高三函数综合练习
完整版)高三函数的性质练习题及答案
完整版)高三函数的性质练习题及答案高三函数的性质练题一、选择题(基础热身)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A。
y=x^3B。
y=ln|x|C。
y=|x|D。
y=cosx2.已知f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+2f(3),f(-1)=2,则f(2011)=()A。
1B。
2C。
3D。
43.函数f(x)=(2x+1)/(x-1)在[1,2]的最大值和最小值分别是()A。
3,1B。
1,0C。
3,3D。
1,34.若函数f(x)=(2x+1)(x-a)为奇函数,则a=()A。
2B。
3C。
4D。
1能力提升5.已知函数f(x)=(a-3)x+5(x≤1),2a(x>1),则a的取值范围是()A。
(0,3)B。
(0,3]C。
(0,2)D。
(0,2]6.函数y=f(x)与y=g(x)有相同的定义域,且都不是常值函数,对于定义域内的任何x,有f(x)+f(-x)=2f(x),g(x)·g(-x)=1,且当x≠0时,g(x)≠1,则F(x)=2f(x)/(g(x)-1)的奇偶性为()A。
奇函数非偶函数B。
偶函数非奇函数C。
既是奇函数又是偶函数D。
非奇非偶函数7.已知函数f(x)=ax+log_a(x)(a>0且a≠1)在[1,2]上的最大值与最小值之和为log_a(2)+6,则a的值为()A。
2B。
4C。
1/2D。
1/48.已知关于x的函数y=log_a(2-ax)在[0,1]上是减函数,则a的取值范围是()A。
(0,1)B。
(1,2)C。
(0,2)D。
[2,+∞)9.已知函数f(x)=sin(πx)(≤x≤1),log_2(x)(x>1),若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A。
(1,2010)B。
(1,2011)C。
(2,2011)D。
[2,2011]二、填空题10.函数f(x)对于任意实数x满足条件f(x+2)=f(x)/(1-f(x)),若f(1)=-5,则f[f(5)]=________.解:f(3)=f(1+2)=f(1)/(1-f(1))=5/6f(5)=f(3+2)=f(3)/(1-f(3))=-5f[f(5)]=f(-5)/(1-f(-5))=-5/611.f(x)是连续的偶函数,且当x>0时f(x)是单调函数,则满足f(x)=f(x+3)的所有x之和为________.解:因为f(x)是偶函数,所以f(0)=f(3),f(1)=f(2),f(4)=f(7),f(5)=f(6),所以要求的是x使得f(x)=f(x+3)的所有情况下的x之和。
高三数学函数综合练习题
高三数学函数综合练习题1. 题目描述:设函数 f(x) 为实数集上的一个二次函数,已知 f(x) 的图像顶点坐标为 (-1, 2),并且过点 (2, 4) 和点 (0, 1)。
求函数 f(x) 的解析式。
解析:设函数 f(x) 的解析式为 f(x) = ax^2 + bx + c。
由题目已知条件可得以下方程组:f(-1) = (-1)^2a - b + c = 2f(2) = (2)^2a + 2b + c = 4f(0) = 0^2a + 0b + c = 1解方程组得到:a = 1/3,b = -5/3,c = 10/3因此,函数 f(x) 的解析式为 f(x) = (1/3)x^2 - (5/3)x + 10/3。
2. 题目描述:已知函数 g(x) = 2^x 的图像上存在两点 A 和 B,坐标分别为 A(a, 16) 和 B(b, 2)。
求函数 g(x) 的解析式以及点 A 和 B 的横坐标 a 和 b。
解析:由于题目已知点 A(a, 16) 在函数图像上,代入函数 g(x) 的解析式,得到以下方程:2^a = 16将 16 表示成 2 的幂次,得到 2^4 = 16,因此 a = 4。
同理,已知点 B(b, 2) 在函数图像上,代入函数 g(x) 的解析式,得到以下方程:2^b = 2将 2 表示成 2 的幂次,得到 2^1 = 2,因此 b = 1。
因此,函数 g(x) 的解析式为 g(x) = 2^x,点 A 的横坐标为 a = 4,点B 的横坐标为 b = 1。
3. 题目描述:已知函数 h(x) = log2(x + 1) + 2 的图像上存在两点 C 和 D,坐标分别为 C(c, 3) 和 D(d, 2)。
求函数 h(x) 的解析式以及点 C 和D 的横坐标 c 和 d。
解析:由于题目已知点 C(c, 3) 在函数图像上,代入函数 h(x) 的解析式,得到以下方程:log2(c + 1) + 2 = 3解方程得到:log2(c + 1) = 1根据对数的定义,可得到 c + 1 = 2^1,因此 c = 1。
高三数学函数专题练习 试题
心尺引州丑巴孔市中潭学校高三数学函数专题练习函数图象与性质 1、 二次函数),1()0()(),2()2()(f f a f x f x f x f <≤-=+且满足那么实数a 的取值范围是〔 〕2、 A .a ≥0B .a ≤0C .0≤a ≤4D .a ≤0或a ≥43、函数f 1(x)=x, f 2(x)=121-⎪⎭⎫⎝⎛X ,f 3(x)=4-x,函数g(x)取f 1(x)、f 2(x)、f 3(x)中的最小值,那么函数g(x)的最大值是〔 〕4、A. 2B. 1C.21D. 不存5、 函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞]上递增,那么实数a 的取值范围是〔 〕6、 A.(-∞,4) B.(-4,4) C.(-∞,-4)∪[2,+∞]D.[-4,2]7、 假设函数y =f (x ) (x R )满足f (x +2)=f (x ),且x-1,1]时,f (x )=|x |.那么函数y =f (x )的图象与函数y =log 4|x |的图象的交点的个数为〔 〕8、 A .3 B .4 C .6 D .85..函数y=f(x) (R x ∈)满足)1()1(-=+x f x f 且[]2x f(x ) 1,1=-∈时x ,那么y=f(x)与y=x 2log 的图象的交点个数为〔 〕A. 1B. 2C. 3D. 4 6.函数()yf x =的图象与函数21x y -=-的图象关于直线y x =对称,那么(3)f 的值为〔 〕A .1B .1-C .2D .2- 7.设0<a <1,实数x ,y 满足x +y alog =0,那么y 关于x 的函数的图象大致形状是〔 〕A B C D8.将函数y=3x m+的图像按向量a =(-1,0)平移后,得到y=f(x)的图像C 1,假设曲线C 1关于原点对称,那么实数m 的值为〔 〕 〔A 〕1〔B 〕-1 〔C 〕0〔D 〕-39.(2005年高考·卷·理4文4)函数|1|||ln --=x e y x 的图象大致是〔 〕10.(2005年高考·卷·文9)函数y =ax 2+1的图象与直线y =x 相切,那么a =( )A .18B .41 C .21 D .111.(2005年高考·卷·理10)假设函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,那么a 的取值范围是( )〔 B 〕A .)1,41[B . )1,43[C .),49(+∞ D .)49,1( 12.