2019年河南高考理科数学试卷及答案

合集下载

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。

2019年高考理科全国1卷数学(含答案解析)

2019年高考理科全国1卷数学(含答案解析)

22019 年普通高等学校招生全国统一考试理科数学本试卷共 4 页,23 小题,满分 150分,考试用时 120 分钟。

注意事项:1.答卷前, 考生务必将自己的姓名、 考生号、考场号和座位号填写在答题卡上。

用 2B 铅笔将试卷类型( B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的 答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答 在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目 指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案; 不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共 12小题,每小题 5 分,共 60分。

在每小题给出的四个选 项中,只有一项是符合题目要求的。

21.已知集合 M x 4 x 2 ,N {x x 2 x 6 0 ,则 M N =( ) A. {x 4 x 3 B. {x 4 x 2 C. {x 2 x 2 D. {x 2 x 32.设复数 z 满足 z i =1, z 在复平面内对应的点为 (x , y ),则( )2 2 2 2 2 2 2 2A. (x+1) y 1B. (x 1) y 1C. x (y 1) 1D. x (y+1) 10.2 0.33.已知 a log 2 0.2,b 20.2,c 0.20.3 ,则()A. a b cB. a c bC. c a bD. b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51 25 1 ≈ 0.618,称为黄金分割比例 ),著名的“断臂维纳斯”便是如此.此外,最美人体2的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 5 1.若某人满足上述两个黄金分割11 212A.πB.32πC.38. 如图是求 2的程序框图,图中空白框中应填入( 5π D.6)比例,且腿长为 105cm ,头顶至脖子下端的长度为 26 cm ,则其身高可能是(A. 165 cmB. 175 cmC. 185 cmD. 190cmsin x x5.函数 f(x)= 2 在 [—π, π的]图像大致为(A.C.6. 我国古代典籍《周易》用“卦”描述万物的变化.每组成,爻分为阳爻和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有 3 个阳爻的概率是(16B. 11 32C. 2132D.11167. 已知非零向量 a ,b 满足 a =2b ,且(a –b ) b ,则 a 与 b 的夹角为( A.AF │2 2│F 2B │,│ AB │ │ BF │1 ,则 C 的方程为(其中所有正确结论的编号是12.已知三棱锥 P-ABC 的四个顶点在球 O 的球面上, PA=PB=PC ,△ABC 是边长为 2的正三角形, E ,F 分别是 PA , PB 的中点,∠ CEF=90°,则球 O 的体积为( )1 A. A= 2A 1B. A=2 1AC. A=1 2AD.A=12A9.记 S n 为等差数列 {a n } 的前 n 项和.已知 S 4 0, a 5 5 ,则( A. a n 2n 5 B. a n 3n 10 C. S n2 2n 28n D.S n2n10.已知椭圆 C 的焦点为 F 1( 1,0) , F 2( 1,0) ,过 F 2的直线与C 交于 A , B 两点 .若A.22 x2 y22xy 1 B. 13222xy C.43D.511.关于函数 f (x)sin | x| |sin x |有下述四个结论: (① f(x)是偶函数 ②f(x)在区间( 2 , )单调递增③f(x)在[]有 4 个零点④ f(x)的最大值为 2A. ①②④B. ②④C. ①④D. ①③A. 8 6B. 4 6C. 2 6D. 6、填空题:本题共4小题,每小题5 分,共20分13. 曲线y 3(x2 x)e x在点(0,0)处的切线方程为 ___________ ._1214. 记S n为等比数列{a n}的前n项和.若a1 ,a42a6,则S5= ._315. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1 获胜的概率是___________ ._2216. 已知双曲线C:x2y21(a 0,b 0)的左、右焦点分别为F1,F2,过F 1的直线与C 的a2b2uuur uuur uuur uuur两条渐近线分别交于A,B两点.若F1A AB ,F1B F2B 0,则C 的离心率为___________________ ._三、解答题:共70 分。

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年高考数学理科试题解析版(全国卷II)共8页word资料

2019年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i +【答案】A【命题意图】本试题主要考查复数的运算. 【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是 (A ) 211(0)x y ex +=-> (B )211(0)x y e x +=+> (C )211(R)x y ex +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D. (3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B. (8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r ,1a =,2b =,则CD =uu u r(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理.【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA 2=DB CB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==-,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积, 设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C. (10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b+=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B. 第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2019年高考理科数学全国卷1含答案

2019年高考理科数学全国卷1含答案
(1)证明: MN∥平面C1DE ; (2)求二面角 A MA1 N 的正弦值.
数学试卷 第 4页(共 14页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
在 [, ] 的图象大致为
D.190 cm ()
A.
B.

C.
D.

数学试卷 第 1页(共 14页)
6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6
个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机
取一重卦,则该重卦恰有 3 个阳爻的概率是
19.(12 分)

已知抛物线 C: y2 3x 的焦点为 F,斜率为 3 的直线 l 与 C 的交点为 A,B,与 x 轴
2
的交点为 P. (1)若 AF BF 4 ,求 l 的方程;
(2)若 AP=3PB ,求 AB |. 此
20.(12 分)

已知函数 f (x) sin x ln(1 x) , f (x) 为 f (x) 的导数.证明:
数学试卷 第 2页(共 14页)
()
10.已知椭 圆 C 的焦点 为 F1( 1, 0),F2(1, 0) ,过 F2 的直线 与 C 交于 A,B 两点 .若

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019年河南成人高考高起点数学(理)真题及答案

2019年河南成人高考高起点数学(理)真题及答案

1 x2 2019年河南成人高考高起点数学(理)真题及答案本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分 150 分。

