值,进而得出B,C点的坐标,再求出解析式即可.【解答】解:(1)∵D(﹣8,0),∴B点的横坐标为﹣8,代入中,得y=﹣2.∴B点坐标为(﹣8,﹣2).∵A、B两点关于原点对称,∴A(8,2).∴k=xy=8×2=16;(2)∵N(0,﹣n),B是CD的中点,A、B、M、E四点均在双曲线上,∴mn=k,B(﹣2m,﹣),C(﹣2m,﹣n),E(﹣m,﹣n).S矩形DCNO=2mn=2k,S△DBO=,S△OEN=,∴S四边形OBCE=S矩形DCNO﹣S△DBO﹣S△OEN=k=4.∴k=4.∵B(﹣2m,﹣)在双曲线与直线上∴得(舍去)∴C(﹣4,﹣2),M(2,2).设直线CM的解析式是y=ax+b,把C(﹣4,﹣2)和M(2,2)代入得:解得.∴直线CM的解析式是.【点评】此题主要考查了待定系数法函数解析式以及一次函数与反比例函数交点的性质,根据四边形OBCE的面积为4得出k的值是解决问题的关键.26.(12分)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,P A 与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到﹣x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【解答】解:(1)连接CO、CM,如图1所示.∵AO是小半圆M的直径,∴∠ACO=90°即CO⊥AP.∵OA=OP,∴AC=PC.∵AM=OM,。

2024届杭州市萧山区中考一模数学试卷(含答案)

2024届杭州市萧山区中考一模数学试卷(含答案)

2024届杭州市萧山区中考一模数学试卷一、选择题:本题有 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的相反数是()A.12B.-12C.-2D.22.据杭州市文化广电旅游局统计,今年清明假期三天,全市共接待游客3940100人次.则3940100用科学计数法可表示为()A.3.9401×104B.3.9401×105C.3.9401×106D.3.9401×1073.如图是底面为正方形的直四棱柱,下面关于它的三个视图的说法正确的是()A.主视图与俯视图相同 B.主视图与左视图相同C.左视图与俯视图相同D.三个视图都相同4.下列计算或变形正确的是()A.2a +3b =6abB.1a +1b =2a +bC.a +b =a +b D.a 2⋅b 2=ab 25.教育部“减负三十条”规定初中生回家作业时间不超过90分钟.下表是某校某班学生一段时间日平均回家作业时间统计表:日平均回家作业时间(分)a ≤6060<a ≤9090<a ≤120a >120人数415156则该班学生日平均同家作业时间的中位数落在()A.a ≤60B.60<a ≤90C.90<a ≤120D.a >1206.已知a ,b ,m 是实数,且a >b ,那么有()A.a 2+m >b 2+mB.a +m 2>b +m 2C.a 2m >b 2mD.am 2>bm 2主视方向(第3题)7.如图,AD ,BE 均为△ABC 的高,且AB =AC ,连结DE 交AB 于点O ,若∠C =28°,则∠OEB 的度数为()A.62°B.60°C.58°D.56°A BCD EO(第7题)ABC DO (第8题)8.如图,CD 是以AB 为直径的半圆的一条弦,且CD ⎳AB ,∠CAD =α.设△ACD 的面积为S 1,阴影部分面积为S 2,则S1S 2=()A.90sin2ααπB.90sin ααπC.180sin2ααπD.180sin ααπ9.已知二次函数y =2x -k x -k +3 的图象与其向上平移m 个单位所得的图象都与x 轴有两个交点,且这四个交点中每相邻两点间的距离都相等,则m 的值为()A.2B.3C.4D.510.在尺规作图专题复习课上,老师出了一个作图题:“如图,等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BD 是△ABC 的中线,用尺规作图作出线段AB 的黄金分割点.”小方和小程前面的作法都是:“以D 为圆心,AD 为半径画弧,交BD 于点E .”,后面的作法不同.小方的作法为:以B 为圆心,BE 为半径画弧,交AB 于点M ,则M 为线段AB 的黄金分割点;小程的作法为:连结CE 并延长交AB 于点N ,则N 为线段AB 的黄金分割点.则()A BCDEA BCDE(第10题)A.小方、小程都正确B.小方、小程都错误C.小方错误,小程正确D.小方正确,小程错误二、填空题:本题有6个小题,每小题3 分,共 18 分.11.因式分解:m 2-4=.12.对于“任意抛掷一枚均匀的硬币正面朝上的概率”这一问题,许多科学家曾做过成千上万次的实验,部分结果如表.由表可推得:当我们在相同条件下重复实验30000次时,硬币正面朝上的次数约为.试验者抛掷次数n 正面朝上的次数m频率mn棣莫弗201810610.518布丰404020480.5069费勒10000 4.9790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005(第12题)(第13题)ABCDE 13.如图,AB ⎳DE ,∠C =78°,则∠B +∠D =14.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x 尺,则可列方程.15.在平面直角坐标系xOy 中,二次函数y =x 2-2mx +m 2+1的图象与y 轴交于点A ,点B x 1,y 1 是该函数图象上任意一点,且不与点A 重合,直线y =kx +b k ≠0 经过A ,B 两点.若x 1<-3时,总有k <0,则m 的取值范围为.16.如图,点E 是正方形ABCD 中BC 边的中点,∠GED =45°,则AG ∶GD =.ABCDE G(第16题)三、解答题:本题有8个小题,共 72分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1)计算:2-1 2+8.(2)解方程:x x +1-31+x=3.18.(本题满分6分)化简:3n -4 -*n -2方方在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是4,请计算(3n -4)-4(n -2).(2)如果化简的结果是单项式,求被污染的数字.19.(本题满分8分)某中学对全校九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的考试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)将条形统计图补充完整.(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角为多少度?(3)学校九年级共有600人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩类别可以达到“合格”(不包括“合格”)以上?510152025人数成绩类别优良合格待合格优良44%待合格16%合格20%(第19题)10228根据以下素材,探索完成任务.探索铁块放在桌面上,桌子能否承受?素材1如图,把铁块放在桌面上,则桌面所承受的压力与铁块的重力相等.素材2重力=质量×重力系数;密度=质量体积;压强=压力受力面积,铁的密度为7.8×103kg/m3,重力系数g≈10N/kg.素材3假设桌面所能承受的最大压强为104Pa.长方体铁块的长、宽、高分别为50cm,20cm,10cm.问题解决任务1求铁块的重力为多少N?任务2直接写出铁块对桌面的压强P(Pa)关于受力面积S m2的函数表达式.任务3利用函数的性质判断能否把这个铁块放在这张桌面上?如图,菱形ABCD 中,F 是CD 上一动点,过F 作FG ⊥AC 交BC 于点G ,垂足为E ,连结AF ,AG .(1)求证:AF =AG .(2)当∠DAB =100°,AF =AD 时,试求∠AFG 的度数.ABCDE FG(第21题)22.(本题满分10分)已知二次函数y =m x -2 2-3m >0 的图象与x 轴交于点A a ,0 ,B b ,0 (1)当a =-3时,求b 的值.(2)当a <0<b 时,求m 的取值范围.(3)若P a +1,p ,Q b +1,q 两点也都在此函数图象上,求证:p +q >0.23.(本题满分12分)综合与实践某次“综合与实践”活动课主题为:研究矩形背景下的一类折叠问题,即折痕为过矩形的其中一个顶点.已知矩形ABCD 中,AB =12AD ,E 是AD 上一点(不与点D 重合),△CDE 沿CE 折叠,点D 的对应点D 落在矩形内或矩形的边上.【特殊位置研究】(1)如图1,若点D 恰好落在线段BE 上,试求∠DCE 的度数.【一般路径探索】(2)如图2,已知AB =4,连结AD ,试求AD 的最小值.【图形拓展深化】(3)在(2)的条件下,连结AD ,BD ,若△ABD 是等腰三角形,试求DE 的长.ABCDED图1ABCD图2DE(第23题)24.(本题满分12分)如图1,已知锐角△ABC 内接于⊙O ,P 为△ABC 的内心,连结AP 并延长分别交BC ,⊙O 于点D ,E ,连结BE ,BP .(1)求证:BE =EP .(2)若DE =6,DP =2,BP =4,试求BEAC的值.(3)若将条件“锐角△ABC 内接于⊙O ”改为“Rt △ABC 内接于⊙O ,BC 为直径”,如图2,过点P 作PF ⊥BC 于点F ,设Rt △ABC 的外接圆半径为R ,PF =r ,AE =m ,试问R +rm的值是否是定值?若是,请求出这个定值;若不是,请说明理由.ABCD EOP图1ABCD EF OP图2(第24题)参考答案一、选择题:本题有 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 CCBDC 6-10 BAACA二、填空题:本题有6个小题,每小题3 分,共 18 分. 11. (m+2)(m-2) 12. 15000 13. 282° 14. x 2+9=(10-x)2 15. m >0或m <- 16. 1:5三.解答题:本题有8个小题,共 72分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分6分)(1) 3 (2) x=-3 经检验是方程的解 18.(本题满分6分)(1) -n+4 (2) 被污染的数字是3或2 19.(本题满分8分) (1)(2) 72° (3) 2人 20.(本题满分8分)任务 1:780N 任务任务3:∵p 随S 的增大而减小 ∴当p ≤104时,S∵50x10=500cm ²<780cm ²;20x10=200cm²<780cm²;50x20=1000cm²>780cm². ∴只有将铁块最大面(长50cm,宽20cm)放在桌面上,桌面才能承受.21.(本题满分10分)(1)证明:∵菱形ABCD ∴∠FCE=∠GCE∵FG⊥AC ∴∠FEC=∠GEC=90º∵AC=AC ∴△CEF≌=△CEG∵EF=EG ∴AC是FG的垂直平分线∴AF=AG(2) 60°22.(本题满分10分)(3)证明:把A(a,0),P(a+l,p)、Q(b+1,q)代入y=m(x-2)2-3 得:ma²-4am+4m-3=0 p=m(a+1-2)²-3=m a²-2am+m-3q=m(b+1-2)2-3 =mb2-2bm+m-3由b=4-a 得q=m(4-a)2-2(4-a)m+m-3=ma²-6am+9m-3∴p+q=2ma²-8am+10m-6=2(ma²-4am+4m-3)+2m=2m∴m>0 ∴p+q>023.(本题满分12分)综合与实践(1) 15° (3) 或 424.(本题满分12分)(1) 证明:∵点P为△ABC的内心∴∠PAC=∠PAB ∠PBA=∠PBC又∠EBC=∠EAC ∠EBP=∠EBC+∠PBC ∠BPE=∠PBA+∠PAB∴∠EBP=∠EPB ∴BE=EP(2)理由:如图2,过点E作EH⊥AC于点H,EQ⊥AB于点Q,连接EC易知:四边形AQEH是正方形,△EBQ≌△ECH∵AB+AC=2AH=AE 又R==。

