数学建模之排队论
数学建模:排队论2
无顾客
无顾客
n
无顾客 1 个顾客
n
1 个顾客 无顾客
n
1 个顾客 1 个顾客
n
9
上述四种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
概率
A
n
无顾客 无顾客 pn (t )(1 t )(1 t )
B
n+1
无顾客 1 个顾客 pn1(t )(1 t )t
时刻 t 顾客数
0 1 0
区间[ t,t + △t )
时刻 t + △t
到达顾客 离开顾客 顾客数
无顾客
无顾客
0
无顾客 1 个顾客
0
1 个顾客 1 个顾客
0
16
上述三种情况发生概率分别为:
情况
时刻 t 顾客数
区间[ t,t + △t ) 到达顾客 离开顾客
A
0
无顾客
无顾客
B
1
无顾客 1 个顾客
D
0
12
dpn (t ) dt
pn1(t )
pn1(t )
(
)
pn (t )
解上述方程的解是很困难的。这里只研究系统达到平
稳状态的情况,即系统运行了无限长时间之后,状态
概率分布不再随时间变化,显然此时 dpn (t ) 0
dt
13
由此可得,当 n≥1 时:
pn1 pn1 ( ) pn 0,n 1
第四节 单服务台负指数分 布排队系统
讨论单服务台的排队系统,并设定: 顾客到达过程服从泊松分布。 顾客服务时间服从负指数分布。
2
数学建模排队论
数学建模排队论(最新版)目录一、数学建模与排队论简介二、数学建模的方法与应用三、排队论的概念及其应用四、数学建模在排队论中的应用案例五、总结正文一、数学建模与排队论简介数学建模是一种运用数学方法来描述和解决实际问题的科学方法,其目的是通过建立数学模型,揭示问题的本质,从而为解决实际问题提供理论依据。
而排队论是研究随机服务系统中顾客等待现象的一种数学理论,主要用于分析和优化服务系统的性能,以提高服务效率和顾客满意度。
二、数学建模的方法与应用数学建模的方法主要包括概率论、统计学、微分方程等。
这些方法在各个领域都有广泛的应用,如在经济学中分析市场需求、预测价格波动;在生物学中研究生物种群的数量变化等。
数学建模在排队论中也有着重要的应用,可以帮助我们理解顾客等待现象,优化服务系统。
三、排队论的概念及其应用排队论主要研究服务系统中的顾客到达、服务、离开等过程,以及顾客等待时间、服务时间等随机变量。
排队论的应用领域非常广泛,涉及到服务行业、交通工程、通信系统等。
通过排队论的分析,可以有效地优化服务系统的结构和策略,减少顾客等待时间,提高服务质量。
四、数学建模在排队论中的应用案例以一家医院挂号为例,我们可以通过数学建模和排队论来分析和优化挂号流程。
首先,我们可以建立一个概率模型,描述病人到达、挂号、就诊等过程。
然后,通过分析模型中的参数,如到达率、服务率等,可以得到病人等待时间的分布,从而为优化挂号流程提供依据。
例如,可以通过增加挂号窗口、提高挂号效率等措施,来减少病人的等待时间。
五、总结数学建模与排队论在实际应用中相辅相成,通过建立数学模型,可以更好地理解和优化排队现象。
数学建模排队论
数学建模排队论
排队论是一种数学理论,它研究的是人们排队等待服务或交通等系统的行为模式。
在排队论中,数学建模被广泛应用于分析和优化这些系统的性能和效率。
排队系统的基本构成包括到达过程、服务过程和队列规则。
到达过程指的是顾客或流量进入系统的过程,它可以用概率分布来描述。
服务过程指的是系统为每个顾客提供服务的时间,同样也可以用概率分布来描述。
队列规则则规定了顾客在等待队列中的顺序以及他们被服务的顺序。
在排队系统中,我们通常关注两个主要的性能指标:平均等待时间和平均队列长度。
平均等待时间指的是顾客在进入系统后需要等待多长时间才能接受服务的时间平均值,而平均队列长度则指的是在某个时间点等待服务的顾客数量的平均值。
为了分析和优化排队系统的性能,我们可以使用数学模型进行建模。
其中最常用的模型包括M/M/1模型、M/M/c模型、M/G/1模型等。
这些模型分别描述了不同的到达过程、服务过程和队列规则,并且可以计算出各种性能指标。
例如,M/M/1模型表示到达过程和服务过程都是泊松分布,并且只有一个服务窗口。
在这种情况下,我们可以使用该模型计算出平均等待时间和平均队列长度,并比较不同服务率下的性能指标。