考试时间 120 分钟。

第Ⅰ卷(选择题,共 85 分)一、选择题(本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集 U={1,2,3,4}集合 M={3,4},则C U M =【 】A.{2,3}B.{2,4}C.{1,2}D.{1,4} 2. 函数 y=cos4x 的最小正周期为【 】A. B. C. D. 2 2 4 3.设甲:b=0;乙:函数 y=kx+b 的图像经过坐标原点,则【】A. 甲是乙的充分条件但不是必要条件B. 甲是乙的充要条件C. 甲是乙的必要条件但不是充分条件D. 甲既不是乙的充分条件也不是乙的必要条件4. 已知tan1.则tan(【 】2 A.-3 B.1 34C.3D. 1 35. 函数 y 的定义域是【】A. x x 1B. x x 1C. x 1 x 1D. x x 16. 设 0<x<1,则 【 】A. log 2 x0 B. 0 2x 1C. log 1 x0 2D.1 2x 27. 不等式 x 1 1 的解集为 【】2 2 A. x x 0或x 1C. x x 1B. x 1 x 0D. x x 0)3 y8. 甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排法共有 【 】 A.4 种 B.2 种 C.8 种 D.24 种9.若向量 a =(1,1),b =(1,一 1),则 1 a 3b 【 】2 2A.(1.2)B.(-1.2)C.(1,-2)D.(-1,-2)110. log 1162 (2)0 【 】A.2B.4C.3D.511. 函数 y x 2 4x 5 的图像与 x 轴交于 A ,B 两点,则|AB|=A.3B.4C.6D.512.下列函数中,为奇函数的是 【 】A. y 2x13.双曲线 x 9 B.y=-2x+3 C. y x 232- 1的焦点坐标是 【 】16 D.y=3cosxA.(0,- ),(0, )B.(- ,0),( ,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线mx y 1 0 与直线4x 2 y 1 0 平行,则 m=【】A.-1B .0C.2D.115.在等比数列a n 中, 若a 4a 5 6, 则a 2a 3a 6a 7 【 】A.12B.36C.24D.7216.已知函数 f x 的定义域为 R ,且 f (2x ) 4x 1, 则 f (1) 【 】A.9B.5C.7D.3 17. 甲、乙各自独立地射击一次,已知甲射中 10 环的概率为 0.9,乙射中 10 环的概率为 0.5,则甲、乙都射中 10 环的概率为 【 】 A.0.2 B.0.45 C.0.25 D.0.75第Ⅱ卷(非选择题,共 65 分) 二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)18.椭圆 x 4 + y 21的离心率为。

2019年河南高考数学试卷.doc

2019年河南高考数学试卷.doc

2019年河南高考数学试卷考生可点击进入河南高考频道《》查看河南高考数学试卷信息。

高考时间全国统考于6月7日开始举行,具体科目考试时间安排为:6月7日9:00至11:30语文;15:00至17:00数学。

6月8日9:00至11:30文科综合/理科综合;15:00至17:00外语,有外语听力测试内容的应安排在外语笔试考试开始前进行。

各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。

具体考试科目时间安排报教育部考试中心备案后发布。

全国统考科目中的外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种参加考试。

时间6月7日6月8日上午语文(09:00:00-11:30:00)文科综合/理科综合(09:00:00-11:30:00)下午数学(15:00:00-17:00:00)外语(15:00:00-17:00:00)答题规范选择题:必须用2B铅笔按填涂示例将答题卡上对应的选项涂满、涂黑;修改答题时,应使用橡皮轻擦干净并不留痕迹,注意不要擦破答题卡。

非选择题:必须用0.5毫米黑色墨水签字笔在各题规定的答题区域内答题,切不可答题错位、答题题号顺序颠倒、超出本题答题区域(超出答题卡黑色边框线)作答,否则答案无效。

如修改答案,就用笔将废弃内容划去,然后在划去内容上方或下方写出新的答案;或使用橡皮擦掉废弃内容后,再书写新的内容。

作图:须用2B铅笔绘、写清楚,线条及符号等须加黑、加粗。

选考题:先用2B铅笔将所选考试题的题号涂黑,然后用0.5毫米黑色墨水签字笔在该题规定的答题区域内对应作答,切不可选涂题号与所答内容不一致,或不填涂、多填涂题号。

特别提醒:考生不要将答题卡折叠、弄破;严禁在答题卡的条形码和图像定位点(黑方块)周围做任何涂写和标记,禁止涂划条形码;不得在答题卡上任意涂画或作标记。

试题答案真题/答案[解析]考生也可点击进入《》查询2019年河南高考数学试卷信息!【CTRL+D收藏】历年真题违规处理考试莫作弊,作弊蹲大狱2015年11月起。

2019年高考全国I卷理科数学试卷(含答案)

2019年高考全国I卷理科数学试卷(含答案)

2019年高考全国I卷试卷理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩U=A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则A.(x+1)2+y2=1B. (x-1)2+y2=1C.x2+(y-1)2=1D. x2+(y+1)2=10.2,b=20.2,c=0.20.3,则3.已知a=log2A.a<b<cB.a<c<bC.c<a<bD.b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是√5−12=0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此。

此外,最(√5−12。

美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175 cm5.函数f(x)=sinx+xcosx+x 2的[-π,π]图像大致为6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。

2019年全国乙卷统一高考数学试卷(理科)(新课标II)逐题解析

2019年全国乙卷统一高考数学试卷(理科)(新课标II)逐题解析


y2 b2
1(a>0,b>0)的右焦点,O 为坐标原点,以 OF 为直径的
圆与圆 x2+y2=a2 交于 P、Q 两点.若|PQ|=|OF|,则 C 的离心率为
A. 2
B. 3
C. 2
D. 5
解析如下:A
准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 关系,可求双曲线的离心 率.
的方法,如 p 2 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A,同样可排除
B,C,故选 D.
因 为 抛 物 线 y2 2 px( p 0) 的 焦 点 ( p , 0) 是 椭 圆 x2 y2 1 的 一 个 焦 点 , 所 以
2
3p p
3 p p ( p )2 ,解得 p 8 ,故选 D. 2
本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.


9.下列函数中,以 为周期且在区间( , )单调递增的是
2
42
A. f(x)=│cos 2x│
B. f(x)=│sin 2x│
C. f(x)=cos│x│
D. f(x)= sin│x│
解析如下:A 本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象, 即可做出选择.
中位数仍为 x5 ,A 正确.
②原始平均数
x