(2005年高考·卷·文10)设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递增,且y =f (x )的图象关于直线x=3对称,那么下面正确的结论是( )A . f ()<f ()<f ()B . f ()<f ()<f ()C . f ()<f ()<f ()D . f ()<f ()<f ()13.(2005年高考·全国卷Ⅰ·理7)设0>b ,二次函数122-++=a bx ax y 的图象以下之一:那么a的值为( )A .1B .-1C .251-- D .251+- 函数的解析式与反函数1. 如果45)1(2+-=+x x x f ,那么f(x)是〔 〕2. A.x 2-7x+10B.x 2-7x -10C.x 2+7x -10D.x 2-4x+63.2 x (x>0)() e (x=0)0 (x<0)f x ⎧⎪=⎨⎪⎩那么()()()-2f f f 的值是〔 〕4. A.0B.eC.e2D.43.(2005年高考·卷·理3)设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,那么f [f (21)]=( )A .21 B .413C .-95D .25414.(2005年高考·卷·文4)设f (x )=|x -1|-|x |,那么f [f (21)]=( )A .-21 B .0 C .21 D . 15.假设函数f(x)的图像经过点〔0,1〕,那么函数f(x+4)的反函数的图像必经过点〔 〕 A.〔-1,-4〕B.〔4,-1〕C.〔-4,-1〕D.〔1,-4〕6、函数y =f(x)的反函数f -1(x)=2x +1,那么f(1)等于( )A.-1B.0C. 1D.47.(2005年高考·卷5)函数1ln(2++=x x y 的反函数是( )A .2xx e e y -+=B .2xx e e y -+-=C .2xx e e y --=D .2xx e e y ---=8.(2005年高考·卷2)函数)(321R x y x ∈+=-的反函数的解析表达式为( )A .32log 2-=x y B .23log 2-=x y C .23log 2xy -=D . xy -=32log 29.(2005年高考·卷·理14文14)设函数f (x )的图象关于点〔1,2〕对称,且存在反函数f -1(x ),f (4)=0,那么f -1(4)=10.函数()y f x =的图象与函数21x y -=-的图象关于直线y x =对称,那么(3)f 的值为( 〕A .1B .1-C .2D .2-9.(2005年高考·卷9)在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图象关于直线x y =对称. 现将)(x g y =的图象沿x 轴向左平移2个单位,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线〔如图2所示〕,那么函数)(x f 的表达式为〔 〕A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x xx x x f B .⎪⎩⎪⎨⎧≤<-≤≤--=20,2201,22)(x xx x x f C .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x xx x x f D .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x xx x x f 导数局部1.函数f (x )=x 2-2 ln x 的单调递减区间是 ( )A .(0,1]B .(-∞,-1] 、(0,1]C .[-1,1]D .[1,+∞]2.曲线2)(3-+=x x x f 在P 点处的切线平行直线14-=x y ,那么P 点坐标为〔 〕A .〔1,0〕B .〔2,8〕C .〔2,8〕和〔-1,4〕D .〔1,0〕和〔-1,-4〕3.32()26f x x x a =-+〔a 是常数〕,在[]2,2-上有最大值3,那么在[]2,2-上的最小值是〔 〕 A .-5B .-11C .-29D .-374.点P 的曲线323+-=x x y 上移动,在点P 处的切线的倾斜角为α,那么α的取值范围是〔 〕A .]2,0[πB .),43[)2,0[πππ C .),43[ππ D .]43,2(ππ 不等式局部1.(2005年高考·卷·文5)不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为( C )A .)3,0(B .)2,3(C .)4,3(D .)4,2(2.(2005年高考·全国卷Ⅰ·理8文8)设10<<a ,函数)22(log )(2--=x x a a a x f ,那么使x x f 的0)(<取值范围是〔 B 〕A .)0,(-∞B .),0(+∞C .)3log ,(a-∞D .),3(log +∞a3.f(x)=42++-ax x在区间(]1,∞-上递增,那么不等式0log )32(2<+-x xa 的解集是)23,1()21.0(⋃。
高三数学三角函数综合试题答案及解析
高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。
高三数学函数综合试题答案及解析
高三数学函数综合试题答案及解析1.给出四个函数,分别满足①;②;③;④,又给出四个函数的图象如下:则正确的配匹方案是()A.①—M ②—N③—P ④—QB.①—N②—P③—M④—QC.①—P②—M③—N④—QD.①—Q②—M③—N④—P【答案】D【解析】图象M是指数型函数,具有性质②;图象N是对数型函数,具有性质③图象P是幂函数,具有性质④,图象Q是正比例函数,具有性质①,故选D【考点】基本初等函数的图象与性质.2.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.3.下图展示了一个由区间到实数集的映射过程:区间中的实数对应数上的点,如图1;将线段围成一个圆,使两端点恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在轴上,点的坐标为,如图3.图3中直线与轴交于点,则的象就是,记作.下列说法中正确命题的序号是 .(填出所有正确命题的序号)①方程的解是;②;③是奇函数;④在定义域上单调递增;⑤的图象关于点对称.【答案】①④⑤【解析】①则,正确;②当时,∠ACM=,此时故,不对;③的定义域为不关于原点对称,是非奇非偶函数;④显然随着的增大,也增大;所以在定义域上单调递增,正确;⑤又整个过程是对称的,所以正确.【考点】1、函数的性质;2、创新意识.4.函数的部分图像可能是()A B C D【答案】B【解析】∵,∴为奇函数,且存在多个零点导致存在多个零点,故的图像应为含有多个零点的奇函数图像.故选B.【考点】通过图像考查函数的奇偶性以及单调性.5.已知函数,若直线对任意的都不是曲线的切线,则的取值范围为.【答案】.【解析】f(x)=x3-3ax(a∈R),则f′(x)=3x2-3a若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,则直线的斜率为-1,f(x)′=3x2-3a与直线x+y+m=0没有交点,又抛物线开口向上则必在直线上面,即最小值大于直线斜率,则当x=0时取最小值,-3a>-1,则a的取值范围为,即答案为.