M/M/c模型则表示到达过程和服务过程都是泊松分布,但是有c个服
务窗口。
在这种情况下,我们可以研究如何合理分配服务窗口的数量以优化系统的性能。
数学建模排队论是一种非常有用的工具,它可以用来分析和优化人们排队等待服务或交通等系统的行为模式。
通过建立数学模型,我们可以更好地理解这些系统的性能和效率,从而为实际应用提供指导。
数学建模之排队问题
排队问题教程一:复习期望公式()i i p a X P ==,∑=ii i p a EX ,()()∑=ii i p a g X Eg二:排队问题单个服务台排队系统问题(比如理发店只有一个理发师情况):假定顾客到达时间间隔()λ/1~e X 分钟,每个顾客接受服务的时间长度为()μ/1~e Y 分钟,假定1)、在时间段[]t t t ∆+,内有一个顾客到达的概率为()2t o t ∆+∆λ 2)、在时间段[]t t t ∆+,内有两个或以上顾客到达的概率为()2t o ∆ 3)、在时间段[]t t t ∆+,内有一个顾客接受完服务离开概率为()2t o t ∆+∆μ 4)、在时间段[]t t t ∆+,内有两个或以上顾客离开的概率为()2t o ∆用()t p n 表示在t 时刻,没有离开的顾客数(由于指数分布无记忆性,正在接受服务的顾客还需要接受的服务时间和任何一个顾客的接受服务时间同分布)。
记t 时刻在服务系统总人数n 的概率为()t p n ,则在t t ∆+时刻在服务系统总人数n 的概率()t t p n ∆+由以下几个不相容部分构成a):t 时刻有n 个顾客,时间段[]t t t ∆+,内没有顾客到达,也没有顾客离开,概率 ()t p t o t t o t n ))(1))((1(∆-∆-∆-∆-μλb):t 时刻有n 个顾客,时间段[]t t t ∆+,内有1顾客到达,有1顾客离开,概率 ()t p t t n ⋅∆⋅∆μλc):t 时刻有n-1个顾客,时间段[]t t t ∆+,内有1顾客到达,没有顾客离开 概率()t p t o t t n 1))(1(-∆-∆-∆μλd):t 时刻有n+1个顾客,时间段[]t t t ∆+,内没有顾客到达,有1个顾客离开 概率()t p t o t t n 1))(1(+∆-∆-∆λμ e):其他情况,概率()t o ∆由上面分析,()()()()()()()t o t p t t t p t t p t t t t p ∆+∆-⋅∆+⋅⋅∆-+⋅∆⋅∆=∆+1000111λμλμλ()()[]()()()t o t p t o t t t p t o t t t t t o t t o t t p t t p n n n n ∆+∆-∆-∆+∆-∆-∆+∆⋅∆+∆-∆-∆-∆-=∆++-11))(1())(1())(1))((1(λμμλμλμλ,1≥n简写()()()()()()00111p t t t p t t t p t o t λμλ+∆=-∆⋅+∆⋅-∆+∆()()[]()()()t o t p t t p t t t t p t t p n n n n ∆+⋅∆+⋅∆+∆-∆-=∆++-11)1)(1(μλμλ即()()()()()t o t p t t p t t p t t p ∆+⋅∆+⋅∆⋅-=-∆+1000μλ()()()()()()()t o t p t t p t t t p t p t t p n n n n n ∆+⋅∆+⋅∆+∆+-=-∆++-11μλμλ因此得到()()()()t p t p t p 100⋅+⋅-='μλ()()()()()()t p t p t p t p n n n n 11+-⋅+⋅++-='μλμλ假定()k t k p t p −−→−∞→,()()0−−→−∞'→t k t p 得到 010=⋅+⋅-p p μλ()011=⋅+⋅++-+-n n n p p p μλμλ把0p 当作已知,求解通项n p >将p(1)用)0(/p μλ代入得()()()n n n n p p p p μλμλλμμλμ001=→-+-=再,由1=∑kkp,我们得到()10=∑∞=n np μλ,>因此μλμ-=0p , nnn p p ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=μλμλμμλ0 问题1:系统平均有几个人没有离开?