1 9
( x1

x2

x3

x4

x8

x9 )
,后来平均数
x 17(x2 x3 x4 x8)
平均数受极端值影响较大, x 与 x 不一定相同,B 不正确

2019年全国各地高考各学科试题及参考答案

2019年全国各地高考各学科试题及参考答案

课标Ⅰ全国卷(适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建、山东)语文2019年高考试题——课标Ⅰ卷语文下载数学2019年高考试题——课标Ⅰ卷文数下载2019年高考试题——课标Ⅰ卷理数下载英语2019年高考试题——课标Ⅰ卷英语下载文科综合2019年高考试题——课标Ⅰ卷文综(地理)下载2019年高考试题——课标Ⅰ卷文综(历史)下载2019年高考试题——课标Ⅰ卷文综(政治)下载2019年高考试题——课标Ⅰ卷文综下载理科综合2019年高考试题——课标Ⅰ卷理综(物理)下载2019年高考试题——课标Ⅰ卷理综(化学)下载2019年高考试题——课标Ⅰ卷理综(生物)下载2019年高考试题——课标Ⅰ卷理综下载课标Ⅱ全国卷(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆)语文2019年高考试题——课标Ⅱ卷语文下载数学2019年高考试题——课标Ⅱ卷文数下载2019年高考试题——课标Ⅱ卷理数下载英语2019年高考试题——课标Ⅱ卷英语下载文科综合2019年高考试题——课标Ⅱ卷文综(地理)下载2019年高考试题——课标Ⅱ卷文综(历史)下载2019年高考试题——课标Ⅱ卷文综(政治)下载2019年高考试题——课标Ⅱ卷文综下载理科综合2019年高考试题——课标Ⅱ卷理综(物理)下载2019年高考试题——课标Ⅱ卷理综(化学)下载2019年高考试题——课标Ⅱ卷理综(生物)下载2019年高考试题——课标Ⅱ卷理综下载课标Ⅲ全国卷(适用地区:云南、广西、贵州、四川、西藏)语文2019年高考试题——课标Ⅲ卷语文下载数学2019年高考试题——课标Ⅲ卷文数下载2019年高考试题——课标Ⅲ卷理数下载英语2019年高考试题——课标Ⅲ卷英语文科综合2019年高考试题——课标Ⅲ卷文综(地理)下载2019年高考试题——课标Ⅲ卷文综(历史)下载2019年高考试题——课标Ⅲ卷文综(政治)下载2019年高考试题——课标Ⅲ卷文综下载理科综合2019年高考试题——课标Ⅲ卷理综(物理)下载2019年高考试题——课标Ⅲ卷理综(化学)下载2019年高考试题——课标Ⅲ卷理综(生物)下载2019年高考试题——课标Ⅲ卷理综下载北京卷语文2019年高考试题——北京卷语文下载数学2019年高考试题——北京卷文数下载2019年高考试题——北京卷理数下载英语2019年高考试题——北京卷英语下载文科综合2019年高考试题——北京卷文综(地理)下载2019年高考试题——北京卷文综(历史)下载2019年高考试题——北京卷文综(政治)2019年高考试题——北京卷文综下载理科综合2019年高考试题——北京卷理综(物理)下载2019年高考试题——北京卷理综(化学)下载2019年高考试题——北京卷理综(生物)下载2019年高考试题——北京卷理综下载天津卷语文2019年高考试题——天津卷语文下载数学2019年高考试题——天津卷文数下载2019年高考试题——天津卷理数下载英语2019年高考试题——天津卷英语下载文科综合2019年高考试题——天津卷文综(地理)下载2019年高考试题——天津卷文综(历史)下载2019年高考试题——天津卷文综(政治)下载2019年高考试题——天津卷文综下载理科综合2019年高考试题——天津卷理综(物理)下载2019年高考试题——天津卷理综(化学)2019年高考试题——天津卷理综(生物)下载2019年高考试题——天津卷理综下载江苏卷语文2019年高考试题——江苏卷语文下载数学2019年高考试题——江苏卷数学下载英语2019年高考试题——江苏卷英语下载物理2019年高考试题——江苏卷物理下载化学2019年高考试题——江苏卷化学下载生物2019年高考试题——江苏卷生物下载地理2019年高考试题——江苏卷地理下载历史2019年高考试题——江苏卷历史下载政治2019年高考试题——江苏卷政治下载海南卷(特别说明:语文、数学、英语使用新课标全国卷2)语文2019年高考试题——课标Ⅱ卷语文下载数学2019年高考试题——课标Ⅱ卷文数下载2019年高考试题——课标Ⅱ卷理数下载英语2019年高考试题——课标Ⅱ卷英语下载2019年高考试题——海南卷物理下载化学2019年高考试题——海南卷化学下载生物2019年高考试题——海南卷生物下载地理2019年高考试题——海南卷地理下载历史2019年高考试题——海南卷历史下载政治2019年高考试题——海南卷政治下载浙江卷语文2019年高考试题——浙江卷语文下载数学2019年高考试题——浙江卷数学下载英语2019年高考试题——浙江卷英语下载上海卷语文2019年高考试题——上海卷语文下载数学2019年高考试题——上海卷数学下载英语2019年高考试题——上海卷英语下载。

2019年河南高考理科数学真题及答案

2019年河南高考理科数学真题及答案

2019年河南高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D二、填空题:本题共4小题,每小题5分,共20分。

2019年河南省高考适应性考试数学试题(理)及答案

2019年河南省高考适应性考试数学试题(理)及答案

河南省普通高中2019年新课程高考适应性考试(一)数学(理)试题本试题卷分第1卷(选择题)和第Ⅱ卷(必考题和选考题两部分)。

考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共1 2小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R ,集合A={1,2,3,4,5},B={|2x x ≥},下图中阴影部分所表示的集合为A .{0,1,2}B .{1,2}C .{1} C .{0,1} 2.复数321iz i i=-+,在复平面上对应的点位于A .第一象限B .第二象限C .第二象限D .第四象限3.若13sin cos ,(0,)αααπ-+=∈,则tan α= A .3 B .3- C .3 D .3-4.已知命题:,p x R ∃∈使得12,x x+<命题2:,10q x R x x ∀∈++>,下列命题为真的是A .p ∧ qB .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为A .43B .83C .123D .2436.已知△ABC 中,C=45°,则sin 2A=sin 2B 2A .14B .12 C 2D .34 7.如图是计算函数ln(),2,0,23,2,3x x x y x x ⎧-≤-⎪=-<≤⎨⎪>⎩的值的程序框图,在①、②、③处分别应填入的是A .y=ln (一x ),y=0,y=2xB .y=0,y=2x,y=In (一x )C .y=ln (一x ),y=2z,y=0D .y=0,y=ln (一x ),y=2x8.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足 (a-c )·(b 一c )=0,则|c|的最大值是A .1BC .2D 9.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD⊥平面ABC ,AD=2AB=6则该球的表面积为A .16πB .24πC .π D .48π103)nx+的展开式中,各项系数之和为M ,各项二项式系数之和为N ,且M+N=72,则展开式中常数项的值为 A .18 B .12 C .9 D .611.已知函数()sin cos (0)f x x x ωωω=+>,如果存在实数x 1,使得对任意的实数x ,都有11()()(2012)f x f x f x ≤≤+成立,则ω的最小值为A .12012 B .2012π C .14024 D .4024π 12.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A,B ,C 三点的横坐标成等比数列,则双曲线的离心率为 ABCD第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第2l 题为必考题,每个试题考生都必须做答。

