晶闸管触发电路课程设计
7-7晶闸管的触发电路
• (4)单结晶体管的特点 • 1)单结晶体管发射极电压等于峰点电压时,单结
晶体管导通,导通之后,当发射极电压小于谷点 电压时,管子由导通变为截止,谷点电压在2-5v 之间。 • 2)单结晶体管的发射极与第一基极的电阻RB1是 一个阻值随发射极电流增大而减小的电阻, RB2 则是一个与发射极电流无关的电阻。 • 3)不同的晶体管有不同的UP、UV,若电源电压不 同,二者也会改变,在触发电路中常选用UV大一 些或IV大一些的单结晶体管。
单结晶体管振荡电路
• 因此,在电容器两端得到锯齿波,在输出端得 到脉冲尖顶波。
• 调整RC可以调整电容充放电速度,使输出波形 前移或移,从而控制晶闸管的触发时刻。RC乘 积较大时,后移。
单结晶体管触发电路
• 3、单结晶体管触发电路 • 由于每半个周期内第一个脉冲将晶体管触发后,
后面的脉冲均无作用,因此只要改变每半周第一 个脉冲产生的时间即改变了控制角α的大小,在实 际中可利用改变充电电阻R的方法来实现改变控 制角从
① 截止区:当uEB1<UP时,PN结反偏,单结管截止。 ② 负阻区:当uEB1>UP,PN结正偏,iE猛增,uEB1
反而减小,呈现负阻效应。
③ 饱和区:当uEB1下降到谷点以后,iE增加,uEB1
也有所增加,但变化较小,器件进入饱和区,当
uEB1<Uv时管子重新截止。
单结晶体管的特点
• 2、单结晶体管振荡电路
E R1
当电源接通时电源通过R对C充电,E点电位逐渐升高, 当上升到up时,单结管导通,发射极电流突然增大, 电容C通过发射极、第一基极、电阻R1放电,由于R1 很小,故放电速度快,电容两端电压下降很快,uO下 降很快,当下降到单结晶体管的谷点电压,单结晶体管 截止,输出电流、电压为0。接着电源又重新开始对C 充电,重复以上过程。
基于单片机的晶闸管触发器的设计
基于单片机的晶闸管触发器的设计1 引言晶闸管也叫可控硅整流器.是目前工业应用中最为广泛的大功率变换器件。
晶闸管在烧结炉、电弧炉等整流场合主要采用移相触发控制,即通过调节晶闸管导通时刻的相位实现控制输出。
传统的晶闸管触发器采用模拟控制电路,无法克服其固有缺点。
数字式控制电路与模拟式相比,主要优点是输出波形稳定和可靠性高,但其缺点是电路比较复杂,移相触发角较大时控制精度不高。
随着单片机技术的发展,由单片机组成的控制电路的优势越明显,除具有与数字式触发电路相同的优点外,更因其移相触发角通过软件计算完成,触发电路结构简单,控制灵活,温漂影响小,控制精度可通过软件补偿,移相范围可任意调节等特点,目前已获得业界的广泛认可。
以三相桥式全控整流电路为例,介绍应用单片机组成晶闸管触发器硬件电路的设计,以及软件实现移相触发脉冲控制的方法。
2 单片机触发器的组成单片机控制的晶闸管触发器主要由同步信号检测、CPU硬件电路、复位电路和触发脉冲驱动电路4部分组成,如图l所示。
CPU通过检测电路获知触发信号,依据所要控制的电路要求,通过编程实现预定的程序流程,在相应时间段内通过单片机I/O端输出触发脉冲信号,复位电路可保证系统安全可靠的运行。
3 移相触发脉冲的控制原理相位控制要求以变流电路的自然换相点为基准,经过一定的相位延迟后,再输出触发信号使晶闸管导通。
在实际应用中,自然换相点通过同步信号给出,再按同步电压过零检测的方法在CPU中实现同步,并由CPU控制软件完成移相计算,按移相要求输出触发脉冲。
图2为三相桥式全控整流电路,触发脉冲信号输出的时序也可由单片机根据同步信号电平确定,当单片机检测到A相同步信号时,输出脉冲时序通常采用移相触发脉冲的方法,即用一个同步电压信号和一个定时器完成触发脉冲的计算。
这在三相电路对称时是可行的。
因为三相完全对称,各相彼此相差120°,电路每隔60°换流一次,且换流的时序事先已知。
电路电子——晶闸管的触发电路设计
脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间 常数R11C3有关。 电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接 在V8集电极电路中。
二、同步电压为锯齿波的触发电路
4) 双窄脉冲形成环节 内双脉冲电路
V5、V6构成“或”门
当V5、V6都导通时,V7、V8都截止,没有脉冲输出。 只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。
二、同步电压为锯齿波的触发电路
2) 锯齿波的形成和脉冲移相环节
锯齿波电压形成的方案较多,如采用自举式电路、恒流 源电路等;本电路采用恒流源电路。
图8 同步电压为锯齿波的触发电路
恒流源电路方案,由V1、V2、V3和C2等元件组成
V1、VS、RP2和R3为一恒流源电路
二、同步电压为锯齿波的触发电路
锯齿波是由开关V2管来控制的。
1. 电源接通:E通过Re对C充电, 时间常数为ReC
2. Uc增大,达到 UP ,单结晶体管 导通,C通过R1放电
3. Uc减少,达到Uv,单结晶体管截
止,uR1 下降,接近于零
4. 重复充放电过程
图5 单结晶体管自激振荡电路
Re的值不能太大或太小,满足电路振荡的Re的取值范围
一、 单结晶体管触发电路
图6 晶体管同步触发电路
一、 单结晶管由第一个脉 冲触发导通,后面的脉冲不 起作用。
改充电变速Re度的,大达小到,调可节改α变角电的容目
的。 削波的目的:增大移相范围,
使输出的触发脉冲的幅度基本 一样。
一、 单结晶体管触发电路
实际应用中,常用晶体管V2代替电位器Re,以便实现
第一个脉冲由本相触发单元的uco对应的控制角 产生。
单片机在晶闸管触发电路中设计及应用
单片机在晶闸管触发电路中设计及应用在电力拖动系统、电炉控制系统中现已大量采用可控硅(晶闸管)元件作为可调电源向电动机或电炉供电,这种由晶闸管组成的控制系统,主要是利用改变可控硅的控制角θ来调节供电电压。
1 硬件组成及原理系统硬件组成如图1,只须在8031最小系统上加一块16位的定时/计数器8253和晶振电路,另加一块带一个14位定时/计数器的可编程RAM/IO扩展器8155,即可组成单片机的系统线路。
