新人教版八年级下册数学期中测试卷及答案
2023年人教版八年级数学下册期中测试卷及完整答案
2023年人教版八年级数学下册期中测试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若式子x1x+有意义,则x的取值范围是__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、D5、B6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、42、x 1≥-且x 0≠3、如果两个角互为对顶角,那么这两个角相等4、10.5、36、6三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1) 65°;(2) 25°.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
人教版数学八年级下册《期中考试试卷》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。
八年级下学期数学期中考试试卷含答案(共5套,人教版)
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
2024年人教版八年级数学下册期中考试卷(附答案)
2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。
()2. 平行四边形的对角线互相平分。
()3. 正方形的对角线相等且互相垂直。
()4. 圆的半径是圆心到圆上任意一点的距离。
()5. 圆的直径是圆上任意两点之间的距离。
()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。
2. 平行四边形的对角线互相平分,所以它的对角线长度是______。
3. 正方形的四个角都是______度。
4. 圆的半径是圆心到圆上______的距离。
5. 圆的直径是圆上______点之间的距离。
四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。
2. 简述平行四边形的性质。
3. 简述正方形的性质。
4. 简述圆的性质。
5. 简述圆的直径和半径之间的关系。
五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。
2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。
新人教版八年级数学下册期中考试卷及答案【A4打印版】
新人教版八年级数学下册期中考试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为()A.-1 B.1 C.2 D.37.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21273=___________.3.因式分解:a3﹣2a2b+ab2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、B6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-23、a (a ﹣b )2.4、()()2a b a b++.5、36、8三、解答题(本大题共6小题,共72分)1、4x=2、11a-,1.3、(1)12b-≤≤;(2)24、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略(2)等腰三角形,理由略6、(1)2元;(2)至少购进玫瑰200枝.。
人教版数学八年级下册期中考试试题附答案
人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版八年级下册数学《期中考试卷》(含答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A. x2﹣1B. x2+2x+1C. x2﹣2x+1D. x(x﹣2)﹣(x﹣2)3.以下命题的逆命题为真命题的是()A 对顶角相等B. 同旁内角互补,两直线平行C. 若a=b,则a2=b2D. 若a>0,b>0,则a2+b2>04.如图,不等式组1239xx-<⎧⎨-≤⎩解集在数轴上表示正确的是()A. B.C. D.5.如图,在ABCD中,对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).A. AE =CFB. DE =BFC. ADE CBF ∠=∠D. AED CFB ∠=∠6. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A. (2,4)B. (1,5)C. (1,-3)D. (-5,5) 7.要使分式2(2)(1)x x x ++-有意义,x 的取值应满足( ) A. x ≠1 B. x ≠﹣2 C. x ≠1或x ≠﹣2 D. x ≠1且x ≠﹣2 8.不等式6(1)54x x -<-的正整数解的个数是( )A 0 B. 1 C. 2 D. 39.已知一项工程,甲单独做要用x 天完成,乙单独做要用2x 天完成,两人合作1天的工作量为( ) A. 112x x B. 12x x + C. x +2x D. 2x x + 10.关于x 的方程133x k x x -=--有增根,则k 的值是( ) A. 2 B. 3 C. 0 D. -3二.填空题11.分解因式:x 2﹣(x ﹣3)2=_____.12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④三角形的一个外角等于它的两个内角的和.其中真命题有______(填序号).13.如果等腰三角形一边长是5cm ,另一边长是8cm ,则这个等腰三角形的周长是______________.14.如果分式22235x x y +的值为5,把式中的x ,y 同时扩大为原来的3倍,则分式的值是_____. 15.一个多边形的内角和是 1440°,则这个多边形是__________边形. 16.如图,在四边形ABCD 中,AB ⊥BC ,对角线AC 、BD 相交于点E ,E 为BD 中点,且AD =BD ,AB =2,∠BAC =30°,则DC =_____.三.解答题17.分解因式:(1)22369xy x y y --; (2)4161x -18.解不等式组513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上. 19.先化简,再求值:35+222x x x x -⎛⎫÷- ⎪--⎝⎭,其中x =22-. 20.解方程: (1)2332x x=- (2)31144x x x ++=--. 21.已知:如图,∠ACD 是△ABC 的一个外角,CE 、CF 分别平分∠ACB 、∠ACD ,EF ∥BC ,分别交AC 、CF 于点H 、F 求证:EH=HF22.在如图的方格中,每个小正方形的边长都为1,△ABC 的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(﹣1,2).(1)把△ABC 向下平移8个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标是 .(2)以原点O 为对称中心,画出与△ABC 关于原点O 对称的△A 2B 2C 2,并写出B 2坐标是 .23.如图,在△ABC 中,点D E F ,,分别在边AB AC BC ,,上,已知 DE BC ADE EFC ∠=∠∥,四边形BDEF 是平行四边形.24.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且甲种数量不超过乙种的2倍,则如何购买总费用最低?最低多少元?25.某社区活动中心为中老年舞蹈队统一队服和道具,准备购买 10 套某种品牌舞蹈鞋,每双舞蹈鞋配 x (x≥2)个舞蹈扇,供舞蹈队队员使用.该社区附近 A ,B 两家超市都有这种品牌的舞蹈鞋和舞蹈扇出售,且每双舞蹈鞋的标价均为 30 元,每个舞蹈扇的标价为 3 元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的 90%)销售;B 超市:买一双舞蹈鞋送 2 个舞蹈扇.设在 A 超市购买舞蹈鞋和舞蹈扇的费用为A y (元),在 B 超市购买舞蹈鞋和舞蹈扇的费用为 B y (元).请解答下列问题:(1)分别写出 A y ,B y 与 x 之间关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?26.如图,四边形ABCD 为长方形,C 点在x 轴,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),长方形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,F(2,4).(1)求G 点坐标;(2)△EFG的面积为(直接填空);(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的纵坐标;若不存在,请说明理由.答案与解析一.选择题1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.[答案]B[解析]分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.将下列多项式分解因式,结果中不含因式x﹣1的是()A. x2﹣1B. x2+2x+1C. x2﹣2x+1D. x(x﹣2)﹣(x﹣2) [答案]B[解析][分析]原式各项分解后,即可做出判断.[详解]A、原式=(x+1)(x-1),含因式x-1,不合题意;B、原式=(x+1)2,不含因式x-1,符合题意;C、原式=(x-1)2,含因式x-1,不合题意;D、原式=(x-2)(x-1),含因式x-1,不合题意,[点睛]此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.3.以下命题的逆命题为真命题的是()A. 对顶角相等B. 同旁内角互补,两直线平行C. 若a=b,则a2=b2D. 若a>0,b>0,则a2+b2>0[答案]B[解析][详解]解:A. 对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故错误;B. 同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故正确;C. 若a=b,则22a b=的逆命题为若22a b=,则a=b,此逆命题为假命题,故错误;D. 若a>0,b>0,则220a b+>的逆命题为若220a b+>,则a>0,b>0,此逆命题为假命题,故错误. 故选B.4.如图,不等式组1239xx-<⎧⎨-≤⎩的解集在数轴上表示正确的是()A. B.C. D.[答案]A[解析]分析]先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.[详解]解:1239 xx-⎧⎨-≤⎩<①②由①,得x<3;x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A .[点睛]此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB. DE =BFC. ADE CBF ∠=∠D. AED CFB ∠=∠[答案]B[解析][分析] 根据平行四边形的性质以及平行四边形的判定定理即可作出判断.[详解]解:A 、∵在平行四边形ABCD 中,OA=OC ,OB=OD ,若AE=CF ,则OE=OF ,∴四边形DEBF 是平行四边形;B 、若DE =BF,没有条件能够说明四边形DEBF 是平行四边形,则选项错误;C 、∵在平行四边形ABCD 中,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,若∠ADE=∠CBF ,则∠EDB=∠FBO ,∴DE ∥BF ,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.[点睛]本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A. (2,4)B. (1,5)C. (1,-3)D. (-5,5)[答案]B[解析]试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.7.要使分式2(2)(1)x x x ++-有意义,x 的取值应满足( ) A. x ≠1B. x ≠﹣2C. x ≠1或x ≠﹣2D. x ≠1且x ≠﹣2 [答案]D[解析][分析]根据分式的分母不为0来列出不等式,解不等式即可得到答案.[详解]解:由题意得,(x +2)(x ﹣1)≠0,解得,x ≠1且x ≠﹣2,故选:D .[点睛]本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.8.不等式6(1)54x x -<-的正整数解的个数是( )A. 0B. 1C. 2D. 3 [答案]B[解析][分析]根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.[详解]解:去括号得:6x-6﹤5x-4,移项得:6x−5x ﹤-4+6,合并同类项得:x ﹤2,故不等式的正整数解为1,只有1个.故选B .[点睛]本题主要考查解一元一次不等式,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.已知一项工程,甲单独做要用x 天完成,乙单独做要用2x 天完成,两人合作1天的工作量为( )A. 112x xB. 12x x + C. x +2xD. 2x x + [答案]A[解析][分析]直接利用总工作量为1,分别表示出两人完成的工作量进而解答即可[详解] 两人合作1天的工作量为112x x ,故选A .[点睛]本题考查用字母表示数,解题突破口是直接利用总工作量为1. 10.关于x 的方程133x kx x -=--有增根,则k 的值是( )A. 2B. 3C. 0D. -3[答案]A[解析][分析]由题知有增根,则x=3,先去分母然后把x=3代入即可求出k 的值.[详解]由题知有增根,则x=3,原式去分母得1x k -=,把x=3代入解得k=2,故选A.[点睛]本题是对分式增根的考查,熟练掌握分式增根知识是解决本题的关键.二.填空题11.分解因式:x 2﹣(x ﹣3)2=_____.[答案](x 2+x-3)(x 2-x+3)[解析][分析]原式利用平方差公式分解即可.[详解]原式=(x 2+x-3)(x 2-x+3)故答案为(x2+x-3)(x2-x+3).