高考导数压轴题的解法
2024年高考数学 二轮复习第49讲 洛必达法则解高考导数压轴题
第49讲 洛必达法则解高考导数压轴题确界如果分离参数后相应的函数不存在最值,为了能够利用分离参数思想【解析】决含参不等式恒成立的问题,我们利用如下的函数确界的概念:函数()()y f x x D =∈的上确界为(){}min ,Mf x M x D ∈∣,记作.M 上函数()()y f x x D =∈的下确界为()max{Mf x ∣,}M x D ∈,记作M 下.于是,有如下结论:(1)若()f x 无最大值,而有上确界,这时要使()()f x g a <恒成立,只需()M g a 上. (2)若()f x 无最小值,而有下确界,M 下,这时要使()()f x g a >恒成立,只需()M g a 下. 确界通俗地说就是,知道函数不会超过某个值(这个值其实就是确界),但就是在定义域内取不到这个值,举个【例】子:在()()1,21x f x x a ∈=+>恒成立,求a 的取值范围.x 取不到1,但()f x 为单调递增,()()12f x f ∴>=,即2就是()f x 的下确界,于是我们可以得到2a .可以简单地理解为确界就是函数取不到的最值,需要用极限来逼近,下面举例子来说明.【例1】 设函数()21x f x e x ax =−−−,0x 时,()0f x ,求a 的取值范围. 分析:由()0f x 对所有的0x 成立,可得 (1)当0x =时,a R ∈.(2)当0x >时,21x e x a x −−.设()21x e x g x x −−=,把问题转化为求()g x 的最小值或下确界. ()()2222422,22,x x x x x e xe x xg x h x x e xe x x x'−++==−++令 则()2e 2e 22,0x x h x x x x '=−++>.又()h x 的二阶导数()22x x h x xe x e =+−''()22x e h x +的三阶导数()()240x h x e x x '+'=>',()h x ∴''是增函数.()()00h x h ''''∴>=.()h x ∴'增函数.()()00h x h ''∴>=.()h x ∴是增函数.()()00h x h ∴>=,从而()0g x '>,于是()g x 在()0,+∞上单调递增,故()g x 无最小值. 此时,由于()0g 无意义,分析可知()g x 是有下确界的,运用极限表述为:()g x >()0lim x g x +→,关键是这个极限值或者说确界如何求出呢?这就是本章的重点:洛必达法则.由洛必达法则即可得()0lim x g x +→=2000111lim lim lim 222x x x x x x e x e e x x +++→→→−−−===. 故0x >时,()12g x >,因而12a ,综上知a 的取值范围为1,2⎛⎤−∞ ⎥⎝⎦.那什么是洛必达法则呢?洛必达法则(一)型不定式 定理1 设函数()(),f x F x 满足下列条件: (1)()()0lim 0,lim 0x x x x f x F x →→==.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大),则()()()()00lim limx x x x f x f x F x F x →→''=. 【例1】计算极限01lim x x e x →−.【解析】 该极限属于00型不定式,于是由洛必达法则得001limlim 1.1x xx x e e x→→−== (二)∞∞型不定式定理2设函数()(),f x F x 满足下列条件: (1)()()0lim ,lim x x x x f x F x →→=∞=∞.(2)()f x 与()F x 在0x 的某一去心邻域内可导,且()0F x '≠. (3)()()limx x f x F x →''存在(或为无穷大), 则()()()()00limlimx x x x f x f x F x F x →→''=. 【例2】 计算极限lim nx x x e→+∞【解析】 所求问题是∞∞型不定式,连续n 次实行洛必达法则,有()211!lim lim lim lim0n n n x x xxx x x x n n x x nx n e e e e −−→+∞→+∞→+∞→+∞−=====.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于00型和∞∞型的不定式,其他的不定式须先化简变形成00型或∞∞型才能运用该法则.对于∞−∞型与0⋅∞型的未定式,可通过通分或者取倒数的形式化为基本形式.对于00型,1∞型与0∞型的未定式,可通过取对数等手段化为00型或∞∞型未定式. (2)只要条件具备,就可以连续应用洛必达法则.