效用函数与风险厌恶共42页文档
金融经济学(第四章 效用函数与风险厌恶)
风险厌恶与投资组合
风险厌恶:投资者对风险的厌恶程度 投资组合:投资者在投资时选择的资产组合 风险厌恶与投资组合的关系:风险厌恶程度越高投资者越倾向于选择风险较低的投资组合 风险厌恶与投资组合的影响:风险厌恶程度会影响投资者的投资决策进而影响投资组合的表现
效用函数对风险厌恶的描述
效用函数:描述个 体对不同结果的偏 好程度
单击添加标题 风险厌恶
效用函数
效用函数与风险 厌恶的关系
效用函数的定义
效用函数:描述 消费者对不同商 品组合的偏好程 度
形式:U(x)其中 x表示商品组合
性质:单调递增、恶程度越高 效用函数越陡峭
效用函数的类型
线性效用函数:效用与财富成线性关系
风险厌恶:个体在 面对不确定性时更 倾向于选择风险较 小的选项
效用函数与风险厌 恶的关系:效用函 数可以量化个体对 风险的厌恶程度
风险厌恶程度:可 以通过效用函数中 的参数来衡量如风 险厌恶系数、风险 厌恶指数等
风险厌恶对效用函数的影响
风险厌恶:对不确定性的厌恶倾向于选择确定性较高的选项 效用函数:描述个体对不同结果的偏好程度 风险厌恶对效用函数的影响:风险厌恶程度越高效用函数越陡峭即对不确定性的厌恶程度越高 风险厌恶对效用函数的影响:风险厌恶程度越高效用函数越平缓即对不确定性的厌恶程度越低
效用最大化条件:边际效用等于 价格即MU=P
效用函数的应用
经济学:用于描 述消费者行为和 决策
金融学:用于评 估投资风险和收 益
心理学:用于描 述人的幸福感和 满意度
管理学:用于评 估企业绩效和员 工满意度
风险厌恶的定义
风险厌恶是指投资者在面临风险时更倾向于选择风险较小的投资方式。 风险厌恶是投资者在投资决策中对风险和收益的权衡。 风险厌恶的程度可以通过效用函数来衡量。 风险厌恶是投资者在投资决策中对风险和收益的权衡。
风险不确定性及个人效用函数分析
风险不确定性及个人效用函数分析风险不确定性是经济学中一个重要的概念,指的是决策者在面对未来的各种可能性时所面临的不确定性程度。
个人效用函数则是用来描述个人对风险不确定性的态度和对不同结果的偏好程度。
在这篇文章中,我们将探讨风险不确定性及个人效用函数的分析。
首先,我们来讨论风险不确定性。
在现实生活中,人们常常面临各种风险和不确定性,比如投资、职业选择、购买决策等。
在这些决策中,决策者可能无法准确预测未来的结果,并且不同结果的概率分布也可能不一样。
这种不确定性给决策者带来了风险,因为他们的决策可能会受到不可控因素的影响,从而导致结果与预期不符。
为了对风险不确定性进行分析,经济学家引入了概率论和统计学的工具。
通过对可能结果的概率分布进行量化,可以计算出风险的大小,并从中选择最优的决策。
这种分析方法被称为风险分析。
在风险分析中,个人效用函数起着重要的作用。
个人效用函数是描述个人对不同结果的偏好程度的数学函数。
通过个人效用函数,可以量化个人对不同结果的喜好程度,从而在不确定性的环境下进行决策。
个人效用函数可以是线性的、非线性的,也可以是凸的或凹的,取决于个体的偏好。
个人效用函数的形式不同,会对决策结果产生重要影响。
比如,在风险回避的个人效用函数中,个人对较低的收益有较高的偏好,对较高的收益有较低的偏好。
这意味着,对于相同的风险水平,决策者更倾向于选择较为保守的决策,而回避可能带来较大风险的选择。
而在风险偏好的个人效用函数中,个人对较高的收益有较高的偏好,对较低的收益有较低的偏好。
这意味着,对于相同的风险水平,决策者更倾向于选择较为冒险的决策,从而追求更大的收益。
此外,个人效用函数还可以反映出决策者对风险的态度。
比如,风险厌恶的个人效用函数会对不确定性和风险给予较高的负面效用,而风险喜好的个人效用函数则对不确定性和风险给予较高的正面效用。
这种态度的差异会影响决策者在面对风险时的选择。
风险不确定性及个人效用函数的分析在经济学中有着广泛的应用。
第三讲:风险厌恶ppt课件
negative. Example: u(w)=ln(w).