1.1 θ角定时控制角θ是滞后自然换相点的电角度,在工频条件下,它和时间tθ有如下线性关系:其中T是工频电源周期,θ是控制角。
由上式可知,由电角度θ就知道对应的定时时间tθ,则可利用定时/计数器就能实现对θ角的定时,这种用硬件定时的方法可大大节省CPU的在线工作时间。
8031本身有两个16位的定时/计数器T0和T1,若用它们定时,选用方式1工作,就为16 位的定时/计数器方式。
因为8031单片机一个机器周期由12个振荡周期组成,工作于定时状态,计数频率为振荡频率的1/12,而工作于计数状态,计数频率为振荡频率的1/24,所以当取晶振频率为6MHz,选用方式1定时工作状态时,可得:式中,T为工频周期,T=20ms。
由于16位定时/计数器最大定时时间为65536,故最大定时角为:由此可见,用8031单片机T0、T1定时,移相范围大,而分辨率则受本机机器周期限制,再就是用于三相定时,2个定时/计数器也不够,故最后确定选用NEC8253C-2定时/计数器来实现θ角定时,8253是一个三通道的16位定时/计数器,以减1计数方式工作,三个通道刚好满足三相定时,而计数频率由外部晶振提供,不受系统频率限制,选用计数频率为4MHz,则分辨率和最大定时角分别为:由上可知,分辨率和移相范围都能达到令人满意的结果。
1.2 同步信号输入和触发脉冲输出本系统采用三相同步电路。
三相交流同步电源取自同步变压器的副绕组,经RC移相后使其过零点正好都对准六个自然换相点,再经三个电压比较器输出周期为 20ms的三相方波同步信号,送至单片机P1的P1.3~P1.5,由于同步信号跳变即为自然换相点,单片机检测这三位状态字,即可进行软件认相,并作出±A、±B、±C的标志,以供θ角定时和输出(触发)、控制之用。
电力电子(晶闸管整流)
一、概述二、课程设计方案本次课程设计的要紧内容是利用晶闸管整流来设计直流电机操纵系统,要紧设计内容有1、电路功能:〔1〕、用晶闸管缺角整流实现直流调压,操纵直流电动机的转速。
〔2〕、电路由主电路与操纵电路组成,主电路要紧环节:整流电路及保卫电路。
操纵电路要紧环节:触发电路、电压电流检测单元、驱动电路、检测与故障保卫电路。
〔3〕、主电路电力电子开关器件采纳晶闸管、IGBT或MOSFET。
〔4〕、系统具有完善的保卫2、系统总体方案确定3、主电路设计与分析〔1〕、确定主电路方案〔2〕、主电路元器件的计算及选型〔3〕、主电路保卫环节设计4、操纵电路设计与分析〔1〕、检测电路设计〔2〕、功能单元电路设计〔3〕、触发电路设计〔4〕、操纵电路参数确定设计要求有一下四点:1、设计思路清晰,给出整体设计框图;2、单元电路设计,给出具体设计思路和电路;3、分析所有单元电路与总电路的工作原理,并给出必要的波形分析。
4、绘制总电路图5、写出设计报告;要紧的设计条件有:1、设计依据要紧参数〔1〕、输进输出电压:〔AC〕220〔1+15%〕、〔2〕、最大输出电压、电流依据电机功率予以选择〔3〕、要求电机能实现单向无级调速〔4〕、电机型号布置任务时给定2、可提供实验与仿真条件三、系统电路设计1、主电路的设计〔1〕、主电路设计方案主电路的要紧功能是实现整流,将三相交流电变为直流电。
要紧通过整流变压器和三相桥式全控整流来实现。
整流变压器是整流设备的电源变压器。
整流设备的特点是原方输进电流,而副方通过整流原件后输出直流。
变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。
作为整流装置电源用的变压器称为整流变压器。
工业用的整流直流电源大局部根基上由交流电网通过整流变压器与整流设备而得到的。
整流变压器是专供整流系统的变压器。
整流变压器的功能:1.是提供整流系统适当的电压,2.是减小因整流系统造成的波形畸变对电网的污染。
课题5.单结晶体管触发电路
2. 为使触发时间准确,触发脉冲的前沿要陡。(前沿时间不大于 10μs)
3.触发脉冲必须与主电路晶闸管的阳极电压同步。 4.触发脉冲要有一定的宽度,以保证晶闸管可靠地导通。(电阻负 载电路,脉冲宽度应大于20μs) 5.脉冲的相位能平稳地移动,并有足够宽的移相范围。 6. 触发电路在不输出触发脉冲时 ,电路输出的漏电压不应大于 0.25V ,以免发生误触发。
二、单结晶体管
2.单结晶体管等效电路
二、单结晶体管
3.单结晶体管符号与实物
第一基极b1 发射极e 第二基极b2
二、单结晶体管
4.单结晶体管的伏安特性
单结晶体管测试电路
单结晶体管测试等效电路
二、单结晶体管
4.单结晶体管的伏安特性
当开关S闭合,电压Ubb通过单结 晶体管等效电路中的rbl和rb2分压, 得A点电位UA,可表示为
C
U GT
相对应的门极直流电压 , 一般为1V ~ 5V
0
(b)
一、对触发电路的要求
常见的触发脉冲电压波形
正弦波
尖脉冲
方波
强触发脉冲
脉冲列
VT1
RP
R C
对于并联晶闸管的大电流变流装置及串联 晶闸管的高电压装置,应采用强触发脉冲。
VT2 RP
R C
一、对触发电路的要求
采用强触发脉冲的目的是:缩小晶闸管
注意:阳极加正向电压是指阳极电位高于阴极电位,阳极电位可
以是正也可以是负。门极正向电压是指门极电位高于阴极电位。
晶闸管关断条件:流过晶闸管的阳极电流小于维持电流。 方法:可以通过降低晶闸管阳极-阴极间电压或增大主电路中的 电阻。
新型三相半控桥晶闸管触发电路的设计
De i n o w i g r Cic i o Th e - h s e i o t o i g sg fa Ne Trg e r u tf r, r e p a e S m c n r lBrd e
W ANG Yifn , -a g HUANG i, YANG i- in Jn Ja qa g
pee t . h hs-hfs nl s ra db eP dut dut gteD ot e a dte ep ae si inl rsne T ep ae si i a i cet yt I js r jsn C vl g n nt h s— hfs a d t g e h a oa i h a h h t g