[点睛]此题考查因式分解-运用公式法,熟练掌握平方差公式是解题的关键.12.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④三角形的一个外角等于它的两个内角的和.其中真命题有______(填序号).[答案]①[解析][分析]根据对顶角的定义对①进行判断;根据平行线的性质对②进行判断;根据实数的性质对③进行判断;根据三角形外角性质对④进行判断.[详解]①对顶角相等,正确,是真命题;②如果两条平行直线被第三条真线所截,那么同位角相等,故错误,是假命题;③如果两个实数的平方相等,那么这两个实数也相等或互为相反数,故错误,是假命题;④三角形的一个外角等于它的两个不相邻的内角的和,故错误,是假命题.故答案为①.[点睛]本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是______________.[答案]21或18[解析][分析]根据题意要根据腰的情况分类讨论,第一当腰为5cm是计算周长;第二当腰为8cm计算周长.[详解]解:根据题意可得第一当腰为5cm时,周长为:5+5+8=18;当腰为8cm时,周长为:8+8+5=21故答案为21或18[点睛]本题主要考查等腰三角形的腰的分类讨论,这是数学中最常用的思想,必须掌握理解.14.如果分式22235x x y +的值为5,把式中的x ,y 同时扩大为原来的3倍,则分式的值是_____. [答案]53[解析][分析]根据分式的基本性质将原式变形化简求解.[详解]222535x x y=+ x ,y 同时扩大为原来的3倍得:原式()()222223125=33533353xx x y x y ⨯=⨯=+⨯+⨯ 故答案为53[点睛]本题主要考查了分式的基本性质,对分式正确变形化简是解题的关键.15.一个多边形的内角和是 1440°,则这个多边形是__________边形. [答案]十[解析][分析]利用多边形的内角和定理:n 边形的内角和为()2180n -⨯︒ 便可得.[详解]∵n 边形的内角和为()2180n -⨯︒∴()21801440n -⨯︒=,28,10n n -==.故答案为:十边形.[点睛]本题考查多边形的内角和公式,掌握n 边形内角和定理为本题的关键.16.如图,在四边形ABCD 中,AB ⊥BC ,对角线AC 、BD 相交于点E ,E 为BD 中点,且AD =BD ,AB =2,∠BAC =30°,则DC =_____.[答案]233[解析][分析]如图,在EA上取一点K,使得EK=CE,连接DK,BK,延长DK交AB于H.首先证明四边形BCDK是平行四边形,再证明DH⊥AB,由DA=DB,推出AH=HB,AK=BK=CD即可解决问题;[详解]如图,在EA上取一点K,使得EK=CE,连接DK,BK,延长DK交AB于H.∵DE=EB,CE=EK,∴四边形BCDK是平行四边形,∴CD=BK,DK∥BC,∵BC⊥AB,∴DH⊥AB,∵DA=DB,∴AH=HB=1,∴KA=KB=CD,在Rt△AKH中,∠BAC=30°,AK=AH÷cos30°=33,∴CD2323.[点睛]本题考查等腰三角形的性质.平行四边形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题,属于中考常考题型.三.解答题17.分解因式:(1)22369xy x y y --; (2)4161x -[答案](1)2(3)y x y --;(2)2(41)(21)(21)x x x ++-.[解析][分析](1)先提公因式,然后利用完全平方公式分解因式即可;(2)直接利用平方差公式分解因式,即可得到答案.[详解]解:(1)22369xy x y y -- 22(96)y x xy y =--+2(3)y x y =--;(2)4161x -22(4)1x =-22(41)(41)x x =+-2(41)(21)(21)x x x =++-.[点睛]本题考查了分解因式,灵活运用提公因式法和公式法进行分解因式是解题的关键.18.解不等式组513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并把它们的解集表示在数轴上. [答案]﹣1≤x <2[解析]分析:分别解不等式,找出解集的公共部分即可.详解:()513121511,32x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 解不等式①,得 2x <;解不等式②,得1x ≥-; 把不等式①和②的解集在数轴上表示出来;原不等式组的解集为12x .-≤< 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.19.先化简,再求值:35+222x x x x -⎛⎫÷- ⎪--⎝⎭,其中x 22. [答案]13x +,2-1 [解析] [分析] 先把括号内通分和除法运算化为乘法运算,再把分母因式分解,然后约分得到原式=13x +,最后把x 的值代入计算即可.[详解]解:原式=()()-252232x x x x x +--÷-- =()32•()233x x x x x ---+- =13x +, 当22时,原式2223=-+. [点睛]此题考查分式的化简求值,解题关键在于先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.解方程:(1)2332x x=- (2)31144x x x ++=--.[答案](1)9x =- (2)0x =[解析][分析](1)先去分母,再移项和合并同类项,最后检验即可.(2)先去分母,再移项和合并同类项,最后检验即可.[详解](1)2332x x=- 439x x =-9x =-经检验,9x =-是方程的根.(2)31144x x x++=-- 341x x ++-=-20x =0x =经检验,0x =是方程的根.[点睛]本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.21.已知:如图,∠ACD 是△ABC 的一个外角,CE 、CF 分别平分∠ACB 、∠ACD ,EF ∥BC ,分别交AC 、CF 于点H 、F 求证:EH=HF[答案]见解析[解析][分析]由角平分线的定义可得∠BCE =∠ACE ,∠ACF =∠DCF ,由平行线的性质可得∠BCE =∠CEF ,∠CFE =∠DCF ,利用等量代换可得∠ACE =∠CEF ,∠CFE =∠ACF ,根据等角对等边即可求得EH=CH=HF ,进而求得EH=HF .[详解]∵CE、CF分别平分∠ACB、∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∵EF∥BC,∴∠BCE=∠CEF,∠CFE=∠DCF,∴∠ACE=∠CEF,∠CFE=∠ACF,∴EH=CH,CH=HF,∴EH=HF.[点睛]本题考查了平行线的性质,等腰三角形的判定和性质,根据等角对等边求解是解题关键.22.在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B 的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出A1坐标是.(2)以原点O为对称中心,画出与△ABC关于原点O对称的△A2B2C2,并写出B2坐标是.[答案](1)A1(-5,-6),图见解析;(2)B2(1,-2).图见解析.[解析][分析](1)根据网格结构找出点A、B、C向下平移8个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1坐标;(2)根据网格结构找出点A、B、C关于原点O对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2坐标.[详解]解:(1)△A1B1C1如图所示,A1(-5,-6);(2)△A2B2C2如图所示,B2(1,-2).故答案为:(-5,-6);(1,-2).[点睛]此题考查旋转变换作图,平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键. 23.如图,在△ABC 中,点D E F ,,分别在边AB AC BC ,,上,已知 DE BC ADE EFC ∠=∠∥,四边形BDEF 是平行四边形.[答案]见解析;[解析][分析]想办法证明EF ∥AB 即可解决问题;[详解]证明:DE BC ∥,ADE B ∴∠=∠.ADE EFC ∠=∠,EFC B ∴∠=∠.EF AB ∴∥,四边形BDEF 是平行四边形.[点睛]本题考查证明平行四边形,熟练掌握平行性质及定义是解题关键.24.新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且甲种数量不超过乙种的2倍,则如何购买总费用最低?最低多少元?[答案](1)甲品牌消毒每瓶加工为30元,乙品牌消毒每瓶价格为40元.(2)当购买甲为26瓶时,购买的费用最低,最低为1340元.[解析][分析](1)设甲品牌消毒每瓶加工为x 元,乙品牌消毒每瓶价格为(3x-50)元,根据题意列出方程,解出来即可.(2)设购买甲的数量为a 瓶,乙为40-a ,根据题意建立不等式,找到答案.[详解]解:(1)设甲品牌消毒每瓶加工为x 元,乙品牌消毒每瓶价格为(3x-50)元,根据题意:300400350x x =- . 解得:x=30经检验,x=30是原方程的解.3x-50=40.即:甲品牌消毒每瓶加工为30元,乙品牌消毒每瓶价格为40元.(2)设购买甲的数量为a 瓶,乙为40-a 瓶,根据题意:240)a a ≤-( . 解得:803a ≤ . 购买的费用3040(40)a a =+- 101600a =-+ .可见,购买的费用随a 的增加而减小,且a 为整数.当a=26时,购买费用最小,最小为=102616001340-⨯+= .即:当购买甲为26瓶时,购买的费用最低,最低为1340元.[点睛]本题考查分式方程的应用与不等式方程的运用,解题的关键是找出等量关系,列出方程.25.某社区活动中心为中老年舞蹈队统一队服和道具,准备购买 10 套某种品牌的舞蹈鞋,每双舞蹈鞋配 x (x≥2)个舞蹈扇,供舞蹈队队员使用.该社区附近 A ,B 两家超市都有这种品牌的舞蹈鞋和舞蹈扇出售,且每双舞蹈鞋的标价均为 30 元,每个舞蹈扇的标价为 3 元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的 90%)销售;B 超市:买一双舞蹈鞋送 2 个舞蹈扇.设在 A 超市购买舞蹈鞋和舞蹈扇的费用为A y (元),在 B 超市购买舞蹈鞋和舞蹈扇的费用为 B y (元).请解答下列问题:(1)分别写出 A y ,B y 与 x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?[答案](1)27270(2)A y x x =+≥;30240(2)B y x x =+≥;(2)当210x ≤<时,到B 超市购买更划算,当10x =时,两家超市都一样,当10x >时,到A 超市购买更划算[解析][分析](1)根据购买费用=单价×数量建立关系就可以表示出y A 、y B 的解析式;(2)分三种情况进行讨论,当y A =y B 时,当y A >y B 时,当y A <y B 时,分别求出购买划算的方案;[详解]解:(1)由题意得:(1030103)90%A y x =⨯+⨯=27270(2)x x +≥103010(2)3B y x =⨯+-⨯=30240(2)x x +≥(2)若A B y y =,即2727030240x x +=+,10x =若A B y y >,即2727030240x x +>+,10x <若A B y y <,即2727030240x x +<+,10x >∴当210x ≤<时,到B 超市购买更划算当10x =时,两家超市都一样当10x >时,到A 超市购买更划算[点睛]本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.26.如图,四边形ABCD 为长方形,C 点在x 轴,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是(3,4),长方形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,F(2,4).(1)求G 点坐标;(2)△EFG 的面积为 (直接填空);(3)点N 在x 轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点四边形是平行四边形?若存在,请直接写出M 点的纵坐标;若不存在,请说明理由.[答案](1)G 点的坐标为(3,43-;(2)3;(3)123434343M 33,M 1,3,M 13333⎛⎛⎛---+ ⎝⎝⎝[解析][分析](1)根据折叠性质可知FG=AF=2,而FB=AB-AF=1,则在Rt △BFG 中,利用勾股定理求出BG 的长,从而得到CG 的长,从而得到G 点坐标;(2)由三角函数求出∠BFG=60°,得出∠AFE=∠EFG=60°,由三角函数求出AE=AFtan ∠AFE=2,代入三角形面积公式计算即可;(3)因为M 、N 均为动点,只有FG 已经确定,所以可从此入手,按照FG 为一边、FG 为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用全等三角形求得M 点的纵坐标,再利用直线解析式求出M 点的横坐标,从而求得M 点的坐标.[详解]解:(1)∵B 点坐标是(3,4),F (2,4),∴AB=3,OA=BC=4,AF=2,∴BF=AB-AF=1,由折叠的性质得:△EFA ≌△EFG ,GF=AF=2,∵四边形ABCD 为矩形,∴∠B=90°,∴2222BG FG FB 213=-=-=∴CG 43=-∴G 点的坐标为()3,43-(2)在Rt △BFG 中,cos ∠BFG=FB 1FG 2= ∴∠BFG=60°,∴∠AFE=∠EFG=60°,∴AE=AFtan ∠AFE=2tan60°=23∵△EFA 的面积=11AE AF 2322322⨯=⨯⨯= ∴△EFG 的面积=23故答案为:23(3)若以M 、N 、F 、G 为顶点的四边形是平行四边形,则可能存在以下情形:①FG 为平行四边形的一边,且N 点在x 轴正半轴上,如图1所示.过1M 点作1M H ⊥x 轴正半轴于点H,∵11M N FG ∥∴11HN M HQF ∠=∠又∵AB∥OQ∴∠HQF=∠BFG∴11HN M BFG ∠=∠又∵1111M HN B 90,M N FG ∠=∠=︒=在△11M HN 和△GBF 中,111111HN M BFG M HN B 90M N FG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩ ∴()11M HN GBF AAS ≅ ∴1M H GB 3== 由(2)得:OE OA AE 423=-=-∴E 点的坐标为()0,423- 设直线EF 的解析式为y=kx+b,则b 4232k b 4⎧=-⎪⎨+=⎪⎩解得:k 3b 423⎧=⎪⎨=-⎪⎩ ∴直线EF 的解析式为y 3x 423=+- ∵当3y =时,43x 33=- , ∴点1M 坐标为433,33⎛⎫- ⎪ ⎪⎝⎭②FG 为平行四边形的一边,且N 点在x 轴负半轴上,如图2所示.仿照与①相同的办法,可求得243M 13⎛ ⎝ ③FG 为平行四边形的对角线,如图3所示.过3M 作FB 延长线的垂线,垂足为H则333333M HF GCN 90,M FH GN C,M F GN ∠=∠=︒∠=∠=在△3M FH 和△3GN C 中,333333M HF GCN M FH GN C M F GN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()33M FH GN C AAS ≅ ∴3M H CG 43==∴3M 的纵坐标为3代入直线EF 解析式,得到3M 的横坐标为431+ ∴343M 13⎛+- ⎝ 综上所述,存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形.点M 的坐标为:123434343M 33,M 1,3,M 13333⎛⎛⎛---+- ⎝⎝⎝ [点睛]本题是四边形综合题目,考查了矩形的性质、平行四边形的性质、全等三角形的判定与性质、勾股定理、三角函数、一次函数解析式的求法等知识,本题综合性强,难度较大,证明三角形全等,求出点的坐标是关键.。