9
Jensen inequality
The following two conditions are equivalent: 1. f is concave. 2. X : Ef (X ) f (EX ).
Eu1(w0 X ) Eu2 (w0 X ) dfn
Eu2 (w0 X ) Jensen
u2 (w0 )
u2 ind.
u1 (w0 )
dfn
25
主要结论
定理:下面的命题是等价的: 1、w, A1(w) A2 (w) 2、u1(u21(z)) 是凹的;
x, y,p [0,1] : pf (x) (1 p) f ( y) f ( px (1 p) y),
or equivalently, iff
Ef ( X ) f (EX ), f(EX)
with
X (x, p; y,1 p).
Ef(X)
x
px+(1-p)y y
3
凹函数的定义
(Ct )1 dt] Xt
spirit of of capitalism (Bakshi&Chen1996)
E0[
T et Ct1 (Wt
0
1 2 Vt
)b dt]
34
递归效用 [Epstein 和Zin(1989、1991)]
(1 )Ut {(1 et [Ct St ] (t)
12
风险态度的图象: u(.)
风险厌恶 风险中性 风险偏爱
效用函数与风险测量(20110307)
23
相关系数
Cov ( Ri , R j )
ij
i j
相关系数表明两个变量的相关关系,可视作协方差的标准化 。 当ij = 1时,证券i和j是完全正相关的; 当ij = -1时,证券i和j是完全负相关的; 当ij = 0时,证券i和j是不相关的。
24
不同相关系数对风险的影响
9
线性效用函数-风险中性
函数性质:U ( X 1 (1 ) X 2 ) U ( X 1 ) (1 )U ( X 2 )
10
风险态度测定-例题
给定效用函数,U(W) = ln(W), 赌局为, G($5, $30, 80%)。 赌局的期望终盘值为: E(W) = 0.8 $5 + 0.2 $30 = $10 期望终盘值的效用为: U[E(W)] = ln($10) = 2.3 终盘结果的期望效用为:E[U(W)] = 0.8 U($5) + 0.2 U($30) = 0.8 ln($5) + 0.2 ln($30) = 1.97 因此, U[E(W)] > E[U(W)] 也就是说,你从给定的期望终盘值中获得的效用比从“开赌”的结果中获得的效 用要大。因此,说明你的效用函数为凹形,是风险厌恶型投资者。
CVA
0.07 1.40 0.05
CVB
0.12 1.71 0.07
项目A变异系数低于项目B,所以项目A更优
19
收益与风险的统计计算
平均收益率(算术平均):可估计预期收益率
( R1 Rn ) R n
收益率的样本方差与标准差:可估计总体标准差
s ( R1 R ) 2 ( R 2 R ) 2 ( R n R ) 2 n 1
第三章 效用函数与风险厌恶
即人们关心的是最终财富的效用,而不是财富的价值量, 而且,财富增加所带来的边际效用(货币的边际效用) 是递减的。
伯努利选择的道德期望函数为对数函数,即对投币游 戏的期望值的计算应为对其对数函数期望值的计算:
E(.)