得 到 ,这虽 然 可 以起 到 有效 的 隔离 和 相位 匹 配 作 用 ,但 是 由于设 备 重 量 大 、元 件 多而 造成 可 靠 性 低、 成本 加大 。
模 拟式触发电路输出脉 冲较窄Fra bibliotek,不能满足电感性
负 载 、 电势 负 载 及 大 功 率 晶 闸 管 的要 求 [ 而且 反 1 ] , 考 虑到 晶 闸管整 流 电路 与 触发 电路 的相互 影 响圆 ,
新型三相半控桥晶闸管触发电路 的设计
王 义芳 , 黄 进 , 杨 家强 ‘
( 浙江大学, 浙江 杭州 302 ) 10 7 摘 要 : 在分析 了常用触发 电路优、 缺点的基础上, 针对三相半控整 流桥提 出了一种利用集成 电路 设计的新型可控触发 电路代替同步变压器来获得三相同步信号 . 电路 中通过对整流后的直流 电压
品 T A75及其 应 用 ,该 模 拟 集 成 触 发器 也 是 目 C 8 前 集成 触 发 器 中性 能最 优 良的触 发 器 ,其 具 有 可 靠性高 、 功耗 低 、 相范 围宽 、 积小 、 移 体 调整 方便 等
晶闸管触发电路
•1.1 单结晶体管
单结晶体管又叫双基极二极管,是具有一个PN结的三 端负阻器件。 单结晶体管触发电路结构简单,输出脉 冲前沿陡峭,抗干扰能力强,运行可靠,调试方便,广 泛应用与小容量晶闸管触发控制。
1.单结晶体管的结构ຫໍສະໝຸດ 等效电路在一个低掺杂的N型硅棒上利 用扩散工艺形成一个高掺杂P 区,在P区与N区接触面形成 PN 结 , 就 构 成 单 结 晶 体 管 (UJT)。其结构如图 (a)所示,
当Ueb1增大,使PN结正向电压大于开启电压时,则IE变为正向电流,从 发射极e流向基极b1,此时,空穴浓度很高的P区向电子浓度很低的硅棒的A— b1区注入非平衡少子;由于半导体材料的电阻与其载流子的浓度紧密相关, 注入的载流子使rb1减小;而且rb1的减小,使其压降减小,导致PN结正向电 压增大,IE随之增大,注入的载流子将更多,于是rb1进一步减小;当IE增大 到一定程度时,二极管的导通电压将变化不大,此时UEB1。将因rb1的减小而 减小,表现出负阻特性。
P型半导体引出的电极为发射极E; N型半导体的两端引出两个电极, 分别为基极B1和基极B2,B1和B2 之间的N型区域可以等效为一个纯 电阻,即基区电阻RBB。该电阻的 阻值随着发射极电流的变化而改 变。单结晶体管因有两个基极, 故也称为双基极晶体管。其符号 如图(b)所示。
单结晶体管的等效电路如图(c)所 示,发射极所接P区与N型硅棒 形成的PN结等效为二极管D;N
型硅棒因掺杂浓度很低而呈现高 电阻,二极管阴极与基极B2之间 的 等 效 电 阻 为 RB2 , 二 极 管 阴 极 与基极B1之间的等效电阻为RB1; RB1的阻值受E-B1间电压的控制, 所以等效为可变电阻。
2、工作原理和特性曲线
当e-b1电压Ueb1为零或(Ueb1< UA)时,二极管承受反向电压,发射极的电 流Ie为二极管的反向电流,记作IEO。
电工电子应用技术 晶闸管可控整流电路教案
单元十三电力电子技术基础(教案)注:表格内黑体字格式为(黑体,小四号,1.25倍行距,居中)13.2晶闸管可控整流电路【教学过程】组织教学:1.检查出勤情况。
2.检查学生教材,习题册是否符合要求。
3.宣布上课。
引入新课:1.可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
2.通过实物演示及列举实例,让学生了解桥式整流电路的原理及应用,从而激发他们的学习兴趣。
讲授新课:13.2晶闸管可控整流电路13.2.1整流电路可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
13.2.1整流电路单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。
比较常用的是半控桥式整流电路,简称半控桥,其电路如图13-2-1所示。
在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。
这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为a→T1→R L→D2→b图13-2-1 电阻性负载的单相半控桥式整流电路这时T2和D1都因承受反向电压而截止。
同样,在电压u的负半周时,T2和D1(讲解)(讲解)观看PPT:整流电路)承受正向电压。
这时,如对晶闸管T 2引入触发信号,则T 2和D 1导通,电流的通路为: b→T 2→R L →D 1→a图13-2-2 电阻性负载时单相半控桥式整流电路的电压与电流的波形这时T 1和D 2处于截止状态。
电压与电流的波形如图13-2-2所示。
桥式整流电路的输出电压的平均值为2cos 219.00a U U +⋅= (13-2-1)输出电流的平均值为2cos 19.000aR U R U I L L +⋅==(13-2-2) 13.2.2晶闸管的过电流、过电压保护1.晶闸管的过电流保护由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN 结烧坏,造成元件内部短路或开路。
中南大学电力电子课程设计(晶闸管整流)
3.2变压器的参数计算
3.3闸管电路对电网及系统功率因数的影响
四、整流电路原理及设计
4.1整流元件的选择
4.2电流定额(INVT)的计算
五、触发电路的选择、原理及设计
5.1相控触发芯片的选择
5.2相控触发工作原理及电路原理图
六、保护电路的工作原理及元器件的选择
6.1保护电路的工作原理
6. 2保护电路元器件的选择
电力电子技术
课程设计报告
任课老师:杨建老师
课题名称:单相双半波晶闸管整流电路的设计(反电势、电阻负载)
设计者:程壹涛
班级:电气试验1301
学号:**********
时间:2015-12-05
一、课题选择
1.1课题名称
1.2设计条件
1.3任务要求
二、方案设计
2.1原理框图
三、主电路原理设计
3.1主电路中各元件参数的计算
结构比较简单。一方面是方便我们对设计电路中变压器型号。
单结晶体管触发的单相晶闸管全控整流电路..