【考点】线性规划.6.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为()A.B.C.D.【答案】B【解析】∵函数的两个极值点分别为x1,x2,且x1∈(0,1),x2∈(1,+∞),的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=>0,,即n+3m+2<0,∴-m<n<-3m-2,为平面区域D,如图:∴m<-1,n>1.∵的图象上存在区域D内的点,∴loga(-1+4)>1,∴∵a>1,∴lga>0,∴1g3>lga.解得1<a<3;故选B.【考点】1.利用导数研究函数的极值;2.不等式组表示平面区域.7.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝)由公式(为非零常数)给出,其中为声音能量.(1)当声音强度满足时,求对应的声音能量满足的等量关系式;(2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话,声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.【答案】(1)解应用题问题,关键正确理解题意,列出对应的等量关系:(2)本题实质是解一个不等式:由题意得,,,即,当声音能量时,人会暂时性失聪.【解析】(1) (2)(1)2分4分6分(2)由题意得 10分12分14分答:当声音能量时,人会暂时性失聪. 15分【考点】实际问题应用题8.已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.【答案】(1,2)【解析】由f(x)=ln x+2x,x∈(0,+∞)得f′(x)=+2x ln 2>0,所以f(x)在(0,+∞)上单调递增.又f(x2+2)<f(3x),得0<x2+2<3x,所以x∈(1,2).9.函数的图象可能是()【答案】【解析】函数的定义域为,可排除;又时,,即,故选.【考点】函数的图象,函数的定义域,正弦函数、对数函数的性质.10.已知函数f(x)=若f(f(1))>3a2,则a的取值范围是________.【答案】(-1,3)【解析】由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a,若f(f(1))>3a2,则9+6a>3a2,即a2-2a-3<0,解得-1<a<3.11.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【答案】B【解析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g (x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(h(g(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.点评:此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.12.已知函数f(x)=lnx+a,其中a为大于零的常数.(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围.(2)求证:对于任意的n∈N*,且n>1时,都有lnn>++…+恒成立.【答案】(1)(0,1] (2)见解析【解析】(1)f′(x)=(x>0),由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≤x在[1,+∞)上恒成立,又因为当x∈[1,+∞)时,x≥1,所以a≤1,即a的取值范围为(0,1].(2)由(1)知函数f(x)=lnx+-1在[1,+∞)上为增函数,当n>1时,因为>1,所以f>f(1),即lnn-ln(n-1)>,对于n∈N*,且n>1恒成立,lnn=[lnn-ln(n-1)]+[ln(n-1)-ln(n-2)]+…+[ln3-ln2]+[ln2-ln 1]>++…++,所以对于n∈N*,且n>1时,lnn>++…+恒成立.13.已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.【答案】(1)f(x)=x+(2)(-∞,-4]【解析】(1)∵f(x)的图象与h(x)的图象关于点A(0,1)对称,设f(x)图象上任意一点坐标为B(x,y),其关于A(0,1)的对称点B′(x′,y′),则∴∵B′(x′,y′)在h(x)上,∴y′=x′++2.∴2-y=-x-+2,∴y=x+,即f(x)=x+.(2)∵g(x)=x2+ax+1,且g(x)在[0,2]上为减函数,∴-≥2,即a≤-4.∴a的取值范围为(-∞,-4].14.已知函数则函数的零点个数为()A.1B.2C.3D.4【答案】B【解析】函数,.即.所以函数的零点个数即等价于,方程的解得个数,即等价于函数的交点的个数.如图所示.所以共有两个交点.故选B.【考点】1.分段函数的性质.2.函数的零点问题.3.等价转换的数学能力.4.分类讨论的数学思想.15.已知符号函数则函数的零点个数为().A.1B.2C.3D.4【答案】B【解析】,时,,解得;当时,;当时,,即无解。
高三数学一轮复习《函数的应用》综合复习练习题(含答案)
高三数学一轮复习《函数的应用》综合复习练习题(含答案)一、单选题 1.函数2ln y x x=-的零点所在的大致区间是( ) A .1(,1)eB .(1,2)C .(2,e)D .(e,)+∞2.已知函数()2sin 4f x x m π⎛⎫=++ ⎪⎝⎭在区间()0,π上有零点,则实数m 的取值范围为( )A .()2,2-B .(2,2⎤-⎦C .2,2⎡⎤-⎣⎦D .)2,2⎡-⎣3.已知函数()()32,0log ,0x x f x x k x +<⎧=⎨+≥⎩,则“(],3k ∈-∞”是“函数()()1F x f x =-有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE )也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数CRF I 对计算度电成本具有重要影响.等年值系数CRF I 和设备寿命周期N 具有如下函数关系()()CRF 0.05111NNr I r +=+-,r 为折现率,寿命周期为10年的设备的等年值系数约为0.13,则对于寿命周期约为20年的光伏-储能微电网系统,其等年值系数约为( ) A .0.03B .0.05C .0.07D .0.085.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=6.已知函数2ln ,0,()=2,0.xx f x x x x x ⎧>⎪⎨⎪+≤⎩,若()()g x f x a =-有3个零点,则a 的取值范围为( )A .()1,0-B .11,e ⎛⎫- ⎪⎝⎭ C .10,e ⎡⎫⎪⎢⎣⎭ D .{}10,1e ⎛⎫⋃- ⎪⎝⎭7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)([120,500])x ∈之间的函数关系可近似表示为[)[]3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .4008.