n1
1 2n
log 2n
1.39
>0
因此,期望收益最大化准则在不确定情形下可能导致不 可接受的结果。而贝努力提出的用期望效用取代期望收 益的方案,可能为我们的不确定情形下的投资选择问题 提供最终的解决方案。
(1)x y 弱偏好于x,x 至少与y 一样好。
(2)x y 强偏好于x ; x y x y 但, y x 不成立。
(3)x y无差异于x 、y;即:
x yxy 和 y x
2.偏好应满足的基本公理(Axiom)条件: (1)完备性(completeness):
x, y C y x x y x y
中有一种关系成立。 完备性假定保证了消者具备选别判断的能力。
(2)自返性(reflexivity):
x C ,则有 x x
自返性保证了消费者对同一商品的选好具有明显的 一 贯性。
(3)传递性:
x, y, z C ifx y, y x x z
传递性保证了消费者在不同商品之间偏好 的首尾一贯性。 同理:
0.11(100) 0.89(100) 0.11( 1 (0) 10 (500)) 0.89(100)
11 11
p1
p1
11 (0)10010 (500) 11 11
p4 0.101.(1100)5000.89(0)
p4p1 0.1(05.80901)00 0.9(0)
!?
0.01 0
500 0.1
风险厌恶
• 风险态度的图象: u(.)
风险厌恶 风险中性 风险偏爱
W
• 风险厌恶的度量: 图形分析
v(x)
v(x1) E{v(x)}
v(x0)
x0
E{x}
v-1(E{v(x)})
x1 x
• 风险厌恶及其度量: 两种风险厌恶的度量方法;
Markowtz 度量—风险溢价 E[u(W )]=u[W ]
确定性等价(certainty equivalent)W
定理:当且仅当 u(.) 是(严格)凹函数时, 参与者是(严格)风险厌恶的。
An agent is risk-averse if he dislikes all zero- mean risk at all wealth levels (Gollier 2001)
zero- mean risk=fair gamble
x, y,p [0,1]: pf (x) (1 p) f ( y) f ( px (1 p) y), or equivalently, iff Ef ( X ) f (EX ), with X (x, p; y,1 p).
• 风险厌恶与凸凹性有关,如果效用函数为 凹的则风险厌恶;反之凸效用函数为风险 喜好;直线为风险中性。
• 例子:
100元 (概率为3/4)
L
-40元 (概率为1/4)
E(L)=100×3/4+(-40) ×1/4=65元
选L而不是65元
E(u(L))>u(E(L))
选65而不是L
E(u(L))<u(E(L))
对两者的态度相同 E(u(L))=u(E(L))
二、风险厌恶的度量
• 通常我们假设所有经济人为风险厌恶者, 接下来我们希望知道如何量化风险厌恶, 从而能够比较不同参与者或同一参与者在 不同情况时的风险厌恶程度。
金融经济学偏好效用与风险厌恶课件
风险厌恶的含义
风险厌恶是指个体在面对不确定性或风险时,往往会选择较为保守或规避风险的决策。在金融市场中,风险厌恶表现为投资者对高风险、高收益的投资机会持有谨慎态度,更倾向于选择低风险、低收益的投资品种。
风险厌恶的影响因素
风险厌恶程度受到个人特征、财富状况、风险承受能力等多种因素的影响。不同个体对风险的容忍度和接受程度不同,因此风险厌恶程度也存在差异。
投资组合管理
保险公司可以根据客户的风险厌恶程度来设计保险产品,以满足不同客户的需求。
保险产品设计
企业可以根据员工和客户的风险厌恶程度来制定风险管理策略,以降低风险对企业的影响。
风险管理
03
金融经济学中的偏好效用与风险厌恶
偏好效用在金融市场中的作用