电力电子技术课程设计说明书单结晶体管触发的单相晶闸管全控整流电路系、部:电气与信息工程系专业:电气自动化班级:电气****班学生姓名:*********同组同学:*** *** ****指导教师:**** 职称*********** 学号:****************完成时间:-*******************摘要随着社会的发展,在日常生产生活中我们用到直流电源的地方也越来越广泛。
而能够将交流电能转换为直流电能的整流电路的主要电力电子器件是半控型的晶闸管,与其对应的主要变换电路是相控整流电路。
相控整流电路结构简单、控制方便、性能稳定,是目前获得直流电能的主要方法,得到了广泛的应用,当然我们本次的任务就是关于这方面的设计——单结晶体管触发的单相晶闸管全控整流电路。
关键词:直流电源;整流电路;单结晶体;晶闸管;同步触发;全控整流电路AbstractWith the development of society, the daily production and life in DC where we use more and more widely. The ability to convert DC to AC power rectifier circuit of the major power electronic devices are semi-Controlled Thyristor, the main change with the corresponding circuit is phase-controlled rectifier circuit. Phase-controlled rectifier circuit is simple, easy to control, stable performance, is currently the main methods to obtain direct current energy, has been widely used, of course, our task is to this design in this regard - Single junction transistor triggered single-phase crystal Full control of thyristor rectifier circuit.With the development of society, the daily production and life in DC where we use more and more widely. The ability to convert DC to AC power rectifier circuit of the major power electronic devices are semi-Controlled Thyristor, the main change with the corresponding circuit is phase-controlled rectifier circuit. Phase-controlled rectifier circuit is simple, easy to control, stable performance, is currently the main methods to obtain direct current energy, has been widely used, of course, our task is to this design in this regard - Single junction transistor triggered single-phase crystal Full control of thyristor rectifier circuit.Key words: DC power supply; rectifier circuit; single crystals; thyristor; synchronous trigger; full-controlled rectifier目录前言 (6)第一章设计任务书 (6)1.1设计课题 (6)1.2设计目的 (6)1.3设计要求 (7)1.4参数确定及元件选取 (7)1.4.1有关参数的计算 (7)1.4.2元器件选取 (8)第二章设计方案的选取 (8)2.1设计方案的选取 (9)第三章单相晶闸管全控整流电路 (9)3.1晶闸管(Thyristor) (9)3.1.1晶闸管的工作原理 (10)3.1.2晶闸管的特性与主要参数 (12)3.1.2.1晶闸管的伏安特性 (12)3.1.2.2晶闸管的主要参数 (12)3.1.2.3晶闸管型号及其含义 (13)3.1.2.4晶闸管的开关特性 (13)3.2 单相桥式相控整流电路 (14)3.2.1 电阻性负载 (15)3.2.2电感性负载 (16)第四章单结晶体管触发电路系统电路 (19)4.1单结晶体管(简称UJT) (19)4.1.1单结晶体管的工作特性 (20)4.1.2单结晶体管工作原理 (21)4.1.3单结晶体管的特点 (22)4.2单结晶体管触发电路 (22)4.2.1振荡电路 (22)4.2.2.电路振荡过程分析 (22)4.2.3振荡周期与脉冲宽度的计算 (23)4.2.4单结管同步触发电路 (25)第五章总电路图 (25)5.1总电路图及工作原理 (25)5.2有关工作说明 (27)第六章晶闸管的保护 (28)6.1晶闸管的保护 (28)6.1.1过流保护措施 (28)6.1.2过压保护 (28)心得体会 (29)鸣谢 (30)参考文献 (30)前言电力电子器件是构成电力电子设备的基本元件,是电力电子技术的基础,其原理、特性和应用方法及典型电路决定着电力电子电路及应用系统的性能、价格和可靠性。
晶闸管的门极触发电路
晶闸管的门极触发电路
图3 锯齿波同步触发电路共包括五个环节,分别为:锯齿波形成环节、脉冲移相环节、脉冲形成及放大环节、强触发脉冲形成环节、双脉冲形成环节。
锯齿波形成环节是通过一个恒流源电路对电容进行恒流充电,从而形成锯齿波同步信号的上升沿,其下降沿是电容通过一小电阻放电而形成的。
锯齿波的宽度由电路参数打算,其频率则与电源电压频率相同。
脉冲移相环节是将锯齿波同步电压、偏移电压及掌握电压进行叠加,其过零点打算触发脉冲的起始时刻。
若偏移电压不变时,转变直流掌握电压可以使脉冲移相。
在这里加入偏移电压的目的,是使掌握电压为零时主电路的整流输出电压为零。