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

2013-2014学年七年级实验班数学期中考试答题卷一、 选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空(每空3分共24分)11. 12. 13. 14.15. 16. °17.______________________18._________________________________三、解答题(第19题8分,第20、21题各10分,第22题12分 ,第23题6分共46分)19.如图,O 是直线AB 上一点,OD 平分∠AOC . (1)若∠AOC =70°,请求出∠AOD 和∠BOC 的度数. (2)若∠AOD 和∠DOE 互余,且∠AOD=21∠DOE ,求出∠AOD 和∠COE 的度数.(第19题)EABC D O学号 姓名 班级 学校20.计算、化简求值题:(1)解方程 4213(2)2()3324x x x ⎡⎤--=⎢⎥⎣⎦(2)先化简再求值:已知()23260a b b c a -+++-=,求代数式2222()3()3a abc a abc ---的值21.已知数轴上点A 、B 、C 所表示的数分别是-3,+7,x .(1)求线段AB 的长;(2)若AC =4,点M 、N 分别是AB 、AC 的中点,求线段MN 的长度.22.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。

由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。

生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。

(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂需要招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么该厂有哪几种招聘新工人及抽调熟练工的方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资。

2012年萧山中学自主招生数学试卷附答案

2012年萧山中学自主招生数学试卷附答案

2012年萧中自主招生推荐生文化考试数 学 试 题 卷考生须知:1.本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号. 3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. 4.考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.下列计算中,结果正确的是( )A . 532)(a a =B .1120-=-C .2221=D .326a a a =÷ 2.如图,在4×4的正方形网格中,cos α=( ) A .12B .2C .552D .553. 如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的直径等于( ) A .8 B. 2 C. 10 D. 5 4.若a 、b 均为正整数,且32,7<>b a 则b a +的最小值...是( ) A. 3 B. 4 C. 5 D. 65.如图,下列四个几何体中,其各自的主视图、左视图、俯视图中有两个 相同,而另一个不同的是( )①正方体 ②球 ③圆锥 ④圆柱 A .①② B .②③ C .②④ D .③④6.杭州市某公交站每天6:30~7:30开往某学校的三辆班车票价相同,但车的舒适程度 不同.学生小杰先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适 状况,若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车, 他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,则小杰坐上优等车的 概率是( ) A.21 B. 31 C. 43D. 837.下列说法错误..的有( )个 ①无理数包括正无理数、零、负无理数;②4100.3⨯精确到千位,有2个有效数字 ③命题“若x 2= 1,则x =1”的逆命题是真命题;④若等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的底角为30°和60°;⑤若两数和为6-,两数积为1-,则以这两数为根的一元二次方程的一次项系数为 6.(第2题图)A. 1B. 2C. 3D. 48.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则 在该正方形内,这张圆形纸片“能接触到的部分”的面积是( ) A.π-4 B.π C. π+12 D. 415π+9.边长为1的正方形OABC 的顶点A 在x 正半轴上,点C 在y将正方形OABC 绕顶点O顺时针旋转75°,如图所示,使点B 恰好落 在函数)0(2<=a ax y 的图像上,则a 的值为( ) A.2-B.1-C.423-D. 32- 10.已知在⊿ABC 中,∠BAC=90°,M 是边BC 的中点,BC 的延长线上的点N 满足A M ⊥AN .⊿ABC 的内切圆与边AB 、AC 切点分别为E 、F ,延长EF 分别与AN 、BC 的延长线交于P 、Q 则QNPN =( ) A. 1 B. 5.0 C. 2 D. 5.1 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11.分解因式:822-x = .12.甲乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1、;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是 . 13.若二次函数)0(2≠++=a c bx ax y 图像的最低点的坐标为)1,1(-,则关于x 的一元二次方程12-=++c bx ax 的根为 . 14.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _. 15.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下, 剪下一个边长等于矩形宽度的正方形(称为第一次操作); 再把剩下的矩形如图那样折一下,剪下一个边长等于此时 矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为______.16.若D 是等边三角形ABC 的内心,点E ,F 分别在AC 、BC 上,且满足CD=3,60=∠DEF ,记⊿DEF 的周长为C ,则C 的取值范围是 _. 三、 全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(本题满分6分)先化简,再求值:242x x-÷)223(+--x x x x ,其中x =3-4.(第14题图 )18.(本题满分8分)如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并说明反比例函数的增减性; (3)直接写出当y 2<2时自变量x 的取值范围.19.(本题满分10分)一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1) 在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2)若图中自左至右各组的跳绳平均次数分别为137 次,146次,156次,164次,177次.小丽按以下方法计算参加测试学生跳绳次数的平均数是: (137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?20.(本题满分10分)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s 手机销售,已知Iphone4每台进价为3500元,Iphone4s 每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a 元,而Iphone4s 按销售价4400元销售,如要使(2)中所有方案获利相同,a 应取何值? 21.(本题满分10分)定义{},,a b c 为函数2y a x b x c =++的“特征数”.如:函数223y x x =-+的“特征数”是{}1,2,3-,函数23y x =+的“特征数”是{}0,2,3,函数y x =-的“特征数”是{}0,1,0-(1)将“特征数”是⎪⎭⎪⎬⎫⎩⎨⎧1,33,0的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是 ;(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线3=x 分别交于D 、C 两点,在给出的平面直角坐标系中画出图形,判断以A 、B 、C 、D 四点为顶点的四边形形状,并说明理由;(第19题图)(次)九年级若干名学生1分钟跳绳次数频数分布直方图(3)若(2)中的四边形与“特征数”是211,2,2b b ⎧⎫-+⎨⎬⎩⎭的函数图象的有交点,试写出满足条件的实数b 的一个值.22.(本题满分10分) 如图,C 为以AB 为直径的⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为点D .(1)求证:AC 平分∠BAD ;(2)过点O 作线段AC 的垂线OE ,垂足为点E (尺规作图,保留作图痕迹,不写作法);(3)若CD =4,AC =45,求垂线段OE 的长.23.(本题满分12分)已知二次函数)0(2222≠--=m m mx x y 的图像与x 轴交于A 、B 两点,它的顶点在以AB 为直径的圆上.(1)证明:A 、B 是x 轴上两个不同的交点; (2)求二次函数的解析式;(3)设以AB 为直径的圆与y 轴交于C ,D ,求弦CD 的长.A OB CD2012年萧中自主招生推荐生文化考试数学答题卷一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有6小题,每小题4分,共24分)11. 12. 13. 14. 15.16. 三.解答题(本题有8小题,共66分) 17.(本小题满分6分)242x x -÷)223(+--x x x x ,其中x =3-418. (本小题满分8分) (1) (2) (3)19.(本小题满分10分)(1)(2)(3)20.(本小题满分10分)(1)(2)(3)(第19题图)(次) 九年级若干名学生1分钟跳绳次数频数分布直方图21.(本小题满分10分) (1)(2)(3)22. (本小题满分10分)(1)(2)(3)A O BCD23.(本小题满分12分)(1)(2)(3)2012年萧中自主招生推荐生文化考试数学评分标准一.选择题:(本大题10个小题,每小题3分,共30分)二.填空题:(本大题6个小题,每小题4分,共24分) 11、)2)(2(2-+x x 12、 乙 13、121==x x 14、58 15、5343or 16、23333+≤≤C 三.解答题(本题有8小题,共66分)17.解:原式)2)(2()4(2)2)(2(2+-+÷+-=x x x x x x x)4(2)2)(2()2)(2(2++-⋅+-=x x x x x x x ………………2分)4(1+-=x ………………2分当43-=x 时,原式=33-………………2分 18.解:(1))4,2('P ………………2分 (2)xy 8=………………2分 在每个象限内,y 随着x 的增大而减小………………1分 (3)0<x 或4>x ………………3分 19.解:(1)画出频数分布折线图………………2分24.05012=………………1分 (2)不正确………………1分501217720164815661464137⨯+⨯+⨯+⨯+⨯………………3分(3)8人………………3分20.解:(1)设今年甲型号手机每台售价为x 元,由题意得,xx 8000005090000=+.解得x =4000.经检验x =4000是方程的解.4000+500=4500 故一月Iphone4手机每台售价为4500元.………………4分(不检验扣1分) (2)设购进Iphone4手机m 台,由题意得,74000≤3500m +4000(20-m )≤76000,8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案.………………3分 (3)设总获利W 元,则W =(500-a )m +400(20-m ),W =(100-a )m +8000.所以当a =100时,(2)中所有的方案获利相同.………………3分21.(1)133-=x y ………………2分 (2)图………………2分………………4分(3)26322+≤≤-b ,在这范围内给分………………2分 22. 解:(1)连接OC ,∵CD 切⊙O 于点C ,∴OC ⊥CD ;又∵AD ⊥CD ;∴OC ∥AD∴∠OCA =∠DAC ;∵OC =OA ;∴∠OCA =∠OAC ;∴∠OAC =∠DAC∴AC 平分∠DAB ………………3分 (2)解:点O 作线段AC 的垂线OE 如图所示………………2分(3)解:在Rt △ACD 中,CD =4,AC =45,∴AD =AC 2-CD 2=(45)2-42=8 ………………1分∵OE ⊥AC ,∴AE =12AC =2 5 ………………2分 ∵∠OAE =∠CAD ,∠AEO =∠ADC ,∴△AEO ∽△ADC ∴OE CD =AE AD ∴OE =AE AD ×CD =258×4=5即垂线段OE 的长为 5 ………………3分 23.(1)01284222>=+=∆m m m ,所以A 、B 是x 轴上两个不同的交点………3分(2))3,(,322m m m AB -=顶点,所以33,332±==m m m ………………4分 323322-±=x x y ………………2分 (3)因为⊿ABC 为直角三角形,由射影定理得,322=⨯=OB OA OC ,.3622==OC CD ………………3分。