已知函数()232,1,42,1,x x x f x x x x ⎧--≤⎪=⎨+->⎪⎩则函数()()3y f f x =-的零点个数为( ) A .2B .3C .4D .59.若函数()2ln f x x x ax =-在区间()0,∞+上有两个极值点,则实数a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .(],0-∞C .(]1,02⎧⎫-∞⋃⎨⎬⎩⎭D .10,2⎛⎫ ⎪⎝⎭10.已知定义在R 上的奇函数()f x 恒有()()11f x f x -=+,当[)0,1x ∈时,()2121x x f x -=+,已知21,1518k ⎛⎫∈-- ⎪⎝⎭,则函数()()13g x f x kx =--在()1,6-上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个11.已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a 的取值范围是( ) A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞12.设函数()2sin()1(0,0)2f x x πωϕωϕ=+->的最小正周期为4π,且()f x 在[0,5]π内恰有3个零点,则ϕ的取值范围是( )A .50,312ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭B .0,,432πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .50,612ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭D .0,,632πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦二、填空题13.已知函数ln ,0()e 1,0xx x f x x ⎧>=⎨+≤⎩,且函数()()g x f x a =-恰有三个不同的零点,则实数a 的取值范围是______. 14.以模型()e0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =______.15.函数()sin ln 23f x x x π=--的所有零点之和为__________. 16.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=_____________附:若()2,N ξμσ,则()0.6826P μσξμσ-<≤+≈,(22)0.9544P μσξμσ-<≤+≈.三、解答题 17.已知函数22()1=-f x x . (1)求()f x 的零点;(2)判断()f x 的奇偶性,并说明理由; (3)证明()f x 在(0,)+∞上是减函数.18.已知函数4()12x f x a a =-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.对于定义域为D 的函数()y f x =,若同时满足以下条件:①()y f x =在D 上单调递增或单调递减;②存在区间[],a b D ⊆,使()y f x =在[],a b 上的值域是[],a b ,那么我们把函数()()y f x x D =∈叫做闭函数.(1)判断函数()()110g x x x=->是不是闭函数?(直接写出结论,无需说明理由) (2)若函数()()2111h x x m x m=-++>0为闭函数,则当实数m 变化时,求b a -的最大值. (3)若函数()1e ln 112xx x x k x φ⎛⎫=-+-≤≤ ⎪⎝⎭为闭函数,求实数k 的取值范围.(其中e 是自然对数的底数,e 2.7≈)20.已知函数32()f x x ax bx c =+++在点()1,2P 处的切线斜率为4,且在=1x -处取得极值. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若函数()()1g x f x m =+-有三个零点,求m 的取值范围.21.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.22.已知函数()ln f x x x =-. (1)求证:()1f x ≤-; (2)若函数()()()xxh x af x a e =+∈R 无零点,求a 的取值范围.23.辆高速列车在某段路程中行驶的速率v (单位:km /h )与时间t (单位:h )的关系如图所示.(1)求梯形OABC 的面积,并说明所求面积的实际含义;(2)记梯形OABC 位于直线()04t a a =<≤的左侧的图形的面积为()g a ,求函数()y g a =的解析式,并画出其图象.24.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(),1k k +()k N ∈上有零点,求k 的值;(3)记函数21()2()2g x x bx f x =---,设1212,()x x x x <是函数()g x 的两个极值点,若32b ≥,且12()()g x g x k-≥恒成立,求实数k 的取值范围。
高三数学复合函数练习题
高三数学复合函数练习题一、单项选择题1. 设函数f(x) = √(2x+1),g(x) = x²+1,则 f(g(2)) 的值为:A. 2B. 3C. 5D. 62. 已知函数 f(x) = 2x-1,g(x) = x²,则 f(g(-2)) 的值为:A. -7B. -5C. -3D. -13. 设函数 f(x) = x²+1,g(x) = 3x,则 f(g(2)) 的值为:A. 13B. 15C. 17D. 194. 已知函数 f(x) = 3x-1,g(x) = 2x+1,则 f(g(-1)) 的值为:A. -3B. -1C. 3D. 55. 设函数 f(x) = 2x+1,g(x) = x²,则 f(g(3)) 的值为:A. 18B. 19C. 20D. 21二、解答题1. 设函数 f(x) = x²,g(x) = √x,求 f(g(x)) 和 g(f(x))。
解:首先求 f(g(x)):f(g(x)) = f(√x) = (√x)² = x再求 g(f(x)):g(f(x)) = g(x²) = √(x²) = |x|2. 设函数 f(x) = sinx,g(x) = x²+1,求 f(g(x)) 和 g(f(x))。
解:首先求 f(g(x)):f(g(x)) = f(x²+1) = sin(x²+1)再求 g(f(x)):g(f(x)) = g(sinx) = (sinx)²+13. 设函数 f(x) = 2x+1,g(x) = x-1,求 f(g(x)) 和 g(f(x))。
解:首先求 f(g(x)):f(g(x)) = f(x-1) = 2(x-1)+1 = 2x-1再求 g(f(x)):g(f(x)) = g(2x+1) = (2x+1)-1 = 2x4. 设函数f(x) = √x,g(x) = x+1,求 f(g(x)) 和 g(f(x))。
高三数学函数复习练习题