脉冲形成与放大环节的作用与正弦波触发电路基本相同。
强触发脉冲形成环节是通过一个单独的沟通电源整流后,得到50V的直流电压,在触发脉冲的起始时刻该电压通过脉冲变压器加到晶闸管的门极上,从而形成强触发脉冲。
触发电路各点电压波形如图4所示。
图4 双脉冲产生环节是依据三相全控桥式整流电路的特别要求,触发电路输出两个间隔为60°的双脉冲。
产生双脉冲的方法有两种,一种是外双脉冲方法,另一种是内双脉冲方法。
在此触发电路中采纳的是内双脉冲的方法,即每个触发单元一个周期内产生两个间隔为60°的双脉冲,只供应一个桥臂的晶闸管,这种电路虽然比较简单,但输
出功率可以削减。
晶闸管相控触发电路ppt课件
1
us2
cj
R 1
1
us1 1 RCj us1
cj
解得:us2
u s1
arctan RC
1 (RC) 2
同步方式
同步方式的分类:
独立同步 每个晶闸管都有相对独立的相控触发电路。
为使各晶闸管具有相同的控制角,各相触发电路采用同 一控制电压进行移相控制。
按相同步 利用全控桥式变流电路中两晶闸管元件间相位差为的特点,
t 1A ~ 1.5A以上,前沿的电流上升率大于1 A s
(4)触发脉冲与主电路电源电压必须同步,并保持与工作状态相适应的相 位关系。
(5)触发电路应保证变流电路各元件触发脉冲的对称性。
(6)相控触发电路应采取电磁兼容技术措施,防止因各方面的电磁干扰而 出现失控。
5.2 控制角a 的移相控制方法
晶闸管相控触发电路中,实现触发脉冲随控制信号变化作相位移动 的控制为移相控制。
一.延时移相控制方法
延时移相控制方法由同步环节提供自然换相点,再由自然换相点开 始计时,以控制角对应的延时时间确定触发脉冲产生的时刻。
U R
C
uC
当t 0时,uC 0,零初始条件下的RC电路响应
则
t
uC U (1 e RC )
a
令t
a时,uC
UG , 代入上式得:UG
_
U (1 e RC )
晶闸管相控触发电路
➢晶闸管门极驱动电路也称为触发电路; ➢晶闸管通常采用相位控制方式。
电源
变流电路
触发信号
负载
同步电路 驱动电路
反馈信号
移相 同步信号 控制电路
控制电路
相位
控制信号
给定信号
实验一 单结晶体管触发电路实验 (1)
实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件1. DJK01 电源控制屏2. DJK03-1 晶闸管触发电路3. 双踪示波器三、实验原理图1-1 单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1-1所示。
图中V6为单结晶体管,由等效电阻V5和C1组成组成RC充电回路,由C1,V6和脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。
工作原理简述如下:由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出UP脉冲。
同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉电压Uv冲变压器副边输出尖脉冲。
在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。
充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
单结晶体管触发电路的各点波形如图1-2所示。
图1-2 单结晶体管触发电路各点的电压波形(α=900)四、实验内容(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V (不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V ±10%,而“交流调速”侧输出的线电压为240V 。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
项目二:晶闸管触发电路
的范围为-0.5V~VS,当该端接地时,Q1、Q2为最宽脉
冲输出,而当该端接电源电压VS时,Q1、Q2为最窄脉 冲输出。
任务二 西门子TCA785集成 触发电路调试
引脚12(C12):输出Q1、Q2的脉宽控制端。应用中, 通过一电容接地,电容C12的电容量范围为
150~4 700 pF,当C12在150~1 000 pF变化时,Q1、
任务二 西门子TCA785集成 触发电路调试
引脚7(QZ)和引脚3(QV):TCA785输出的两个逻辑脉冲信 号端。其高电平脉冲幅值最大为VS-2V,高电平最大负 载能力为10mA。QZ为窄脉冲信号,它的频率为输出脉
冲Q2与Q1或Q1与Q2的两倍,是Q1与Q2或Q1与Q2的或信
号,QV为宽脉冲信号,其宽度为移相控制角φ+180°, 它与Q1、Q2或Q1、Q2同步,频率与Q1、Q2或Q1、Q2相 同,该两逻辑脉冲信号可用来提供给用户的控制电路作 为同步信号或其他用途的信号,不用时该两端可开路。
引脚8(VREF):TCA785自身输出的高稳定基准电压端。 该端负载能力为驱动10块CMOS集成电路。随着
TCA785应用的工作电源电压VS及其输出脉冲频率的不
同,VREF的变化范围为2.8~3.4 V,当TCA785应用的工 作电源电压为15V,输出脉冲频率为50Hz时,VREF的典 型值为3.1V。如用户电路中不需要应用VREF,则该端可 以开路。
任务一 :555定时器的原理及应用
一、任务描述与目标
1. 555定时器的工作原理 2. 555定时器的典型应用
任务一
555定时器的原理及应用
二:实物图
任务一
555定时器的原理及应用
三:555内部图及引脚图
晶闸管双窄脉冲触发电路的设计
摘要电力电子技术诞生自今已有50多年的历史,尽管可供电力电子行业技术人员选用的电力电子器件有40多种,但直到今天晶闸管仍占据着单容量的霸主地位。
因其触发性能的好坏,对晶闸管控制系统的可靠性、快速性、稳定性,以及调节范围和精度都有很大影响。
其触发电路的设计也从原先的分立式触发器(主要有阻容移相桥、单结晶体管、正弦波同步、锯齿波同步、三角波同步)发展到模拟集成触发器,再到数字集成式触发器,直至现在着力研究的数字化、模块化、智能化晶闸管触发器。
本文着重阐述了同步信号为锯齿波的触发电路的工作原理及其双窄脉冲的形成过程设计,继而推出智能型触发器的设计。