2024年人教版初二数学下册期中考试卷(附答案)
一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 17B. 18C. 19D. 202. 在下列各数中,最大的数是:A. 0.5B. 0.7C. 0.8D. 0.93. 下列哪个图形是正方形?A. 圆B. 矩形C. 正方形D. 三角形4. 下列哪个数是偶数?A. 3B. 4C. 5D. 75. 下列哪个数是分数?A. 0.5B. 0.6C. 0.7D. 0.8二、判断题(每题1分,共5分)1. 2 + 3 = 5 ()2. 4 × 5 = 20 ()3. 6 ÷ 2 = 3 ()4. 7 4 = 3 ()5. 8 + 9 = 17 ()三、填空题(每题1分,共5分)1. 9 + 5 = __2. 8 × 6 = __3. 7 ÷ 7 = __4. 6 3 = __5. 5 × 5 = __四、简答题(每题2分,共10分)1. 请简述加法的定义。
2. 请简述减法的定义。
3. 请简述乘法的定义。
4. 请简述除法的定义。
5. 请简述分数的定义。
五、应用题(每题2分,共10分)1. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?2. 小明有10个橘子,他吃掉了4个,还剩下多少个?3. 小明有8个橙子,他吃掉了2个,还剩下多少个?4. 小明有6个梨,他吃掉了3个,还剩下多少个?5. 小明有7个葡萄,他吃掉了1个,还剩下多少个?六、分析题(每题5分,共10分)1. 请分析加法、减法、乘法、除法之间的关系。
2. 请分析分数与整数之间的关系。
七、实践操作题(每题5分,共10分)1. 请用实践操作的方法验证加法的定义。
2. 请用实践操作的方法验证减法的定义。
【答案】一、选择题1. A2. D3. C4. B5. A二、判断题1. √2. √3. √4. √5. √三、填空题1. 142. 483. 14. 35. 25四、简答题1. 加法是将两个数相加得到一个和的运算。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
人教版数学八年级下册《期中检测卷》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、我能选(每小题3分,共计24分)1.直角三角形的斜边长为13,则斜边上的中线长为( )A. 6.5B. 26C. 8.5D. 132.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.如果点Q (m+2,m-1)在直角坐标系的x 轴上,则Q 点的坐标是( )A. (0,3)B. (1,0)C. (3,0)D. (0,1)4.在△ABC 中,∠A:∠B:∠C=1:2:3,且CD⊥AB ,垂足为D,若AB=,则BD 等于( ) A. 2a B. 3a C. 4a D. 无法确定.5.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是( )A. 20B. 30C. 40D. 0.66.下列图形中,既是轴对称图形又是中心对称图形是( )A. 等边三角形B. 等腰梯形C. 正方形D. 平行四边形 7.下列函数中是一次函数是( )A. y=-3x 2B. y=1xC. y=-3x+5D. y= 1x+x 8.已知一次函数y kx k =-,若随的增大而减小,则该函数的图像经过( )A. 第一、二、三象限B. 第二、三、四象限C. 第一、二、四象限D. 第一、三、四象限二、我会填(每小题3分,共计24分)9.若一次函数(1)y kx k =+-的图象经过第一、二、三象限,则的取值范围是_______.10.当m=___,n=___时,点A (2m+n ,2)与点B (1,n -m )关于y 轴对称.11.在△ABC 中,BC=1,AC=2,当AB=___时,∠B=90︒.12.三边长分别是6,8,10的三角形中最长边上的高是___.13.一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a ,第二、三组数据频率和为b ,则第二组的频率为_____.14.直角三角形斜边上高和中线分别是5和6,则它的面积是___. 15.已知两点E(x 1,y 1),F(x 2,y 2),如果x 1+x 2=2x 1,y 1+y 2=0,那么E,F 两点关于_______对称.16.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.三、我知道解17.如图,在△ABC 中,∠C=90°,AC=BC ,AD 是∠BAC 的平分线且交BC 与点D ,DE ⊥AB ,垂足为点E ,若AB=13cm ,求△DEB 的周长.18.已知一次函数的图象经过两点()1,3A -,()2,5B -,则这个函数的表达式为__________.19.如图,△ABC 的顶点坐标分别是A (6,6),B (-3,3),C (3,3),求△ABC 的面积.20.△ABC 的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),作一平移:先向左平移5个单位,再向上平移4个单位,求新三角形顶点坐标.21.已知:如图,在矩形ABCD 中,AF ,BH ,CH ,DF 分别是各内角平分线,AF 和BH 交于E ,CH 和DF 交于G . 求证:四边形EFGH 是正方形.四、我会应用22.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数)•进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,•回答下列问题.(1)该班共有多少名学生?(2)60.5~70.5这一分数段频数、频率分别是多少?(3)根据统计图,提出一个问题,并回答你所提出的问题?23.已知一次函数的图像交x 轴于点A (-6,0),交正比例函数的图像于点B ,且B 在第三象限,它的横坐标是-2,△AOB 的面积是6,求正比例函数和一次函数的解析式.24.已知一次函数14y k x =-与正比例函数2y k x =的图像都经过点()2,1-(1)分别求出这两个函数的解析式;(2)求一次函数图像与轴和轴围成三角形面积.25.安仁县思源实验学校商店购进果汁饮料和碳酸饮料共50件,两种饮料的进价和售价如下所示.设购进果汁饮料x 箱(x 为正整数),且所购的两种饮料能全部卖出,获得的总利润为W 元, 饮料果汁饮料 碳酸饮料 进价(元/箱) 55 36售价(元/箱) 63 42(1)设购进碳酸饮料为y箱,直接写出y与x的函数关系式;(2)求出总利润W关于x的函数表达式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最大,求出最大利润.26.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y 轴于点H、OC=4, ∠BCO=600.(1)求点A的坐标;(2)动点P从点A出发,沿折线A—B—C的方向以2个单位长度/秒的速度向终点C匀速运动,设∆POC的面积为S,点P的运动时间为ts求出S与t之间的函数表达式(写出自变量t的取值范围).答案与解析一、我能选(每小题3分,共计24分)1.直角三角形的斜边长为13,则斜边上的中线长为()A. 6.5B. 26C. 8.5D. 13 [答案]A[解析][分析]根据直角三角形斜边上的中线等于斜边的一半解答即可.[详解]解:∵直角三角形斜边长是13,∴斜边上的中线长113 6.5 2=⨯=故选A.[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2.在平面直角坐标系中,点P(-2,2x+1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][详解]∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.3.如果点Q(m+2,m-1)在直角坐标系的x轴上,则Q点的坐标是()A. (0,3)B. (1,0)C. (3,0)D. (0,1) [答案]C[解析][分析]根据坐标的位置特点,当点位于x轴上时,纵坐标为0可求得m的值,即可得点Q的坐标.[详解]解:∵点Q (m+2,m-1)在直角坐标系的x 轴上,∴m-1=0;∴m=1,∴m+2=3,∴Q 的坐标为(3,0).故选:C .[点睛]考查了点在坐标轴上的坐标特点,当点位于x 轴上时,纵坐标为0;当位于y 轴上时,横坐标为0. 4.在△ABC 中,∠A:∠B:∠C=1:2:3,且CD⊥AB ,垂足为D,若AB=,则BD 等于( ) A. 2a B. 3a C. 4a D. 无法确定.[答案]C[解析][详解]∵∠A :∠B :∠C =1:2:3,∠A +∠B +∠C =180°, ∴∠A =180°×16=30°, ∠B =2∠A =60°,∠C =2∠A =90°, ∵AB =a ,∴BC =12a , ∵CD ⊥AB ,∴∠BDC =90°,∴∠BCD =90°-∠B =30°,∴BD =12BC =12×12a =14a故选C.5.调查50名学生的年龄,列频数分布表时,学生的年龄落在5个小组中,第一,二,三,五的数据分别是2,8,15,5,则第四组的频数是( )A. 20B. 30C. 40D. 0.6[答案]A[解析][分析]根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数.一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.[详解]一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故选:A.[点睛]此题主要考查对频数定义的理解,熟练掌握即可得解.6.下列图形中,既是轴对称图形又是中心对称图形的是( )A. 等边三角形B. 等腰梯形C. 正方形D. 平行四边形[答案]C[解析][分析]根据轴对称图形和中心对称图形的概念,即可求解.[详解]解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.[点睛]掌握好中心对称图形与轴对称图形的概念是解题的关键.7.下列函数中是一次函数的是()A. y=-3x2B. y=1xC. y=-3x+5D. y=1x+x[答案]C [解析][分析]根据一次函数的定义对各选项进行逐一分析即可.[详解]解:A. y=-3x 2,二次函数,故本选项错误; B. y=1x,反比例函数,故本选项错误; C. y=-3x+5,是一次函数,故本选项正确; D. y=1x +x ,不是一次函数,故本选项错误; 故选:C[点睛]本题考查的是一次函数的定义,即一般地,形如y=kx+b (k ≠0,k 、b 是常数)的函数,叫做一次函数. 8.已知一次函数y kx k =-,若随的增大而减小,则该函数的图像经过( )A. 第一、二、三象限B. 第二、三、四象限C. 第一、二、四象限D. 第一、三、四象限[答案]C[解析][分析]根据题意判断k 的取值,再根据k ,b 的符号正确判断直线所经过的象限.[详解]解:若y 随x 的增大而减小,则k <0,即-k >0,故图象经过第一,二,四象限.故选C .[点睛]本题考查的是一次函数的性质,在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限. 二、我会填(每小题3分,共计24分)9.若一次函数(1)y kx k =+-的图象经过第一、二、三象限,则的取值范围是_______.[答案]k >1.[解析][分析]根据一次函数的性质求解.[详解]解: 一次函数y=kx+(k -1)的图象经过第一、二、三象限,那么k >0且k -1>0,解得k >1.故答案为:k >1.[点睛]本题考查一次函数的性质.10.当m=___,n=___时,点A (2m+n ,2)与点B (1,n -m )关于y 轴对称.[答案] (1). -1 (2). 1[解析][分析]根据关于y 轴对称的点的坐标特点可知,对应点横坐标互为相反数,纵坐标不变.[详解]因为点A (2m+n ,2)与点B (1,n -m )关于y 轴对称所以212m n n m +=-⎧⎨-=⎩解得11n m =⎧⎨=-⎩故答案为:-1;1[点睛]考核知识点:轴对称与点的坐标.理解轴对称与点的坐标对应关系是关键.11.在△ABC 中,BC=1,AC=2,当AB=___时,∠B=90︒.[答案[解析][分析]先由90B ∠=︒可以判断出AC 是直角三角形的斜边,而BC 和AB 是两条直角边,然后利用勾股定理即可求出AB .[详解]解:90,1,2B BC AC ∠=︒==AB ∴===[点睛]本题考查了勾股定理的应用,熟练掌握定理的内容是解题的关键.在直角三角形中,已知任意两条边的长度,利用勾股定理可求出第三边的长度.12.三边长分别是6,8,10的三角形中最长边上的高是___.[答案]4.8[解析][分析]根据已知先判定其形状,再根据三角形的面积公式求得其高.[详解]∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:1 2×6×8=12×10h,解得h=4.8.故答案为:4.8[点睛]解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.13.