(3)洛必达法则的条件是充分的,但不必要,因此,在该法则失效时并不能断定原极限不存在.洛必达法则求参数取值范围洛必达法则求参数取值范围的一般步骤和前面参变分离的解题步骤一致,只不过是最后无法直接求解最值,只能用洛必达法则求解确界.【例1】已知函数()()21x f x x e ax =−−,当0x 时,()0f x ,求a 的取值范围. 【解析】 证明 第一步:分类讨论,参变分离.当0x 时,()0f x ,即()21x x e ax −.①当0x =时,a R ∈.②当0x >时,()21xx e ax −等价于1xe ax −,即1x e a x−.第二步:构造函数,求导,并把分子提出,再次构造函数,求导并研究出原函数单调性.记()()1,0,x e g x x x −=∈+∞,则()g x '=()211x x e x −+.记()()()11,0,x h x x e x =−+∈+∞, 则()e 0x h x x =>',因此()()11x h x x e =−+在()0,+∞上单调递增,且()()00h x h >=,()()20h x g x x ='∴>,()e 1x g x x−=从而在()0,+∞上单调递增.第三步:利用洛必达法则求出函数下确界.()0001lim limlim 1,1x xx x x e e g x x→→→−=== 即当0x →时,()1g x →.()1g x ∴>,即有1a . 综上所述,当1,0a x 时,()0f x 成立.【例2】 设函数()1x f x e −=−,设当0x 时,()1xf x ax +,求a 的取值范围. 【解析】 证明 第一步:必要性讨论,缩小参数范围. 由题设0x ,此时()0f x .①当0a <.时,若1x a>−,则01x ax <+,()1x f x ax +不成立. ②当0a 时,当0x 时,()1x f x ax +,即.1111xx x x e e ax ax −−−−++. 若0x =,则a R ∈.第二步:不等式等价变化并参变分离. 若0x >,则11xx eax −−+等价于111xe x ax −−+,即1x x xxe e a xe x −+−. 第三步:构造函数,并因式分解,把部分因式提出,单独构造函数,并多次求导,结合特殊值最终确定原函数的单调性.记e e 1()e x x x x g x x x −+=−,则()g x '=()()(22222e e 2e 1e e 2e e x x x xx x x x x x x x x −−+=−−+−−)e x − 记2()e 2e x x h x x −=−−+,则()h x '=e 2e ,()e e 20x x x xx h x −−−−''=+−>.因此,()e 2exxh x x −'=−−在(0,)+∞上单调递增,且(0)0,()0h h x '=∴'>,即()h x 在(0,)+∞上单调递增,且(0)0,()0h h x =∴>.因此()2e ()()0exxg x h x x x'=⨯>−,∴()g x 在(0,)+∞上单调递增.第四步:利用洛必达法则求出函数下确界.00e e 1lim ()lim e x x x x x x g x x x →→−+==−00e e e 1lim lim e e 12e e 2x x x x x x x x x x x x x →→+==+−+,即当0x →时,1()2g x →,即有1()2g x >, 1. 2a∴综上所述,a 的取值范围是1,2⎛⎤−∞ ⎥⎝⎦. 【例3】若不等式3sin x x ax >−对于x ∈0,2π⎛⎫⎪⎝⎭恒成立,求a 的取值范围。
高考导数压轴题终极解答_2022年学习资料
13.设函数fx=nx-ux-1--1.-X-I当a=1时,过原点的直线与函数fx的图象相切于点P,求点P 坐标;-IⅡ当0<u<二时,求函数fx的单调区间:-D当u=号时,设函数g=-2x-,若对于飞∈0,e], 飞e[0,1-12-使fx≥8x2成立,求实数b的取值范围.e是自然对数的底,e<√3+1-14.两边分求 最小值与最大值已知函数f=xlnx,8=-x+x-3.求f在-[,t+2t>0上的最小值:若存在-e是常数 e=2.71828„使不等式-In x>-2f≥8成立,求实数0的取值范围:证明对一切x∈0,+0,都有e #43;bex∈R.(1若a=2,b=-2,求函数∫x的极值;-2若x=1是函数fx的一个 值点,试求出关于b的关系式(用M表示b,并确定-∫x的单调区间;-3在2的条件下,设u>0,函数8x=a2 14e+4.若存在21,22∈[0,4]使得-If2-f22K1成立,u的取值范围.-12.两边分求,最小 与最大值-已知函数f=lnr-ax+--1aeR.当a≤时,讨论f的单调性;设-8=x2-2bx+4.当a 时,若对任意x∈0,2,存在3∈[1,2,使fC≥g,-求实数b取值范围.