关键词:晶闸管;锯齿波;双脉冲;触发;移相;数字触发器AbstractPower electronic technology has a history of more than 50 years, Although the power electronous devichas chosen power electronics has a variety of about 40, nowadays thyristor still occupies the dominance of the single capacity. Triggering performance has adeep effect on thyristor controlled system reliability, quickness, stability, and the adjusting range and accuracy. Its triggercircuitdesign also:develops from the original are mainly flip-flops (phase shifting reluctance to let bridge, and single junction transistor, sine wave synchronization, sawtooth wave synchronization, triangle wave synchronous) to analog integrated flip-flop to digital integrated type flip-flop then to now focusing on research digitization, modular,intelligent thyristor trigger. Now the paper elaborates improve the design synchronous signal is a sawtooth wave DE trigger circuit principle of work the form of wave double pulse , and their indelible roles in development.Keywords:thyristor; sawtooth wave; double pulse triggering; phase shifting; Digital trigger目录摘要 (I)Abstract (II)1 绪论 (1)1.1引言 (1)1.2 晶闸管触发器的发展状况 (1)1.2.1分立式晶闸管触发器 (1)1.2.2 模拟集成式晶闸管触发器........................................... - 2 -1.2.3 数字集成式晶闸管触发器 (2)1.3 晶闸管触发器的发展趋势及论文的主要内容 (3)2 晶闸管................................................................. - 4 -2.1 晶闸管及其控制方式 .................................................. - 4 -2.2 晶闸管的伏安特性 .................................................... - 5 -3 触发电路............................................................... - 6 -3.1 变流器对触发电路的要求 .............................................. - 6 -3.2触发电路的类型 (6)3.3晶闸管对触发电路的要求 (7)3.3.1 触发脉冲的作用................................................... - 7 -3.3.2触发脉冲参数要求............................................... - 8 -3.3.3触发脉冲形式要求 (8)3.4单结晶体管的触发电路分析 (9)3.4.1常见的触发脉冲电压波形 (9)3.4.2要求 (9)3.4.3 具有同步环节的单结晶体管触发电路 (10)3.5同步信号为锯齿波的触发电路的研究 (11)3.5.1 脉冲的形成与放大电路 (11)3.5.2 锯齿波的形成脉冲移相 (13)3.5.3同步环节电路 (15)3.5.4三相桥式全控整流电路 (16)3.5.5双窄脉冲的形成环节电路的设计 (17)3.5.6 强触发电路环节 (18)3.6 防止误触发的措施的研究 (18)4 智能型双窄脉冲触发电路的设计 (20)4.1 硬件原理图设计 (20)4.1.1 RC移相及同步电路的实现 (20)4.1.2主控芯片的选用 (22)4.1.3 A/D转换器 (22)4.1.4闭环调节器 (22)4.1.5脉冲放大与输出电路 (23)4.1.6过压、过流、欠压和过热等外部故障保护电路 (24)4.1.7电源设计 (25)4.1.8 软件部分 (25)4.2双窄脉冲的形成 (29)5 总结与展望 (31)参考文献 (32)致谢 (33)附录: (34)1 绪论1.1引言自第一只晶闸管诞生以来,电力电子技术已发展了50多年,由于晶闸管所能承受的电压和电流容量仍然是目前电力电子器件中最高的,所以晶闸管仍是人类可以使用的单管容量(电压乘以电流)最大的电力电子器件。
晶闸管强触发电路设计
21 0 2年
第 6期
6月
核 电子学 与探 测技 术
Nu la e to i s& De e t n T c n l g c e rEl cr n c tc i e h oo y o
V0 . 2 N2
晶 闸管 强触 发 电路 设 计
强触发方式下的导通特性 , 于提高晶闸管在 对 脉冲功率技术应用 中的性能具有重要意义 。
相关文献表 明, 增大初始开通 面积 能够有 效解决晶闸管的导通不充分 问题 , 即门极触发 电流 幅值 和触发 电流 上升 率是调 节触 发 电流 的
两个 因素 IJ 9。本文 利用光 纤 隔离 电路 和 功率
脉冲功率系统的紧凑化和重频化方向中具有很 好的前景 。脉 冲功率应用的特点与电力系统 、 工业生产等场合 的不 同, 开关器件的瞬时功率 通 常很 高 , 求 开关 耐 压 高 , 流 大 , 迟 时 间 要 通 延
短, 开通 速度 快 , 导通 电阻 小 , 耗低 , 有 良好 损 具 的导通特 性 。 同时 满 足 所 有 要 求 是很 困难 的 , 在实 际应 用 中首先 满 足耐压 和 通流 条件 然后 再