浙教版2018-2019学年重点高中自主招生数学模拟试卷(七)及参考答案

浙教版2018-2019学年重点高中自主招生数学模拟试卷(七)及参考答案
浙教版2018-2019学年重点高中自主招生数学模拟试卷(七)
一 、 选 择 题 ( 共 8小 题 , 4*8=32)
1. 如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,A E于H,G,则BH:HG:GM等于( )
A . 3:2:1 B . 5:3:1 C . 25:12:5 D . 51:24:10 2. 若一直角三角形的斜边长为c,内切圆半径是r,则内切圆的面积与三角形面积之比是( )
的一个数是( ) A.3B.4C.5D.6
6. 某种品牌的同一种洗衣粉有A,B,C三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元 、2.8元、1.9元.A,B,C三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A,B ,C三种包装的洗衣粉各1200千克,获得利润最大的是( )
请加以证明;如果不相似,只要求写出结论,不要求写出理由.
20. 甲,乙两辆汽车同时从同一地点A出发,沿同一方向直线行驶,每辆车最多只能带240L汽油,途中不能再加油,每 升油可使一辆车前进12km,两车都必须沿原路返回出发点,但是两车相互可借用对方的油.请你设计一种方案,使其中一 辆车尽可能地远离出发地点A,并求出这辆车一共行驶了多少千米?
21. 如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的 半径为 ,AB=4.
(1) 求点B,P,C的坐标; (2) 求证:CD是⊙P的切线; (3) 若二次函数y=﹣x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数 y=2x+b值的x的取值范围. 22. 已知关于x的方程7x3﹣7(p+2)x2+(44p﹣1)x+2=60p(*) ①求证:不论p为何实数时,方程(*)有固定的自然数解,并求这自然数. ②设方程另外的两个根为u、v,求u、v的关系式. ③若方程(*)的三个根均为自然数,求p的值. 参考答案 1. 2. 3. 4. 5.

浙教版2019-2020学年重点高中自主招生数学模拟试卷(解析版)

浙教版2019-2020学年重点高中自主招生数学模拟试卷(解析版)