21.单调性已知fx=n+2-x+bx+c若函数fx在点1,y处的切线与直线-3x+7y+2=0垂直,且=0,求函数fx在区间[0,3]上的最小值;若fx在区间[0,m上-单调,求b的取值范围,-22.单调性, 到二阶导数的技巧-已知函数fx=lnx-0若F=f0+“-a∈R,求Fx的极大值:-X-2若Gx=[fx] kx在定义域内单调递减,求满足此条件的实数k的取值范围
2021年高考数学理科导数压轴题各种解法
2021年高考数学理科导数压轴题各种解法
以下是2021年高考数学理科导数压轴题的各种解法:
解法一:使用导数的定义求解
根据导数的定义,导数表示函数在某一点处的斜率,可以通过求取函数在该点的左导数和右导数的极限值来得到函数的导数。
首先,找到函数在给定点的左导数和右导数的表达式,然后计算它们的极限值,最终得到函数在该点的导数。
解法二:使用导数的性质求解
导数具有一系列的性质,包括线性性、常数因子性、乘积法则、和差法则、链式法则等。
通过运用这些性质,可以将复杂的函数通过简单的代数运算转化为更容易求导的形式,从而简化求解的过程。
解法三:使用隐函数求解
对于一些隐式定义的函数,可以通过求解隐函数的导数方程来得到导数。
具体的求解过程包括将隐函数对自变量求导,然后将求导结果代入到原方程中,进一步简化方程解的求取。
解法四:使用导数的几何意义求解
导数可以表示函数曲线在某一点处的切线的斜率,因此可以通过求取切线斜率的方式来得到导数。
根据函数的几何性质,寻找函数曲线在给定点的切线方程,然后计算切线方程的斜率,即可得到函数在该点的导数。
综上所述,针对2021年高考数学理科导数压轴题,可以运用
不同的解法来求解,其中包括导数的定义、性质、隐函数以及几何意义等多种方法。
具体选择哪种解法取决于题目的具体情况和自己的熟悉程度。
函数与导数压轴题题型与解题方法(高考必备)
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~
高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。
今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。
文末查看电子版领取方式。
\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。
导数压轴题分类(2)---极值点偏移问题(含答案)
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
高考满分数学压轴题22 导数中的参数问题(可编辑可打印)
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
高考数学导数压轴大题7大题型梳理归纳
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
新高考导数压轴题的六种解法
分析:易知函数犳(狓)的导函数犳′(狓)单调递增, 当犪=1时由犳′(1)=0得犳(狓)min=犳(1)=1,符合题
( ) 意;当犪>1时,可证犳′
≥1. 综上所述,犪 的取值范围为[1,+ ∞).
三、构造指、对数不等式
分析:构造不等式e狓 >狓-1,狓-1≥ln狓,则原 不等式转化为狓(犪-1)≥-ln犪,再分类讨论即可求出 犪 的取值范围.
解:由犳(狓)≥1可得犪e狓-1 -ln狓 +ln犪 ≥1,即 犪e狓-1 -1≥ln狓 -ln犪.设犵(狓)=e狓 -狓 -1,所 以 犵′(狓)=e狓 -1>0恒成立,所以犵(狓)在(0,+ ∞)单 调递增,所以犵(狓)>犵(0)=1-0-1=0,所以e狓 - 狓-1>0,即e狓 >狓-1,再设犺(狓)=狓-1-ln狓,所
教学
2021年2月 解法探究
参谋
Байду номын сангаас
新高考导数压轴题的六种解法
? 海南中学 余书胜
2020年新高考压轴题是一道非常好的导数题,本
题主要考查导数几何意义、利用导数研究不等式恒成
立问题,考 查 综 合 分 析 求 解 能 力,分 类 讨 论 思 想 和 等
教学 参谋 解法探究 2021年2月
ln狓 ≥0,即狓-1≥ln狓. 因为犪 >0,e狓-1 ≥狓,则犪e狓-1 ≥犪狓,此时只需要
证犪狓 ≥狓-ln犪,即证狓(犪-1)≥-ln犪. ① 当犪≥1时,狓(犪-1)≥0,0≥-ln犪,所以犪≥
解:犳(狓)=犪e狓-1-ln狓+ln犪=eln犪+狓-1-ln狓+ln犪 ≥1等价eln犪+狓-1+ln犪+狓-1≥ln狓+狓=eln狓 +ln狓. 令犵(狓)=e狓 +狓,上述不等式等价于犵(ln犪+狓-1) ≥犵(ln狓),显然犵(狓)为单调增函数,所以原不等式等 价 于ln犪+狓-1≥ln狓,即ln犪 ≥ln狓-狓+1.令犺(狓) =ln狓-狓+1,则犺′(狓)=狓1 -1=1狓-狓 在(0,1)上 犺′(狓)>0,犺(狓)单调递增;在(1,+∞)上犺′(狓)<0, 犺(狓)单调递减,所以犺(狓)max=犺(1)=0,ln犪≥0,即犪 ≥1,所以犪 的取值范围是[1,+ ∞).