究生 , 主要从事脉 冲功率 技术方面的研究 。
6 8 9
控制信 号电路
强触发 电路
接 收器 的型号 为 HF R 4 4和 HF R 4 4 B 11 B 21。
齄 单路 电 稳 态
动 电发 『电路 强路 驱 触
广 f 由 换j 北 藩
图 3 光 电隔离 电路
13 强触 发 形成 电路 . 为 了实 现强 触 发 电流 峰 值 和上 升 率 , 先 首
控制信号产生 电路 , 图 2所示 。控制信 如 号 由 N 5 5单 稳 态 触 发 式 电 路 产 生 , 过 E5 经 7 L 13通过 R 调节输 出脉 宽对 信号进 行整 4 S2 5
实验三-单结晶体管触发电路
实验三 晶闸管触发电路——单结晶体管触发电路一、实验目的:1、 掌握单结晶体管触发电路的工作原理;2、 学会使用示波器测量单结晶体管触发电路的个点电压波形;一、实验仪器设备:1、 ZEC-410型实验台2、 EM-11实验挂箱3、 双踪示波器一台4、 万用表一块、一字型螺丝刀一把(调节RP1用)三、实验原理:单结晶体管触发电路,是利用单结晶体管(双基极二极管)的负阻特性和RC 的充放电特性,构成频率可调的自激振荡电路,如图3-1所示0%R1R2R3R4R5R6D1D2VST1VST2C1V1V2C2T123456T2K GV3RP1图3-1 单结晶体管触发电路由同步变压器T1副边输出的交流同步电压,经D1半波整流,再由稳压管VST1,VST2进行削波,而得到梯形波电压,其过零点与晶闸管阳极电压的过零点一致,梯形波通过R5,V2向电容C2充电,当充电电压达到单结晶体管的峰点电压时,单结晶体管V3导通,从而通过脉冲变压器T2输出脉冲。
同时C2经V3和T2原边放电,由于时间常数很小,U c2很快下降至单结晶体管的谷点电压,V3重新关断,C2再次充电。
每个梯形波周期,V3可能导通,关断多次,但只有第一个输出脉冲起作用。
电容C2的充电时间常数由R7和V2的等效电阻等决定,调节RP1的滑动触点可改变V1的基极电压,使V1,V2都工作在放大区,即等效电阻可由RP1来调节,也就是说一个梯形波周期内的第一个脉冲出现时候(控制角)可由RP1来调节,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
四、实验内容及步骤:1、将控制台左上角的交流数字电压表(如图3-2所示)切换到300V档,用专用连接线将图3-2 数字交流电压表(左)及数字交流电流表(右)数字交流电压表接到单、三相可调交流电源输出的“U”孔和“N”孔中,如图3-3所示图3-3 单、三相可调交流电源调节“交流电源输出调节”旋钮,使电压表读数为200V;2、将连接交流电压表的两根连线改接到EM-11挂箱的“同步交流电压输入”端,并打开EM-11挂箱右下角的电源开关,T1原边同步交流电压信号已在内部接好。
基于ATMEL89S52单片机的三相晶闸管触发电路的设计
( 中国矿业 大 学信 息与 电 气工程 学 院 ,江 苏 徐 州 2 10 ) 2 0 8
摘 要 :本 文 提 出 了一 种 基 于 A ME 8 S2单 片机 的 三 相 桥 式 可 控 触 发 电路 的 设 计 方 法 ,主 要 包括 三 相 桥 式 T L95
可控 整流 电路、 同步信号 的检测 、脉 冲的形成与放 大 以及 软件 实现等 内容。这种 方法利 用 了电压传 感器来检 测
收 藕 日期 :0 1 o 0 2 1 一 4— 8 作者简介 : 王殿 俊 ( 97一), , 士研 究 生 , 力 电 子 与 电 力 传 动 .E—ma : agj3 @ 16 cr 18 男 硕 电 i w nd15 2 .o l n
4
机 电 元 件
等要 求 … 。以 分立 元 件 及 专用 集 成 电路 为 主 的触 发 电路 ,其 性能不 尽如 人意 ,其具 有 电路 复杂 、易 受 电网 电压 影响 、触发 脉冲 对称度 不好 等缺点 。由
o n ATM EL8 5 CU 9S 2 M
WA in— u YA i —i NG D a — n j NG Ja l n— n
( col f nom t na dEetcl n ier g C iaU iesyo n g& T c n l y Sh o o f ai n l r a E gn e n , hn nvri f i I r o ci i t Mi n eh oo , g
第 3期 21 0 1年 6月
机
电
元
件
V0 _ l31 Nn 3
ELECTRoM ECHANI CAL C0M P0NENTS
J .0l un 2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶闸管集成触发电路设计
1.晶闸管对触发脉冲的要求…………………………
2 . 锯齿波移相触发电路原理………………………
3. KJ006集成触发电路……………………………
3.1 内部结构……………………………………
3.2 KJ006集成触发电路的工作原理…………
3.3 分析各管脚波……………………………
3.4 KJ006典型接线图…………………………
4. 总结:……………………………………………
4.1 接线…………………………………………
4.2 KJ006各管脚波形…………………………
4.3 触发双向晶闸管电路………………………
5.设计体会…………………………………………
6. 参考文献…………………………………………
前言
电力电子技术是20世纪后半叶诞生和发展的一门崭新的技术。
可以预见,在21世纪电力电子技术仍将以迅猛的速度发展。
电力电子器件的发展对电力电子技术的发展起着决定性的作用。
用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。
可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。
采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。
交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。
交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低
这些毕业生走进企业、公司、政府机构或研究单位之后,往往深刻地感觉到缺乏实际开发设计项目的经验,不善于综合运用所学理论,对知识的把握缺乏融会贯通的能力。