高三文科数学复习11——函数 高三( )班 姓名1、“3>x ”是“不等式022>-x x ”的 ( )A .充分非必要条件 B.充分必要条件C .必要非充分条件D.非充分必要条件2、已知函数()sin ln ,'(1)f x x x f =+=则 ( )A.1cos1-B.cos11-C.1cos1+D.1cos1--4、已知函数⎩⎨⎧≤+>-=0,140,1log )(22x x x x x f ,则)(x f 的零点个数是 ( ) (A )0 (B ) 1 (C )2 (D )35、若函数()()3cos f x x ωθ=+对任意的x 都有()(2)f x f x =-,则(1)f 等于 ( )A 、3±B 、0C 、3D 、3-6、函数y =的定义域为 ( ) A .(4,1)-- B.(4,1)- C.(1,1)- D.(1,1]-7、已知二次函数2(1)(21)1y n n x n x =+-++,当n 依次取1,2,3,…,2012时,其图像在x 轴上所截得的线段的长度的总和为 ( ) A.20112012 B. 20122013 C. 20132014 D. 201320128、设)0(25)(,12)(2>-+=+=a a ax x g x x x f ,若对于任意]1,0[1∈x ,总存在]1,0[0∈x ,使得)()(10x f x g =成立,则a 的取值范围是 ( )(A )[)+∞,4 (B )⎥⎦⎤ ⎝⎛25,0 (C )]4,25[ (D )⎪⎭⎫⎢⎣⎡+∞,25 10、函数x x x f lg cos )(-=零点的个数为 .11、设函数,若不等式对任意恒成立,则实数m 的取值范围为_______.12、右图为定义在R 上的数()f x 的导函数 ()f x '的大致图象,则函数()f x 的单调递增区间为 点为13、若函数()cos 2cos f x x a x =+(x R ∈)的最小值为 .14、设函数()214f x x x =+--.①不等式()2f x >的解集为 ②若关于x 的不等式()a f x >有解.则实数a 的取值范围为 .15、已知函数b x ax x x f ++-=ln )(2),(R b a ∈,(1)若函数)(x f 在1=x 处的切线方程为02=++y x ,求实数a ,b 的值;(2)若)(x f 在其定义域内单调递增,求a 的取值范围.16、已知函数R x t x t tx x x f ∈-+-+=,213232)(223,其中t ∈R . (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.。
数学高三综合练习题
数学高三综合练习题1. 已知函数 f(x) = x^3 - 2x^2 + 3x - 1,请计算 f(2) 的值。
解答:将 x = 2 带入函数 f(x),得到f(2) = 2^3 - 2(2)^2 + 3(2) - 1= 8 - 8 + 6 - 1= 5因此,f(2) = 5。
2. 已知函数 g(x) = 2x + 1,求 g(4) 的值。
解答:将 x = 4 带入函数 g(x),得到g(4) = 2(4) + 1= 8 + 1= 9因此,g(4) = 9。
3. 已知直线 Ax - By = C,其中 A = 3,B = 2,C = 6,请将此直线的斜率表示为分数的形式。
解答:根据直线的一般方程形式,斜率可以表示为 -A/B。
将 A = 3,B = 2 带入,得到斜率 = -A/B = -3/2因此,直线的斜率表示为 -3/2。
4. 求解方程组:2x + 3y = 73x - 4y = 14解答:可以使用消元法来求解方程组。
首先,将第一个方程乘以 3,第二个方程乘以 2,得到:6x + 9y = 216x - 8y = 28然后,两个方程相减,消去 x,得到:6x - 6x + 9y + 8y = 21 - 2817y = -7解方程,得到 y = -7/17。
将 y 的值带入第一个方程,得到:2x + 3(-7/17) = 72x - 21/17 = 72x = 7 + 21/17解方程,得到 x = 79/34。
因此,方程组的解为 x = 79/34,y = -7/17。
5. 求解不等式组:x + y ≥ 52x - 3y ≤ 6解答:首先,我们将第一个不等式转化为y ≤ 5 - x。
然后,将第二个不等式乘以 -1,使不等号方向翻转,得到 -2x + 3y ≥ -6。
接下来,我们需要找到两个不等式的交集部分。
绘制图形来表示不等式,发现两个不等式的交集部分为一个封闭的区域。
因此,不等式组的解为x + y ≥ 5 且 2x - 3y ≤ 6。
高三数学函数练习题
高三数学函数练习题一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则m的取值范围是:A. (-∞, 3)B. (0, +∞)C. (3, +∞)D. (-∞, 0)2. 函数y=f(x)=x^3-3x+1在区间(-2, 2)内有几个零点?A. 0B. 1C. 2D. 33. 已知函数f(x)=2x-1/x,求f(1)+f(2)的值。
A. 3B. 4C. 5D. 64. 若函数f(x)=x^2-6x+8,求f(1)的值。
A. 3B. 2C. 1D. 05. 函数y=f(x)=x^2-4x+m在区间[1,3]上单调递减,求m的取值范围。
A. m≥1B. m≤1C. m≥3D. m≤36. 函数f(x)=x^3-3x^2+2在x=1处的导数值为:A. -1B. 0C. 1D. 27. 函数f(x)=x^2-4x+4的最小值是:A. 0B. 1C. 2D. 38. 若函数f(x)=x^2-6x+8的图像与直线y=2相切,则切点的横坐标为:A. 2B. 3C. 4D. 59. 函数f(x)=x^3-3x+1的极值点个数为:A. 0B. 1C. 2D. 310. 若函数f(x)=x^2-4x+3,求f(-1)的值。
A. 8B. 7C. 6D. 5二、填空题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的对称轴方程为_________。
2. 若函数f(x)=x^3-3x+1在x=a处取得极小值,则a=_________。
3. 函数f(x)=2x-1/x在区间[1/2, 2]上的最大值为_________。
4. 函数f(x)=x^2-6x+8的顶点坐标为(_________, _________)。
5. 函数f(x)=x^3-3x^2+2的二阶导数为f''(x)=_________。
三、解答题(每题10分,共40分)1. 已知函数f(x)=x^2-4x+3,求证f(x)在区间[1,3]上单调递增。
高三数学函数专题训练题