解答:系统有n 个人没有离开的概率n p ,因此,系统中滞留人数平均∑∞=0n n np>问题2:系统中排队等待服务平均有几个人?()∑∞=-11n npn>问题3:系统中平均每个人排队等待时间?解答:当一个顾客进入系统中,发现前面已经有n 个顾客在系统中,则他排队等待的平均时间就是这n 个顾客的平均服务时间总和(由于指数分布无记忆特性,不管正在接受服务的顾客已经服务了多少时间,其还要接受的服务时间依然服从相同的指数的分布)因此系统中平均每个人排队等待时间为nn pn∑∞=0μ>问题4:系统中每个顾客逗留时间平均?解答:每个顾客平均排队用时+每个顾客平均服务用时为所求 >。
数学建模.排队论讲解
P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2
由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e
1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型
数学建模之排队论模型
∞
∞
= ρ 2 /(1 − ρ ) = ρλ /(µ − λ ).
Ls = ∑ np n = ∑ n(1 − ρ )ρ n = ρ /(1 − ρ ) = λ /( µ − λ ).
n =0 n =1
∞
∞
(2) 排队长: (等待的平均顾客数)
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Lq = ∑ (n − 1) p n = ∑ (n − 1) ρ n (1 − ρ )
本讲主要内容
1. 2. 3. 4. 5. 排队论的基本概念 单服务台的排队模型 多服务台的排队模型 排队系统的最优化问题 数学建模实例:校园网的设计和调节收费问题
5.1 排队论的基本概念
5.1.1 什么是排队系统
排队论也称随机服务系统理论,它是 20 世纪初由丹麦数学家 Erlang 应用数学方法在研 究电话话务理论过程中而发展起来的一门学科, 在实际中有广泛的应用。 它涉及的是建立一 些数学模型, 藉以对随机发生的需求提供服务的系统预测其行为。 现实世界中排队的现象比 比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同, 但有如下共同特征: (1)有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为 “顾客” 。 (2)有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员” 。由顾 客和服务员就组成服务系统。 (3)顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间 不一定是确定的, 服务过程的这种随机性造成某个阶段顾客排长队, 而某些时候服务员又空 闲无事。 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 1.输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到 达的规律、 作出经验分布, 然后按照统计学的方法 (如卡方检验法) 确定服从哪种理论分布, 并估计它的参数值。 我们主要讨论顾客来到服务台的概率分布服从泊松分布, 且顾客的达到 是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的 影响。 2.排队规则 即顾客排队和等待的规则。排队规则一般有即时制和等待制两种。所谓即 时制就是服务台被占用时顾客便随即离去; 等待制就是服务台被占用时, 顾客便排队等候服 务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论 先到先服务的系统。 3.服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单
数学建模排队论模型
数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