一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a,第二、三组数据频率和为b,则第二组的频率为_____.[答案]a+b﹣1[解析][分析]根据频率之和=1可得第二组的频率为a+b﹣1.[详解]由题意得:第二组的频率为a+b﹣1.故答案为a+b﹣1.[点睛]本题考查了频率,频率是指每个对象出现的次数与总次数的比值(或者百分比).14.直角三角形斜边上高和中线分别是5和6,则它的面积是___.[答案]30.[解析][分析]根据直角三角形斜边中线等于斜边的一半即可求出斜边,再根据三角形面积公式即可得出答案.[详解]直角三角形斜边上中线是6,斜边是121512302S ∴=⨯⨯= 它的面积是30故答案为:30.[点睛]本题考查了直角三角形斜边与斜边中线的关系,解题的关键是在于知道直角三角形斜边中线为斜边的一半.15.已知两点E(x 1,y 1),F(x 2,y 2),如果x 1+x 2=2x 1,y 1+y 2=0,那么E,F 两点关于_______对称.[答案]x 轴[解析][分析]先根据已知条件得出x 1与x 2,y 1与y 2的关系,继而根据这一关系判断即可.[详解]∵x 1+x 2=2x 1,y 1+y 2=0,∴x 1=x 2,y 1=-y 2,∴E ,F 两点关于x 轴对称,故答案为x 轴.[点睛]本题考查了关于x 轴、y 轴对称的点的坐标,比较容易,熟记平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系是解题的关键.16.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.[答案]-1[解析][分析]根据一次函数的定义条件:次数最高项是一次项,且一次项系数不等于0即可求解.[详解]解:根据题意得:m-1≠0且|m|=1,则m=-1.故答案是:-1.[点睛]本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.三、我知道解17.如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线且交BC与点D,DE⊥AB,垂足为点E,若AB=13cm,求△DEB的周长.[答案]13cm.[解析][分析]根据角平分线的性质可得DC=DE,进而可得Rt△DCA≌Rt△DEA(HL),于是可得AC=AE=BC,然后即可求得△DEB的周长.[详解]解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DC=DE,在Rt△DCA和Rt△DEA中,AD AD DC DE=⎧⎨=⎩,∴Rt△DCA≌Rt△DEA(HL),∴AC=AE,∵DE=DC,AC=BC=AE,∴DE+DB+BE=DC+DB+BE= BC+BE=AE+BE=AB=13cm, 即△DEB的周长是13cm.[点睛]本题考查了角平分线的性质、全等三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.18.已知一次函数的图象经过两点()1,3A -,()2,5B -,则这个函数的表达式为__________.[答案]8133y x =-+ [解析][分析]设一次函数的解析式是:y=kx+b ,然后把点()1,3A -,()2,5B -代入得到一个关于k 和b 的方程组,从而求得k 、b 的值,进而求得函数解析式.[详解]解:设一次函数的解析式是:y=kx+b , 根据题意得:-32-5k b k b +⎧⎨+⎩==, 解得:8-313k b ⎧⎪⎪⎨⎪⎪⎩==, 则一次函数的解析式是:8133y x =-+. 故答案是:8133y x =-+. [点睛]本题考查了待定系数法求函数的解析式,先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.19.如图,△ABC 的顶点坐标分别是A (6,6),B (-3,3),C (3,3),求△ABC 的面积.[答案]9.[解析][分析]已知各点坐标,即可分别求出BC和△ABC中BC边上高的长度,再利用三角形面积公式即可求解.[详解]解:过A作AH垂直BC的延长线于点H.由题可知B(-3,3),C(3,3)∴BC=3-(-3)=6又∵AH⊥BC,A(6,6),B(-3,3)∴H点坐标为(6,3)∴AH=6-3=3S△ABC=12AH·BC=12×3×6=9∴△ABC的面积为9.[点睛]本题考查平面直角坐标系中图形面积问题,确定各点坐标进而通过已知的相关图形面积公式求解是解题关键.20.△ABC的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),作一平移:先向左平移5个单位,再向上平移4个单位,求新三角形顶点坐标.[答案](-9,6),(-10,0),(-5,0)[解析][分析]根据平移的特点,每一个点的横坐标都减5,纵坐标都加4就可以得出结果.[详解]解:△ABC的三个顶点的坐标分别是A(-4,2),B(-5,-4),C(0,-4),先向左平移5个单位,再向上平移4个单位,根据平移的特点,新三角形顶点坐标分别是:A′(-9,6),B′(-10,0),C′(-5,0).[点睛]考核知识点:点的平移与坐标.理解点的平移与坐标的变化关系是关键.21.已知:如图,在矩形ABCD中,AF,BH,CH,DF分别是各内角平分线,AF和BH交于E,CH和DF交于G.求证:四边形EFGH是正方形.[答案]见解析[解析][分析]由矩形的性质和角平分线的性质可得△ADF、△ABE、△DCG都是等腰直角三角形,于是可得四边形EFGH 的三个角都是直角,进而可得四边形EFGH是矩形,由等腰直角三角形的性质可得AF=DF,2,2DG,进一步即得EF=GF,从而可得结论.[详解]证明:∵四边形ABCD矩形,∴∠DAB=∠ADC=90°,AB=CD,∵AF、DF是∠DAB、∠ADC的平分线,∴∠DAF=∠ADF=45°,∴∠AFD=90°,AF=DF,∴△ADF是等腰直角三角形,同理可得:△ABE和△DCG都是等腰直角三角形,∴∠AEB=∠DGC=90°,2AE,2DG,∴∠HEF=∠HGF=90°,AE=DG,∴四边形EFGH是矩形,FE=FG,∴矩形EFGH是正方形.[点睛]本题考查了矩形的性质、正方形的判定和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.四、我会应用22.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数)•进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息,•回答下列问题.(1)该班共有多少名学生?(2)60.5~70.5这一分数段的频数、频率分别是多少?(3)根据统计图,提出一个问题,并回答你所提出的问题?[答案](1)该班共有48名学生;(2)60.5~70.5这一分数段的频数12,频率为0.25;(3)优秀率为31.25%(80分以上为优秀).[解析]试题分析:(1)从图中得到频数相加即为该班共有学生数;(2)观察可知60.5~70.5这一分数段的频数为12,频率=12÷总数;(3)答案不唯一.如你能求出该班优秀率吗?80分以上为优秀,用80分以上的人数之和除以总数即可得.试题解析:(1)3+6+9+12+18=48(人),即该班共有48名学生;(2)60.5~70.5这一分数段的频数12,频率为12÷48=0.25;(3)你能求出该班的优秀率吗?优秀率为1548×100%=31.25%(80分以上为优秀).[点睛]本题考查搜集信息的能力(读图,表),分析问题和解决问题的能力,正确解答本题的关键在于准确读图表.23.已知一次函数的图像交x轴于点A(-6,0),交正比例函数的图像于点B,且B在第三象限,它的横坐标是-2,△AOB 的面积是6,求正比例函数和一次函数的解析式.[答案]正比例函数的解析式为y=x ,一次函数的解析式为132y x =--. [解析][分析]点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,利用三角形面积公式得到12AO•|y B |=6,即12×6×|y B |=6,可解得y B =-2,然后利用待定系数法求两个函数解析式. [详解]解:设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6, ∴12AO•|y B |=6,即12×6×|y B |=6, ∴y B =-2,∴B 点坐标为(-2,-2),把点B (-2,-2)代入正比例函数y=kx ,得-2k=-2,解得k=1;故正比例函数的解析式为y=x ;把点A (-6,0)、B (-2,-2)代入y=ax+b ,得6a b 02a b 2,解得1a 2b 3, 故正比例函数的解析式为y=x ,一次函数的解析式为y=12-x-3. [点睛]本题考查了两条直线相交或平行问题:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;若直线y=k 1x+b 1与直线y=k 2x+b 2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了待定系数法求函数解析式.24.已知一次函数14y k x =-与正比例函数2y k x =的图像都经过点()2,1-(1)分别求出这两个函数的解析式;(2)求一次函数图像与轴和轴围成的三角形面积. [答案](1)342y x =-,12y x =-;(2)163 [解析][分析](1)利用待定系数法即可解决问题;(2)求出一次函数y =k 1x ﹣4与x 轴和y 轴的交点坐标即可解决问题.[详解]解:(1)把点()2,1-代入函数14y k x =-得,1124k -=-,132k = 则函数解析式为:342y x =-; 把点()2,1-代入函数2y k x =得,212k =- 则函数解析式为:12y x =-; (2)令342y x =-中的y =0,则x =83, ∴与轴的交点为8,03⎛⎫ ⎪⎝⎭, 令342y x =-中的x =0,则y =-4, ∴与轴的交点为()0,4-, ∴三角形面积为:18164233S =⨯⨯=. [点睛]本题考查了求两直线的交点坐标,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.安仁县思源实验学校商店购进果汁饮料和碳酸饮料共50件,两种饮料的进价和售价如下所示.设购进果汁饮料x 箱(x 为正整数),且所购的两种饮料能全部卖出,获得的总利润为W 元,(1)设购进碳酸饮料为y 箱,直接写出y 与x 的函数关系式;(2)求出总利润W 关于x 的函数表达式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最大,求出最大利润.[答案](1)y=50-x ;(2)W=2x+300;(3)该商场购进果汁饮料和碳酸饮料分别为15箱、35箱时,能获得最大利润330元.[解析][分析](1)根据购进果汁饮料和碳酸饮料共50箱即可求解;(2)根据总利润=每个的利润×数量就可以表示出w 与x 之间的关系式;(3)由题意得55x+36(50-x )≤2100,解得x 的值,然后可求w 值,根据一次函数的性质可以求出进货方案及最大利润.[详解]解:(1)y 与x 函数关系式为:y=50-x ;(2)总利润W 关于x 的函数关系式为:W=(63-55)x+(42-36)(50-x )=2x+300;(3)由题意,得55x+36(50-x )≤2100,解得151519x , ∵W=2x+300,w 随x 的增大而增大,∴当x=15时,w 最大值=2×15+300=330元,此时购进B 品牌的饮料50-15=35箱,∴该商场购进果汁饮料和碳酸饮料分别为15箱、35箱时,能获得最大利润330元.[点睛]本题考查了一次函数的实际应用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.26.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点C 在x 轴的正半轴上,AB 边交y 轴于点H 、OC=4, ∠BCO=600.(1)求点A 的坐标;(2)动点P 从点A 出发,沿折线A —B —C 的方向以2个单位长度/秒的速度向终点C 匀速运动,设∆POC 的面积为S ,点P 的运动时间为ts 求出S 与t 之间的函数表达式(写出自变量t 的取值范围).[答案](1)(2,3)-;(2)43(02)2383(24)t S t t ⎧⎪=⎨-+<⎪⎩[解析][分析](1)由菱形的性质得出∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt △AHO 中,∠HOA=90°-∠A=30°,则含30°角直角三角形的性质和勾股定理得出2AH =, 23OH =,从而确定点A 的坐标 (2)①当点P 在AB 上运动时,△POC 的高不变,始终为23从而确定其面积②当点P 在BC 上运动时,即2<t ≤4时,过点P 作PE ⊥OC 于E ,在Rt △PCE 中,∠PCE=60°,PC=8-2t ,解直角三角形得出PE=PCsin60°=(4)3-t ,从而确定∆POC 的面积[详解]解:(1)∵四边形ABCO 是菱形,OC=4,∠BCO=60°,∴∠A=60°,AO=4,AB//OC,∴∠AHO=∠HOC=90°,在Rt △AHO 中,∠HOA=90°-∠A=30°,12,2∴==AH AO 2223=-=OH AO AH ∴点A 的坐标为:(2,23)-(2)①当点P 在AB 上运动时,即0≤t ≤2时,△POC 的高不变,始终为23;1423432∴=⨯⨯=S ②当点P 在BC 上运动时,即2<t ≤4时,过点P 作PE ⊥OC 于E ,如图所示:在Rt △PCE 中,∠PCE=60°,PC=8-2t ,sin 60=(43,∴=︒-PE PC t114(4)3238322∴=⋅=⨯⨯-=-+S OC PE t t 3(02)383(24)t S t t ⎧⎪∴=⎨-+<⎪⎩[点睛]本题是四边形综合题目,考查了图形与点的坐标、菱形的性质、直角三角形的性质、勾股定理、三角函数、三角形面积的计算等知识,熟练掌握菱形的性质和含30°角直角三角形的性质是解题的关键.。
人教版八年级下册数学期中考试试题含答案
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
2023年人教版八年级数学下册期中测试卷及答案【完整版】