高三数学函数专题训练题(附详解)第1卷(选择题)一、单选题1. 已知定义在R 上的可导函数f(x)的导函数为f(x),满足f '(x) < f(x),且f(-x) = f(2+x),f(2)=1,则不等式f(x)< e x 的解集为( ) A.(-∞,2) B.(2,+∞) C.(1,+∞) D.(0,+∞)2. 函数y=sinx+2|sinx|,x ∈[0,2x]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围为( )A. k ∈ [0,3]B. k ∈ [1,3]C. k ∈(1,3)D. k ∈(0,3) 3. 已知sina 1+cosa= 2,则 tana =( )A. - 43B. - 34C. 43D. 24. 定义在R 上的奇函数f(x)满足f(x+4) = f(x),当x ∈(0,2)时,f(x)=3x -1,则f(2022)+f(2023)=( )A. -2023B. -1C. 1D. 32022 5. 设a=log 20.3,b=0.2,c=(12)0.2,则a,b,c 三者的大小关系为( ) A. a<b<c B. c<a<b C. b<c<a D. a<c<b6. 设函数f(x)(x ∈R)的导函数为f '(x),满足f '(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A. f(a)>e a f(0)B. f(a)<e a f(0)C. f(a)=e a f(0)D. 不能确定7. 已知f(x)=2x2x +1+ax+cos2x ,若f (π3)=2,则f(-π3)等于( )A. -2B. -1C. 0D. 18. 已知函数f(x)=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f(x)图像的对称中心,B 、C 是该图像上相邻的最高点和最低点,且|BC|=4,则下列结论正确的是( ) A. 函数f(x)的对称轴方程为x=43+4k(k ∈Z)B. 若函数f(x )在区间(0,m)内有5个零点,则在此区间内f(x )有且只有2个极小值点C. 函数f(x )在区间(0,2)上单调递增D. f(x -π3)的图象关于y 轴对称9. 已知函数f(x)={|x|x+4√x 36−x,−4<x<2,2≤x<6,若方程f(x)+αx 2=0有5个不等实根,则实数α的取值范围是( )A. (-∞,- √24) ∪ {- 13}B. [- 13,- 14] C. [13,√24] D. ( √24,+∞)∪ { 13} 10. 已知F 1,F 2分别为双曲线x 2-y 23=1的左、右焦点,直线l 过点F 2,且与双曲线右支交于A ,B 两点,O 为坐标原点,△AF 1F 2、△BF 1F 2的内切圆的圆心分别为O 1,O 2,则△OO 1O 2面积的取值范围是( ) A. (1,2√33) B. [1,2√33)C. [1,2√33] D. (1,2√33] 11. 设定义在R 上的函数f(x)与g(x)的导函数分别为f '(x)和g'(x),若g(x)-f(3-x)=2,f '(x)=g'(x-1),且g(x+2)为奇函数,g(1)=1。
高三数学函数练习题综合
高三数学函数练习题综合函数是数学中常见且重要的概念,也是高中数学中的重要内容之一。
理解和掌握函数的概念对于解决各种数学问题具有重要的意义。
下面将提供一些高三数学函数练习题,以帮助学生巩固函数的相关知识。
1. 题目一已知函数f(x) = 2x + 3,计算f(4)的值。
解析:将x = 4代入函数f(x)中,得到f(4) = 2 * 4 + 3 = 11。
2. 题目二已知函数g(x) = x^2 - 5x + 6,求解方程g(x) = 0的解。
解析:将g(x)置为0,得到方程x^2 - 5x + 6 = 0。
该方程可以通过因式分解或者求解一元二次方程公式得到解x = 2或x = 3。
3. 题目三函数h(x) = |2x - 5|,确定h(x)的定义域。
解析:由于h(x)中使用了绝对值符号,所以我们需要根据绝对值函数的性质来确定h(x)的定义域。
令2x - 5 = 0,得到x = 2.5。
因此,h(x)的定义域为R中除去x = 2.5的部分。
4. 题目四已知函数i(x) = log(x + 2),求解方程i(x) = 2的解。
解析:将i(x)置为2,得到log(x + 2) = 2。
根据对数运算的性质,可以转化为指数形式x + 2 = e^2。
解出x = e^2 - 2。
5. 题目五已知函数j(x) = 3^x + 2^x,求函数j(x)的最小值。
解析:对于指数函数3^x和2^x,它们的值都大于0。
因此,函数j(x)的最小值为j(0) = 3^0 + 2^0 = 1 + 1 = 2。
通过以上练习题的解析,我们复习了函数的定义、求解方程、定义域以及最值等知识点。
希望这些练习题能帮助大家巩固函数的相关知识,提高解决数学问题的能力。
总结:本文给出了一些高三数学函数练习题,包括求函数值、求解方程、确定定义域和求最值等。
这些练习题能够帮助学生巩固函数的知识,提高解决数学问题的能力。
希望同学们能够认真完成这些练习题,并结合自己的学习情况进行反复训练,以便更好地掌握数学函数的相关内容。
高三复习函数综合练习题
高三复习函数综合练习题函数是高中数学中的一个重要概念,它是一种将一个或多个自变量映射到一个或多个因变量的规则。
函数的研究在数学和实际问题中起到了至关重要的作用。
为了巩固和提升高三学生的函数知识水平,以下是一些综合练习题。
请同学们仔细阅读题目,并按要求回答。
1. 已知函数 f(x) = 2x + 3 和 g(x) = x^2 - 4x + 5,求解以下问题:a) 求解 f(x) = 0 和 g(x) = 0 的解集。
b) 求解 f(x) = g(x) 的解集。
2. 已知函数 h(x) = 3x - 4,求解以下问题:a) 求解 h(x) = 5 的解集。
b) 根据已知函数 h(x),绘制函数图像。
3. 已知函数 f(x) = x^2 - 3x + 2,求解以下问题:a) 求解 f(x) = -1 的解集。
b) 根据已知函数 f(x),求函数的对称轴,并绘制函数图像。
4. 对于函数 f(x) = x^3 - x^2 + x - 1,求解以下问题:a) 求解 f(x) = 0 的解集。
b) 根据已知函数 f(x),求函数的导数,以及求导后的函数图像。
5. 已知函数 f(x) = e^x + ln(x),求解以下问题:a) 求解 f(x) = 0 的解集。
b) 根据已知函数 f(x),求函数的反函数,并求反函数的定义域和值域。
6. 已知函数 f(x) = sin(x) + cos(x),求解以下问题:a) 求解 f(x) = 0 的解集。
b) 根据已知函数 f(x),求函数的周期,并绘制函数图像。
以上是关于高三复习函数的综合练习题。
希望同学们认真思考,并自行查阅相关知识来解答问题。
函数的学习需要多加练习和实践,相信通过努力,同学们一定能够掌握函数的概念和应用,取得优秀的成绩。
祝愿同学们在高考中取得好的成绩!。
高考函数专项大题(带答案)
函数高考专项1、已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(. (Ⅰ)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求实数a 的取值范围.2、设定义在R 上的函数f (x )=a 0x 4+a 1x 3+a 2x 2+a 3x (a i ∈R ,i =0,1,2,3 ),当x =-22时,f (x )取得极大值23,并且函数y =f ' (x )的图象关于y 轴对称。
(1)求f (x )的表达式;(2)试在函数f (x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-1,1]上;(3)求证:|f (sin x )-f (cos x ) | ≤ 223(x ∈R ).3、已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式; (Ⅱ)、设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m 。