数学建模:第五章 排 队 论
令 T0 = 0 Tn :第 n 个顾客到达时刻, Xn:第 n 个顾客与第 n-1 个顾客到达的时间间隔。 则有
T0 T1 Tn
X n Tn Tn1 , n 1,2,
18
一般假定 { Xn }是独立同分布的,并记其分布函数 为 A( t )。关于{ Xn }的分布,排队论中经常用到的 有以下两种: ➢定长分布(D):顾客相继到达时间间隔为确定 的常数。
Wq(t):时刻 t 到达系统的顾客在系统中的等待时间。
pn(t):时刻 t ,系统中有 n 个顾客的概率。
44
pn(t)
过渡状态
平稳状态
t
45
上述指标一般都是和系统运行的时间有关的随机变量 ,求这些随机变量的瞬时分布一般都是很困难的。 相当一部分排队系统,在运行了一定时间后,都会趋 于一个平稳状态(或称平衡状态),平稳状态下这些 指标和系统所处的时刻无关。
19
➢Poisson流(M):顾客相继到达时间间隔的密度 函数为:
e t
a(
2. 排队
损失制排队系统
有限排队
队长有限排队系统
排队
混合制排队系统 等待时间有限排队系统
逗留时间有限排队系统 无限排队(等待制排队系统)
21
(1)有限排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占满时,后面再来的顾 客将不能进入排队系统。
顾客相继到达时间 单个服务台
间隔为负指数分布
顾客源无限
M / M / 1 / ∞ / ∞ / FCFS
服务时间为负指数
分布
系统容量为无限
先到先服务
39
X/Y/Z/A/B/C
省略后三位
数学建模之排队论
Ë ¿ ¹ Í Ô ´
Ë ¿ ¹ Í µ ½ ´ ï
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
· þ Î ñ ¹ æ Ô ò
þ Î · ñ » ú ¹
ë È À ¥
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
17
2. 排队规则
③随机服务(RAND) 。即当服务台空 闲时,不按照排队序列而随意指定某个顾客 去接受服务,如电话交换台接通呼叫电话就 是一例。 ④优先权服务(PR)。如老人、儿童先 进车站;危重病员先就诊;遇到重要数据需 要处理计算机立即中断其他数据的处理等, 均属于此种服务规则。
18
2. 排队规则
8-3 到达间隔时间分布和服务时间 的分布
一个排队系统的最主要特征参数是顾客 的到达间隔时间分布与服务时间分布。 要研究到达间隔时间分布与服务时间分 布需要首先根据现存系统原始资料统计 出它们的经验分布,然后与理论分布拟 合,若能照应,我们就可以得出上述的 分布情况。
31
一、经验分布
经验分布是对排队系统的某些时间参数根据 经验数据进行统计分析,并依据统计分析结果假 设其统计样本的总体分布,选择合适的检验方法 进行检验,当通过检验时,我们认为时间参数的 经验数据服从该假设分布。 分布的拟合检验一般采用χ2检验。由数理统 计的知识我们知:若样本量n充分大(n≥50),则 当假设H0为真时,统计量总是近似地服从自由度 为k-r-1的χ2分布,其中k为分组数,r为检验分布 中被估计的参数个数。
2. 排队规则
这是指服务台从队列中选取顾客进行服务的顺序。 可以分为损失制、等待制、混合制3大类。 (1)损失制。这是指如果顾客到达排队系统时, 所有服务台都已被先来的顾客占用,那么他们就 自动离开系统永不再来。 典型例子是,如电话拔号后出现忙音,顾客 不愿等待而自动挂断电话,如要再打,就需重新 拔号,这种服务规则即为损失制。
数学建模-排队论
①模型特点
顾客总体为m个,每个顾客到达并经过服 务台后,任然回到原来总体,所以任然可 以到来。
②系统的稳态概率 Pn ;
1
P0 m m! ( )i
i0 (m i)!
Pn
m! (m n)!
(
)n
P0
,1
n
m
③系统运行指标 a、 系统中平均顾客数(队长期望值)
Ls m (1 P0)
排队论
(Queueing Theory)
生活中处处可见的排队现象
商店、超市等收款处排队付款 车站、民航、港口等售票处依次购买车船票 各种生产系统、存储系统、运输系统等一系
列现象 大型网游登陆前的排队等等