高考压轴题:导数题型及解题方法归纳
高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。
答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。
2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。
高考数学函数压轴题方法归纳总结
高考数学函数压轴题方法归纳总结一、利用导数证明不等式1.已知()()21xf x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.【思路引导】(1)由题意1a =时,得()()21xf x x e x =-+,利用导数得到函数的单调性,进而可判定函数的零点个数;(2)求得函数的导数()()12xf x eax a x -'=++,由0x =是()f x 的极值点,得1a =,得到函数的解析式,令1x t -=,转化为证明1ln 2t te t t +≥++,设()()ln 20xh x ex e x x x =⋅--->, 根据导数得到()h x 的单调性和最小值,证得()0h x ≥,即可作出证明. 2.已知函数()()22xf x e ax x a R =--∈.(1)当0a =时,求()f x 的最小值; (2)当12e a <-时,证明:不等式()12ef x >-在()0,+∞上恒成立. 【思路引导】(1)()2xf x e x =-, ()2xf x e '=-,由单调区间及极值可求得最小值。
(2) 由导函数()22xf x e ax =--',及12e a <-, ()12222102e f e a e ⎛⎫=-->---= ⎪⎝⎭, ()010f '=-<,由根的存在性定理可知存在()00,1x ∈使得()00f x '=,只需证()f x 最小值()()0020000022x x f x e ax x e x ax =--=-+>12e -,由隐零点00220x e ax --=回代,即证()12t t g t e t ⎛⎫=-- ⎪⎝⎭12e >-。
3.已知函数()ln f x x =,()()1g x a x =-(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围; (3)若数列{}n a 满足11n n a a +=+, 33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【思路引导】(Ⅰ)求出()h x ',在定义域内,分别令()'0h x >求得x 的范围,可得函数()h x 增区间, ()'0h x <求得x 的范围,可得函数()h x 的减区间;(Ⅱ)当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,先证明因此1a ≥时, ()()f x g x <在()1,+∞上恒成立,再证明当01a <<时不满足题意,从而可得结果;(III )先求出等差数列的前n 项和为()12n n n S +=,结合(II )可得ln22,ln33,ln44,,ln n n <<<⋅⋅⋅<,各式相加即可得结论.4.已知函数()sin xf x e x ax =-.(1)若1a =,求曲线()y f x =在()()0,0f 处的切线方程; (2)若()f x 在0,4π⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的取值范围; (3)当1a ≤时,求证:对于任意的x ∈ 30,4π⎡⎤⎢⎥⎣⎦,均有()0f x ≥. 【思路引导】(1)求出()1x xf x e sinx e cosx '=+-,由()0f 的值可得切点坐标,由()'0f 的值,可得切线斜率,利用点斜式可得曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 在[0,4π]上单调递增⇔ ()f x '在[0,4π]上恒有()0f x '≥.即sin x (4x π+)a ≥恒成立,令()sinxg x =(4x π+),只需求出()g x 的最小值即可得结果;(3)先证明当x ∈ [0,2π]时, ()()0f x g x a '=-≥,()f x 递增,有()()()min 00f x f x f ≥==成立,再讨论两种情况若0a ≤,不等式恒成立,只需分两种情况证明a ∈(0,1]时也恒成立即可. 5.已知函数()2ln f x a x =+且()f x a x ≤.(1)求实数a 的值; (2)令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证: ()67f m <<.【思路引导】由题意知: 2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证: ()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.6.已知函数()1ln xf x x ax-=+(其中0a >, e 2.7≈). (1)当1a =时,求函数()f x 在()()1,1f 点处的切线方程; (2)若函数()f x 在区间[)2,+∞上为增函数,求实数a 的取值范围; (3)求证:对于任意大于1的正整数n ,都有111ln 23n n>+++. 【思路引导】(1)()21x f x x='-, ()10f '=, ()10f =,可求得切线方程。
