九年级数学上册第二十四章242点和圆直线和圆的位置关系2425实验与探究圆和圆的位置.docx
人教版九年级数学上册 第24章 24.点和圆、直线和圆的位置关系
思路点拨:点 E 是△ABC 的内心,AD,BE 分是∠BAC 和∠ABC 的角平分,又同弦所的周角相等,易明∠DBE =∠DEB.
证明:∵点 E 是△ABC 的内心, ∴∠ABE=∠CBE,∠BAD=∠CAD. ∵∠CBD=∠CAD,∠DEB=∠BAD+∠ABE,∠DBE= ∠CBD+∠EBC, ∴∠DBE=∠DEB.
图 24-2-17
【跟踪训练】 5.如图 24-2-16,⊙O 为△ABC 的内切圆,D,E,F 为切 点,∠DOB=73°,∠DOE=120°, 则∠DOF=_____1_4,6°∠C =___6_0_°_,∠A=___8_6_°_.
图 24-2-16
6.如图 24-2-17,在 Rt△ABC 中,∠C=90°,AC=6,BC =8.则△ABC的内切圆半径 r=____2____.
解:接 OC.因 AC 是⊙O 的切,所以∠OCA =90°. 又因∠A=30°,所以∠COB=60°. 所以OBC 是等三角形. 所以 OB=BC=1,即⊙O 的半径 1.
有切 接 心和切点,得半径垂直切 .
【跟踪训练】 1.如图 24-2-10,已知点 A 是⊙O 上一点,半径 OC 的延 长线与过点 A 的直线交于点 B,OC= BC,AC= OB.则 AB ___是_____(填“是”或“不是”)⊙O 的切线.
图 24-2-13
4.如图 24-2-14,PA ,PB 分别切⊙O 于点 A,B,点 E 是 ⊙O 上一点,且∠AEB=60°,则∠P=______6_0_°.
图 24-2-14
知识点 3 三角形的内心 【例 3】如图 24-2-15,已知点 E 是△ABC 的内心,∠A 的平分线交 BC 于点 ,且与FABC 的外接圆相交于点 D. 求证:∠DBE=∠DEB.
九年级数学上册 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.2.2 直线和圆的位置关系 第1课时 直线
2020/1/1
精品课件
10
主题概括
本文抓住苏州园林的总体特征:“务 必使游览者无论站在哪个点上,眼前总是 一幅完美的图画。”进而围绕这个中心, 把各种景物综合分成几个类型,分别加以 介绍说明和具体描绘,从而自然、真切地 再现了苏州的风貌,也显示了设计者和匠 师们的智慧及我国园林艺术的高超。
2020/1/1
• 本文介绍了苏州园林艺术的整体特征, 说明顺序合理,说明方法得当,既突出了 被说明事物的特点,结构又显得清楚有序 ,实为一篇难得的好文章,显示了叶圣陶 先生驾驭复杂事物的非凡笔力。在领略苏 州园林艺术美的同时,借鉴作者说明的技 巧,力求学以致用。
2020/1/1
精品课件
9
结构图示
举例子,作用是:具体形象的说明了……,便于 读者理解。 作比较,作用是:通过……和……的对比,突出 了……的……特点。 打比方,作用是:生动形象的说明了……,增强 了文章的趣味性。 引用,作用是:参与说明,使文章内容充实具体 ,增强文章的真实性。
2020/1/1
精品课件
13
谢谢欣赏!
2020
精品课件
14
18 苏州园林 第二课时
2020/1/1
精品课件
1
课时目标
1.学习多种说明方法,品味准确、简洁、生动 的说明语言。 2.领略中国园林的建筑美,激发对艺术的热 爱之情。
2020/1/1
精品课件
2
情境导入
上节课结束后,我让同学们找一下 本文所运用的说明方法,不知同学们 找得怎么样了?好,我们这一节课就 先来解决说明方法的问题。
2020/1/1
课文是怎样表现出苏州园林的特点(4—5 节为主)。 (1) 这一节说明了什么? (2) 哪一句是中心句?哪几句写假山,哪 几句写池沼?这是哪种结构形式?