(完整word版)2019年高考理科数学试题解析版

(完整word版)2019年高考理科数学试题解析版

2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。

2•作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4•考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

21.已知集合M x 4 x 2,N{xx x 6 0,则M N =A. {x 4 x 3B. {x 4 x 2C. {x 2 x 2D.{x2 x 3【答案】C【解析】【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养. 采取数轴法,利用数形结合的思想解题.【详解】由题意得,M x 4 x 2 , N x 2 x 3,则M N x 2 x 2 •故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2x 2 (y+1)2【答案】C 【解析】【分析】(0, 1)之间的距离为1,可选正确答案 C .法或几何法,利用方程思想解题.0.2 0.3 ,3.已知 a log 2 0.2,b2 ,c 0.2 ,则【答案】B 【解析】【分析】 运用中间量0比较a, c ,运用中间量1比较b,c【详 解】 a log 2 0.2 log 2 10, b 20.2 20 1, 0 0.2°.30 c 1,a c b .故选 B .【点睛】本题考查指数和对数大小的比较, 渗透了直观想象和数学运算素养.法,利用转化与化归思想解题.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是2•设复数z 满足 =1 , z 在复平面内对应的点为(x , y ),则A. (x+1)2y 2 1B. (x 1)2 y 2C. x 2 (y 1)2 1D.本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x , y )和点【详解】z x yi,z i x (y 1)i,【点睛】本题考查复数的几何意义和模的运算,x 2 (y 1)2 1,则 x 2 (y1)2 渗透了直观想象和数学运算素养. 1 .故选C .采取公式A. a b cB. a c bC. c a bD.0.20 1,则采取中间变量A .2-ITIT xC .FI --------- 1 W -ITLJ(亙」-0.618称为黄金分割比例),著名的“断臂维纳斯”便是如此•此外,最美人体2的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 比例,且腿长为105cm ,头顶至脖子下端的长度为A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则2626 X,得x 42.07cm, y 5.15cm •又其腿长为105cm ,头顶至脖子下x y 105 2端的长度为26cm ,所以其身高约为 42. 07+5 • 15+105+26=178. 22,接近175cm •故选B . 【点睛】本题考查类比归纳与合情推理, 渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.sin x x5.函数f(x)= ---------- 2在[—n, n 的图像大致为cosx x51•若某人满足上述两个黄金分割226 cm ,则其身高可能是【答案】D【解析】 【分析】先判断函数的奇偶性,得 f(x)是奇函数,排除 A ,再注意到选项的区别,利用特殊值得正确答案.【答案】A 【解析】 【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题, 渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况, 基本事件计算是住店问题,该重卦恰有3个阳 爻是相同元素的排列问题,禾U 用直接法即可计算.【详解】由题知,每一爻有 2中情况,一重卦的 6爻有26情况,其中6爻中恰有3个阳爻…、sin( x) ( x) I 详解】由f(x)cos( x) ( x)2sin x x 2cosx xf (x),得f(x)是奇函数,其图象关于原点对称•又f(—)奏器2Q 21, f()0 .故选D •1 2【点睛】本题考查函数的性质与图象,渗透了逻辑推理、 直观想象和数学运算素养•采取性质法或赋值法,利用数形结合思想解题.6•我国古代典籍《周易》用“卦”描述万物的变化•每一 “重卦”由从下到上排列的 6个爻组成,爻分为阳爻“一一”和阴爻“一 一”,如图就是一重卦•在所有重卦中随机取一重 卦,则该重卦恰有 3个阳爻的概率是D.323211 16A.— 16/=1i,故选 A •3情况有C6,所以该重卦恰有3个阳爻的概率为【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题•本题是重复元素的排列问题,所以基本事件的计算是“住店”问题, 满足条件事件的计算是相同元素的排列问题即为组合问题.7•已知非零向量a,b满足a =2 b,且(a- b)b,则a与b的夹角为n n 2 n 5 nA. B. C. D.6 3 3 6【答案】B【解析】【分析】本题主要考查利用平面向量数量积数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养. 先由(a b) b得出向量a,b的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.為1,所以a与b的夹角为3,故选B•cos【详解】因为(a b)b,所以(a b) b a b b2=0 ,所以a b b2,所以【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,].112〕28.如图是求2的程序框图,图中空白框中应填入112〕221 A. A= —2 A A=1丄 2A 【答案】A B. A=2 —A 1C. A=—1 2AD.【解析】【分析】本题主要考查算法中的程序框图, 渗透阅读、 分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择. 【详解】执行第1次,A循环,执行第2次, 循环,执行第3次, 11 1 -,k 1 2是,因为第一次应该计算 1 = ,k 2 2 2 A2 1 1 12 2,是,因为第二次应该计算 2 —=丄, 2 1 2 A 2 1——,故选A . A 2 2,否,输出,故循环体为 A - 2 【点睛】秒杀速解 认真观察计算式子的结构特点,可知循环体为 9•记S n 为等差数列 {a *}的前n 项和.已知S 4 0, a 5 5,则A. a n 2n 5B. a n 3n 10C. S n 2n8nD.k 1=2,k 1=3,S *丄门2 2n2【答案】A【解析】【分析】等差数列通项公式与前n项和公式.本题还可用排除,对B , a5 5 ,S 4( 7 2)4 2100 ,排除B,对C, S40, a5S5S422 5 8 50 105 ,排除C.对D, S40,a 5S5S4152 2 505-5,排除D,故选 A .22【详解】由题知,S4/430解得a3■- a n2n5 2,故选A. a1 4d5d2a5【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差, 在适当计算即可做了判断.2210•已知椭圆C 的焦点为F 11,0) , F 2(1,0),过F 2的直线与C 交于A , B 两点•若2 F 2BI , | AB| |BF 1 ,则C 的方程为2xA.2y 2 1 2C. £4D.【答案】 【解析】 【分析】可以运用下面方法求解:如图,由已知可设,则 AF 2 2n, BF 1 AB 3n ,由椭圆的定义有 2a中,由余弦定理得COS AF 2F 1 解得nBF4n 2 4 n 2 4COS BF 2F 1 BF 2 4n, AF |2a 2 2n 2 cos AF 2F 1 2 n 2 cos BF 2F 1 9nAF 2 2n .在△ AF 1F 2 和△ BF 1F 24n 2,20 ,两式消去cos AF 2F 1 2a 4n 2.3, a 3, b 2 a 2,又 AF 2 F 1, BF 2F 1 互补,,cos BF 2F 1,得 3n 2 6 11n 2 ,c 2 31故选B .很好的落实了直观想象、逻辑推理等数学素养.11.关于函数f(x) sin|x| |sin x|有下述四个结论:①f(x)是偶函数 ②f(x)在区间(—,)单调递增2③f(x)在[,]有4个零点 ④f(x)的最大值为-其中所有正确结论的编号是 A.①②④ B.②④ C.①④ 【答案】C 【解析】 【分析】【详解】如图,由已知可设F 2B n ,则 | AF 2 2n , 3n ,由椭圆的定义有2acos4n 2 2a BF i F 1AB4n 24nBF 2 4n,4n 2 9n 2AF i9n 2 2 2n 3n2a AF 2△ AF 1F 2△ AF ,B 中,由余弦定理推论得定理得12 2n 2n -4,解得3a 2 c 223 12,所求椭圆方程为—32y-1,【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、 转化与化归的能力,D.①③化简函数f x sinx sinx,研究它的性质从而得出正确答案.【详解】Q f x sin x sin x | sin x sin x f x , f x为偶函数,故①正确.当x 时,f x 2si nx,它在区间,单调递减,故②错误.当o x22时, f x2sin x , 它有两个零点:0; 当x 0时,f x sin x sin x2sin x,它有一个零点:,故 f x在,有3个零点:0故③错误•当x 2k ,2kk:N时, f x 2sin x ;当x 2k,2k 2kN 时,f x si nx sin x0,又f x为偶函数,f x的最大值为2,故④正确•综上所述,①④正确,故选C.【点睛】画出函数f x si nx si nx的图象,由图象可得①④正确,故选C.12•已知三棱锥P-ABC的四个顶点在球0的球面上,PA=PB=PC ,△ ABC是边长为2的正三角形,E, F分别是PA, PB的中点,/ CEF=90。