2022年全国高考数学乙卷导数压轴题的简单解法
2022年全国高考数学乙卷导数压轴题的简单解法2022年全国高考数学乙卷导数压轴题的简单解法:
一、不定积分:
1. 已知函数f(x)满足f(0)=a,f(1)=c,则不定积分∫f(x)dx 的值为:
a. c-a
b. a-c
c. 1+a
d. c+a
解题思路:先将不定积分展开,∫f(x)dx=F(x)+C,由于不定积分有常数C被添加,因此在求解的时候,只需用特定的函数值减去常数C即可。
将函数f(x)的起点值和终点值带入公式中可得,f(1)-f (0)=c-a,即答案为a.c-a。
二、函数的导数:
1. 已知函数f(x)=ln(x),则f′(x)等于:
a. 1/x
b. ln(x)
c. 1+x
d. 1/ln(x)
解题思路:首先知道,函数y=ln(x)的导数形式是f′(x)=1/x,即答案为a.1/x。
三、椭圆的对称轴和长轴:
1. 椭圆的标准方程为x2/a2+y2/b2=1,其中a>b,则椭圆的对称轴长等于:
a. a2-b2
b. a2+b2
c. a2/b2
d. a-b
解题思路:根据椭圆的定义,椭圆的对称轴就是椭圆的长轴,而椭圆的长轴为:a2+b2,即答案为b.a2+b2。
高考函数导数压轴题分析及应对策略
高考函数导数压轴题分析及应对策略
高考函数导数压轴题分析及应对策略
高考中,函数导数压轴题常常会出现在数学试卷中,其中最重要的就是理解函数导数概念及掌握计算导数的方法。
函数导数是指在某一个点的函数变化率,它是当我们求函数的导数时,最重要的概念。
考试中的一些压轴题往往都是考察对函数导数基本概念的认识,以及计算导数的能力。
解决高考函数导数压轴题的策略主要有两点:
一是预习,复习函数、导数的基本概念,主要考察方程式求导、不定积分概念,以及极限求值等技能,应誊写出公式,掌握计算导数的方法。
二是练习,找一批真题和习题,在解题过程中复习所学的知识,感知其思想和计算步骤,不断练习,解决相关的题目,把这些细节牢记在心,以提供解题时的参照,
争取考试时有少量准备时就能解答出来。
总之,考生要认真对待每一题,敢于试错,不到最后时刻都不要放弃,也不要丧失信心,只要坚持认真、严谨的态度,相信自己一定能取得理想的成绩。
导数压轴题的几种处理方法
导数压轴题的几种处理方法导数压轴题在高等数学中属于比较重要的部分,对于学生来说也是比较难以掌握和解答的问题。
在解决导数压轴题的过程中,有一些常用的处理方法可以帮助我们更好地理解题目、分析问题以及解决问题。
接下来,我将介绍一些常见的导数压轴题处理方法。
1.代数化简法:对于一些复杂的函数表达式,我们可以通过代数化简的方法将它转化为更简单的形式。
在处理导数压轴题时,代数化简法也是一种常用的处理方法。
可以通过分子有理化、公式换元、加减引理等方法对函数进行化简,从而更方便地进行导数运算。
2.函数性质法:当给定函数的性质或公式时,可以通过利用函数的性质和公式进行求导。
对于一些常见函数,如指数函数、对数函数、三角函数等,有一些基本的求导公式,可以通过直接套用公式进行求导。
3.极限转换法:在求导过程中,有时候我们可以通过将导数的定义转化为极限的形式,然后利用极限的性质来求导。
极限转换法通常适用于一些特殊的函数形式,如分段函数、绝对值函数等。
4.高阶导数法:对于一些特殊的问题,我们还可以通过求取高阶导数来解决。
通过求取函数的一阶、二阶、甚至更高阶导数,可以更全面地了解函数的性质和特点,从而更好地解答问题。
5.导数的几何意义法:导数的几何意义是描述函数变化率的概念,一些导数压轴题可以通过对导数的几何意义进行分析来解决。
例如,利用导数的几何意义可以判断函数的增减性、极值点和拐点等。
6.隐函数求导法:一些函数的表达式难以直接求导,可以通过对方程两边同时求导的方法来解决。
这种方法通常适用于隐函数关系的导数压轴题,可以通过对隐函数关系进行求导然后解方程得到结果。
7.递归求导法:对于一些重复出现的函数表达式,可以通过递归求导法直接求取导数的表达式。
这种方法适用于一些具有规律性的函数,可以通过重复进行相同的导数运算来求取导数。
8.利用导数性质法:导数具有一些特定的性质,如导数的和、差、积、商、复合函数等性质。
在求导过程中,可以通过利用这些性质来简化计算过程,从而更快速地求解导数问题。
高考导数压轴题的几种解法
2019年%月解法探穷H AB高考导数压轴题的几种解法%四川省内江师范学院数学与信息科学学院胡富雅%四川省内江师范学院数学与信息科学学院赵思林近年来,以函数和导数命制的压轴题占据着高考 数学的制高点,这些试题是命题专家将高中知识与大学知识进行巧妙结合,常常以高等数学知识为背景精心设计问题,注重考查学生的“四能”以及学生的数学 核心素养和探究、创新意识.这些试题对考生来说往往具有一定的挑战性,其解题方法可以用高中知识去解决,自学过一些高等数学知识的考生也可以用高等数 学知识去解决,显得简洁明快.本文对高考导数压轴题的解法加以总结,主要有单调性法、最值法、分离参数法、主元法等方法,并用这些方法对一些高考题进行了 分析与点评.—、单调性法例1(2018年全国卷!文科第21题)已知函数,f(#)= #(-&(#2+#+1).3⑴若&=3,求™#)的单调区间;(2)证明:(#)只有一个零点.解析:⑴从略.