九年级数学上册第24章圆24.2点和圆、直线和圆的位置关系24.2.2直线和圆的位置关系(第3课时)课件人教版
∵AB是小圆的切线, P为切点
∴OP⊥AB 在大圆⊙O中, 根据垂径定理,得
AP=BP
3.如图,AB为⊙O的直径, C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D.
求证:AC平分∠DAB.
证明:连接OC,则OC⊥CD ∵AD⊥CD ∴AD∥OC ∴∠2=∠3
32 1
即CD是⊙O的切线
24.2.2 直线和圆的位置关系(3)
作图1:过⊙O外一点P作直线。
作图2:若点C为⊙O上的一点,如何过点C作⊙O 的切线呢?
C
思考:如图,如果直线 AB是⊙O的切线,
切点为C,那么半径OC与直线AB是不是一定垂 直呢?
如果AB是 ⊙O 的切线,C 为切点,那么AB⊥OC.
你能说明理由吗?
反证法:假设AB与OC不垂直
巩固
1、如图, AB是⊙O的直径,直线l1,l2是⊙O的切线, A、B是切点,l1与l2有怎样的位置关系?
证明你的结论。
l1
A
证明:∵ AB是⊙O的直径,直
1
线l1,l2是⊙O的切线,A ,B是
切点
∴AB⊥ l1 ,AB⊥ l2
O
∴∠1=∠2=90º
∴∠1+∠2=180º
∴ l1∥l2
l2
2
B
2、如图,以O为圆心的两个同心圆,大圆的弦AB 是小圆的切线,切点为P。 求证:AP=BP。
则过点O作OM⊥AB,垂足为M
O
根据垂线段最短,得OM<OC
即圆心O到直线AB的距离d<R A ∴直线AB 与⊙O 相交
CM B
这与已知“AB是 ⊙O 的切线”矛盾
∴假设不成立,即AB⊥OC
人教版初中数学九年级上册第24章圆知识复习第二部分点和圆、直线和圆的位置关系
*有兴趣的同学可以尝试证明: (1)如图,正五角星中AC=a, 求该五角星外接圆的直径.(用三角函数表示) (2)圆内接四边形两组对边乘积之和等于两条对角线 的乘积。(提示:构造相似形)
(3)若圆内接四边形的对角线互相垂直,则过对角线 的交点所作任一边的垂线将对边平分. A
B
E
•
O
C
D
中考试题精选
O• 5 A 4P B
【及时巩固】
7、如图,AB是ʘO的直径,AC是弦,∠CAB=30º, 过C点作ʘO的切线交AB的延长线于D,如果 OD=12cm,那么ʘO的半径为 6 .
C
30º • 60º 30º
AO
BD
【及时巩固】
8、如图,PB、PC分别切ʘO于B、C两点,A 是ʘO上一点,∠CAB=50º,则∠P等于 80º .
6、如图,△ABC内接于⊙O,AB的延长线 与过C点的切线GC相交于点D,BE与AC相 交于点F,且CB=CE.求证:(1)BE∥DG; (2)CB2-CF2=BF·FE.
A
O•
E
FB
G CD
中考试题精选
7、如图,PC为⊙O的切线,C为切点, PAB是过O点的割线,CD⊥AB于点D,
若 tan B 1,PC=10cm,求△BCD的面积. 2
A
对应的一个基本图
E O• C D
P
形,其中有很多关
系,你能找出多少?
B
弦切角:圆的切线和过切点的弦所夹的角。 P
O•
O•
B
A
M
(5)弦切角定理:弦切角等于它所夹的弧所对 的圆周角.
推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等.