2023年人教版八年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若m =201520161-,则m 3﹣m 2﹣2017m +2015=________. 4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,依据尺规作图的痕迹,计算∠α=_______°. 6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、A5、B6、A7、A8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、k<6且k ≠33、40304、()()2a b a b ++.5、56.6、120三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、(1)42,(2)13+-3、(1)略(2)1或24、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(12m6、(1)2400个, 10天;(2)480人.。
新人教版八年级数学下册期中试卷及答案
新人教版八年级数学下册期中试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120202.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.62B.10 C.226D.22910.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.比较大小:23________13.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)203216x y x y -=⎧⎨+=⎩ (2)410211x y x y -=⎧⎨+=⎩2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.5.如图,在△ABC 中,AB=BC ,BD 平分∠ABC ,四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE求证:四边形BECD是矩形.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、A6、D7、D8、A9、C 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、13k <<.4、()()2a b a b ++.5、(-2,0)6、32三、解答题(本大题共6小题,共72分)1、(1)42x y =⎧⎨=⎩;(2)61x y =⎧⎨=-⎩.2、(12)3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 5、略6、(1)饮用水和蔬菜分别为200件和120件 (2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
人教版八年级数学下册期中试卷及答案【完整版】
人教版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.使x2-有意义的x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
人教版八年级下册数学《期中检测试题》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(48分)1.下列各式中,正确的是( ) A. 2(3)3-=- B. 233-=- C. 2(3)3±=± D. 23=3±2.下列二次根式中,是最简二次根式的是( ).A. 2xyB. 2abC. 12D. 422x x y + 3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm4. 顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A. 邻边不等的平行四边形B. 矩形C. 正方形D. 菱形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108° 6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A. k >0,b >0B. k >0,b <0C. k <0,b >0D. k <0,b <08.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A. 2B. 2.2C. 2.4D. 2.59.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A. 2016B. 2017C. 2018D. 201910.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +611.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52C.332D. 512.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.14.矩形两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.17.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为_____.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.三、解答题19.计算: ①4545842+-+; ②12xy x y⨯÷ 20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中35x =+. 21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC =34,CD =5,BC =13,求△ABC 的面积.DE AC AE与DE相交23.如图,在菱形ABCD中,对角线AC、BD相交于点O过A作AE//BD,过D作//,于点E.求证:四边形AODE为矩形.24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x(h),两车之的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC所表示y与x的函数关系式,并写出自变量x的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.答案与解析一、单选题(48分)1.下列各式中,正确的是( )A. 3=-B. 3=-C. 3=±D. 3±[答案]B[解析][分析]如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果.[详解]解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误;故选B .[点睛]本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.2.下列二次根式中,是最简二次根式的是( ).A. [答案]A[解析][详解]根据最简二次根式的意义,可知是最简二次根式=不是最简二次根式. 故选A.3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A 2cm B. 3cm C. 4cm D. 5cm[答案]A[解析][分析]根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.[详解]根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.[点睛]主要考查了勾股定理解直角三角形.4. 顺次连接矩形ABCD各边的中点,所得四边形必定是( )A. 邻边不等平行四边形B. 矩形C. 正方形D. 菱形[答案]D[解析]试题解析:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=12AC,FG=EH=12BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD, ∴EF=GH=FG=EH,∴四边形EFGH是菱形.考点:中点四边形.5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108°[答案]B[解析][分析] 因为平行四边形对边平行,由两直线平行,同旁内角互补,已知∠C ,可求∠ABC ,又BE 平分∠ABC ,故12ABE ABC ∠=∠ [详解]∵AB ∥CD ,∴∠ABC+∠C=180°,把∠C=108°代入,得∠ABC=180°-108°=72°.又∵BE 平分∠ABC ,∴∠CBE=12∠ABC=12•72°=36°. 又∵AD ∥BC ,∴∠AEB=∠EBC=36°故选B .[点睛]本题直接通过平行四边形性质的应用,判断出正确的选项,属于基础题.6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)[解析][分析]根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.[详解]令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0[答案]C[解析][分析]根据一次函数的图象与系数的关系进行解答即可.[详解]∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.[点睛]本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A. 2B. 2.2C. 2.4D. 2.5[解析][分析]根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.[详解]连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选C.[点睛]本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.9.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( ) 2016201720182019[解析][分析]由勾股定理求出各边,再观察结果的规律.[详解]∵OP=1,OP 1=2 OP 2=3,OP 3=4=2,∴OP 4=5,…,OP 2018=2019.故选D[点睛]本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键. 10.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +6[答案]D[解析][分析] 平移时的值不变,只有发生变化.再把相应的点的坐标代入即可得解.[详解]解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+∴直线AB 解析式是26y x =-+.故选:D[点睛]本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移值不变.11.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52 3325[答案]D[解析][分析] 连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可.[详解]如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,CF=32∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF =25-∵H 是AF 的中点,∴CH=12AF=12×255故选D .[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地的距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]观察图象坐标轴和函数图象表示的意义,再根据问题判断.[详解]观察横坐标,可知,汽车比摩托提前一小时到达目的地①对;观察纵坐标,可知A,B两地距离20km②对;根据图象汽车速度1803=60 km/h,摩托车速度180204-=40km/h,③错.根据图象,两条函数图象交点横坐标是1,1小时后汽车走了60 km,摩托走了40 km,故汽车距离B地40 km,故④对.汽车和摩托都是匀速运动,故⑤错.故答案选B.[点睛]此类问题,一定要先观察直角坐标系横纵坐标表示的实际意义,函数图象表示的实际意义,如果是s-t图,一次函数图象k表示的是速度.s表示路程,t表示时间.二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.[答案]a<b[解析][分析]先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.[详解]∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为a<b.[点睛]本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.14.矩形的两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.[答案]24[解析]分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=12BD=12AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为24.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.[答案]y=-0.5x+3[解析]此题首先分别求出A,B两个点的坐标,得到OA,OB的长度,再根据勾股定理求出AB,再求出OB′,然后根据已知得到BM=B′M,设BM=x,在Rt△B′OM中利用勾股定理求出x,这样可以求出OM,从而求出了M的坐标,最后用待定系数法求直线的解析式.解:当x=0时,y=8;当y=0时,x=6,∴OA=6,OB=8,∴AB=10,根据已知得到BM=B'M,AB'=AB=10,∴OB'=4,设BM=x,则B'M=x,OM=8﹣x,在直角△B'MO中,x2=(8﹣x)2+42,∴x=5,∴OM=3,设直线AM的解析式为y=kx+b,把M(0,3),A(6,0)代入其中得:∴k=﹣,b=3,∴y=﹣x+3.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.