4、已知函数()21log 0,2a f x x a a ⎛⎫=>≠⎪⎝⎭, (1)若()()()()2221220081220088,f x x x f x f x f x =+++ 求的值.(2)当()()()1,010,x x f x ∈-=+>时,g 求a 的取值范围.(3)若()()1,g x f x =+当动点(),p x y 在()y g x =的图象上运动时,点,32x y M ⎛⎫⎪⎝⎭在函数()y H x =的图象上运动,求()y H x =的解析式.5、已知函数.21)1()())((=-+∈=x f x f R x x f y 满足 (Ⅰ)求*))(1()1()21(N n nn f nf f ∈-+和的值; (Ⅱ)若数列)1()1()2()1()0(}{f nn f n f n f f a a n n +-++++= 满足,求列数}{n a 的通项公式;(Ⅲ)若数列{b n }满足1433221,41+++++==n n n n n b b b b b b b b S b a ,则实数k 为何值时,不等式n n b kS <2恒成立.6、已知()()2,ln 23+-+==x ax x x g x x x f(Ⅰ)求函数()x f 的单调区间;(Ⅱ)求函数()x f 在[]()02,>+t t t 上的最小值; (Ⅲ)对一切的()+∞∈,0x ,()()22'+≤x g x f 恒成立,求实数a 的取值范围.7、已知函数2() 1 f x ax bx =++(,a b 为实数),x R ∈, () (0)() () (0)f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0,f -=且函数()f x 的值域为[0, )+∞,求)(x f 的表达式;(2)在(1)的条件下,当[2, 2]x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值 范围;(3)设0m n ⋅<,0,m n +>0a >且()f x 为偶函数,判断()F m +()F n 能否大于零.8、已知二次函数221(),:8直线f x ax bx c l y t t =++=-+,其中(02≤≤,t t 为常数); 2: 2.l x =若直线l 1、l 2与函数f (x )的图象以及l 1,y 轴与函数f (x )的图象所围成的封闭图形如阴影所示. (Ⅰ)根据图象求a 、b 、c 的值;(Ⅱ)求阴影面积S 关于t 的函数S(t )的解析式;(Ⅲ)若,ln 6)(m x x g +=问是否存在实数m , 使得y =f (x )的图象与y =g (x )的图象有且只有两个不同的交点? 若存在,求出m 的值; 若不存在,说明理由.9、若定义在R 上的函数()f x 对任意的R x x ∈21,,都有1)()()(2121-+=+x f x f x x f 成立,且当0>x 时,1)(>x f 。
高中函数综合试题及答案
高中函数综合试题及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x = 2处的导数是()。
A. 5B. 7C. 9D. 112. 已知函数y = 3x - 2,当x = 1时,y的值是()。
A. 1B. 0C. -1D. -23. 函数y = x^3 - 2x^2 + 3x + 1的极小值点是()。
A. x = 1B. x = 2C. x = 3D. x = 0二、填空题4. 若f(x) = x^2 + 2x + 1,求f(-1)的值为______。
5. 函数g(x) = 1/x的值域是______。
三、解答题6. 求函数h(x) = x^3 - 6x^2 + 9x的单调区间。
7. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。
四、证明题8. 证明函数f(x) = x^3在R上是增函数。
五、应用题9. 某工厂生产一种产品,其成本函数为C(x) = 2x + 500,其中x是生产数量。
求当生产数量为多少时,单位成本最低。
六、综合题10. 已知函数f(x) = 2x - 3,g(x) = x^2 + 1。
求f(g(x))的表达式,并讨论其单调性。
答案:1. B. 7 (导数为4x - 3,代入x = 2得7)2. A. 1 (代入x = 1得3x - 2 = 1)3. A. x = 1 (求导得3x^2 - 4x,令导数为0得x = 4/3或0,检验得x = 4/3为极小值点)4. 2 (代入x = -1得1 - 2 + 1 = 2)5. (0, +∞) ∪ (-∞, 0) (因为分母不能为0,所以值域不包括0)6. 单调增区间为(3, +∞),单调减区间为(-∞, 3)(求导得3x^2 -12x + 9,令导数大于0得x > 3,令导数小于0得x < 3)7. 最小值为0(当x = 2时,f(x) = 0)8. 证明:任取x1,x2 ∈ R,且x1 < x2,有f(x2) - f(x1) = (x2 - x1)(x2^2 + x1x2 + x1^2) > 0,故f(x)在R上是增函数。
高中函数练习题及答案
高中函数练习题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 3x^2 - 2x + 1的图像关于哪条直线对称?A. x = 1/3B. x = 1C. x = 2/3D. x = 02. 若f(x) = x^3 - 2x^2 - 3x + 1,求f(-1)的值。
A. -3B. 3C. 5D. 73. 函数y = 2x + 3与直线y = 5x - 1的交点坐标是?A. (1, 2)B. (2, 5)C. (3, 8)D. (4, 11)4. 函数y = |x - 1|的图像在x轴上的截距为?A. 1B. 0C. 2D. -15. 若f(x) = x^2 + bx + c,且f(0) = 0,f(1) = 1,求b和c的值。
A. b = 1, c = 0B. b = -1, c = 1C. b = 0, c = 0D. b = 1, c = 1二、填空题(每题2分,共10分)6. 若函数f(x) = kx + b的斜率为-1,则k的值为______。
7. 函数y = x^2 + 2x - 3的顶点坐标为(-1, ______)。
8. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1的极小值点为x = 1,则f(1) = ______。
9. 若函数f(x) = √x在区间[1, 4]上是增函数,则f(4) - f(1) =______。
10. 若函数f(x) = sin(x) + cos(x)的最大值为√2,则x = ______。
三、解答题(每题25分,共75分)11. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求导数f'(x),并找出函数的极值点。
12. 已知函数g(x) = 3x^2 + 2x - 5,求其在区间[-2, 1]上的最大值和最小值。
13. 已知函数h(x) = √x + 1/x,求其在区间[1, 9]上是否存在单调区间,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.a<b<c
18.已知 a>0 时,对任意 x>0,有 (x-a)(x2+bx-a)≥0 恒成立,则 a 的取值范围是
。
b
19.已知
, ,若
,
,则 ______.