基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理 论,是研究由顾客、服务机构及其排队 现象所构成的一种排队系统理论。
PnP10
P1 0 Pn1 (
) Pn
0
n 1
(3)
这是关于 Pn 的差分方程,表明了各状态间的转移 关系,可以用下图表示:
0
1
n-1
n
n+1
由上式可得 Pn ( / )n P0 令 / 1(否则队列将
排至无限远),由概率性质知
Pn 1
n0
将
Pn
的关系带入,
P0
n
n0
1
P0 1
求 limPn(t) Pn,此时系统的状态概率分布不再随时间变化 n
(4)利用 Pn 求系统运行指标
①队长:系统中的顾客数,期望记为 Ls ②排队长:系统中排队等待覅物的顾客数,期望记为 Lq ③逗留时间:一个顾客在系统中的停留时间,期望记为 Ws ④等待时间:一个顾客在系统中排队等待的时间,期望记
数学建模--排队论
现实生活中的实例:
进餐馆就餐 到图书馆借书 去售票处购票 在车站等车等等
课件
2
一、排队系统的特征及排队论:
顾客为了得到某中服务而到达系统,若不能获得服 务而允许排队等待,则加入等待队伍,待获得服务后离
开系统。
课件
3
排队的形式:
顾客到达 队列 服务完成后离去 服务台
服务台1 顾客到达 队列
队列1
服务台2 服务台s
服务完成后离去
顾客到达
队列2 队列s
服务台1 服务台2
服务完成后离去 服务完成后离去 服务完成后离去
服务台s 课件
4
随机服务系统:
排队系统 输入 来源 顾客 队列 服务机构 服务完离开
课件
5
二、排对系统的描述
系统由三个部分组成:
输入过程 排队和排队规则 服务机制
M/D/1
D/M/1
M/E k/1
课件
30
结束语
排队论是专门研究带有随机因素,产生 拥挤现象的优化理论。也称为随机服务 系统。 排队论应用十分广泛。
课件
31
n 1
1
因此:
pn (1 )
n
n 0,1,
课件
23
②几个主要数量指标 平均队长:
L npn n(1 )
n n 0 n 0
1
平均排队长:
Lq (n 1) pn L (1 p0 ) L
数学建模中的排队论问题
数学建模中的排队论问题数学建模是运用数学方法来解决实际问题的一种学科,而排队论则是数学建模中的一个重要问题。
排队论是研究人们在排队等待时所产生的等待时间、服务时间、队列长度等问题的数学理论。
在各个领域中,排队论都有广泛的应用,例如交通运输、生产调度、服务管理等。
排队论的基本概念包括顾客、服务台、队列、到达率、服务率等。
顾客是指等待服务的个体,可以是人、机器或其他物体。
服务台是为顾客提供服务的地方,可以是柜台、服务窗口或机器设备。
队列是顾客排队等待的区域。
到达率是指单位时间内到达队列的顾客数量。
服务率则是指单位时间内服务台完成服务的顾客数量。
排队论的目标是通过数学模型来分析和优化排队系统,以提高效率和服务质量。
常用的排队论模型有M/M/1, M/M/c, M/M/∞等,其中M表示到达率和服务率满足泊松分布,1表示一个服务台,c表示多个服务台,∞表示无穷多个服务台。
在现实生活中,排队论的应用非常广泛。
以交通运输为例,交通流量大的道路上常常出现拥堵现象。
排队论可以用来研究交通信号灯的时序控制,从而减少交通阻塞和等待时间。
排队论还可以应用于生产调度问题,如工厂的生产线、餐馆的点餐队列等,通过优化排队系统可以提高生产效率和顾客满意度。
除了基本的排队论模型,还有许多扩展模型用于解决更复杂的实际问题。
例如,考虑到顾客的不满意程度,可以引入优先级排队模型。
考虑到服务台设备可能发生故障,可以引入可靠性排队模型。
排队论也可以与优化算法相结合,寻找最佳的服务策略和资源配置。
在数学建模中,解决排队论问题通常需要进行数学推导、建立数学模型、进行仿真实验以及进行实际数据的拟合和验证。
通过数学建模的方法,可以对排队系统的性能进行全面评估,从而提出改进方案和决策策略。
综上所述,数学建模中的排队论问题在实际应用中具有重要的意义。
通过研究排队论,可以优化排队系统,提高效率和服务质量。
随着科技的进步和数据的丰富,排队论的研究将在各个领域中得到更广泛的应用和发展。
数学建模排队论
数学建模排队论
排队论是数学中的一个分支,主要研究排队系统的性质与特征。