[答案]46 xy=⎧⎨=-⎩[解析]根据一次函数和二元一次方程组的关系,可知方程组的解为两个一次函数的交点的坐标,故可知方程组的解为46 xy=⎧⎨=-⎩.故答案为46 xy=⎧⎨=-⎩17.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.[答案]3[分析]由菱形的性质可得AB=BC ,且∠B=60°,可得AC=AB=3,由正方形的性质可得AC=EF=3.[详解]解:∵四边形ABCD 是菱形∴AB=BC ,且∠B=60°,∴△ABC 是等边三角形,∴AB=AC=3,∵四边形ACEF 是正方形,∴AC=EF=3故答案为3[点睛]本题考查了正方形的性质,菱形的性质,等边三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.[答案]±2[解析][分析]求出直线与坐标轴的交点坐标或坐标表达式,根据三角形的面积公式建立关系式,即可求出k 的值.[详解]直线与y 轴的交点坐标为(0,﹣4),与x 轴的交点坐标为(4k,0), 则与坐标轴围成的三角形的面积为14442k⨯⨯=, 解得k=±2, 经检验,k=±2是方程的解且符合题意,故答案:±2. [点睛]本题考查了一次函数与坐标轴的交点与相关三角形的面积问题,要熟悉函数与坐标轴的交点的求法.三、解答题19.计算:①②[答案]①2.[解析][分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则,0,0)0,0)a a b a b b ==≥>)进行化简即可. [详解]解:①原式==②原式===2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中3x =[答案]13x -. [解析][分析]先算括号内的,然后再将除法变为乘倒数的形式化简,最后代值.[详解]原式=22522(3)x x x x +-+⎛⎫⋅ ⎪+-⎝⎭13x =-;当3x =+,原式===[点睛]本题考查分式的化简,注意分式中能够因式分解时,尽量先因式分解,可简化计算.21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.[答案](1)3m =;(2)1m =;(3)728y x =-[解析][分析](1)将x=0,y=0代入函数即可求得m 的值;(2)根据题意可得两直线斜率相等,即213m +=,然后求解即可;(3)先求得函数解析式,再根据“左加右减”进行变形即可.[详解]解:(1)将x=0,y=0代入函数(21)3y m x m =++-得:30m -=,则3m =;(2)∵函数(21)3y m x m =++-图像平行于直线33y x =-,∴213m +=则1m =;(3)当3m =时,函数解析式为:7y x =,平移后:7(4)728y x x =-=-.[点睛]本题主要考查一次函数的性质,解此题的关键在于熟练掌握其知识点.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC CD =5,BC =13,求△ABC 的面积.[答案]752 [解析][分析]由于CD ⊥AB,CD 为Rt △ADC 和Rt △BCD 的公共边,在这两个三角形中利用勾股定理可求出AD 和BD 的长,然后根据三角形面积公式求得即可.[详解]解:∵CD ⊥AB,∴∠CDA=∠BDC=90°在Rt △ADC 中,AD 2=AC 2﹣CD 2,在Rt △BCD 中,BD 2=BC 2﹣CD 2,∵AC=34 ,CD=5,BC=13,∴AD=3425-=3,BD=22135-=12,∴AB=15,∴S △ABC =12AB•CD=752. [点睛]本题考查了勾股定理的运用,根据勾股定理求得AB 的长是解题的关键.23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O 过A 作AE//BD ,过D 作//,DE AC AE 与DE 相交于点E .求证:四边形AODE 为矩形.[答案]见解析[解析][分析]根据菱形的性质,可知AC ⊥BD ,利用平行的性质,推导得出∠OAE=90°,∠ODE=90°,从而证矩形.[详解]∵四边形ABCD 是菱形∴∠AOD=90°∵AE ∥BD∴∠EAO=90°∵DE ∥AC∴∠EDO=90°∴四边形AODE 是矩形.[点睛]本题考查证矩形,用到了菱形的性质和平行线的性质,解题关键是得出∠AOD=90°. 24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.[答案](1)幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)幸福牌买20根,平安牌的买40根时最省钱,见解析[解析][分析](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据:“2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元”列方程组求解即可;(2)首先根据“平安牌跳绳的数量不少于幸福牌跳绳数量的2倍”确定自变量的取值范围,然后得到有关总费用和幸福牌跳绳之间的关系得到函数解析式,确定函数的最值即可.[详解](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据题意,得:2313254x y x y +⎧⎨+⎩==,解得:815x y ⎧⎨⎩==, 答:幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)设购进幸福牌跳绳m 根,总费用为W 元,根据题意,得:W=8m+15(60-m )=-7m+900,∵-7<0,∴W 随m 增大而减小,又∵2m≤60-m ,解得:m≤20,而m 为正整数,∴当m=20时,W 最小=-7×20+900=760, 此时60-20=40,答:幸福牌买20根,平安牌的买40根时最省钱.[点睛]此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x (h ),两车之的距离为y (km ),图中的折线表示y 与x 之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC 所表示的y 与x 的函数关系式,并写出自变量x 的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.[答案](1)150km h ,75km h ;(2)225900y x =-(46x ≤≤ );(3)经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[解析][分析](1)由图可知甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;可得慢车12h的行程为900km,即可求出慢车速度;两车出发后经4小时相遇,即可求出快车速度.(2)先求出B、C点坐标,即可求出线段BC所表示的y与x的函数关系式与自变量x的取值范围.(3)已知第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地,得第二列开车速度为150(km/h),设第二列快车与慢车相遇时,距离甲地为x米,90075150x x-=,解得x=300,快车出发后3002150=小时,与慢车相遇.[详解]∵甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;∴慢车12h的行程为900km,所以速度为:900÷12=75(km/h), ∵两车出发后经4小时相遇,∴快车速度为:900÷4−75=150(km/h);故答案为:150(km/h),75(km/h)(2)∵B(4,0),快车速度为:150km/h,∴900÷150=6(小时),C点纵坐标为:75×6=450,∴C(6,450),设线段BC表示的关系为:y=kx+b(4⩽x⩽6),∴40 6450k bk b+=⎧⎨+=⎩解得:k=225,b=−900∴线段BC的函数表达式为:y=225x−900(4⩽x⩽6);故答案为:y=225x−900(4⩽x⩽6)(3)∵第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地∴第二列开车速度为150(km/h)设第二列快车与慢车相遇时,距离甲地为x米,∵第二列快车与慢车同时到达各自的目的地∴900 75150 x x-=解得x=300∴快车出发后3002150小时,与慢车相遇.故答案为:经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[点睛]本题考查了一次函数的实际应用—路程问题,解题的关键是能读懂一次函数图象,分段函数每段表示的意义,从中获取已知条件.。
新人教版八年级数学下册期中试卷【附答案】
新人教版八年级数学下册期中试卷【附答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是()A.4cm,6cm B.6cm,8cm C.8cm,12cm D.20cm,30cm 3.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-4.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠56.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.若a,b都是实数,b =12a-+21a-﹣2,则a b的值为________.2.因式分解:22ab ab a-+=__________.3.分解因式:2x3﹣6x2+4x=__________.4.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为__________.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=________度.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列方程组() 32219612x yyx y ⎧-+=⎪⎨++=-⎪⎩2.先化简,再求值:21211222m mm m++⎛⎫-÷⎪++⎝⎭,其中22m=3.己知关于x 的一元二次方程x 2+(2k+3)x+k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1211x x =﹣1,求k 的值.4.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .5.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.6.为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、C6、D7、B8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、()21 a b-3、2x(x﹣1)(x﹣2).4、135、30°6、6三、解答题(本大题共6小题,共72分)1、12 xy=⎧⎨=-⎩2、23、(1)k>﹣34;(2)k=3.4、略.5、略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。
人教版八年级下册数学《期中检测卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列根式中,不是最简二次根式是( ) A. 5 B. 33 C. 12 D. 102. 下列运算正确的是( )A. 111x y x y +=+ B. 2353()p q p q -=- C. a b ab ⋅=,(0,0)≥≥a b D.222()a b a b +=+3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105°4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20D. 3,1,2 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角7. 如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE=BD ,则∠BDE 的度数是()A. 22.5°B. 30°C. 45°D. 67.5°8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A 13 B. 22 C. 4 D. 109. 如图,在22 的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()A. 5B. 322C.355D.3210. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是211. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055+C. 25D. 521 12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210二、填空题13. 计算:218-=__________.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________. 15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.17. 如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=24,BD=10,则菱形ABCD的高DE=____.18. 如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.三、解答题19. 计算:①4545842+-+;②12xy xy⨯÷20. 如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD直角三角形.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.22. 如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE位置,当AE为多少时,AE与BD相等?23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.∠交AD于点F,AEBF于点O,交BC于点E,连接EF.24. 