(6)和三角形各边都相切的圆叫三角形的内切圆。 内切圆的圆心是三角形的内心(即三角形三内角 平分线的交点)。各边都和圆相切的三角形叫圆 的外切三角形。
2019-人民教育出版社九年级数学上册 第二十四章 24.2.2 直线和圆的位置关系(共20张PPT)-文档资料
想一想
半径6.5cm
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有__2__个公共点. 2)若d=6.5cm ,则直线与圆__相__切__, 直线与圆有__1__个公共点. 3)若d= 8 cm ,则直线与圆__相__离__, 直线与圆有____个公共点.
请同学们利用手中的工具再现海上 日出的整个情景。
在再现过程中,直线和圆的公共点个数
的变化情况如何?公共点个数最少时有几个? 最多时有几个?
通过刚才的研究,你认为直线和圆 的位置关系可分为几种类型呢?
(一)直线与圆的位置关系(图形特征--用 公共点的个数来区分)
(1)直线与圆有两个公共点时,叫做直线和圆相交. 这时直线叫圆的 割线.
24.224..22.直2直线线和和圆圆的的位位置关置系关系
巢湖庙岗初级中学:徐文翠
1
位置关系
点 与
点P在圆内
圆
的 位
点P在圆上
置
关 系
点P在圆外
数量关系
d<r d=r d>r
P P P
O·
r
A
如图,在太阳升起的过程中,太阳和地平得出直线和圆的位置关系吗?
(3)当r=3cm时,有d<r, 因此,⊙C和AB相交。
D
d
应用 :
已知:如图,∠AOB=30°,P为OB上一点,且OP=5 cm, 以P为圆心,以R为半径的圆与直线OA有怎样的位置关
系?为什么?
(1) R 2cm
A
(2) R 2.5cm
(3) R 4cm O
PB
练一练 :
1.⊙O的半径为3 ,圆心O到直线L的距离为d,若直线L
人教版初中九年级上册数学精品课件 第二十四章 圆 点和圆、直线和圆的位置关系 点和圆的位置关系
拓广探索题
某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定 其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.
解:(1)在圆形瓷盘的边缘选A、B、C三点;
(2)连接AB、BC;
B
C
A
(3)分别作出AB、BC的垂直平分线;
(4)两垂直平分线的交点就是瓷盘的圆心.
课堂小结
点与圆的 位置关系
作 圆
三角形的内角和为180度 矛盾.假设不成立.
△ABC中至少有一个内角小于或等于60°.
.
巩固练习
6. 利用反证法证明“在直角三角形中,至少有一个 锐角不大于45°”时,应先假设( D )
A.有一个锐角小于45° B.每一个锐角都小于45° C.有一个锐角大于45° D.每一锐角都大于45°
巩固练习
探究新知
点和圆的位置关系
P
d
d
Pd
r
r
P
r
点P在⊙O内
d<r 点P在⊙O上 d=r 点P在⊙O外
d>r
数形结合: 位置关系
数量关系
探究新知
素养考点 1 判定点和圆的位置关系
例1 如图,已知矩形ABCD的边AB=3,AD=4.
(1)以A为圆心,4为半径作⊙A,则点B、C、D与
⊙A的位置关系如何?
A
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°,
∴∠DAO=30°;
探究新知 (2)求点A的坐标和△AOB外接圆的面积.
∵点D的坐标是(0,3),∴OD=3.
在Rt△AOD中,∵∠DOA=90° ,
∴AD为直径. 又∵∠DAO=30°,∴AD=2OD=6, OA= 3 3
因此圆的半径为3.点A的坐标( 3 3, 0) ∴△AOB外接圆的面积是9π. 解题妙招:图形中求三角形外接圆的面积时,关键是确定外 接圆的直径(或半径)长度.