排队系统是指存在一个或多个顾客到达某个服务设施,并等待服务的过程。
排队论的目标是通过数学方法研究这些系统的行为和性能,并提供优化方案。
排队论的主要研究内容包括:排队模型的建立、排队系统的性能度量、排队系统的稳定性与稳定条件、排队系统的解析解和数值解等。
排队模型通常包括顾客到达过程、服务设施的服务过程和排队规则等要素,用以描述各种不同类型的排队系统。
排队论的应用广泛,包括但不限于以下领域:
1. 交通流量分析:排队论可用于研究交通流量的稳定性和优化信号控制。
2. 队列管理:排队论可以应用于零售业、餐馆等地方的队列管理,用以提高服务效率和顾客满意度。
3. 通信网络:排队论可以用于分析数据包的排队和延迟问题,优化网络资源利用率。
4. 生产与制造:排队论可以用于分析生产线上的工人排队和设备故障等因素,优化生产效率。
5. 医疗系统:排队论可以应用于研究医院门诊和急诊的排队问题,优化资源分配和患者等待时间。
总之,排队论是一门重要的数学理论,通过研究排队系统的性能与优化方法,可以提高各种系统的效率和质量,对于实际问题的解决有着重要的应用价值。
19246-数学建模-8排队论
也就是说过程在t+Δt所处的状态与t以前所处的状 态无关。
②平稳性:即对于足够小的Δt,有:
P1( t,t t ) t ( t )
在[t,t+Δt]内有一个顾客到达的概率与t无关,
而与Δt成正比。
20
λ>0 是常数,它表示单位时间到达的顾客数,称为 概率强度。
③ 普通性:对充分小的Δt,在时间区间(t,t+Δt) 内有2个或2个以上顾客到达的概率是一高阶无穷小.
2.负指数分布
可以证明当输入过程是泊松流时,两顾客相继到 达的时间间隔T独立且服从负指数分布。(等价)
E[T ]
1
Var[T]
1 2
λ表示单位时间内顾客平均到达数。
1/λ表示顾客到达的平均间隔时间。
服务时间的分布:
接受服务,然后离开
对顾客的服务时间:系统处于忙期时两顾客相继离
开系统的时间间隔,一般地也服从负指数分布,
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: ❖顾客相继到达的间隔时间分布 ❖服务时间的分布 ❖服务台数
D.G.Kendall,1953提出了分类法,称为Kendall 记号(适用于并列服务台)即:[X/Y/Z]:[A/B/C]
7
式中:X——顾客相继到达间隔时间分布。
M—负指数分布Markov,D—确定型分布Deterministic, Ek—K阶爱尔朗分布Erlang, GI— 一般相互独立随 机分布(General Independent), G —一般随机分布。
与时间有关的随机变量的概率,是一个随机过程,
即泊松过程。
18
在一定的假设条件下 一个泊松过程。
顾客的到达过程就是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• • • •
• • •
•
M/M/C型系统和C个M/M/1型系统 系统容量有限制的多服务台模型(M/M/C/N/∞) 顾客源为有限的多服务台模型(M/M/C/∞/M) 一般服务时间的(M/G/1)模型 – Pollaczek-Khintchine(P-K) 公式 –定长服务时间 M/D/1模型 爱尔朗服务时间M/Ek/1模型 排队系统优化 M/M/1 模型中的最优服务率u – 标准的M/M/1Model – 系统容量为N的情形 M/M/C模型中最优服务台数C 30
一般的排队系统,都可由下 面图加以描述。 “聚”表示顾客的到达,“散”表示顾客的离去。
图8-6
随机服务系统
11
前 言
面对拥挤现象,人们总是希望尽量设法 减少排队,通常的做法是增加服务设施。 但是增加的数量越多,人力、物力的支 出就越大,甚至会出现空闲浪费。 如果服务设施太少,顾客排队等待的时 间就会很长,这样对顾客会带来不良影响。
6
前 言
上述各种问题虽互不相同,但却都有 要求得到某种服务的人或物和提供服务 的人或机构。
排队论里把要求服务的对象统称为“顾 客”, 提供服务的人或机构称为“服务台”或 “服务员”。
7
前 言
不同的顾客与服务组成了各式各样的 服务系统。顾客为了得到某种服务而到 达系统、若不能立即获得服务而又允许 排队等待,则加入等待队伍,待获得服 务后离开系统,见图8-1至图8-5。