已知,如图,在平行四边形ABCD中,BF平分ABC(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.25. 阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分21-,根据以上的内容,解答下面的问题:(1)5的整数部分是______,小数部分是______;(2)12+的整数部分是______,小数部分是_____;+整数部分是x,小数部分是y,求x﹣3y的值.(3)若设2326. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.答案与解析一、选择题1. 下列根式中,不是最简二次根式的是( )A. B.C. D.[答案]C[解析][分析]根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式,由此判断各选项可得出答案.[详解]解:A ,不符合题意;B 、3是最简二次根式,不符合题意;C 不是最简二次根式,符合题意;D 是最简二次根式,不符合题意;故选:C .[点睛]本题考查最简二次根式的知识,属于基础题,注意掌握二次根式的满足的两个条件. 2. 下列运算正确的是( )A. 111x y x y +=+B. 2353()p q p q -=- =,(0,0)≥≥a b D. 222()a b a b +=+[答案]C[解析][分析]根据分式的加、减法法则,积的乘方,实数的运算法则求解即可.[详解]解:选项A :11++=+=y x x y x y xy xy xy,故选项A 错误; 选项B :2363()-=-p q p q ,故选项B 错误;选项C :当,a b 均大于等于0时=故选项C 正确;选项D :222()+2+=+a b a b ab ,故选项D 错误故答案为:C.[点睛]本题考查了分式的加减运算、整式的乘除、实数的运算等,熟练的掌握运算法则是解决此类题的关键. 3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105° [答案]C[解析][分析]由平行四边形ABCD 可知∠A+∠B=180°,依据∠A :∠B=7:2,可求得∠A 的度数,根据∠A=∠C 即可求得∠C 的度数.[详解]∵四边形ABCD 为平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠A :∠B=7:2,∴∠A=180°×79=140°, ∴∠C=140°,故选:C .[点睛]本题主要考查了平行四边形的性质,解题时注意平行四边形的对角相等,邻角互补.4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20 1,2 [答案]D[解析][分析]验证选项中每组数据,看两条较短边的平方和是否等于最长边的平方,若等于则为直角三角形,否则就不是直角三角形.[详解]解:选项A :两条较短边平方和为:7²+8²=49+64=113≠10²,故选项A 错误;选项B :两条较短边平方和为:2²+3²=13≠4²,故选项B 错误;选项C :两条较短边平方和为:12²+15²=144+225=369≠20²,故选项C 错误选项D :两条较短边平方和为:1²+(3)²=4=2²,故选项D 正确.故答案为:D.[点睛]本题考查勾股定理的逆定理,如果两条较短边的平方和等于最长边的平方,则此三角形为直角三角形. 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒[答案]B[解析][分析] 直接利用菱形的性质得出//DC AB ,1DAC ∠=∠,进而结合平行四边形的性质得出答案.[详解]解:四边形ABCD 是菱形,//DC AB ∴,1DAC ∠=∠,130D ∠=︒,18013050DAB ∴∠=︒-︒=︒,11252DAB ∴∠=∠=︒. 故选:B .[点睛]此题主要考查了菱形的性质,正确得出DAB ∠的度数是解题关键.6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角[答案]D[解析][分析]本题主要应用矩形的性质,即对角线相等且互相平分,四个角都是直角,对边平行且相等,进行解答即可.[详解]解:B是一般的平行四边形的性质,A、C都是矩形特有的性质,D是菱形的性质,矩形不一定具有;故选:D.[点睛]本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,但是菱形特有的性质,矩形不一定具有.7. 如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A. 22.5°B. 30°C. 45°D. 67.5°[答案]A[解析][分析]由条件可得BE=BD,即得∠BED=∠BDE,根据正方形性质得∠ABD=45°,∠BED+∠BDE=∠ABD=45°,从而求得∠BDE.[详解]解:∵正方形ABCD,AD=AB,∴∠ABD=45°,∵BE=BD,∴∠BED=∠BDE,∴∠BED+∠BDE=∠ABD=45°,∴2∠BDE=45°,∴∠BDE=22.5°,故选:A.[点睛]本题考查了正方形的性质、等腰三角形底角相等的性质,根据∠BED=∠BDE和∠BED+∠BDE=∠ABD=45°是解题的关键.8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A. 13B. 22C. 4D. 10[答案]A[解析][分析]直接利用D点坐标再利用勾股定理得出DO的长,再利用矩形性质得出答案.[详解]解:如图,连接OD,∵点D的坐标是(2,3),∴22+1323∵四边形OEDC是矩形,∴13故选:A.[点睛]此题主要考查了矩形的性质,正确应用勾股定理是解题关键.9. 如图,在22⨯的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()532235 D. 32[答案]C[解析][分析] 先用间接法求出△ABC 的面积,然后求出AC 的长度,根据面积公式即可求出AC 边上的高.[详解]解:根据题意,得:11132211212422222ABC S ∆=⨯-⨯⨯-⨯⨯⨯=--=, ∵22125AC =+=又12ABC S AC h ∆=•, ∴AC 边上的高:3223525ABC S h AC∆⨯===;故选:C.[点睛]本题考查了勾股定理与网格问题,解题的关键是利用勾股定理求出AC 的长度,以及间接法求出△ABC 的面积.10. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是2[答案]A[解析]试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.11. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055C. 25D. 21[答案]C[解析][分析]要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.[详解]解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=2222BD AD++,=1520=25只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10;在直角三角形ABD中,根据勾股定理得:∴AB=2222++,BD AD=1025=529只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30;在直角三角形ABC中,根据勾股定理得:∴AB=2222=305=537++,AC BC∵25<529<537,∴蚂蚁爬行的最短距离是25,故选:C.[点睛]本题主要考查勾股定理的应用,两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210[答案]B[解析][分析]根据题意可得当BP 最短时,PQ 值最小,即BP ⊥AC 时,PQ 最小.利用面积法计算BP 长度,即可得PQ 长度.[详解]解:∵△BPQ 是等腰直角三角形,若PQ 最小,则BP 值最小即可.∵点P 是对角线AC 上的一动点,B 点是定点,∴当BP ⊥AC 时,BP 最短.在Rt △ABC 中,AC=22210AB BC += ,根据三角形的面积公式,11224221022BP ⨯⨯=⨯⨯,解得4105BP =, 此时PQ 的最小值为22855BP BQ +=.故选B.[点睛]此题考查矩形的性质、勾股定理以及垂线段最短,解题的关键是根据图形特征转化最短线段.二、填空题13. 计算:218-=__________.[答案]22-[解析][分析]先将18化成最简二次根式,然后再进行加减运算即可.[详解]解:原式=23222-=-.故答案为:22-.[点睛]本题考查二次根式的加减运算,熟练掌握运算法则是解决此类题的关键.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.[答案]3[解析][分析]由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.[详解]解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=123故答案为:3.[点睛]本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.[答案]14[解析][分析]根据平移的性质,地毯的长度实际是所有台阶的长加上台阶的高,因此结合题目的条件可得出答案.[详解]根据平移不改变线段的长度,可得地毯的长=台阶的长+台阶的高,则红地毯至少要6+22106-=6+8=14米.故答案为14[点睛]本题考查了生活中平移知识的应用,利用勾股定理求出台阶的水平长度是关键.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.[答案]62[解析][分析]根据直角三角形斜边上的中线等于斜边的一半可知CD AD =,根据等腰三角形的性质可知A ACD ∠=∠,进而即可得解.[详解]∵在Rt ABC ∆中,D 是AB 的中点 ∴12CD AD DB AB === ∴ADC ∆是等腰三角形∴A ACD ∠=∠∵28A ∠=︒∴28ACD ∠=︒∵90ACB ∠=︒∴902862DCB ∠=︒-︒=︒故答案为:62.[点睛]本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.17. 如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =24,BD =10,则菱形ABCD 的高DE =____.[答案]12013[解析][分析]由菱形的性质求出AO 、BO 的值,再由勾股定理求出AB 的值,然后根据面积法即可求出DE 的值.[详解]∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=12,BO=5,∴AB=2251213+=,∵1122AB DE OA BD ⋅=⋅, ∴12×13×DE=12×12×10, ∴DE=12013.故答案12013. [点睛]此题考查了菱形的性质,勾股定理,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.18. 如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.[答案]125[解析][分析] [详解]解:设AC 与BD 相交于点O ,连接OP ,过D 作DM ⊥AC 于M ,∵四边形ABCD 是矩形,∴,AC=BD ,∠ADC=90°.∴OA=OD . ∵AB=3,AD=4,∴由勾股定理得:22345+= .∵1134522ACD S DM ∆=⨯⨯=⨯⋅ ,∴DM=125. ∵AOD APO DPO S S S ∆∆∆=+,∴111222AO DM AO PE DO PF ⋅⋅=⋅+⋅ . ∴PE+PF=DM=125.故选B . 三、解答题19. 计算: ①4545842+-+; ②12xy x y⨯÷ [答案]①7522+;②2.[解析]分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则(,(0,0)(0,0)a a a b ab a b a b b b ⋅==≥>)进行化简即可. [详解]解:①原式=45352242+-+=7522+;②原式=12xy x y⋅÷ =21=2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20. 如图,在Rt △ABC 中,∠BCA =90°,AC =12,AB =13,点D 是Rt △ABC 外一点,连接DC ,DB ,且CD =4,BD =3.(1)求BC 的长;(2)求证:△BCD 是直角三角形.[答案](1)5;(2)详见解析.[解析][分析](1)在Rt△ABC中,根据勾股定理即可求得BC的长;(2)利用勾股定理逆定理即可证明△BCD是直角三角形.[详解](1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形.[点睛]本题考查勾股定理及其逆定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握定理是解题关键.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班的平均数为70100100758085(5++++=分),其众数为100分,补全表格如下:平均数中位数众数九()1班85 85 85 九()2班85 80 100 ()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22. 如图,一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米.(1)求BC 的长;(2)梯子滑动后停在DE 的位置,当AE 为多少时,AE 与BD 相等?[答案](1)4m ;(2)1m.[解析][分析](1)直接在Rt △ABC 中应用勾股定理即可作答;(2)先设AE=x,然后根据题意用x 表示出CD 和CE 的长,然后使用勾股定理即可完成解答.[详解]解:(1)∵一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米,∴BC 2253-(m ),答:BC 的长为4m ;(2)当BD =AE ,则设AE =x ,故(4-x )2+(3+x )2=25解得:x 1=1,x 2=0(舍去),故AE=1m.[点睛]本题主要考查了勾股定理得应用,正确的找到直角三角形和相应边的长是解答本题的关键.23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.[答案](1)见解析;(2)5 2 .