20.已知 ,
,记
,
,…,
恒成立,则实数 的取值范围是_______.
,…,若对于任意的
21.已知
分别是定义在 R 上的奇函数和偶函数,且
A. 3
B. 1
C. 7
2
3
D. 2 3
11.已知 为常数,函数
在区间 上的最大值为 2,则 的值为( )
A. -1 或
B. 或
C. 1 或
D. 1 或
12.已知 范围是( )
,
,若对任意 ,
或
,则 的取值
A.
B.
C.
D.
变式练习设函数 意的 n,
A. 1
,和 B.
,
,其中
至少有一个为非负值,则实数 m 的最大值是
Ⅰ 若 ,且函数 在区间 的最大值为 ,求函数 的解析式;
Ⅱ 若关于 x 的不等式
在区间 上恒成立,求正数 m 的最大值及此时 a,b 值.
29.函数
(1)在区间
上为增函数,求实数 a 的取值范围;
(2)方程
有三个不同的实数根,求实数 a 的取值范围;
(3) 是否存在实数 a 使函数
恒成立,若存在,求出 a 的取值范围;若不存在,请
6.设函数
g(x)=x2-2,
f
(x)
g(x)
g(x)
x 4, x, x
x g(x) g(x)
,则
f(x)的值域是
A. [ 9 ,0]∪(1,+∞) 4
B.[0,+∞)
C. [ 9 ,+∞) 4
D. [ 9 ,0]∪(2,+∞) 4
7.已知函数
,
,构造函数
,那么函数
()
A. 有最大值 1,最小值﹣1 B. 有最小值﹣1,无最大值
为______.
2.已知
x0 是函数
f(x)=2x+
1 1-x
的一个零点.若
x1∈(1,x0),x2∈(x0,+∞),则有(
).
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f (x2)>0
3.已知函数
在区间 上有两个不同的零点,则 取值范围是____
4.已知函数 f(x)=alnx,x,x≤x>00,, 若方程 f(-x)=-f(x)有五个不同的实数根,则 a 的取值范
围是( )
A.(0,+∞) B.0,1e C.(-∞,0) D.(0,1)
5.已知函数 f(x)=x+bx+c 有两个不同的零点 x1,x2,且 x1,x2∈(0,2),则 b2+2bc+4b 的 取值范围是__________________.
得 g x1 f x2 ,则 b 的取值范围是
.
24.若不等式
(|
x
a
|
b)
sin(x
6
)
0
对
x
[1,1]
恒成立,则
a
b
的值是(
)
2
5
A. 3
B. 6
C.1
D. 2
25.已知 f(x)=2x2+2x+b 是定义在[-1,0]上的函数, 若 f(f(x))≤0 在定义域上恒成立,而
且存在实数 x0 满足:f(f(x0))=x0 且 f(x0)≠x0,则实数 b 的取值范围是________.
说明理由.
30.已知函数
,
.
(Ⅰ)当 ,
时,求 的最小值(用 表示);
(Ⅱ)记集合
,集合
,若
,
(i)求证:
;
(ii)求实数 的取值范围.
1.已知函数
高三函数综合练习汇编(一)
,
的值城是 ,则
A.
B.
C. 2
D. 0
变式练习已知
a
0
,设函数
f
x
2019x1 2018 2019x 1
2019x
x
a
,a 的值域为M
,N
,
则 M N 的值为( )
A.0
B.2019
C.4037
D.4039
2.已知函数
,若函数
有四个零点,则实数 m 的取值范围
C. 有最大值 1,无最小值 D. 有最大值 3,最小值 1
8.已知 a,b,c∈R 且 a+b+c=0,a>b>c,则 a2b+c2的取值范围是(
)
A.-
55,
5 5
B.-15,15
C.(- 2, 2)
D.-
2,
5 5
9.已知 t∈R,记函数 f (x) x 4 t t 在[-1,2]最大值为 3,则实数 t 取值范围 x2
26. (2019 浙南名校联盟第一次联考)设函数 f (x) x3 6x2 ax b ,若对任意的实数
a 和 b,总存在 x0∈a[0,3],使得 f(x0)≥m,则实数 m 的最大值为
。
27,设
,其中
1 当 时,分别求 及
2记
数 t 的值.
. 的值域; ,
,若 ,求实
28.设函数
,a, .
C. 2
D.
,若对任
13,若正数
a,b
满足
log2
a
log5
b
lg a
b
,则
1 a
1 b
的值为
变式练习已知
,
,则
______.
14,已知 a,b, 成立的是
,函数
,若
,则下列不等关系不可能
A.
B.Leabharlann C.D.15.函数 y=f(x)是定义在 R 上的增函数,函数 y=f(x-2)的图像关于点(2,0)对称,则满足
.若存在
,
使得等式
成立,则实数 a 的取值范围是___.
22.关于 x 的不等式 x2-a|x|+4<0 的解集中仅含有 4 个不同的整数,则实数 a 取值范围是
______.
23.已知函数 f x 2x , g x x2 2x b ,若 x1, x2 1,3 ,对任意的 x1 ,总存在 x2 ,使
是
。
变式练习已知 m R ,函数
f x
x3m x 1
m 在 x 2,5 的最大值是 5,则 m 的取值范
围是(
A.
,
7 2
)
B.
,
5 2
C. 2 , 5
D.2,
10.记
max{a,
b,
c}为实数
a,
b,
c
中的最大数.若实数
x,
y,
z
满足
x2
x
yz 0 3y2 6z2
3
则
max{| x |,| y |,| z |}的最大值为( )
f(4x-4)+f(x2-x)<0 的实数 x 的取值范围为
。
16.函数
( ,且 )的图象不.可.能.为( )
A.
B.
C.
D.
17.设
a
102016 102017
1,b 1
102017 102018
1,c 1
102018 102019
1 ,则 1
a,b,c
的大小关系
A.b<c<a
B.a<c<b
C.c<b<a