浙教版2019-2020学年重点高中自主招生数学模拟试卷一、选择题:(共15个小题,每小题4分,共60分,将所选答案填在机读卡上)1.(4分)在3.14,,,,,sin60°这6个数中,无理数的个数是()A.1 B.2 C.3 D.42.(4分)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm23.(4分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x4.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,35.(4分)若代数式y2+y﹣2=0,则代数式y3+4y2+y+2014的值为()A.2020 B.2025 C.2014 D.20156.(4分)下列命题正确的是()A.对角线相等的四边形是矩形B.相邻的两个角都互补的四边形是平行四边形C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.三点确定一个圆7.(4分)已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形8.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠09.(4分)阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米10.(4分)如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF =90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF 上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是()A.B.C.D.11.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B.C.D.12.(4分)如图,AB是圆O的直径,弦AC,BD相交于点E,AC=BD,若∠BEC=60°,C是的中点,则tan∠ACD值是()A.B.C.D.13.(4分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.314.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.315.(4分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4二、填空题(共6个小题,每小题4分,共24分,将答案直接写在横线上)16.(4分)已知关于x的方程﹣2=有一个正数解,则m的取值范围.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.18.(4分)如图,在△ABC中,∠C=90°,AB=10,tan A=,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于.19.(4分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.20.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.21.(4分)当n=1,2,3,…,2017时.则所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和为.三、解答题(共6个小题,共66分,解答时需写出必要的步骤和文字说明)22.(10分)(1)计算:﹣22﹣+|1﹣4sin45°|+(1﹣)0+(2)先化简,再求值:÷(a+)•(+),其中a,b是方程x2﹣2﹣1=0的两个根.23.(10分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能情况?请你列举出来.(2)你认为甲、乙两采用的方案,哪一种方案使自己乘坐舒适程度为上等的车的可能性大?为什么?24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.(10分)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x 轴交双曲线于点E,交BD于点C.(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.26.(12分)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,P A 与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.27.(14分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=4a,连接KB并延长交抛物线于点Q,求PQ的长.参考答案与试题解析一、选择题:(共15个小题,每小题4分,共60分,将所选答案填在机读卡上)1.(4分)在3.14,,,,,sin60°这6个数中,无理数的个数是()A.1 B.2 C.3 D.4【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.【解答】解:在3.14,,,,,sin60°这6个数中,无理数有:,,sin60°,共3个.故选:C.【点评】此题主要考查了无理数的定义.解决问题的关键是会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.(4分)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm2【分析】根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.【解答】解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选:A.【点评】本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.3.(4分)当0<x<1时,x,,x2的大小顺序是()A.<x<x2B.x<x2<C.x2<x<D.<x2<x【分析】采取取特殊值法,取x=,求出x2和的值,再比较即可.【解答】解:∵0<x<1,∴取x=,∴=2,x2=,∴x2<x<,故选:C.【点评】本题考查了不等式的性质,有理数的大小比较的应用,能选择适当的方法比较整式的大小是解此题的关键.4.(4分)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:编号12345方差平均成绩得分3834■3740■37那么被遮盖的两个数据依次是()A.35,2 B.36,4 C.35,3 D.36,3【分析】根据平均数的计算公式先求出编号3的得分,再根据方差公式进行计算即可得出答案.【解答】解:∵这组数据的平均数是37,∴编号3的得分是:37×5﹣(38+34+37+40)=36;被遮盖的方差是:[(38﹣37)2+(34﹣37)2+(36﹣37)2+(37﹣37)2+(40﹣37)2]=4;故选:B.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.(4分)若代数式y2+y﹣2=0,则代数式y3+4y2+y+2014的值为()A.2020 B.2025 C.2014 D.2015【分析】由代数式y2+y﹣2=0,求得y的值,带入后即可.【解答】解,∵y2+y﹣2=0,∴y=1或﹣2将y值代入y3+4y2+y+2014得2020,故选:A.【点评】本题主要考查一元二次方程的求解方法.熟练掌握一元二次方程的求解方法是解答本题的关键6.(4分)下列命题正确的是()A.对角线相等的四边形是矩形B.相邻的两个角都互补的四边形是平行四边形C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.三点确定一个圆【分析】根据矩形、平行四边形、垂径定理、过三点的圆的有关知识即可作出判断.【解答】解:A、对角线相等的四边形不一定是矩形,例如等腰梯形;B、正确;符合平行四边形的判定定理;C、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;D、不在同一直线上的三点确定一个圆;故选:B.【点评】要明确命题的概念:一般的,在数学中我们把用语言、符号或式子表达的可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.7.(4分)已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形【分析】把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【解答】解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选:C.【点评】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.8.(4分)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.【点评】此题考查了一元二次方程根的判别式,一元二次方程根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次不等式的解法.9.(4分)阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米【分析】作辅助线,连接AE和BD,根据题意知:=,可将窗口底边离地面的高BC求出.【解答】解:连接AE、BD,∵光是沿直线传播的,∴AE∥BD,∴△BCD∽△ACE,∴=即=解得:BC=4.故选:A.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可.10.(4分)如图,三角形ABC和DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF =90°,点B,C,E,F在同一直线上,现从点C,E重合的位置出发,让三角形ABC在直线EF 上向右作匀速运动,而DEF的位置不动,设两个三角形重合部分的面积为y,运动的距离为x,下面表示y与x的函数关系的图象大致是()A.B.C.D.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:本题的运动过程应分两部分,从开始到两三角形重合,另一部分是从重合到分离;在第一部分,三角形ABC在直线EF上向右作匀速运动,则重合部分面积的增加速度不断变快;而另一部分面积的减小速度越来越小.故选:C.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B.C.D.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故选:B.【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.12.(4分)如图,AB是圆O的直径,弦AC,BD相交于点E,AC=BD,若∠BEC=60°,C是的中点,则tan∠ACD值是()A.B.C.D.【分析】连接AD、BC,根据圆周角定理,三角函数的定义即可得到结果.【解答】解:连接AD、BC.∵AB是圆O的直径,∴∠ADB=∠ACB=90°.在Rt△ADB与Rt△BCA中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC是等腰三角形,∵∠BEC=60°是△DEC的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.【点评】本题考查了圆周角定理即同弧所对的圆周角相等、直径所对的圆周角为直角及解直角三角形的知识.13.(4分)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD 以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE+S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选:C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.14.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3【分析】大致画出两抛物线,注意取值范围,可得到它们的交点为(3,3),所以直线y=3与两抛物线有三个交点,则得到k=3.【解答】解:如图,当y=k成立的x值恰好有三个,即直线y=k与两抛物线有三个交点,而当x=3,两函数的函数值都为3,即它们的交点为(3,3),所以k=3.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y 随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.15.(4分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2时,BE的长为,其中正确的结论个数是()A.1 B.2 C.3 D.4【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF,连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系,过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG =4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△F AD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.故①正确;∴DG=GE=DF=EF.∴四边形EFDG为菱形,故②正确;如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DF A,∴△DOF∽△ADF.∴=,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.故③正确;如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△F AD.∴=,即=,∴GH=,∴BE=AD﹣GH=4﹣=.故④正确.故选:D.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.二、填空题(共6个小题,每小题4分,共24分,将答案直接写在横线上)16.(4分)已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3.【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.17.(4分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.18.(4分)如图,在△ABC中,∠C=90°,AB=10,tan A=,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于 4.8.【分析】连接EF,CP,由题意可得EF=CP,AC=8,BC=6,根据垂线段最短可得当CP⊥AB 时,CP的长度最小,即可求EF的最小值.【解答】解:如图:连接EF,CP∵∠ACB=90°,AB=10,tan A=,∴=,BC2+AC2=AB2=100∴BC=6,AC=8∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°∴四边形ECFP是矩形∴EF=CP∴当CP⊥AB时,CP的长度最小,即EF的长度最小.即此时,S△ABC=AC×BC=×AB×CP∴CP=4.8∴EF最小值为4.8故答案为:4.8【点评】本题考查了矩形的性质和判定,垂线段最短,锐角三角函数,熟练运用矩形的性质是本题的关键.19.(4分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行3次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是255.【分析】(1)根据运算过程得出[]=9,[]=3,[]=1,即可得出答案.(2)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点评】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.20.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.【分析】过P作PQ垂直于MN,利用三线合一得到Q为MN中点,求出MQ的长,在直角三角形OPQ中,利用30度所对的直角边等于斜边的一半求出OQ的长,由OQ﹣MQ求出OM的长,然后根据平行线分线段成比例即可得到结论.【解答】解:过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=,在Rt△OPQ中,OP=10,∠AOB=60°,∴∠OPQ=30°,∴OQ=5,则OM=OQ﹣QM=,∵CD∥ON,∴,∴==,故答案为;.【点评】此题考查了平行线分线段成比例,勾股定理,等腰三角形的性质,以及含30度直角三角形的性质,熟练掌握勾股定理是解本题的关键.21.(4分)当n=1,2,3,…,2017时.则所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和为.【分析】由题意可求抛物线与x轴交点(,0),(,0),即可求二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度=﹣,则可求线段和.【解答】解:∵y=(n2+n)x2﹣(2n+1)x+1=(nx﹣1)[(n+1)x﹣1]∴抛物线与x轴交点(,0),(,0)∴二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度=﹣当n=1,2,3,…,2017时,所有二次函数y=(n2+n)x2﹣(2n+1)x+1的图象被x轴所截得的线段长度之和=+…+=1﹣=故答案为:【点评】本题考查了抛物线与x轴的交点,找出图象被x轴所截得的线段长度的规律是本题的关键.三、解答题(共6个小题,共66分,解答时需写出必要的步骤和文字说明)22.(10分)(1)计算:﹣22﹣+|1﹣4sin45°|+(1﹣)0+(2)先化简,再求值:÷(a+)•(+),其中a,b是方程x2﹣2﹣1=0的两个根.【分析】(1)根据二次根式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再由根与系数的关系得出ab=﹣1,代入计算可得.【解答】解:(1)原式=﹣4﹣+|1﹣4×|+1++1=﹣4﹣+2﹣1+1++1=﹣3+;(2)原式=÷•=﹣••=﹣,∵a,b是方程x2﹣2﹣1=0的两个根,∴ab=﹣1,则原式=1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算顺序和运算法则,一元二次方程根与系数的关系.23.(10分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能情况?请你列举出来.(2)你认为甲、乙两采用的方案,哪一种方案使自己乘坐舒适程度为上等的车的可能性大?为什么?【分析】(1)利用列举法整数展示所有6种可能的结果;(3)利用列表法展示甲乙乘车的所有结果,然后计算他们乘坐上等车的概率,再比较概率的大小.【解答】解:(1)三辆车开来的先后顺序有6种可能:(上、中、下)、(上、下、中)、(中、上、下)、(中、下、上)、(下、中、上)、(下、上、中);(2)列表如下:顺序甲乙上、中、下上下上、下、中上中中、上、下中上中、下、上中上下、上、中下上下、中、上下中甲乘上、中、下三辆车的概率都是;而乙乘上等车的概率==,所以乙乘坐舒适程度为上等的车的可能性大.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【分析】(1)根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x 为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.25.(10分)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A 点左侧)是双曲线上的动点.过点B作BD∥y轴交x轴于点D.过N(0,﹣n)作NC∥x 轴交双曲线于点E,交BD于点C.(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.【分析】(1)根据B点的横坐标为﹣8,代入中,得y=﹣2,得出B点的坐标,即可得出A点的坐标,再根据k=xy求出即可;(2)根据S矩形DCNO=2mn=2k,S△DBO=,S△OEN=,即可得出k的值,进而得出B,C点的坐标,再求出解析式即可.【解答】解:(1)∵D(﹣8,0),∴B点的横坐标为﹣8,代入中,得y=﹣2.∴B点坐标为(﹣8,﹣2).∵A、B两点关于原点对称,∴A(8,2).∴k=xy=8×2=16;(2)∵N(0,﹣n),B是CD的中点,A、B、M、E四点均在双曲线上,∴mn=k,B(﹣2m,﹣),C(﹣2m,﹣n),E(﹣m,﹣n).S矩形DCNO=2mn=2k,S△DBO=,S△OEN=,∴S四边形OBCE=S矩形DCNO﹣S△DBO﹣S△OEN=k=4.∴k=4.∵B(﹣2m,﹣)在双曲线与直线上∴得(舍去)∴C(﹣4,﹣2),M(2,2).设直线CM的解析式是y=ax+b,把C(﹣4,﹣2)和M(2,2)代入得:解得.∴直线CM的解析式是.【点评】此题主要考查了待定系数法函数解析式以及一次函数与反比例函数交点的性质,根据四边形OBCE的面积为4得出k的值是解决问题的关键.26.(12分)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,P A 与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到﹣x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【解答】解:(1)连接CO、CM,如图1所示.∵AO是小半圆M的直径,∴∠ACO=90°即CO⊥AP.∵OA=OP,∴AC=PC.∵AM=OM,。