1
第8章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。 1909 年,丹麦哥本哈根电子公司电话工程师 A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
(3) 混合制.这是等待制与损失制相结合的一 种服务规则,一般是指允许排队,但又不允许队 列无限长下去。具体说来,大致有三种: ① 队长有限。当排队等待服务顾客人数超过 规定数量时,后来顾客就自动离去,另求服务。 如水库的库容、旅馆的床位等都是有限的。
19
2. 排队规则
② 等待时间有限。即顾客在系统中的 等待时间不超过某一给定的长度 T,当等待 时间超过T时,顾客自动离去,不再回来。 如易损坏的电子元器件的库存问题, 超过一定存储时间被自动认为失效。 又如顾客到饭馆就餐,等了一定时间后 不愿再等而自动离去另找饭店用餐。
图8-1 单服务台排队系统
8
前 言Leabharlann 图8-2单队列——S个服务台并联的排队系统
图8-3
S个队列——S个服务台的并联排队系统
9
前 言
图8-4
单队——多个服务台的串联排队系统
图8-5
多队——多服务台混联网络系统
10
前 言
通常称由图8-6表示的系统为一随机聚散服务系统。 任一排队系统都是一个随机聚散服务系统。
20
2. 排队规则
③ 逗留时间 ( 等待时间与服务时间之和 ) 有限。 例如用高射炮射击敌机,当敌机飞越高射 炮射击有效区域的时间为 t 时,若在这个时 间内未被击落,也就不可能再被击落了。 不难注意到,损失制和等待制可看成是 混合制的特殊情形,如记c为系统中服务台 的个数,则当K=c 时,混合制即成为损失制; 当K=∞时,混合制即成为等待制。
14
1. 输入过程
输入即为顾客的到达,可有下列情况:
1)顾客源可能是有限的,也可能是无限的。 2)顾客是成批到达或是单个到达。 3)顾客到达间隔时间可能是随机的或确定的。 4)顾客到达可能是相互独立或关联的。所谓独 立就是以前顾客的到达对以后顾客的到达无影响。 5)输入过程可以是平稳的(stationary)或说 是对时间齐次的(Homogeneous in time),也可以 是非平稳的。输入过程平稳的指顾客相继到达的间 隔时间分布和参数(均值、方差)与时间无关;非 平稳的则是与时间相关,非平稳的处理比较困难。 15
16
2. 排队规则
(2) 等待制。指当顾客来到系统时,所有服务台 都不空,顾客加入排队行列等待服务。 例如,排队等待售票,故障设备等待维修等。 等待制中,服务台在选择顾客进行服务时,常有 如下四种规则:
①先到先服务(FCFS )。按顾客到达的先后顺 序对顾客进行服务,这是最普遍的情形。
②后到先服务( LCFS )。仓库中迭放的钢材, 后迭放上去的都先被领走,就属于这种情况。
排队系统一般有三个基本组成部分:1.输 入过程;2.排队规则;3.服务机构。
¹ Ë ¿ Í Ô ´
¹ Ë ¿ Í µ ½ ´ ï
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
· þ Î ñ ¹ æ Ô ò
· þ Î ñ » ú ¹
À ë È ¥
Í ¼ 1 Å ¶ Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
8-3 到达间隔时间分布和服务时间 的分布
一个排队系统的最主要特征参数是顾客 的到达间隔时间分布与服务时间分布。 要研究到达间隔时间分布与服务时间分 布需要首先根据现存系统原始资料统计 出它们的经验分布,然后与理论分布拟 合,若能照应,我们就可以得出上述的 分布情况。
31
一、经验分布
经验分布是对排队系统的某些时间参数根据 经验数据进行统计分析,并依据统计分析结果假 设其统计样本的总体分布,选择合适的检验方法 进行检验,当通过检验时,我们认为时间参数的 经验数据服从该假设分布。 分布的拟合检验一般采用χ2检验。由数理统 计的知识我们知:若样本量n充分大(n≥50),则 当假设H0为真时,统计量总是近似地服从自由度 为k-r-1的χ2分布,其中k为分组数,r为检验分布 中被估计的参数个数。
• 顾客相继到达的间隔时间分布