⑵证明:因为#2+#+1= ”j +-) >0,所以/(#)=0 等价于 --3&=0,设g (#)= --3&,贝卩*"(#) =*基金项目:四川省“西部卓越中学数学教师协同培养计划”项目(ZY16001);内江师范学院2016年度校级学科建设特色培育项目(T160009,T160010);四川省高校人文社科研究基地四川中小学教师专业发展研究中心重点项目 “中学数学教师核心素养结构与测评研究”(编号:PDTR2018-002);内江师范学院精品资源共享课《初等代数研究》(内师院发〔2013〕53号)研究成果.赵思林系本文通讯作者.#2+#+1 # +#+1"((+#+;; # 0,当且仅当#=0时,*(#)=0,所以(#)在R 上单调递增,则*(#)至多有一个零点,即(#)至多有一个零点.又因为/(3&-1 )=-6&2+2&-=-6 (&-= + - <0,3\ 6 / %代3&+1)=丄>0,而(#)在R 上连续,则在(3&-1,3&+1)上存在#i ,使得(#1)=0,故(#)有且只有一个零点,且零点存在于(3&-1,3&+1).综上所述,(#)只有一个零点.点评:该题第(1)问考查了学生对导数单调性等基 础知识的运用,而第(2)问题目很简单,但需要考生对零点存在性定理十分熟悉,此外,该题还需要学生会对函 数赋值.二、最值法最值法在高考很多题目中都有涉及,与单调性等方面联系紧密,最值法常常结合分离参数法进行考查,在 导数的恒成立问题中应用较为广泛,通过将原不等式进 行变形,将一般的不等式转化为不等式的恒成立问题,从而求出方程某一边的最大值或最小值.例2 (2018年全国卷I 文科第21题)已知函数™#)=&e #-ln #-l .(1 )设#=2是™# )的极值点,求实数&的值,并求函数 (#)的单调区间;⑵证明:当丄时,(#)#0.e解析:⑴从略.⑵证明:因为e #>0,所以当丄时,/(#)# —-ee*# *# -ln #-1.设 g (#)= ln #-1 (#>0),则g '( #)=--------•令 g '( #)=e e #0,解得#=1,所以当0$#$ 1 时,g %(#)<0;当#>1 时,g " (#)> 0,所以*(#)在(0,1)上单调递减,在((,+&)上单调递高中彳•了裂29解法探穷2019年6月增,所以!=1是g (!)的极小值点,所以g (!)…i ”=g (l )=0,所g (x )!g (x )ain =0.三、 分离参数法对于原方程中含有自变量与参数的方程或者不等式,直接求导不可行的时候,我们常常采用分离参数的方法,将参数放在方程的一侧,在方程的另外一侧构造出新的函数,且分离参数隐性的需要满足两个条件,一是参数与自变量易于分离,二是分离参数后的方程易于 求导或者进行相关变形、构造等,从而使解题更加容易.例3 (2018年全国卷!理科第21题)已知函数&(!)=e *-a»2.⑴若a=1,证明:当!!0时,(!)!1;⑵若在(0, + 8)只有一个零点,求).解析:⑴从略.⑵由⑴可知,当)<1时,y=e *和y=a»涵数图像在+轴e 2右半侧相切,设切点为!0,可得!0=2,)=.4由/(!) =0得)=2 ,令g (!)=三,贝^$#(!)=(兀-严 ,所以g (!)在(0,2)上单调递减,在(2,+8)上单调递 增,故$(九=g (2)=-4,由g (!)的大致图像可知,当)=孚时,+=)与$(!)=三有且只有一个交点,即/(!)在(0,4 !2+ 8)只有一个零点.点评:该题如果运用直接讨论法,计算过程比较烦琐,且容易出错.而运用参数分离法再结合函数图像则 会使解题变得简单,考生也容易接受.四、 主元法主元法是指在函数、方程或不等式当中含有多个参数时,选取其中的一个参数作为主变量,从而对这一主变量进行相关变形,构造出恰当的函数,主元法在极值点的偏移中运用较为广泛.例4 (2016年全国卷I 理文21)已知函数&(!)=(-2)e "+)(!-1)2有两个零点.(1)求)的取值范围;⑵设!1,!2是+!)的两个零点,证明:!1+!2<2.分析:+ )首先对函数求导,再对参数)进行分类讨论并确定零点的个数;(2)根据(1)可知如,!2的取值范围及的单调性,要证明!1+!2<2,只需证明2-业),即证明+ 2-!2)<0,代入原函数进行验证即可求解.解:(1 )由题意知,/'(!)=(!-1 )e *+2)(!-1 ) =(!-1 ) •(e !+2)).(1) 当)=0 时,贝A!)=(!-1)e “,_A!)只有一个零点.(ii ) 当)>0时,则当! "(-8,1 ),广(!)<0;当! e (1,+ 8)时,/'(!)>0.所以应)在(-8,1)上单调递减,在(1,+8)上单调递增.又因为才(1 )=-e ,/(2)=),取-满足-<0且-<ln 才,则 -)>才(--2)+(--1 )2=)#-#■ - j>0, 故A ” )存在两个零点.(iii ) 当)<0时,由/'(兀)=0,解得!=1 或!=1((-2)).若,则 1((-2))%1,故当! e (1,+8)时,/'(兀)>0,因此A ”)在(1,+8)上单调递增•又当!%1时/!)<0,所以A ”)不存在两个零点.若)<-■—,则 1((-2))>1,故当! e (1,1n (-2a ))时,2厂(!)<0;当! e (1n (-2)), +8)时,/'(!)>0.因此/(!)在(1,1n (-2)))上单调递减,在(1n (-2)), +8)上单调递增.又当!%1时庆!)<0,所以&&)不存在两个零点.综上所述,)的取值范围为(0,+8).(2) 不妨设!]<!.由(1)知,!1 e (-8,1), !2" (1,+8),2-!2 " (-8,1) ,/(!)在(-8,1 )上单调递减,所以!1+!2<2等价于A!1)>A 2-!2), BPA 2-!2)<0,由 3(2-!2)= -!2e 2-!z +)(!2-1 )2,而&(!2)=(!2-2)e 叱 +)(兀2-1 )2=0,所以久 2-!2)=-!2e 2%-(!2-2 ) e 02.设+!) =-!e 2-!- (!-2)e !,贝贝$'(!)=(!-1)(e 2-!-e !).所以当!〉1时,$ '(!)<0,而g (1)= 0,故当!〉1时,$(!)<0.从而 g (!2)=( 2-!2)<0,故!i +!2<2.点评:此题选了!2作为主元,若选街作为主元,其解 法相同.参考文献:#1$赵思林.高考数学研究方法#M ].北京:科学出版社,2018'#2$赵思林.初等代数研究#M $.北京:科学出版社,2017.30 彳•了裂:7高中。