数学答案(萧山中学)

数学答案(萧山中学)

数学参考答案及评分标准1. 解析:{}|01P x x =<<,{}|02P Q x x =<<∴()()R R C P C Q =(,0][2,)-∞+∞,答案选B .2. 解析 :(1)(1)0f f -=-=,答案选C .3. 解析:若βα//,且α⊥m ,β⊥n ,则n m //,矛盾,故A 不正确;所以α与β相交.由α⊥m ,m l ⊥,α⊄l ,可知α//l ,同理β//l ,可得l 平行两个平面的交线.答案选D .4. 解析::0P a =, :0,0q a b ⌝≠=,q ⌝是p 的充分不必要条件,所以p ⌝是q 的充分不必要条件.答案选A . 5. 解析:27sin 2sin 2cos 22sin 142425πππααα⎛⎫⎛⎫⎛⎫=+-=-=+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,答案选D .6. 解析:6(2)a x x +的通项公式:6662166(2)2rr r r r r rr a T C x C a x x ---+⎛⎫== ⎪⎝⎭,2x 项的系数与4x 项的系数互为相反数,可得2421566220C a C a +=,45a =-,答案选 C .7. 解析:由图可知:242,1x x +==-;532,1x x -==,所以得2a b += .答案选C .8. 解析:由题意知21:4C x cy =,1C 与2C 的交点00(,)P x y ,在P 点处的切线l 为012y x x c c =-,且满足:20012y x c c=-,2004x cy =,2200221(0,0)y x a b a b -=>>解得:2200,4y c x c ==,由此可以得到:222241c c a b-=.1e =答案选 C .二、填空题:(共7小题,前4小题每题6分,后3小题每题4分,共36分)9. 解析:(1)a =由 3(0)()2f f π=-,解得a =(2)()sin()4f x x π=+,单调递减区间为52,244k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦’10. 解析:(1)11,12n a == ;(2)2n ≥, 121212*********()()33333333n n nn n n a a a a a a a --+++-+++== 可得:13n n a +=所以112,13.2n n n a n +=⎧=⎨≥⎩ ;1412,363a S ==.11.解析:(1)1221232335910C C C C p C +==(2)3511(1)10P x C ===;2122353(2)10C C P x C +=== 21122222356(3)10C C C C P x C ++===,52EX =. 12.解析:(1)由体积法可得22221111d p q r=++;(2) 213.解析::(1)(2)0l t x y x y ++++=,所以直线恒过定点(2,1)-,画出可行域,由题意知,直线恒过定点(2,1)-点及可行域内一点,直线l 方程可改写成:(2)(1)t y t x t +=-+-,(1)由图知,当斜率不存在时,符合题意;(2)当斜率存在时,11[,)22t k t +⇒=-∈+∞+⇒423t -<≤-;综上:423t -≤≤-.14 解析:222OAOP xOA yOB x yOB xOD yOB =+=+=+,D 为OA 中点,若P 在线OD 上,则21x y +=, 平行移动OD ,直至与圆弧相切. 15.524解析:先作出过点A 且与线1B E 垂直的立方体截面,设截面与1B E 的交点为F ,则1113B APE APE V S B E -∆=⋅,通过求APE S ∆的最大值即可.三、解答题:(本大题共5小题,共74分).16.本题主要考查正弦定理、余弦定理等基础知识,同时考察运算求解能力.满分14分. (Ⅰ)方法一:由(12cos )(2cos 1)a C c A -=-可得:s i ns i n 2s i n c o s 2c o s s i n A C A C A C B +=+= 由正弦定理可知:2a c b +=.方法二:(12cos )(2cos 1)a C c A -=-可得:222222(12)(21)22a b c b c a a c ab bc+-+--=-化简得:2a c b +=.(Ⅱ)由22222()2cos 22a c b a c ac b B ac ac +-+--==22233311112222()2b c a c ac =-≥-=-=+. 所以C cos 的最小值为21.17.本题主要考查空间点、线、面位置关系,线面角等基础知识.同时考查空间向量的应用,考查空间想象能力和运算求解能力.满分15分. 解(Ⅰ)证明:因为PAB ABC ⊥平面平面,BC AB ⊥,所以BC PAB ⊥平面,所以BC PA ⊥,又PA PC ⊥,所以PA PBC ⊥平面,所以PA PB ⊥;(Ⅱ)方法一、如图,作PE AB ⊥,PF AC ⊥,连接EF ,则P E A B C ⊥平面,所以PE AC ⊥,又AC PF ⊥,则AC PEF ⊥平面,则EF AC ⊥,PFE ∠为二面角P AC B --的平面角,在展开前图中可知,1227,520DF EF ==,所以1227,520P F E F==,则9c o s 16EF PFE PF ∠==,所以二面角P AC B --的余弦值为916FEF EABCPD C BA方法二、如图,以B 为坐标原点,建立坐标系,可知,7(0,4,0),(0,0,0),(3,0,0),(0,4A B C P ---则易知,平面PAC 的一个法向量(4,3,m = 平面 ABC 的一个法向量(0,0,4n = 因为916||||m n m n ⋅=-⋅,且二面角为锐二面角,所以二面角P AC B --的余弦值为916A18.本题主要考查,直线、圆锥曲线的方程,直线与椭圆的位置关系等基本知识.同时考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)椭圆E 的方程为22143x y +=,F 点坐标为()1,0,1122(,),(,)A x y B x y . 则直线AB 的方程为()1y k x =-.联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩并整理得,()22223484120k x k x k +-+-= 由韦达定理可得:221212228412,3434k k x x x x k k-+==++,2212(1)34k k +-==+ 因为AB CD ⊥,0k ≠,所以2212(1)34k CD k +==+因为AB CD =,所以222212(1)12(1)3434k k k k ++=++,整理得21k =,所以1k =±.(Ⅱ)方法一:11,FA ===-21,FB ===-22212121229(1)(1)(1)(1)(1)()134k FA FB k x x k x x x x k +=+--=+-++=+令234(3)t k t =+> ,可得234t k -=.所以2239(1)9(1)9194(1)(,3)3444t k FA FB k t t -++===+∈+ . 方法二: 11221212(1,)(1,)(1)(1)FA FB FA FB x y x y x x y y =-=---=----2221212121229(1)((1)(1)(1)(1))(1)(()1)34k x x k x x k x x x x k+=---+--=-+-++=+. 令234(3)t k t =+> ,可得234t k -=.所以2239(1)9(1)9194(1)(,3)3444t k FA FB k t t -++===+∈+ .19.本题主要考查用导数根据研究函数的性质,同时也考查分类讨论、数形结合、分析问题和解决问题等综合能力.满分15分.解:(Ⅰ)当12a =,当33311,[0,]122()||112,[,1]22x x x f x x x x x x ⎧--+∈⎪⎪=-+-=⎨⎪-+-∈⎪⎩ , 当1[0,]2x ∈时,易知31()2f x x x =--+递减 当1[1]2x ∈,,31()2f x x x =-+-时,2()31f x x '=-+,2()310f x x '=-+=可知3x =,所以在1[2递增,在递减.因为11111(0)(),((1)2283922f f f f ==-=-=-,,,易知11892m -<<-时,方程有三个不同的解.(Ⅱ)当0a ≤时,3()f x x x a =-+-,2()31f x x '=-+,由()0f x '=可知3x =,所以max y f a == 当1a ≥时,3()f x x x a =--+,所以max (0)y f a == 当01a <<, 33,[0,](),[,1]x x a x a f x x x a x a ⎧--+∈⎪=⎨-+-∈⎪⎩ ,所以当0a <<时,max max{(0),max{}y f f a a ==,099,93a a a a ⎧-<<⎪⎪=⎨⎪≤<⎪⎩1a ≤<时,max (0)y f a ==综上:max ,,a a y a a <=⎨⎪≥⎪⎩.20.本题考查数列的基本知识、不等式知识、导数知识,并考察极限的思想及分析问题和解决问题等综合能力.满分15分.已知数列{}n a 满足:11a =,1n a +=.(Ⅰ)求证:12n n a n +<<; (Ⅱ)若1n n a a λ+->恒成立,求实数λ的取值范围.解:(Ⅰ)易知0n a >,则11n n a a +=<=+,所以11n n a a --<则111221()()()1n n n n n a a a a a a a a n ----=-+-++-<-,所以n a n <又112n n a a +==>+,同理11122n n n a -+>+=(Ⅱ)因为112n n n n n a a a a a +-=>>=,而且由(Ⅰ)知,12n n a +>,所以,n n a →+∞→+∞,→,即112n n a a +-→,则1n n a a λ+->恒成立,12λ≤。