• 服务时间的分布
• 服务台数
D.G.Kendall,1953提出了分类法,称为Kendall
记号(适用于并列服务台)即:[X/Y/Z]:[d/e/f]
23
式中:X——顾客相继到达间隔时间分布。 M—负指数分布Markov, D—确定型分布Deterministic, Ek—K阶爱尔朗分布Erlang, GI— 一般相互独立随机分布(General Independent), G —一般随机分布。 Y——填写服务时间分布(与上同) Z——填写并列的服务台数 d——排队系统的最大容量 e——顾客源数量 f——排队规则 如 [M/M/1]:[∞/∞/FCFS]即为顾客到达为泊松过 程,服务时间为负指数分布,单台,无限容量,无 限源,先到先服务的排队系统模型。
2. 排队规则
这是指服务台从队列中选取顾客进行服务的顺序。 可以分为损失制、等待制、混合制3大类。 (1)损失制。这是指如果顾客到达排队系统时, 所有服务台都已被先来的顾客占用,那么他们就 自动离开系统永不再来。 典型例子是,如电话拔号后出现忙音,顾客 不愿等待而自动挂断电话,如要再打,就需重新 拔号,这种服务规则即为损失制。
4
前 言
除了上述有形的排队之外,还有大量 的所谓“无形”排队现象。 如几个顾客打电话到出租汽车站要求 派车,如果出租汽车站无足够车辆、则 部分顾客只得在各自的要车处等待,他 们分散在不同地方,却形成了一个无形 队列在等待派车。
5
前 言
排队的不一定是人,也可以是物: 例如,通讯卫星与地面若干待传递的 信息; 生产线上原料、半成品等待加工; 因故障停止运转的机器等待修理;码头 的船只等待装卸货物; 要降落的飞机因跑道不空而在空中盘 旋等等。
26
求解状态概率Pn(t)方法是建立含Pn(t)的微分差 分方程,通过求解微分差分方程得到系统瞬态解,由 于瞬态解一般求出确定值比较困难,即便求得一般也 很难使用。因此常常使用它的极限(如果存在的话):
lim
t
p n (t ) p n
称为稳态(steady state)解,或称统计平衡状态 (Statistical Equilibrium State)的解。 稳态的物理意义图,系 pn 统的稳态一般很快都能 达到,但实际中达不到 稳态的现象也存在。要 注意的是求稳态概率Pn 并不一定求t→∞的极限, 稳定状态 过渡状态 只需求Pn’(t)=0 。 27
12
前 言
顾客排队时间的长短与服务设施规模的 大小,就构成了设计随机服务系统中的一对
矛盾。
如何做到既保证一定的服务质量指标,
又使服务设施费用经济合理,恰当地解决顾
客排队时间与服务设施费用大小这对矛盾。
这就是随机服务系统理论——排队论所
要研究解决的问题。
13
§8-2 排队系统的基本概念
一、排队系统的组成与特征
17
2. 排队规则
③随机服务(RAND) 。即当服务台空 闲时,不按照排队序列而随意指定某个顾客 去接受服务,如电话交换台接通呼叫电话就 是一例。 ④优先权服务(PR)。如老人、儿童先 进车站;危重病员先就诊;遇到重要数据需 要处理计算机立即中断其他数据的处理等, 均属于此种服务规则。
18
2. 排队规则
2
8 排队论
• • • • • • • 8-1 前言 8-2 基 本 概 念 8-3 输入过程和服务时间分布 8-4 泊松输入—指数服务排队模型 8-5 M/M/1 无限源系统 8-6 系统容量有限的排队系统 8-7 顾客源有限的排队系统
3
前 言
排队是我们在日常生活和生产中经 常遇到的现象。 例如,上、下班搭乘公共汽车; 顾客到商店购买物品; 病员到医院看病; 旅客到售票处购买车票; 学生去食堂就餐等就常常出现排队和等待 现象。
25
排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过研究 排队系统运行的效率指标,估计服务质量,确定系 统的合理结构和系统参数的合理值,以便实现对现 有系统合理改进和对新建系统的最优设计等。 排队问题的一般步骤: 1. 确定或拟合排队系统顾客到达的时间间隔分 布和服务时间分布(可实测)。 2. 研究分析排队系统理论分布的概率特征。 3. 研究系统状态的概率。系统状态是指系统中 顾客数。状态概率用Pn(t)表示,即在t时刻系统中有 n个顾客的概率,也称瞬态概率。