高考数学导数压轴题解题技巧
高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。
放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。
比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。
此外,还有分离参数等方法。
在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。
对于存在性问题,如求参数的取值范围,可以运用分离参数法。
对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。
在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考导数压轴题的解法
导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.作为压轴题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 2011年全国新课标卷理科数学21题就是一道典型的以导数为背景,通过求最值分类讨论解决恒成立问题。
学生在思考的过程中会产生两种常见的想法,但并不是每一种方法都能达到预期的效果,下面我们就来探讨一下解决这类问题的统一方法。
原题:(2011年高考试题全国新课标卷理科数学21题)
已知函数ln ()1a x b f x x x
=++,曲线()y f x =在点(1,(1)f 处的切线方程为230x y +-=.
(I )求,a b 的值;
(II )如果当0x >且1x ≠时,ln ()1x k f x x x
>+-,求k 的取值范围. 解:(I )略(II )由(Ⅰ)知22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x
---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x
--(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)设0k ≤,由22
2
(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.而(1)0h =, 故当(0,1)x ∈时,()0h x >,可得2
1()01h x x >-;当(1,)x ∈+∞时,()0,h x < 21()01h x x >-可得从而当0,x >且1x ≠时,ln ()1x k f x x x
>+-恒成立 (ii )设01k <<时由于当21(1,)(1)(1)20,1x k x x k
∈-++>-时,故'()0,h x > 而1(1)0,(1,)1h x k =∈-故当时,()0,h x >2
1()01h x x <-与题设矛盾 (iii )设1,'()0,(1)0,k h x h ≥>=此时而故当(1,)()0,x h x ∈+∞>时,可得出矛盾 综合可得k 的取值范围是(,0]-∞
评析:该题在解决的过程中是通过构造一个新的函数,通过讨论该函数的单调性和零点,找出恒成立的范围,再举出反例将其它范围舍去。
在解决该类问题时还有一个常见的办法,就
是分离变量,下面我们试一试。
解:分离变量得221ln 1x k x x <-
-由于在1x =时没有意义, 故变形为221(12ln )1
k x x x x <---,令2()12ln g x x x x =-- 则1'()2(1ln ),''()2(1)g x x x g x x
=--=-,易知当1x =时'()g x 取到最小值 所以'()'(1)0g x g >=,(1)0g =所以1()0,01()0x g x x g x >><<<时时 所以221(12ln )01
x x x x -->-恒成立,故k 的取值范围是(,0]-∞ 评析:采用分离变量方法使计算过程变得简单明了,但仔细观察不难发现,这样的分离变量是有问题的,因为在1x =时原函数是没有意义的,我们并不知道在1x =时的极限,并且要证明函数的连续性,这些知识超出了高中的学习范围,是大学知识。
事实证明,采用分离变量是存在问题的。
对于这样的类型题有两个常见的方法可以选择,方法一:利用导数性质判断函数的单调性,研究函数的值域,分类讨论得出结果。
方法二:大学知识辅助分离变量法。
在高中阶段适合学生的是方法一,下面再举一例:
案例1:(2010年高考试题全国新课标卷理科数学21题)
设函数2()1.x f x e x ax =---
(I )若0,a =求()f x 的单调区间.