2024年人教版九年级上册教学第二十四章 圆24.2 点和圆、直线和圆的位置关系
24.2.1点和圆的位置关系课时目标1.掌握点与圆的三种位置关系及数量间的关系,探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法,掌握三角形的外接圆和外心的概念,了解运用“反证法”证明命题的思想方法.2.通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.3.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神,培养学生会用数学知识解决简单几何问题的能力.学习重点点与圆的三种位置关系,过三点作圆.学习难点点与圆的三种位置关系及其数量关系,及反证法的理解.课时活动设计情境引入射击是奥运会的一个正式体育项目,我国射击运动员在奥运会上屡获金牌,为祖国赢得了荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,射击成绩是由击中靶子不同位置所决定的.图中是一位运动员射击10发子弹在靶上留下的痕迹.你知道如何计算运动员的成绩吗?从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.设计意图:随着现在经济科技的发展,奥运会越来越被人们所重视.本节内容通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中的应用.探究新知我们取刚才射击靶上的一部分图形来研究点与圆存在的几种位置关系.学生交流,回答问题.教师点评:点与圆有三种位置关系:点在圆内,点在圆上,点在圆外.如下图,☉O的半径为4cm,OA=2cm,OB=4cm,OC=5cm,那么,点A,B,C与☉O 有怎样的位置关系?解:∵OB=4cm,∴OB=r,∴点B在☉O上.∵OA=2cm<4cm,∴点A在☉O内.∵OC=5cm>4cm,∴点C在☉O外.设计意图:通过实例观察点与圆的位置关系,从而总结出规律,使学生的思维得到提升.探究(1)如图1,经过一个已知点A能不能作圆,这样的圆你能作出多少个?(2)如图2,经过两个已知点A,B能不能作圆?如果能,圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:(1)过已知点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段.(仅过点A,既不能确定圆心,也不能确定半径.)(2)过已知的两点A,B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上.因为线段垂直平分线上的点到线段两端点的距离相等.(注:仅过点A,B,同样不能确定圆心,也不能确定半径.)经过不在同一条直线上的三个点,A,B,C能不能作圆?如果能,如何确定所作圆的圆心?解:经过A,B两点的圆,圆心在线段AB的垂直平分线上.经过A,C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为O,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B,C两点,所以过不在同一直线上的A,B,C三点有且仅有一个圆.教师总结,不在同一条直线上的三个点确定一个圆.经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心.设计意图:学生动手从易到难,逐个分析过不同个数的点的圆的个数.典例精讲例1☉O的半径为10cm,根据点P到圆心的距离:(1)8cm;(2)10cm;(3)13cm.判断点P与☉O的位置关系,并说明理由.解:设☉O的半径为r cm,点P到圆心的距离为d cm,则r=10.(1)当d=8时,∵d<r,∴点P在☉O内.(2)当d=10时,∵d=r,∴点P在☉O上.(3)当d=13时,∵d>r,∴点P在☉O外.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题可知AB=90m,AC=120m,∠BAC=90°,由勾股定理,可得BC=B2+B2=902+1202=150(m).又∵D是BC的中点,∴AD=12BC=75(m).∴民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120 m,AD=75m.要使B,C,D三点不受到破坏,即B,C,D三点都在☉A外,∴☉A的半径要小于75m.即爆破影响的半径控制在小于75m的范围,民房,变电设施,古建筑才能不遭破坏.设计意图:例1可让学生独立思考,尝试写出过程;教师点评,并规范书写格式.例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.