2019年高考理科数学全国卷1(附参考答案和详解)

2019年高考理科数学全国卷1(附参考答案和详解)

可 得"+'% 槡5"&!&#!'!6!解 得 +"2"!#7!!
由已


得 *&"'"+))+"'#*
槡5&! "
&
#!'!6!解

*
"
!76!"!6! 综上!此人身高 * 满足!'$!6$#"*"!76!"!6!所以 其 身 高 可能为!7534!故选 .! 5!答 案 8
解析- ,"&"#*3099",:&""&#")#"&&""#" *&,""#! + ,""#为奇函数!排除 ;!
,%'- '+-(!#
-%,- '$-$ (4-
.%,-' !$-$($-
!#!已知椭圆 . 的焦 点 为/!$(!##%#/$ $!##%#过 /$ 的 直 线
与 . 交于+#0 两点!若"+/$"'$"/$0"#"+0"'"0/!"#
则. 的方程为
$! ! %
*%#$$ 0&$'!
,%#+$ 0&$$ '!
*%
,%
-%
.%
!$!已 知 三 棱 锥 12+0. 的 四 个 顶 点 在 球 3 的 球 面 上#1+'

2019高考(卷1)理科数学-精选.pdf

2019高考(卷1)理科数学-精选.pdf

19.( 12 分)
已知抛物线 C : y 2 ( 1)若 AF BF
3x 的焦点为 F ,斜率为 3 的直线 l 与 C 的交点为 A , B ,与 x 轴的交点为 P . 2
4 ,求 l 的方程;
( 2)若 AP 3PB ,求 AB .
20.( 12 分)
已知函数 f ( x) sin x ln(1 x) , f ( x) 为 f ( x) 的导数,证明: ( 1) f ( x) 在区间 ( 1, ) 存在唯一极大值点;
D、 A 1 1 2A
9、记 Sn 为等差数列 a n 的前 n 项和,已知 S4 0 , a5 5 ,则(

A 、 a n 2n 5
B、 an 3n 10
C、 Sn 2n 2 8n
D、 Sn
12 n 2n
2
10、已知椭圆 C 的焦点为 F1 ( 1, 0) , F2 (1,0) ,过 F2 的直线与 C 交于 A , B 两点,若 AF2 2 F2 B ,
A 、 ( x 1)2 y 2 1 B 、 (x 1)2 y 2 1 C、 x 2 ( y 1) 2 1 D、 x2 ( y 1) 2 1
3、已知 a log 2 0.2 , b 20.2 , c 0.2 0.3 ,则(

A、a b c
B、 a c b
C、 c a b
ห้องสมุดไป่ตู้
D、 b c a
4、古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
(一)必考题:共 60 分。 17.( 12 分)
A B 的C内角 A , B , C 的对边分别为 a , b , c ,设 (sin B sin C ) 2 sin 2 A sin B sin C . ( 1)求 A ; ( 2)若 2a b 2c ,求 sin C .

2019年高考理科数学试卷(全国I卷)及答案

2019年高考理科数学试卷(全国I卷)及答案

2019年全国高考理科数学试卷(全国I 卷)及答案一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ()A.}34|{<<-x xB.}24|{-<<-x xC.}22|{<<-x xD.}32|{<<x x 2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则()A.22(1)1x y ++=B.22(1)1x y -+=C.22(1)1x y +-=D.22(1)1x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则()A.a b c <<B.a c b <<C.c a b <<D.b c a<<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215-.若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是()A.cm 165B.cm 175C.cm 185D.cm 1905.函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为()A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11167.已知非零向量,a b 满足2a b = ,且()a b b -⊥ ,则a 与b的夹角为()A.6πB.3πC.23πD.56π8.右图是求112+12+2的程序框图,图中空白框中应填入()A.12A A =+B.12A A=+C.112A A =+D.112A A=+9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A.25n a n =- B.310n a n =- C.228n S n n=- D.2122n S n n =-10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为()A.1222=+y xB.12322=+y x C.13422=+y x D.14522=+y x 11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点④()f x 的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()x y x x e =+在点(0,0)处的切线方程为.14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S =.15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是.16.已知双曲线C:22221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uuu r uuu r uuu r ,则C 的离心率为.三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-.(1)求A ;2b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程;(2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}(0,1,2,,7)i i p p i +-= 为等比数列;(ii)求4p ,并根据4p 的值解释这种实验方案的合理性.四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.已知,,a b c 为正数,且满足1abc =,证明:(1)222111a b c a b c++≤++(2)333()()()24a b b c c a +++++≥2019年高考理科数学(全国I 卷)参考答案选择题1-5CCBBD 6-12ABAAB CD13.3y x =14.5S =121315.0.1816.217.解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-=结合正弦定理得222b c a bc+-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴6sin()2sin 23C C π++=,∴1sin cos 222C C -=∴2sin()62C π-=又203C π<<∴662C πππ-<-<又sin()06C π->∴062C ππ<-<∴2cos 62C π⎛⎫-= ⎪⎝⎭,∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎝⎭⎝⎭624=.18、解:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =,又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形,∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M 1(0,0,4)A A =-uuu r,1(2)A M =--uuuu r ,1(2,0,4)A D =--uuur,设平面1AA M 的法向量为1111(,,)n x y z =u r ,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r ,由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuur u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴12121215cos ,5n n n n n n ⋅==⋅u r u u ru r u u r u r u u r ,∴二面角1A MA N --的正弦值为5.19.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B ,(1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=x y bx y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=x y b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, PB AP 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB .20.解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(12x π-<<取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++,在(1,2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21(102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f 则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点;当(,)2x ππ∈时,sin y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点.综上可得,()f x 有且仅有2个零点.21.解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-;得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-;得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===.可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+,则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-= 为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-= 的首项为101p p p -=,那么可得:78714p p p -=⨯,67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++ ,则886781111441(1444)143p p p p --=⨯++++=⨯=- ,则18341p =-,再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+.4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的.22.(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ¹-而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x ++=(2)将曲线C 化成参数方程形式为则d =所以当362ππθ+=23.(1)1abc = ,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤,于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯。