[解析][分析](1)由折叠可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.[详解](1)∵△DAE逆时针旋转90°得到△DCM∴DE=DM ∠EDM=90°∴∠EDF + ∠FDM=90°∵∠EDF=45°∴∠FDM =∠EDM=45°∵DF= DF∴△DEF≌△DMF∴EF=MF …(2) 设EF=x ∵AE=CM=1∴ BF=BM-MF=BM-EF=4-x∵ EB=2在Rt △EBF 中,由勾股定理得222EB BF EF +=即2222(4)x x +-=解之,得 52x = 24. 已知,如图,在平行四边形ABCD 中,BF 平分ABC ∠交AD 于点F ,AEBF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD 的面积.[答案](1)答案见解析;(2)1925. [解析][分析] (1)由BF 平分∠ABC 得到∠ABF=∠EBF ,由AD ∥BC ,得到∠EBF=∠AFB ,进而得到△ABF 为等腰三角形,得到AB=AF ;由AE ⊥BF ,可证明△ABO ≌△EBO ,得到BE=AB ,进而可证明四边形ABEF 为菱形;(2)由(1)中四边形ABEF 为菱形,过A 点作AH ⊥BC 于H 点,根据菱形等面积法求出AH 的长,进而求出平行四边形ABCD 的高,进而求出其面积.[详解]解:(1)证明:∵四边形ABCD 为平行四边形,且F 在AD 上,E 在BC 上∴AF ∥BE∴∠EBF=∠AFB∵BF 是∠ABE 的角平分线∴∠EBF=∠ABF∴∠ABF=∠AFB∴△ABF 为等腰三角形,且AF=AB又AE ⊥BF ,∴∠AOB=∠EOB=90°在△AOB 和△EOB 中:=90⎧∠=∠⎪=⎨⎪∠=∠⎩ABO EBO BO BOAOB EOB ,∴△AOB 和△EOB(ASA) ∴AB=BE又AB=AF∴BE=AF ,且BE ∥AF ,∴四边形ABEF 为平行四边形又AB=BE ,∴四边形ABEF 为菱形.(2)过A 点作AH ⊥BC 于H 点,如下图所示∵四边形ABEF 为菱形∴AE ⊥BF ,且BO=12BF=4,OE=12AE=3 ∴在Rt △BOE 中:2222==43=5++BE BO OE 由菱形等面积法:1=2⨯⨯BE AH BF AE ,代入数据得: AH=245∴平行四边形ABCD 的高为245 ∴24192==(53)55平行四边形⨯+⨯=ABCD S BC AH . 故答案为:1925. [点睛]本题考查了菱形的判定方法、菱形的面积公式等,熟练掌握特殊四边形的判定方法及性质是解决此类题的关键.25. 阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部地写出来,但是由于12<2,21,21,差就是1,根据以上的内容,解答下面的问题:(1的整数部分是______,小数部分是______;(2)1+的整数部分是______,小数部分是_____;(3)若设2+整数部分是x,小数部分是y,求x的值.[答案]解:(1)22;(2)21;(3.[解析][分析](1)的取值范围即可得答案;(2)的取值范围,再得出的取值范围,即可得答案;(3)先估算出,得出x、y的值,再代入求值即可.[详解](1)∵4<5<9,即,2,-2.故答案为22(2)∵1<2<4,∴<2,∴<3,的整数部分是2,-1.故答案为21(3)∵1<3<4,∴,∴,∵2+x,小数部分是y,∴x=3,y=-1,∴x﹣3y=3-3(3-1)=3.[点睛]此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算,“夹逼法”是估算的一般方法,也是常用方法.26. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.[答案](1)12;96 (2)答案见解析(3)答案见解析[解析][分析](1)根据菱形的对角线互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根据AC=2AG计算即可得解;再根据菱形的面积等于对角线乘积的一半列式计算即可得解;(2)连接AO,根据S△ABD=S△ABO+S△ADO列式计算即可得解;(3)连接AO,根据S△ABD=S△ABO-S△ADO列式整理即可得解.[详解]解:(1)在菱形ABCD中,AG=CG,AC⊥BD,BG=12BD=12×16=8,由勾股定理得AG22221086AB BG--=, 所以AC=2AG=2×6=12.所以菱形ABCD的面积=12AC·BD=12×12×16=96.(2)不发生变化.理由如下:如图①,连接AO,则S△ABD=S△ABO+S△AOD,所以12BD·AG=12AB·OE+12AD·OF,即12×16×6=12×10·OE+12×10·OF.解得OE+OF=9.6,是定值,不变.(3)发生变化.如图②,连接AO,则S△ABD=S△ABO-S△AOD,所以12BD·AG=12AB·OE-12AD·OF.即12×16×6=12×10·OE-12×10·OF.解得OE-OF=9.6,是定值,不变.所以OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.[点睛]本题主要考查了菱形性质,主要利用了菱形的对角线互相垂直平分的性质,(2)(3)作辅助线构造出两个三角形是解题的关键.。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)
2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB C D E 八年级下册数学期中测试卷成绩________一、选择答案:(每题3分,共30分)( )1、下列二次根式中,属于最简二次根式的是 A .21B . 8.0C . 4D . 5 ( )2、有意义的条件是二次根式3 x A .x>3 B. x>-3 C. x ≥-3 D.x ≥3( )3、正方形面积为36,则对角线的长为 A .6 B .62 C .9 D .92( )4、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为A. 12B. 10C. 7.5D. 5 ( )5、下列命题中,正确的个数是①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A 、2个B 、3个C 、4个D 、5个 ( )6、下列条件中 能判断四边形是平行四边形的是( )(A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分( )7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于(A)1cm (B)2cm (C)3cm (D)4cm( )8、如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是 A .12 B .16 C .20 D .24F ED CB AO EF D AB C ( )9、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为.A .6B .8C .10D .12( )10、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF =A .45°B .30°C .60°D .55°二、填空:(每题2分,共20分)11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
12、矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线的长为__________cm.13、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1 m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为_____m. 14、已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm,面积是 cm 2.15、在平面直角坐标系中,点A (-1,0)与点B (0,2)的距离是_______。
16、 如图,每个小正方形的边长为1.在∆ABC 中,点D 为AB 的中点, 则线段CD 的长为 ;17、如图,AD 是△ABC 的角平分线,DE∥AC 交AB 于E ,DF∥AB 交AC 于F 。
且AD 交EF 于O ,则∠AOF= 度.18、若AD =8,AB =4,那么当BC =( ),AD =( )时,四边形ABCD是平行四边形19、若AC =10,BD =8,那么当AO =( ),DO =( )时,四边形ABCD 是平行四边形。
20、 观察下列各式:11111112,23,34, (334455)+=+=+=请你找出其中规律,并将第n (n ≥1)个等式写出来 . 三、 解答题:(共70分)D A C BA B CD F D ’F D B A C E(3分) 21、)227(328--+ (3分) 22.5232232⨯÷(3分 )23 )3223)(3223(-+24、(5分) 如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F . 求证:AF=EC证明:25、已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1分)(1)四边形EFGH 的形状是 , (3分)证明你的结论.证明:(1分)(2)当四边形ABCD 的对角线满足条件时,四边形EFGH 是矩形;(1分)(3)你学过的哪种特殊四边形的中点四边形是矩形? .(5分)26、如图平行四边形ABCD 中,对角线AC 与BD 相交于O,E 、F 是H GFEDC B AF E D A C B 班级 姓名AC 上的两点,并且AE =CF.。
求证;四边形BFDE 是平行四边形27、(4分)已知三角形各边的长为8cm,10cm,12cm ,求连结各边中点所成的三角形的周长。
28、(5分)已知:如图,ABC ∆中,︒=∠90ACB ,点D 、E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且A CDF ∠=∠. 求证:四边形DECF 是平行四边形. 证明:29(5分)、如图,已知一块四边形的草地ABCD,其中∠A =60°,∠B =∠D =90°,AB=20m.CD=10m .求这块草地的面积。
EDF BCA30(6分)、计算:(1)在RT ∆ABC 中,∠C =90°,a=8,b=15,求c (2)在RT ∆ABC 中,∠C =90°,a=3,b=4,求c(3)一个直角三角形的两边长分别为3cm 和5cm ,求这个三角形的第三边长31(3分)、若y=31222+-+-x x ,求y x +的值32(5分)、平行四边形ABCD中,对角线AC、BD相交于O,如果AC=14,BD=8,AB=x,求x的取值范围、33(6分)、菱形ABCD中,对角线AC和BD相交于O,已知AC=6,BD=8,求AB边上的高34(4分)、下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)同旁内角相等,两直线相等。
(2)如果两个角是直角,那么这两个角相等。
35(共8分)、矩形ABCD中,对角线AC和BD相交于O,∠AOB=60度,AC=10,(1)求矩形较短边的长。
(2)矩形较长边的长(3)矩形的面积如果把本题改为:矩形ABCD中,对角线AC和BD相交于O,∠AOB=60度,AB=4,你能求出这个矩形的面积吗?试写出解答过程。
北京214中学2011--2012学年度第二学期期中初二数学答案一、选择答案:(每题3分,共30分) 1 2 3 4 5 6 7 8 9 10 D C B B A B B D C A二、填空:(每题2分,共20分)11、100 12、24 13、12 14、24 15、5 16、22617、90 18、2 19、13 20、21)1(21++=++n n n n 三、 解答题:(共50分)(3分) 21、)227(328--+ (3分) 22.5232232⨯÷ =2333222+-+ =528332⨯⨯ =323- =101 =1010(6分)23、证明:由⊿ABE ≌⊿CDF ,得BE=DF 。
∵□ABCD ∴AD=BC ∴AF=EC (5分)24、(1)平行四边形 证明:连结BD∵E 、H 分别是AB 、AD 中点 ∴EH ∥BD ,EH=BD 21同理FG ∥BD ,FG=BD 21 EH ∥FG,EF=EG四边形EFGH 是平行四边形。
(2)互相垂直 。
(3)菱形。
(5分)25、(图略)由题知OA=16×1.5=24,OB=12×1.5=18,AB=30。
∵AB 2=OA 2+OB2 ∴∠AOB=90° ∵∠1=45° ∴ ∠2=45°HG F ED CB A∴海天号沿西北方向航行。
(3分)26、(6分)27、证明: ∵D 、E 分别是AC 、AB 中点 ∴DE ∥CB 。
即DE ∥CF∴在Rt ⊿ABC 中,∠ACB=90º ∵E 是AB 中点 ∴AE=BE=CE ∴∠A=∠ACE ∵∠A=∠CDF ∴∠ACE=∠CDF ∴DF ∥CE ∵DE ∥CF∴四边形DECF 是平行四边形.28、(4分)(1)∵点A(3,1)在y 2 =xk上,∴k=3。
∵B(-1,n) 在y 2 =xk上,∴-n=3 ∴n=-3 ∴B(-1,-3)又∵点A(3,1),B(-1,-3)在一次函数y 1=ax+b 上∴⎩⎨⎧+-=-+=b a b a 331 ∴⎩⎨⎧-==21b a ∴y=x-2(2分)(2)x ≥3或-1≤x<0.29、(2分)(1)由题设A点坐标为(a,3a)(a>0)∵反比例函数xy 12=的图象经过A 点∴a·3a=12 ∴a=2 ∴A(2,6)(4分)(2)过A做AC⊥y轴于C点 ∵A(2,6)∴AC=2,CO=6设B点坐标为(0,b)∴OB=b.CB=6-b. 在Rt ⊿ABC 中,∠ACB=90º, ∵AC=2, CB=6-b,AB=OB=b ∴AB 2=BC 2+AC 2∴b=(6-b)2+4 ∴b=310 B(0, 310)设直线AB 解析式为y=kx+b图①图②ED F BCA⎪⎩⎪⎨⎧=+=b b k 31026 ∴⎪⎪⎩⎪⎪⎨⎧==31034b k ∴y=+x 34310 29、(3分)(1)由题知AD=24,BC=26,AB=8,AP=t,CQ =3t,BQ=BC-CQ=26-3tS四边形PQCD =S梯形ABCD -S梯形ABQP =200-104+8t=8t+96(0<t ≤326) (3分)(2)QC=PD+2(BC-AD)3t=24-t+4 t=7 附加题:(1)(c+e,d),(c+e-a,d) (2)(c+e-a,d+f-b) (3)c+e=a+m,b+n=d+f。