思考经过同一条直线上的三个点能作出一个圆吗?学生易想到过同一条直线上的三个点不能圆,那如何证明呢?证明:如图,假设经过同一条直线l上的A,B,C三点可以作出一个圆.设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l,这与我们之前学过的“过一点有且只有一条直线与已知直线垂直”矛盾.所以经过同一条直线上的三个点不能作圆.教师进行总结,引出反正法:上面证明“经过同一条直线上的三个点不能作圆”的方法与我们以前学过的证明不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设经过同一条直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法.设计意图:让学生了解用反证法证明的基本思路和一般步骤.巩固训练1.判断下列说法是否正确:(1)任意的一个三角形一定有一个外接圆.(√)(2)任意一个圆有且只有一个内接三角形.(×)(3)经过三点一定可以确定一个圆.(×)(4)三角形的外心到三角形各顶点的距离相等.(√)2.☉O的半径为10cm,A,B,C三点到圆心的距离分别为8cm,10cm,12cm,则点A,B,C与☉O的位置关系是:点A在圆内;点B在圆上;点C在圆外.课堂小结1.本节课你学到了哪些数学知识和数学方法?请与同伴交流点和圆的位置关系,会判断点和圆的位置关系、理解并掌握三角形的外心及性质.2.了解反证法证明的基本思路和一般步骤.课堂8分钟.1.教材第95页练习第2,3题.2.七彩作业.24.2.1点和圆的位置关系点和圆的位置关系点和圆的位置关系点在圆内⇔<点在圆上⇔=点在圆外⇔>确定圆的条件:不在同一条直线上的三个点确定一个圆反证法:①反设,②推导出矛盾,③下结论教学反思24.2.2直线和圆的位置关系第1课时直线和圆的位置关系课时目标1.掌握直线和圆的三种位置关系及其数量间的关系,掌握运用圆心到直线的距离的数量关系或用直线与圆的交点个数来确定直线与圆的三种位置关系的方法,发展学生抽象思维能力的核心素养.2.结合图形理解直线和圆的位置关系,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.通过生活中的实例,探求直线和圆的三种位置关系,并提炼出相关的数学知识,从而渗透数形结合,分类讨论等数学思想,培养学生会用数学知识解决简单几何问题的能力.学习重点掌握直线与圆的三种位置关系及其数量关系.学习难点能够通过数量关系判断直线与圆的位置关系.课时活动设计情境导入(1)教师动态演示太阳升起的过程,提问:如果我们把太阳看作一个圆,把地平线看作是一条直线,太阳升起的过程中,太阳和地平线会有几种位置关系?由此你能得出直线和圆的位置关系吗?(2)在纸上画一条直线l,把钥匙环看作一个圆.在纸上移动钥匙环,你能发现在移动钥匙环的过程中,它与直线l的公共点个数的变化情况吗?设计意图:从人们常见的太阳的东升西落的问题开始,然后学生通过移动钥匙环,亲身体会到现实生活中的数学知识,更加形象地表明了直线和圆的位置关系.先由学生交流、操作,观察发现直线与圆的位置关系,可让同学分别演示每一种情况,并写出交点的个数.新知讲解1.直线和圆的位置关系的定义及有关概念.由前面的两个探究情景可知,直线与圆有如下三种位置关系:如图1,直线l与☉O有两个公共点,这时我们说这条直线和圆相交,直线l叫做☉O的割线.如图2,直线l与☉O只有一个公共点,这时我们说这条直线与☉O相切,直线l 叫做☉O的切线,这一个公共点叫做切点.如图3,直线l与☉O没有公共点,我们说这条直线与☉O相离.2.直线和圆的位置关系的性质和判定.思考:在上面的图1、图2、图3中,设☉O的半径为r,直线l到圆心O的距离为d,在直线和圆的三种不同位置关系中,d与r具有怎样的大小关系?反过来你能根据d与r的大小关系来确定直线和圆的位置关系吗?(学生讨论,归纳总结答案,并由学生代表回答问题.)归纳总结:直线l与☉O相交⇔d<r有两个公共点;直线l与☉O相切⇔d=r有1个公共点;直线l与☉O相离⇔d>r无公共点.设计意图:这是直线和圆的位置关系的性质和判定,对于这一结论,要求学生要熟记图形,重在结合图形进行理解掌握.典例精讲例1已知圆的半径等于10cm,直线l与圆只有一个公共点,求圆心到直线l 的距离.解:∵直线l与圆只有一个公共点.∴直线l与圆相切.当直线l与圆相切时,d=r=10cm.∴圆心到直线l的距离为10cm.例2如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以点C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.分析:判断☉C与直线AB的位置关系,就是比较半径r与圆心C到直线AB的距离d的大小关系,即比较r与图中CD的大小关系.