2019年河南省高考数学理科冲刺试卷(四)含答案解析

2019年河南省高考数学理科冲刺试卷(四)含答案解析

2019年河南省高考数学冲刺试卷(理科)(四)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A=,B=,则集合A∩(∁R B)的真子集的个数为()A.4 B.5 C.6 D.72.复数z=+i3(i为虚数单位)的共轭复数为()A.1+2i B.i﹣1 C.1﹣i D.1﹣2i3.“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知定义在区间[a﹣1,2a+4]的偶函数f(x)=x2+(a﹣b)x+1,则不等式f(x)>f(b)的解集为()A.[1,2]B.[﹣2,﹣1]C.(1,2]D.[﹣2,﹣1)∪(1,2]5.已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为()A.(﹣3,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣2,2)D.[﹣3,3]6.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.7.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>48.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B.C.D.9.已知正项等比数列{a n}满足:a3=a2+2a1,若存在两项a m,a n,使得,则的最小值为()A.B.C.D.不存在10.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544π B.16πC.π D.64π11.已知圆O:x2+y2=4,圆M:(x﹣8)2+(y﹣6)2=4,在圆M上任取一点P,向圆O作切线PA,PB,切点为A,B,则的最大值为()A.B.C.D.12.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知a=﹣2sinxdx,则二项式(x2+)5的展开式中x的系数为.14.已知向量=(1,),=(3,m).若向量在方向上的投影为3,则实数m=.15.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有种.(用数字作答)16.规定记号“*”表示一种运算,a*b=a2+ab,设函数f(x)=x*2,且关于x的方程f(x)=ln|x+1|(x≠﹣1)恰有4个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.18.如图,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,点E在棱AB上移动.(1)当E为AB的中点时,求点E到平面ACD1的距离;(2)当AE等于何值时,二面角D1﹣EC﹣D的大小为?19.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?20.已知椭圆C:的离心率为,点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与l相交两点P1,P2(两点均不在坐标轴上),且使得直线OP1,OP2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.21.已知函数f(x)=+lnx在[1,+∞)上为增函数,且θ∈(0,π),g(x)=tx﹣﹣lnx,t∈R.(Ⅰ)求θ的值;(Ⅱ)当t=0时,求函数g(x)的单调区间和极大值;(Ⅲ)若在[1,e]上至少存在一个x0,使得g(x0)>f(x0)成立,求t的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.2019年河南省高考数学冲刺试卷(理科)(四)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A=,B=,则集合A∩(∁R B)的真子集的个数为()A.4 B.5 C.6 D.7【考点】交、并、补集的混合运算.【分析】根据函数的性质结合不等式的关系化简集合A,B,然后确定集合A∩(∁R B)的元素个数即可.【解答】解:当<x≤16时,log2<log2x≤log216,即﹣1<log2x≤4,则A=={0,1,2,3,4},B=={x|x>2或x≤﹣1},则∁R B={x|﹣1<x≤2},则A∩(∁R B)={0,1,2},即集合A∩(∁R B)的真子集的个数为23﹣1=8﹣1=7,故选:D.2.复数z=+i3(i为虚数单位)的共轭复数为()A.1+2i B.i﹣1 C.1﹣i D.1﹣2i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:z=+i3=﹣i=﹣(i﹣1)﹣i=1﹣2i,其共轭复数为1+2i,故选:A.3.“a≤0”是“函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】对a分类讨论,利用二次函数的图象与单调性、充要条件即可判断出.【解答】解:当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.当a<0时,,结合二次函数图象可知函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增.若a >0,则函数f (x )=|(ax ﹣1)x |,其图象如图它在区间(0,+∞)内有增有减,从而若函数f (x )=|(ax ﹣1)x |在区间(0,+∞)内单调递增则a ≤0.∴a ≤0是”函数f (x )=|(ax ﹣1)x |在区间(0,+∞)内单调递增”的充要条件. 故选:C .4.已知定义在区间[a ﹣1,2a +4]的偶函数f (x )=x 2+(a ﹣b )x +1,则不等式f (x )>f (b )的解集为( )A .[1,2]B .[﹣2,﹣1]C .(1,2]D .[﹣2,﹣1)∪(1,2]【考点】函数奇偶性的性质.【分析】由偶函数定义域关于原点对称可知a ﹣1+2a +4=0可求a ,结合f (x )=x 2+(a ﹣b )x +1为偶函数可求b ,即可求解.【解答】解:由偶函数定义域关于原点对称可知a ﹣1+2a +4=0∴a=﹣1,函数的定义域为[﹣2,2],∵f (x )=x 2+(a ﹣b )x +1为偶函数∴f (﹣x )=f (x ),∴x 2﹣(a ﹣b )x +1=x 2+(a ﹣b )x +1,∴a ﹣b=0,∴b=﹣1,f (x )=x 2+1∵f (x )>f (b ),∴|x |>1,∵函数的定义域为[﹣2,2],∴不等式f (x )>f (b )的解集为[﹣2,﹣1)∪(1,2].故选:D .5.已知圆O :x 2+y 2=4上到直线l :x +y=a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(﹣3,3)B .(﹣∞,﹣3)∪(3,+∞)C .(﹣2,2)D .[﹣3,3]【考点】直线与圆的位置关系.【分析】由题意可得圆心(0,0)到直线l :x +y=a 的距离d 满足d <r +1,根据点到直线的距离公式求出d ,再解绝对值不等式求得实数a 的取值范围.