萧山中考数学试题及答案

萧山中考数学试题及答案

萧山中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c - d答案:A2. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C3. 如果一个角的正弦值是0.5,那么这个角可能是?A. 30°B. 45°C. 60°D. 90°答案:A4. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A5. 已知一个三角形的两边长分别是5和7,且这两边夹角为60°,那么这个三角形的面积是多少?A. 10√3/2B. 15√3/2C. 20√3/2D. 25√3/2答案:A6. 下列哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 如果a > b,那么a^2 > b^2答案:A7. 一个函数f(x) = x^2 - 4x + 3的最小值是多少?A. -1B. 0C. 1D. 3答案:C8. 一个正方体的棱长为2,那么它的体积是多少?A. 4B. 6C. 8D. 10答案:C9. 下列哪个选项是复数的代数形式?A. a + biB. a - biC. a + bi + cD. a - bi + c答案:A10. 一个等比数列的首项是3,公比是2,那么第3项是多少?A. 12B. 18C. 24D. 30答案:C二、填空题(每题3分,共15分)11. 如果一个数的立方根是2,那么这个数是______。

2020年浙江省“三位一体”自主招生综合测试试卷(56)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(56)(有答案解析)

2020年浙江省“三位一体”自主招生综合测试试卷(56)一、选择题(本大题共8小题,共40.0分)1.若,则A. 1B.C.D. 1或2.若是关于x的方程的根,则的值为A. B. 8 C. D.3.方程实数根的情况是A. 仅有三个不同实根B. 仅有两个不同实根C. 仅有一个不同实根D. 无实根4.如图,点C,D是以线段AB为公共弦的两条圆弧的中点,,点E,F分别是线段CD,AB上的动点,设,,则能表示y与x的函数关系的图象是A. B.C. D.5.已知方程有两个相等实根,则的值为A. B. C. D.6.一个容器盛满酒精,第一次倒出10升后,用水加满,第二次倒出6升后,再用水加满,这时容器内的酒精与水的体积之比为7:13,则这个容器的容积为A. 18升B. 20升C. 24升D. 30升7.如图所示,在中,M是边AB的中点,N是边AC上的点,且,CM与BN相交于点K,若的面积等于1,则的面积等于A. 3B.C. 4D.8.用三种不同的颜色,将如图所示的四个区域涂色,每种颜色至少用1次,则相邻的区域不涂同一种颜色的概率为A. B. C. D.二、填空题(本大题共6小题,共24.0分)9.如图,等腰中,,,则______.10.在半径为1的中,P是上的一点,若,则弦AB的长为______.11.如图,将绕点O按逆时针方向旋转至,使点B恰好落在边上.已知,,则的长是______.12.已知不等式组的整数解仅有1,则实数a的取值范围是______.13.如图,在直角坐标系中,已知点,对连续作旋转变换,依次得到三角形、、、则第个三角形直角顶点的坐标为______.14.关于只有一个实数根,则a的取值范围是______.三、解答题(本大题共5小题,共56.0分)15.如图,正方形ABCD的中心为O,P为正方形内一点,且.求证:;若正方形的边长为,,求OP的长.16.已知关于x的方程恰好有两个不同实根,求t的值和相应的实根.17.如图,四边形ABCD内接于,,且AB是的直径,交CD的延长线于点E,若,.求的直径;若翻折使点B与E重合的直线折痕交于P,Q两点,求的面积.18.设有一列数,,,,,简记为若数列满足:为正整数,可以把看作n的一次函数;数列定义如下:对于正整数m,是使得不等式成立的所有n中的最大值.若,,求;若,,求满足的m的值;是否存在k和b,使得为正然数?如果存在,求k和b的取值范围;如果不存在,请说明理由,19.已知:过点,的直线与抛物线C:交于P,Q两点,若为坐标原点的面积为.求a的值;若M为抛物线C上的点,设直线AM,BM与抛物线C的另一个交点为,求证:当点M在C上变动时,直线恒过一定点,并求出定点坐标.-------- 答案与解析 --------1.答案:A解析:解:,,,当时,,当时,.故选:A.首先根据求出x的值,然后把x的值代入即可.本题主要考查代数式求值的知识点,此题难度一般,注意此题中的整体代入思想.2.答案:D解析:解:是关于x的方程的根方程两边同时除以n得:故选:D.先根据是关于x的方程的根,得到关于m和n的一个方程,再根据,得出m和n的数量关系,然后将所给的整式利用因式分解和配方法进行变形,最后将m与n的数量关系代入,即可求得答案.本题考查了由一元二次方程的解得出相关字母的数量关系,再结合因式分解及配方法将所给的等式变形,从而求得代数式的值,本题需要对整式的相关运算公式熟练运用,难度中等.3.答案:C解析:解:原方程整理得,,,方程,其,无解,,,即.故选C.原方程有意义,则,把方程去分母、整理可得,,分解因式得,讨论其根的情况,即可解答.本题考查了二次函数、反比例函数的性质,主要应用了一元二次方程的根与判别式的关系.4.答案:C解析:解:如右图所示,延长CE交AB于设,;和都是直角三角形由勾股定理得:,,,即,这个函数是一个二次函数,抛物线的开口向下,对称轴为,与x轴的两个交点坐标分别是,,顶点为,自变量.所以C选项中的函数图象与之对应.故选:C.延长CE交AB于G,和都是直角三角形,运用勾股定理列出y与x的函数关系式即可判断出函数图象.本题为几何与函数相结合的题型,同学们应注意运用勾股定理的重要性,它就是解决此题的关键.5.答案:B解析:解:,或,方程有两个相等的实数根,,,,,故选:B.将方程因式分解解得或,再由两个根式相等的,则有,化简即可求解.本题考查一元二次方程的根;能够将已知方程因式分解,求出两个根式解题的关键.6.答案:B解析:解:设这个容器的容积为x升,由题意得:,整理得:,解得:,或舍去,,经检验,是原分式方程的解;即这个容器的容积为20升;故选:B.设这个容器的容积为x升,由题意列出分式方程为,解分式方程,再检验即可.本题考查了分式方程的应用;关键是正确理解题意,找出题目中的等量关系,列出分式方程.7.答案:C解析:解:连接AK,知,于是三角形AKC的面积为1.又因,于是三角形AKB的面积为2.故三角形ABC的面积为.故选:C.连接AK,分别求出三角形AKC的面积、三角形AKB的面积与的三角形BKC的面积的比值,求出各自的面积,再求三角形ABC的面积.考查了三角形面积的应用.关键掌握同底的三角形面积之比等于对应的高之比.8.答案:B解析:解:根据题意,可以设第一格为1,可列举所有可能:1123,1132,1312,1321,1322,1323,1332,1213,1223,1231,1232,1233.此时所有可能的结果又12种,符合条件的有6种,其余同理,所以四个格的所有可能的结果共有36种,符合条件的结果共有18种,所以相邻的区域不涂同一种颜色的概率为:.故选:B.根据题意,可以设第一格为1,可列举所有可能:1123,1132,1312,1321,1322,1323,1332,1213,1223,1231,1232,此时所有可能的结果又12种,符合条件的有6种,其余同理,最后所有可能的结果共有36种,符合条件的结果共有18种,进而求出概率.