通过这种设计课程,我们一方面可以结合课程的教学内容循序渐进地进行设计方面的实践训练,另一方面,在参与一系列子项目的实践过程中,还能提高如何综合运用所学知识解决实际问题的能力,以及获得有关项目管理和团队合作等等众多方面的具体经验,增强对相关课程具体内容的理解和掌握能力,培养对整体课程知识综合运用和融会贯通能力。
最后,向此次课程设计的指导老师以及在课程设计中帮助、支持我的同学表示衷心的感谢。
1. 晶闸管对触发脉冲的要求
触发电路的形式多种多样.常用的触发电路主要有阻容移相桥触发电路、单结晶体管移相触发电路、同步信号为正弦波的触发电路、同步信号为锯齿波的触发电路以及KC 和KJ 系列的专用集成触发电路等。
晶闸管装置种类很多,工作方式也不同,故对触发电路的要求也不同。
具体如下:
1. 触发脉冲应有足够的幅度 触发脉冲幅度太低,晶闸管因门极触发电压幅度不够而不能触发导通, 触发电压大小应根据晶闸管门极参数确定, 1000A 以下晶闸管,门极正向峰值电压在6~16V 之间,门极不触发电压小于等于4V 。
2. 触发脉冲应有足够的宽度 触发脉冲应保证晶闸管阳极电流I a
上升到大
于擎住电流I L
时才能消失,否则,晶闸管不能导通,一般晶闸管要求脉冲宽度τ
>180
,全控桥脉冲宽度为 600
<τ<1200。
电感性负载一般要求宽脉冲触发。
3. 触发脉冲应有足够的陡度
所谓陡度是指脉冲前沿的上升率,可以减小晶闸管的起始导通时间,对于晶闸管多串、多并的电路,足够的上升率可以使晶闸管可靠地导通。
4. 触发脉冲应有足够的移相范围
为保证输出电压在要求的电压范围内连续可调,触发脉冲移相范围应足大,防止输出电压升不上去或降不下来的现象发生。
5. 触发电路应能输出双窄脉冲或宽脉冲
为满足三相全控桥晶闸管的导通要求,触发电路应能输出双脉冲或宽脉冲。
6. 触发电路应有αmin
、βmin
限制
为满足反并联可逆电路的要求,防止逆变失败,触发电路应有αmin
、βmin
限制。
7.触发电路应能输出强触发脉冲
对于大功率变流设备的晶闸管多串、多并电路,为使晶闸管同时导通,触发电路应能实现强触发,脉冲前沿陡度应大于1A/us 。
2 . 锯齿波移相触发电路原理
锯齿波同步的触发电路输出可为双窄脉冲(适用于有两个晶闸管同时导通的
电路),也可为单窄脉冲。
由脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节三个基本环节组成。
此外,还有强触发、双窄脉冲形成和脉冲输出等环节。
如下图所示。
图中晶体管V 6
用来控制V 5
的工作状态形成双窄脉冲。
锯齿波同步移相触发电路I 、II 由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图3-6所示。
图3-6锯齿波同步移相触发电路I 原理图
由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T
来控制锯齿波产生的时刻及锯齿波的宽度。
由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R3、V3放电;调节电位器RP1可以调节恒流源的电流大小,改变对电容的充电时间,从而改变了锯齿波的斜率;控制电压U ct 、偏移电压U b 和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct 和偏移电压U b
的大小;V6、V7构成脉冲形成放大环节,C5为强触发电容用于改善脉冲的前沿,由脉冲变压器输出触发脉冲。
3. KJ006集成触发电路
3.1 内部结构
3.2 KJ006集成触发电路的工作原理
KJ006 引脚图 KJ006 是由同步检波、锯齿波形成电路、电流综合比较放大电路、功率放大电路和失交保护电路等部分组成。
外电路接线如图所示。
锯齿波斜率决定于 R7、RPl 和 Cl 的数值,
对不同的电网电压,KJ006 电路同步限流电阻 R,的选择按下式计算
KJ006可控硅移相集成触发电路主要适用于直接由交流电供电的双向可控硅或反向。
KJ006可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。
KJ006器件输出两路相差180度的移相脉冲,可以方
便地构成全控桥式触发器线路。
该电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点。
一、电路工作原理:
该电路由同步检测电路、锯齿波形成电路、偏形电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。
电原理见下图:锯齿波的斜率决定于外接电阻R6、RW1,流出的充电电流和积分电容C1的数值。
对不同的移相控制电压VY,只有改变权电阻R1、R2的比例,调节相应的偏移电压VP。
同时调整锯齿波斜率电位器RW1,可以使不同的移相控制电压获得整个移相范围。
触发电路为正极性型,即移相电压增加,导通角增大。
R7和C2形成微分电路,改变R7和C2的值,可获得不同的脉宽输出。
KJ006的同步电压为任意值。
3.3 分析各管脚波
3.3 KJ006典型接线图
交流供电时的接线图
直流供电时的接线图
直流供电的扩展电流电路如图所示:
4. 总结
4.1 接线
晶闸管触发电路(正面)
晶闸管触发电路(反面)
4.2 KJ006各管脚波形
P4脚
P10管脚
P3管脚
4.3 触发双向晶闸管电路
4.4实验现象
直流侧加+15V直流电,交流侧加+30V交流电压(经变压器220V降压至30V),输出侧二极管两端接霓虹灯泡,开始灯不亮,调节电位器改变晶闸管触发角从而改变锯齿波与基准线交点来改变输出电压大小,当电压达到30V左右时霓虹灯被点亮,随着电位器的调节霓虹灯逐渐变亮。
5.设计体会
通过这次设计,虽不敢说受益匪浅,但对课程有了更进一步的了解,三个人一组很快读懂了电路图并熟悉其原理,这为后来焊接硬件电路打下了基础。
有不懂的地方和其他组一起讨论交流并在老师的指导下完成硬件电路并测出正确波形,这本课程设计可能有地方与其他相同,其实有些图啊之类的借鉴了.做课程设计无非就是把书本里所学的东西运用到实际罢了,把理论与实际结合起来.可以说是对综合知识的融合贯通,可能我还有好多地方不懂,不过同过这种做课程设计的方式还不错,我们可以自己尝式为自己定设计任务,多想想,就多查查啊,东西就渐渐学到了.总之体会到好处,做完了还感觉不错,更加认识了解了晶闸管触发电路。
6. 参考文献
1.《电力电子技术》王兆安
2.《电力电子技术问答》颜世钢,张承慧。