【解答】解:由圆的方程可知圆心为(0,0),半径为2.因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<r+1=3,即d=<3,解得﹣3<a<3.故选:A.6.一个几何体的三视图如图所示,那么这个几何体的表面积是()A.B.C.D.【考点】由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,结合柱体表面积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的四棱柱,其底面面积为:×(1+2)×2=3,底面周长为:2+2+1+=5+,高为:2,故四棱柱的表面积S=2×3+(5+)×2=,故选:B7.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>7 B.k>6 C.k>5 D.k>4【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 0第一圈2 2 是第二圈3 7 是第三圈4 18 是第四圈5 41 是第五圈6 88 否故退出循环的条件应为k>5?故答案选C.8.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B.C.D.【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,进一步求出最值,结合最大值与最小值的差为7求得实数m 的值.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.9.已知正项等比数列{a n}满足:a3=a2+2a1,若存在两项a m,a n,使得,则的最小值为()A.B.C.D.不存在【考点】等比数列的通项公式;基本不等式.【分析】由正项等比数列{a n}满足:a3=a2+2a1,知q=2,由存在两项a m,a n,使得,知m+n=6,由此能求出的最小值.【解答】解:∵正项等比数列{a n}满足:a3=a2+2a1,∴,即:q2=q+2,解得q=﹣1(舍),或q=2,∵存在两项a m,a n,使得,∴,∴,∴,所以,m+n=6,∴=()[(m+n)]=(5++)≥(5+2)=,所以,的最小值是.10.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544π B.16πC.π D.64π【考点】球的体积和表面积.【分析】求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的体积.【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的表面上,且AB=BC=1,∠ABC=120°,AC=,∴S△ABC=×1×1×sin120°=,∵三棱锥O﹣ABC的体积为,△ABC的外接圆的圆心为G,∴OG⊥⊙G,外接圆的半径为:GA==1,∴S△ABC•OG=,即×OG=,OG=,球的半径为:=4.球的表面积:4π42=64π.故选:D11.已知圆O:x2+y2=4,圆M:(x﹣8)2+(y﹣6)2=4,在圆M上任取一点P,向圆O作切线PA,PB,切点为A,B,则的最大值为()A.B.C.D.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】设∠AOP=α,则可求cos∠AOB=﹣1,利用=||||cos∠AOB=﹣4,结合|OP|min=10﹣2=8,即可计算得解的最大值.【解答】解:设∠AOP=α,则∠AOP=∠BOP,∠AOB=2α,∴cos∠AOB=2cos2α﹣1=﹣1,∴=||||cos∠AOB=﹣4,∵|OP|min=10﹣2=8,∴()max=﹣.故选:D.12.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.【考点】指数函数的图象与性质.【分析】因对任意实数a、b、c,都存在以f(a)、f(b)、f(c)为三边长的三角形,则f (a)+f(b)>f(c)恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t﹣1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(a)+f(b)的最小值与f(c)的最大值的不等式,进而求出实数t的取值范围.【解答】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知a=﹣2sinxdx,则二项式(x2+)5的展开式中x的系数为﹣640.【考点】二项式系数的性质;定积分.【分析】先求出a的值,再利用二项式的展开式通项公式求出x的系数.【解答】解:∵a=﹣2sinxdx=2=2(cosπ﹣cos0)=﹣4,∴二项式(x2+)5的展开式中通项公式为T r+1=•x2(5﹣r)•=(﹣4)r••x10﹣3r,令10﹣3r=1,解得r=3,∴展开式中x的系数为(﹣4)3•=﹣640.故答案为:﹣640.14.已知向量=(1,),=(3,m).若向量在方向上的投影为3,则实数m=.【考点】平面向量数量积的运算.【分析】由投影的定义即得,所以得到,解出m即可.【解答】解:根据投影的概念:;∴.故答案为:.15.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有54种.(用数字作答)【考点】排列、组合的实际应用.【分析】第一类,把甲乙看做一个复合元素,和另外的3人分配到3个小组中,第二类,先把另外的3人分配到3个小组,再把甲乙分配到其中2个小组,根据分类计数原理可得【解答】解:第一类,把甲乙看做一个复合元素,和另外的3人分配到3个小组中(2,1,1),C42A33=36种,第二类,先把另外的3人分配到3个小组,再把甲乙分配到其中2个小组,A33C32=18种,根据分类计数原理可得,共有36+18=54种,故答案为:54.16.规定记号“*”表示一种运算,a*b=a2+ab,设函数f(x)=x*2,且关于x的方程f(x)=ln|x+1|(x≠﹣1)恰有4个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4=﹣4.【考点】根的存在性及根的个数判断.【分析】由题意可得f(x)=x2+2x,可得图象关于x=﹣1对称,由函数图象的变换可得函数y=ln|x+1|(x≠﹣1)的图象关于直线x=﹣1对称,进而可得四个根关于直线x=﹣1对称,由此可得其和.【解答】解:由题意可得f(x)=x*2=x2+2x,其图象为开口向上的抛物线,对称轴为x=﹣1,函数y=ln|x+1|可由y=ln|x|向左平移1个单位得到,而函数函数y=ln|x|为偶函数,图象关于y轴对称,故函数y=ln|x+1|的图象关于直线x=﹣1对称,故方程为f(x)=ln|x+1|(x≠﹣1)四个互不相等的实数根x1,x2,x3,x4,也关于直线x=﹣1对称,不妨设x1与x2对称,x3与x4对称,必有x1+x2=﹣2,x3+x4=﹣2,故x1+x2+x3+x4=﹣4,故答案为:﹣4.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=(1)求△ACD的面积;(2)若BC=2,求AB的长.【考点】解三角形.【分析】(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;(2)利用余弦定理求出AC,通过BC=2,利用正弦定理求解AB的长.