本题考查了列举法求概率问题,解决本题的关键是不重不漏列举出所有符合条件的可能结果.9.答案:25解析:解:如图,过点C作的延长线于点D,,,,,,.故答案为:25.过点C作的延长线于点D,根据等腰三角形的两底角相等求出的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和求出的度数,然后根据角所对的直角边等于斜边的一半求出CD的长度,然后根据三角形的面积公式列式计算即可得解.本题考查了直角三角形角所对的直角边等于斜边的一半的性质,等腰三角形两底角相等的性质,作辅助线构造出直角三角形是解题的关键.10.答案:解析:解:如图,在优弧AB上取一点E,连接AE,作于N.,,,,,,,,,,,,故答案为.如图,在优弧AB上取一点E,连接AE,作于证明,求出AN,利用垂径定理即可解决问题.本题考查圆周角定理,勾股定理,垂径定理等知识,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.答案:解析:解:过点O作于H,将绕点O按逆时针方向旋转至,,,,,,,,,故答案为:.过点O作于H,由旋转的性质可得,,由等腰三角形的性质可得,由锐角三角函数可求OH,由勾股定理可求,即可求解.本题考查了旋转的性质,锐角三角函数的应用,灵活运用这些性质是本题的关键.12.答案:解析:解:,,整数解仅有1,,,,故答案为.由已知可得,因为不等式组的整数解只有一个,则有,,解得a即可.本题考查一元一次不等式组;能够根据题意列出满足a的不等式是解题的关键.13.答案:解析:解:,,,由原图到图,相当于向右平移了12个单位长度,三角形的直角顶点的坐标为,这样旋转6次直角顶点是,再旋转一次到三角形,直角顶点仍然是,则三角形的直角顶点的坐标为.则第个三角形直角顶点的坐标为.故答案为:观察不难发现,每三次旋转为一个循环组依次循环,第7个直角三角形的直角顶点与第6个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解.本题考查了坐标与图形变化旋转,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.14.答案:解析:解:把方程变形为关于a的一元二次方程的一般形式:,则,,即或.所以有:或.关于只有一个实数根,方程没有实数根,即,,解得.所以a的取值范围是.故答案为.先把方程变形为关于a的一元二次方程的一般形式:,然后利用求根公式解得或;于是有或,再利用原方程只有一个实数根,确定方程没有实数根,即,最后解a的不等式得到a的取值范围.本题考查了一元二次方程a,b,c为常数根的判别式.当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.同时考查了转化得思想方法在解方程中的应用.15.答案:解:连接OA,OB,正方形ABCD的中心为O,,,,,P,O,B四点共圆,;,,,,,,在PB上截取,连接OG,,P,O,B四点共圆,,,≌,,,,,,,.解析:连接OA,OB,根据正方形的性质得到,推出A,P,O,B四点共圆,根据圆周角定理即可得到结论;根据余角的性质得到,根据三角函数的定义得到,在PB上截取,连接OG,根据全等三角形的性质得到,,求得,根据勾股定理即可得到结论.本题考查了正方形的性质,四点共圆,圆周角定理,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造全等三角形是解题的关键.16.答案:解:由得到:,作出函数的图象,如图所示:.由图得:当或0时符合题意,当即时,,;当即时,,.解析:作出函数图象,根据图象,求函数与函数有一个交点时t的值,问题转化为求绝对值方程的解.本题考查了一元二次方程根的分布.解题时,利用了“数形结合”的数学思想,降低了题的难度与梯度,减少了繁琐的计算过程.17.答案:解:连接AC,且,,,是的直径,,,,,,,∽,,,设,则,解得:,舍去,即:,在中,,,,,∽,;设BE与PQ交于G,AB与PQ交于F,,,,翻折使点B与E重合,,,,,∽,,,,,过O作于H,,,∽,,,,连接OQ,,,的面积.解析:证AE是的切线,即证即可;根据切割线定理,可将DE的长求出,再由∽可将AB的长求出;设BE与PQ交于G,AB与PQ交于F,根据勾股定理得到,根据折叠的性质得到,,根据相似三角形的性质得到,求得,过O作于H,由相似三角形的性质得到,连接OQ,于是得到结论.本题考查了垂径定理,勾股定理,相似三角形的判定和性质,折叠的性质,正确的作出辅助线构造直角三角形是解题的关键.18.答案:解:,,,,,;,,,,,或4022;存在.,,,若,则不成立;若,则不成立;,即,则,.解析:由已知,可得,则;由已知可得,则,可求m的值为4021或4022;,,则;分三种情况求解:若不成立;若不成立;是成立.本题考查一次函数的性质;理解题意,能将一次函数与不等式结合是解题的关键.19.答案:解:设直线AB的解析式为,,,,,直线AB的解析式为,抛物线的解析式为,联立消去y得,,设点P的横坐标为c,点Q的横坐标为d,,,,为坐标原点的面积为,,舍去或;由知,,抛物线的解析式为,设点,,直线MA的解析式为,联立解得,点M的纵横坐标或,点,,直线MB的解析式为,联立解得,点M的纵横坐标或,,设直线的解析式为,,,直线的解析式为,当时,,即:当点M在抛物线C上变动时,直线恒过一定点.解析:先确定出直线AB的解析式,联立抛物线解析式,消去y得出关于x的一元二次方程,利用根与系数的关系得出,cd,进而得出,最后用三角形POQ的面积建立方程求解,即可得出结论;设点,利用待定系数法求出直线MA,MB的解析式,再联立抛物线解析式求出点,的坐标,最后用待定系数法求出直线的解析式,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,根与系数的关系,直线和抛物线的交点坐标的求法,三角形面积的计算,求出点,的坐标是解本题的关键.。

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

浙江省萧山中学2007年自主招生考试数学试卷(含答案)-

七、阅读型试题例1、(2005年台州)我国古代数学家秦九韶在《算书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积。

用现代式子表示即为:])2([41222222c b a b a s -+-=……①(其中a 、b 、c 为三角形的三边长,s 为面积)。

而另一个文明古国古希腊也有求三角形面积的海伦公式:))()((c p b p a p p s ---=……②(其中2cb a p ++=)。

(1) 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积。

(2) 你能否由公式①推导出公式②?请试试。

知识点:本题考查了多项式乘法、分解因式、二次根式及其化简等有关知识。

精析:这是一道阅读理解题,它要求学生通过阅读理解“三斜求积术”的现在代公式,第(1)小题是检验学生的阅读能力及学以致用的能力,第(2)题是考查学生是创新能力。

准确答案:中考对该知识点的要求:近几年中考试题中,阅读理解型试题题型新颖,形式多样,知识覆盖面较大,它可以是总计课本原文,也可以是设计一个新的数学情境,让学生在阅读的基础上,理解其中的内容、方法、思想,然后把握本质,理解实质的基础上作出回答。