01
偏好效用是指消费者在购买金融产品或服务时所表现出的个人喜好和选择倾向。在金融市场中,偏好效用决定了消费者的购买行为和投资决策,进而影响市场供求关系和价格形成。
投资者应充分了解自己的偏好和风险承受能力,制定合理的投资策略,避免盲目跟风和过度交易。
投资者在投资决策中表现出风险厌恶和偏好差异,这为金融机构的产品设计和营销策略提供了依据。
金融机构应关注投资者的需求和心理特征,提供多样化的金融产品和服务,以满足不同投资者的需求。
05
未来研究方向
深入研究不同文化、社会背景和经济环境下,个体偏好差异对金融市场的影响。
金融经济学偏好效用与风险厌恶课件
CATALOGUE
目录
偏好效用理论风险厌恶理论金融经济学中的偏好效用与风险厌恶实证研究未来研究方向
01
偏好效用理论
偏好效用理论是金融经济学中的一个重要概念,它描述了个体在面对不同金融资产或投资选择时的偏好和决策过程。
第三讲期望效用函数和风险厌恶者的投资行为
第三讲:期望效用函数和风险厌恶者的投资行为一、金融市场不确定性(一)金融市场的重要特征:不确定性1、不确定性何以存在(1)政治因素:外交关系紧张、地区冲突等。
(2)经济因素①宏观经济状况②经济政策如提高准备金率、公布国有股减持方案。
③微观主体运营状况等3、意外事件:疾病、恐怖袭击等其中政治因素和经济因素为既存风险。
意外事件为突发危机。
二者的影响有所不同。
2、金融市场的测不准原理索罗斯:1997年亚洲金融危机时,马哈蒂尔称我为金融大鳄。
其实,我只是很多投资者中的一个,世人对我有很多误解。
在这一危机中,我也亏了很多钱,其实我也测不准,我也被证明出错了。
所以,我现在不预测短期的股市走向,因为这太容易被迅速证明是个错误。
我什么也不害怕,也不害怕丢钱,但我害怕不确定性。
3、不确定性和风险(1)观点一:确定性的实质就是风险不确定性”的实质就是风险,风险积聚到一定程度就有可能演化为危机,风险为常态,危机则是偶发。
(2)观点二:风险是不确定性及暴露于不确定性的程度风险是不确定性,以及暴露于不确定性的程度,是个人的,极大部分视你对某议题的了解程度及处理方式而定。
例:蹦级者例:金融市场上的投资者:投资的种类和数量,投资者的技能。
4、“不确定性”对金融市场的影响(1)不确定性情况下的非理性反应:恐慌一是毫无根据的“非理性恐慌”。
例:1981年美国总统里根遇刺事件导致投资者大量拋售美元。
二是能够证明其合理性的恐慌或称“自我实现恐慌”。
.例:“羊群效应”导致的银行挤兑。
)不确定性情况下的理性行为:谨慎投资(2 ①投资目标的确定②投资决策准则二、常用的投资决策准则(一)收益最大准则:、适用性:确定性情况下的决策方法1 例:生产者的最优生产决策问题:利润最大化准则。
(Q)=PQ-C(Q)π(Q)maxπ例:金融投资者在确定性情况下的投资决策。
概率收益率A 6 1B 7 1-6 0.25C 0 0.550 0.25-11 0.2D 11 0.225 0.435 0.2只能比较A和B,不能进行四者之间的比较。
2金融经济学第二章-偏好、效用与风险厌恶解析
~( ) x}) P(c ~ x) F ( x) P({ | c
~ c 的数学期望定义为
~] E[c
xdF ( x)
设 g ( x) 为实函数,由数学期望的性质知, ~) g ( c 随机变量 的数学期望为
~)] E[ g (c
商品的一般等价物
引言
商品的价值:
劳动价值论 Marx ������ 均衡价值论 Marshall ������ 边际效用价值论 奥地利学派
效用价值论稍占上风
引言
效用的表达:
基数效用论 边际效用学派 ������ 序数效用论 新古典综合派 ������ (一般均衡论)
序数效用论占上风
2.1
偏好关系
消费集及其性质
• 消费集
消费集及其性质
• 消费集的基本性质
1. 非空 2. 闭性 3. 凸性 4.