【解答】解:(1)因为∠D=2∠B,cos∠B=,所以cosD=cos2B=2cos2B﹣1=﹣.…因为∠D∈(0,π),所以sinD=.…因为AD=1,CD=3,所以△ACD的面积S===.…(2)在△ACD中,AC2=AD2+DC2﹣2AD•DC•cosD=12.所以AC=2.…因为BC=2,,…所以=.所以AB=4.…18.如图,矩形ABCD所在的平面和正方形ADD1A1所在的平面互相垂直,AD=AA1=1,AB=2,点E在棱AB上移动.(1)当E为AB的中点时,求点E到平面ACD1的距离;(2)当AE等于何值时,二面角D1﹣EC﹣D的大小为?【考点】二面角的平面角及求法;点、线、面间的距离计算.【分析】(1)分别以DA,DC,DD1为x轴,y轴,z轴建立空间坐标系,利用向量法能求出点E到平面ACD1的距离.(2)求出平面CED1的法向量和平面ECD的一个法向量,利用向量法能求出当AE=2﹣时,二面角D1﹣EC﹣D的大小为.【解答】解:(1)分别以DA,DC,DD1为x轴,y轴,z轴建立空间坐标系,则E(1,1,0),A(1,0,0),C(0,2,0),D1(0,0,1).,,设点E到平面ACD1的距离为d,是平面ACD1的法向量,由,得,取.而,所以.(2)设AE=l(0<l<2),由(1)知E(1,l,0),设是平面CED1的法向量.,.由,得,取,又平面ECD的一个法向量为.由,即,解得,即.19.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?【考点】回归分析的初步应用;等可能事件的概率.【分析】(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.(2)根据所给的数据,先做出x,y的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【解答】解:(1)设抽到不相邻的两组数据为事件A,从5组数据中选取2组数据共有10种情况:(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),其中数据为12月份的日期数.每种情况都是可能出现的,事件A包括的基本事件有6种.∴P(A)=.∴选取的2组数据恰好是不相邻2天数据的概率是(2)由数据,求得.由公式,求得b=∴y关于x的线性回归方程为x﹣3.(3)当x=10时,×10﹣3=22,|22﹣23|<2;同样当x=8时,×8﹣3=17,|17﹣16|<2;∴该研究所得到的回归方程是可靠的.20.已知椭圆C :的离心率为,点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由. 【考点】圆锥曲线的定值问题;椭圆的标准方程. 【分析】(Ⅰ)利用离心率列出方程,通过点在椭圆上列出方程,求出a ,b 然后求出椭圆的方程.(Ⅱ)当直线l 的斜率不存在时,验证直线OP 1,OP 2的斜率之积.当直线l 的斜率存在时,设l 的方程为y=kx +m 与椭圆联立,利用直线l 与椭圆C 有且只有一个公共点,推出m 2=4k 2+1,通过直线与圆的方程的方程组,设P 1(x 1,y 1),P 2(x 2,y 2),结合韦达定理,求解直线的斜率乘积,推出k 1•k 2为定值即可. 【解答】(本小题满分14分)(Ⅰ)解:由题意,得,a 2=b 2+c 2,…又因为点在椭圆C 上,所以,…解得a=2,b=1,,所以椭圆C 的方程为.…(Ⅱ)结论:存在符合条件的圆,且此圆的方程为x 2+y 2=5.… 证明如下:假设存在符合条件的圆,并设此圆的方程为x 2+y 2=r 2(r >0). 当直线l 的斜率存在时,设l 的方程为y=kx +m .…由方程组得(4k 2+1)x 2+8kmx +4m 2﹣4=0,…因为直线l 与椭圆C 有且仅有一个公共点,所以,即m 2=4k 2+1.…由方程组得(k 2+1)x 2+2kmx +m 2﹣r 2=0,…则.设P 1(x 1,y 1),P 2(x 2,y 2),则,,…设直线OP 1,OP 2的斜率分别为k 1,k 2,所以=,…将m2=4k2+1代入上式,得.要使得k1k2为定值,则,即r2=5,验证符合题意.所以当圆的方程为x2+y2=5时,圆与l的交点P1,P2满足k1k2为定值.…当直线l的斜率不存在时,由题意知l的方程为x=±2,此时,圆x2+y2=5与l的交点P1,P2也满足.综上,当圆的方程为x2+y2=5时,圆与l的交点P1,P2满足斜率之积k1k2为定值.…21.已知函数f(x)=+lnx在[1,+∞)上为增函数,且θ∈(0,π),g(x)=tx﹣﹣lnx,t∈R.(Ⅰ)求θ的值;(Ⅱ)当t=0时,求函数g(x)的单调区间和极大值;(Ⅲ)若在[1,e]上至少存在一个x0,使得g(x0)>f(x0)成立,求t的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数求闭区间上函数的最值.【分析】(1)由f(x)在[1,+∞)上是增函数,则其导函数在[1,+∞)上是恒大于等于0的,由此得出a的范围.(2)当t=0时,对g(x)求导,由导函数的正负可以得到原函数的单调区间,以及极值.(3)由不等式恒成立问题,转化为求最值问题.只需最大值大于0即可.【解答】解:(1)∵函数f(x)=+lnx在[1,+∞)上为增函数,∴f′(x)=﹣+=≥0在[1,+∞)上恒成立.即x﹣≥0在[1,+∞)上恒成立,∴sinθ≥在[1,+∞)上恒成立,∵y=在[1,+∞)上的最大值为1,∴sinθ≥1,∵θ∈(0,π),∴θ=.(2)∵g(x)=tx﹣﹣lnx,t∈R,定义域为(0,+∞),当t=0时,g(x)=﹣lnx,g′(x)=,令g′(x)=0,得x=2e﹣1,∴x∈(0,2e﹣1)时,g(x)单调递增,x∈(2e﹣1,+∞)时,g(x)单调递减.∴g(x)的极大值为g(2e﹣1)=﹣1﹣ln(2e﹣1),g(x)的递增区间是(0,2e﹣1),递减区间是(2e﹣1,+∞),(3)若在[1,e]上至少存在一个x0,使得g(x0)>f(x0)成立,令F(x)=g(x)﹣f(x)=)=tx﹣﹣2lnx①当t≤0时,由x∈[1,e]有tx﹣≤0,且﹣2lnx﹣<0,∴∴此时不存在x∈[1,e]使得g(x0)>f(x0)成立②当t>0时,F′(x)=t+﹣=又∵x∈[1,e]∴2e﹣2x≥0,又tx2+t>0∴F′(x)在[1,e]上恒成立,故F(x)在[1,e]上单调递增∴F(x)max=F(e)=te﹣﹣4令te﹣﹣4>0则t>故所求t的取值范围为(,+∞)请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线.【解答】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)先解不等式|ax+1|≤3,再根据不等式f(x)≤3的解集为{x|﹣2≤x≤1},分类讨论,即可得到结论.(Ⅱ)记,从而h(x)=,求得|h(x)|≤1,即可求得k的取值范围.【解答】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2 ∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.2019年8月24日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档