目标达成:7-1-1.(2005年贵州市)阅读下面操作过程,回答后面问题:在一次数学实践探究活动中,小强过A 、C 两点画直线AC 把平行四边形ABCD 分割成两个部分(如图12(a )),小刚过AB 、AC 的中点画直线EF ,把平行四边形ABCD 也分割成两个部分(如图12(b )); 图12(a ) (b ) (c )(1)这两种分割方法中面积之间的关系为:21____S S ,43____S S ;(2)根据这两位同学的分割方法,你认为把平行四边形分割成满足以上面积关系的直线 有 条,请在图12(c )的平行四边形中画出一种; (3)由上述实验操作过程,你发现了什么规律?(3)经过平行四边形对称中心的任意直线,都可以把平行四边形分成满足条件的图形; 7-1-2.(2005年资阳市)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图8①所示,矩形ABEF 即为△ABC 的“友好矩形”. 显然,当△ABC 是钝角三角形时,其“友好矩形”只有一个 .(1) 仿照以上叙述,说明什么是一个三角形的“友好平行四边形”; (2) 如图8②,若△ABC 为直角三角形,且∠C =90°,在图8②中画出△ABC 的所有“友好矩形”,并比较这些矩形面积的大小;(3) 若△ABC 是锐角三角形,且BC >AC >AB ,在图8③中画出△ABC 的所有“友好矩形”,指出其中周长最小的矩形并加以证明.7-1-3.(2005年玉林)阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过A 作AD ⊥BC 于D(如图),则sinB=c AD ,sinC=b AD ,即AD=csinB ,AD=bsinC ,于是csinB=bsinC ,即CcB b s i n s i n .1243F EDDDCCCBBBAAA同理有A a C c sin sin =,B bA a sin sin =. 所以CcB b A a sin sin sin ==………(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论(*)和有关定理就可以 求出其余三个未知元素c 、∠B 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件a 、b 、∠A ∠B ;第二步:由条件 ∠A 、∠B . ∠C ;第三步:由条件.c .(2)一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以28.4海里/时的速度按北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西70°的方向上(如图11),求此时货轮距灯塔A 的距离AB(结果精确到0.1.参考数据:sin40°=0.6 4 3,sin65°=0.90 6,sin70°=0.940,sin7 5°=0.9 6 6).7-1-4、(2005年佛山)“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(aa P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示). (2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM上,并据此证明∠MOB=31∠AOB .(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).7-1-5、(2005年福州)已知:如图8,AB 是⊙O 的直径,P 是AB 上的一点(与A 、B 不重合),QP ⊥AB ,垂足为P ,直线QA 交⊙O 于C 点,过C 点作⊙O 的切线交直线QP于点D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江萧山中学自主招生考试数学试卷(含答案)
————————————————————————————————作者:————————————————————————————————日期:
2
1 / 8
数学试卷
满分为100分,考试时间为70分钟。

一、选择题:(每个题目只有一个正确答案,每题4分,共32分) 1.计算tan602sin 452cos30︒+︒-︒的结果是( )
A .2
B .2
C .1
D .3
2.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )
A .313
-
B .
33
C .314
-
D .
12
3.已知b a ,为实数,且1=ab ,设11+++=
b b a a M ,1
1
11++
+=b a N ,则N M ,的大小关系是( )
A .N M >
B .N M =
C .N M <
D .无法确定 4. 一名考生步行前往考场, 10分钟走了总路程的
4
1,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )
A .20分钟 B.22分钟 C.24分钟 D .26分钟
5.二次函数1422
++-=x x y 的图象如何移动就得到2
2x y -=的图象( ) A. 向左移动1个单位,向上移动3个单位。

B. 向右移动1个单位,向上移动3个单位。

C. 向左移动1个单位,向下移动3个单位。

D. 向右移动1个单位,向下移动3个单位。

6.下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )
A .①④⑦
B .②④⑧
C .②⑥⑧
D .②⑤⑥
7.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠
方式如下表所示:
欲购买的 商品 原价(元)
优惠方式
一件衣服
420
每付现金200元,返购物券200元,且付款时可以使用购物券
A
B C D
B '
D '
C '
2 / 8
一双鞋 280 每付现金200元,返购物券200元,但付款时不可以使用购物券 一套化妆品
300
付款时可以使用购物券,但不返购物券
请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为( )
A . 500元
B . 600元
C . 700元
D . 800元 8.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如上图所示,那么水瓶的形状是( )
二、填空题:(每题6分,共30分)
9. 若关于x 的分式方程3
131+=
-+x a
x 在实数范围内无解,则实数=a _____. 10.三角形的两边长为4cm 和7cm ,则这个三角形面积的最大值为_____________cm 2. 11.对正实数b a ,作定义b a ab b a +-=
*,若444=*x ,则x 的值是________.
12.已知方程()0332
=+-+x a x 在实数范围内恒有解,并且恰有一个解大于1小于2,则a 的取值范围是 .
13.如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是 .
三、解答题:(本题有4个小题,共38分)解答应写出文字说明, 证明过程或推演步骤。

14.(本小题满分8分)【田忌赛马】
齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马较齐王的马略有逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马; 田忌的下马不敌齐王的下马. 田忌在按图1的方法屡赛屡败后,接受了孙膑的建议,用图2的方法,结果田忌两胜一负,赢了比赛.假如在不知道齐王出马顺序的情况下:
(1)请按如图的形式,列出所有其他可能的情况;


上马
齐王中马
田忌
上马
齐王上马 图1
图2
3 / 8
(2)田忌能赢得比赛的概率是___________.
15.(本题满分10分)把几个数用大括号围起来,中间用逗号断开,如:
{}3,2,1、{}19,8,7,2-,我们称之为集合,其中的数称其为集合的元素。

如果一个集合满足:当实数a 是集合的
元素时,实数a -8也必是这个集合的元素,这样的集合我们称为好的集合。

(1)请你判断集合{
}2,1,{}7,4,1是不是好的集合? (2)请你写出满足条件的两个好的集合的例子。

16.(本小题满分10分)如图,在△ABC 中,AC =BC ,CD 是AB 边上的高线,且有2CD=3AB ,又E ,F 为CD 的三等分点, 求证:∠ACB+∠AEB 十∠AFB=1800。

17.(本小题满分10分).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线
2
14
y x =
上的一个动点.
(1)求证:以点P 为圆心,PM 为半径的圆与直线1y =-的相切; (2)设直线PM 与抛物线2
14y x =的另一个交点为点Q ,连接NP ,NQ ,求证:
PNM QNM ∠=∠.
4 / 8
四、附加题:(本题满分为3分,但即使记入总分也不能使本次考试超出100分)
18.有人认为数学没有多少使用价值,我们只要能数得清钞票,到菜场算得出价钱这点数学知识就够了。

根据你学习数学的体会,谈谈你对数学这门学科的看法。

浙江省萧山中学2007年自主招生考试数学参考答案
一、选择题:(每题4分,共32分) 题号 1 2 3 4 5 6 7 8 答案
B
A
B
C
C
D
B
B
二、填空题:(每题6分,共30分)
9、 1 10、 14 11、 36 12、2
1
1-
<<-a 或323-=a 13、3 三、三、解答题:(共38分) 解答应写出文字说明, 证明过程或推演步 步骤。

171414、(本小题满分8分)
解:(1)其他可能的对阵形式有:
田忌上马 齐王上马 齐王中马 齐王下马 齐王下马 田忌中马 对 齐王下马 齐王上马 齐王上马 齐王中马 田忌下马 齐王中马 齐王下马 齐王中马 齐王上马
(每写出一个得1分)
(2)根据对对阵形式的分析可以知道:天忌赢得比赛的概率为
6
1
(得4分)
解(115、(本小题满分10分)
解: 解:(1)集合{}2,1不是好的集合,{}7,4,1是好的集合。

(每个判断正确得2分) (2)集合{}4、{}5,4,3、{}6,2、{}7,6,4,2,1等都可以举。

(每举出一个得3分)
16、(本小题满分10分)
______ 准考证号___________ 姓名
__________
5 / 8
证明: AB CD 32= ,且F E ,为CD 三等分点,D 为AB 中点 AB CD 2
1
31=
∴,即DF AD =
45=∠∴AFD (得4分)
FC FE DF DF AD AF •==+=∴22222
CFA AFE ∆∆∴∽
AEF CAF ∠=∠∴ (得3分)

45=∠=∠+∠∴AFD AED ACD
90=∠+∠+∠∴AFD AED ACD 所以得证 (得3分) 17、(本小题满分10分)
解:(1)设点P 的坐标为2
001(,
)4
x x ,则 PM =2
22
2220000111(1)(1)14
44
x x x x +-=
+=+; 又因为点P 到直线1y =-的距离为
22
0011(1)144
x x --=+,
所以,以点P 为圆心,PM 为半径的圆与直线1y =-相切. (得4分) (2)如图,分别过点P ,Q 作直线1y =-的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM =QR .
因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH ∥MN ∥QR ,于是
QM MP RN NH =,所以QR PH
RN HN
=,因此,Rt △PHN ∽Rt △QRN . 于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠ (得6分)
附加题:(可以在反面作答)
18、可以从数学的基础性,应用的广泛性,培养严密的逻辑思维能力,人文素养,科学精神等各方面价值作简单说明。

6 / 8。

相关文档
最新文档