偏好关系与选择公理
偏好关系:是消费集X上的一个二元关系
完备性 反身性 传递性
理性选择公理
偏好关系与选择公理
偏好关系与选择公理
连续性,局部非厌足性,凸性
偏好关系与选择公理
偏好关系与选择公理
福州大学
金融本科生
主讲:邹辉文
第二章
偏好、效用与风险厌恶
偏好关系与选择公理 效用函数 不确定性条件下的偏好关系 期望效用函数 行为公理及阿里亚斯悖论 风险ቤተ መጻሕፍቲ ባይዱ恶与确定性效用函数的凹性 风险厌恶的度量与比较 小结
引言
人类经济活动:
物物交换 ������ 媒介交换 ������ 货币交换
数理金融学作业7:风险厌恶与效用函数(1)
风险厌恶与效用函数(1)1、投资者有几种类型?他们的效用函数有什么特点?解:根据投资者对风险的态度,投资者可以分为三种类型:风险厌恶型,风险中性型及风险爱好型。
设()u ×为投资者的效用函数,[()]E u ×为投资者的期望效用函数。
风险厌恶型投资者的效用函数满足:[()]()E u w u Ew £ 因而()u ×为凹函数;风险爱好型投资者的效用函数满足:[()]()E u w u Ew ³ 因而()u ×为凸函数;风险中性型投资者的效用函数满足:[()]()E u w u Ew = 因而()u ×为线性函数2. 设一投资者效用函数为双曲绝对风险厌恶函数1()(),01r r ax u x b b r r-=+>-。
其中,,a b x 为实数。
求该效用函数的绝对风险厌恶函数,风险容忍函数和相对风险厌恶函数 解:因为122()(),()()11r r ax ax u x a b u x a b r r--ⅱ =+=-+-- 所以1()()()()1u x ax A x a b u x r-ⅱ=-=+¢-; 11()()()11ax x b T x b A x a r r a==+=+--; 1()()()1ax R x x A x ax b r-=?+-3.设一投资者的效用函数为负指数效用函数()ax u x e -=-,求该效用函数的绝对风险厌恶函数、风险容忍函数和相对风险厌恶函数。
3.设一投资者的效用函数为负指数效用函数()ax u x e-=-,求该效用函数的绝对风险厌恶函数、风险容忍函数和相对风险厌恶函数。
解:因为2()(),()ax ax ax u x e ae u x a e ---ⅱⅱ=-==-所以()11(),(),()()()()u x A x a T x R x xA x ax u x A x a ⅱ=-=====¢。
数理金融学作业17:风险厌恶与效用函数
风险厌恶与效用函数1.风险厌恶型投资者的效用函数为( )A. 凸函数B. 凹函数,C. 线性函数 D 二次函数解答:设投资者的效用函数为()u x .则风险厌恶型投资者的效用函数为:凹函数,即()0u x ''≤;风险爱好型投资者的效用函数为:凸函数,即()0u x ''≥;风险中性投资者的效用函数为:线性函数,即()0u x ''=;2.设投资者的效用函数为均值-方差效用函数即22(())(,),(),()E u x u E x Var x m s m s ===,则: A. 20,0u u m s 抖>>抖;B 20,0u u m s 抖<>抖;C,20,0u u m s 抖><抖;D ;20,0u u m s抖<<抖 解:由投资者的效用函数为均值方差效用函数,故投资者是遵循随机占优原则:一阶随机占优和二阶随机占优原则.即投资者为收益偏好型与风险厌恶型.故20,0u u m s 抖><抖 3. 设一投资者的效用函数为负指数效用函数()ax u x e -=-,则其风险容忍函数()T x =( );其绝对风险厌恶函数()A x =( );相对风险厌恶函数()R x =( )A.a B. 1/a , C. ax . D. 2ax a e --设投资者的效用函数为幂效用函数()/r u x x r =,则其风险容忍函数()T x =( ) ;()A x =( );相对风险厌恶函数()R x =( )4. 设一投资者的效用函数为2()231u x x x =-+-,则该投资者属于( );设一投资者的效用函数为2()436u x x x =-+,则该投资者属于( );设一投资者的效用函数为()52u x x =-,则该投资者属于( )A.风险爱好者 B 。
风险厌恶者 C 。
风险中性者 D.无法判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑பைடு நூலகம்宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!