(Ⅱ)若0x ≥时()0,f x ≥求a 的取值范围.
解:(I )略(Ⅱ)解:'()12x f x e ax =--,若12a ≤
,则'()1x f x e x ≥-- 由(I )知10x e x --≥所以'()0f x ≥,所以()(0)0f x f ≥=即()0f x ≥ 若12
a >,由(I )知1x e x ≥+,则1x e x -≥-, 即(1)(2)'()12(1)x x x x x
e e a
f x e a e e ---≤-+-=,当(0,ln 2)x a ∈时, '()0f x <由于(0)0,f =所以()(0)0f x f ≤=,所以当12a >时不成立,故12a ≤ 这道题的第二问是否也可以采取分离变量的方法呢?我们可以尝试一下: 由已知得21x e x a x --≤,令2
1()(0)x e x g x x x --=>,由图像知0x =时取到极小值,且
0x ≠,由罗必塔法则可求得极限为01lim ()2x g x →=,再根据函数的连续性可知12
a ≤.在高中阶段我们并没有学习求极限的方法,所以这道题不可以分离变量。
那么2011年的高考题也有这样的情况吗?令221()(12ln )1
u x x x x x =---,由函数图像知1x =时取得极小值,可对()u x 求极限,由罗必塔法则得1lim ()0x u x →=,所以0k ≤。
还有其它的高考题具有同样的
特点吗?
案例2:(2007年高考试题全国卷Ⅰ理科数学22题)
设函数()x x f x e e -=-
(I )证明:()f x 的导数'()2;f x ≥
(Ⅱ)若对所有0x ≥都有(),f x ax ≥求a 的取值范围。
解:(Ⅰ)略(Ⅱ)令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (ⅰ)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,
故()g x 在(0)+∞,
上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.
(ⅱ)若2a >,方程()0g x '=的正根为1x = 此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.
所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,
该题若进行分离变量即x x e e a x --≤,令()x x
e e g x x
--=,由图像可知0x =时取到极小值,但0x ≠,由罗必塔法则可求得极限0lim ()2x g x →=,所以2a ≤,该题仍然可以用相
同的方法解决。
评析:以上三道高考题具有相同的特点,即第二问都可以通过讨论的方式,一部分范围是恒成立的,而另一部分范围则需要举出反例,舍去。
在解决的过程中,通常还得用到恒等变形,适当放缩,所以难度都很大,在考场上想利用高中知识迅速准确的做对,都非常困难。
在近五年高考中,全国卷共考了五次,不得不让我们对它给予高度的重视和研究。
探究一下这类问题的本质,他们都不是连续函数,在无意义的点是不连续的,该点是函数的间断点,而且是函数的可去间断点,在间断点的两侧,该函数是单调函数,而且都是左减右增。
利用大学知识,罗必塔法则可以求出该点的极限值,这三题的答案都是小于等于号,说明该极限值是一个极小值,这个极限值就是临界值。
此类问题以大学数学中的函数连续为背景,存在着一个可去间断点,这个点就是讨论的重点。
在高中阶段,无法求出极限值,极小值,只能通过分类讨论等办法,探求参数的取值范围。
由上面的几道例题不难得出解决该类问题的统一方法,分两步走:一、通过分类讨论,探求使结论成立的参数范围,证明其恒成立。
二、通过举出反例,将不符合要求的部分舍去。
下面给出两个练习题,供大家思考:
练习1:(2010年全国Ⅱ理数22题)设函数()1.x f x e -=-
(I )证明:当1();1x x f x x >≥
+时,(Ⅱ)设当0x ≥时,(),1x f x ax ≤+求a 得取值范围。
答案:(I )略(Ⅱ)1[0,]2
练习2:(2011年高考全国Ⅰ文数21题)设函数2()(1)x f x x e ax =--
(I )若12
a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0,f x ≥求a 的取值范围;
答案:(I )略(Ⅱ)(,1]-∞。