解:如图,过点C作CD⊥AB于点D.∵∠ACB=90°,AC=3cm,BC=4cm,∴AB=5cm.=12·AB·CD=12·AC·BC,即12×5·CD=12×3×4,∵S△ABC∴CD=125=2.4cm,即d=2.4cm.(1)当r=2cm,∵d=2.4cm>r,∴☉C与直线AB相离.(2)当r=2.4cm,∵d=2.4cm=r,∴☉C与直线AB相切.(3)当r=3cm,∵d=2.4cm<r,∴☉C与直线AB相交.设计意图:学以致用,从做题中让学生理解知识.巩固练习1.如图,正方形ABCD中,边长为1.(1)以点A为圆心,1为半径的圆与直线BC有怎样的位置关系?(2)以A为圆心,半径为多少时,圆与直线BD相切?解:(1)∵四边形ABCD为正方形,∴AB⊥BC.∵AB=1=r,∴☉A与直线BC相切.(2)∵四边形ABCD为正方形,边长为1,∴AB=BC=1,∠ABC=90°,AC⊥BD且AO=12AC.在Rt△ABC中,AC=B2+B2=2,∴AO=12AC∴以A为圆心,半径为22时,圆与直线BD相切.设计意图:巩固所学,拓展思维.课堂8分钟.1.教材第96页练习.2.七彩作业.教学反思第2课时切线的判定和性质课时目标1.使学生能判定一条直线是否为一条切线,会过圆上一点作圆的切线,会运用切线的判定定理和性质定理解决问题,发展学生抽象思维能力的核心素养.2.经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯,培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.灵活运用切线的性质解决一些实际问题,培养学生会用数学知识解决简单几何问题的能力.学习重点掌握切线的判定定理及性质定理.学习难点切线的判定定理和性质的应用.课时活动设计新知导入通过多媒体动态演示实例,教师进行提问,这些现象有哪些共同点?设计意图:通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.思考如图,在☉O中,经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和☉O有什么位置关系?解:∵直线l⊥OA,而点A是☉O的半径OA的外端点,∴直线l与☉O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是☉O的半径.∴直线l与☉O相切.教材总结得到切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.设计意图:引导学生分析切线的特点,为后续做准备.新知探究已知直线l是☉O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)分析:这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,于是直线l与☉O相交,而这与直线l 与☉O相切矛盾.因此,半径OA垂直于直线l.教师点评:由于l是☉O的切线,点A为切点,∴圆心O到l的距离等于半径,所以OA就是圆心O到直线l的距离.∴直线l⊥OA.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是☉O的切线,切点为A,∴直线l⊥OA.设计意图:学生具有初步的逻辑分析能力和表达能力,课堂上适时的锻炼既能消除学生对证明的陌生感,又能提升学生的逻辑思维能力.典例精讲例1如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与☉O相切于点D.求证:AC是☉O的切线.师:要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.解:过点O作OE⊥AC,垂足为E,连接OD,OA.∵☉O与AB相切于点D,∴OD⊥AB.又△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线.∴OE=OD,即OE是☉O的半径.∴AC是☉O的切线.例2(1)如图1,AB是☉O的弦,PA是☉O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图2,AB是☉O的直径,DC切☉O于点C,连接CA,CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵OA,OB为☉O的半径,∴△OAB为等腰三角形.∴∠OAB=∠OBA.又∵PA是☉O的切线,∴由切线的性质,可知PA⊥OA.∴∠OAP=90°.∴∠OAB=∠OAP-∠BAP=90°-30°=60°.∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是☉O的切线,∴OC⊥CD.∴∠OCA=60°.∵OA=OC,∠ACD=30°,∴∠OCA=90°-30°=60°=∠OAC,△OAC是等边三角形.∴AC=OA=r=12×AB=12×12=6.设计意图:让学生能够应用新知识,进一步运用到实际学习内容中.巩固训练1.如图所示,线段AB经过圆心O,交☉O于点A,C,∠BAD=∠B=30°,边BD交圆于点D.BD是☉O的切线吗?为什么?解:BD是☉O的切线.理由:连接OD.∵∠BAD=30°,OA=OD,∴∠ADO=∠BAD=30°.∴∠BOD=∠ADO+∠BAD=60°.在△BOD中,∠B=30°,∠BOD=60°,∴∠BDO=90°.∴BD是☉O的切线.2.如图,已知直线AB经过☉O上的点C,并且OA=OB,CA=CB.求证:直线AB是☉O的切线.解:连接OC,∵OA=OB,AC=BC,∴OC⊥AB,∵点C为OC的端点且点C在☉O上,∴直线AB是☉O的切线.学生思考交流后师生共同解答.3.如图,OA=OB=5,AB=8,☉O的直径为6.求证:直线AB是☉O的切线.证明:如图,过点O作OC⊥AB于点C,∵OA=OB=5,AB=8,∴AC=BC=12AB=4.在Rt△AOC中,由勾股定理,可得OC=B2-B2=3.∵☉O的直径为6,∴OC为☉O的半径.又∵OC⊥AB,∴直线AB是☉O的直径.教师归纳:证切线时辅助线的添加方法:(1)有公共点,连半径,证垂直;(2)无公共点,作垂直,证半径.有切线时常用辅助线添加方法:见切线,连半径,得垂直.切线的其他重要结论:(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.设计意图:在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.课堂8分钟.1.教材第98页练习第1,2题,教材第101页习题24.2第4,5题.2.七彩作业.教学反思第3课时切线长定理和三角形的内切圆课时目标1.理解掌握切线长的概念和切线长定理,了解三角形的内切圆圆心和三角形的内心等概念,发展学生抽象思维能力的核心素养.2.利用圆的轴对称性帮助探求切线长的特征,结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念.培养学生观察、操作、归纳、猜想的能力以及增强学生的合作意识,进一步发展空间观念的核心素养.3.运用切线长定理和内心解决一些实际问题,培养学生会用数学知识解决简单几何问题的能力.学习重点切线长定理及其应用.学习难点有关切线长定理的有关计算和证明问题.课时活动设计情境引入同学们玩过悠悠球(如图1)吗?大家在玩悠悠球时是否想到过它在转动过程中还包含着数学知识呢?图2是悠悠球在转动的一瞬间的剖面示意图,从中你能抽象出什么样的数学图形(球的整体和中心轴可抽象成圆形,被拉直的线绳可抽象成线段)?这些图形的位置关系是怎样的?设计意图:通过同学们常玩的悠悠球来激起他们的学习兴趣,并进一步引出切线长及切线长定理.建议:教师在课前准备一个悠悠球,在课堂上直接展示,活跃课堂气氛.同时在抽象出数学图形的过程中,注意从上节课刚学过的切线的角度引导学生思考问题.新知探究如图,纸上有一☉O,P A为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是☉O半径吗?(2)PB是☉O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系?学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题.分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB,∠APO=∠BPO.而PB经过半径OB的外端点,∴PB是☉O的切线.设计意图:通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.新知讲解问题1:在☉O外任取一点P,过点P作☉O的两条切线,如图,则图形中存在哪些等量关系?问题2:将所画图形沿着直线PO进行对折,观察折线两旁的部分能否互相重合?请用语言概括你的发现.师生活动:教师指导学生运用猜想、测量、对折等方法和策略进行探究,并进行适时点拨后,学生交流、讨论,说明自己的发现,教师做好总结和鼓励.教师强调:(1)切线长的定义:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长,如图中的线段PA,PB.(2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.问题3:你能运用所学知识进行证明吗?师生活动:学生小组内讨论、交流,教师引导学生作辅助线证明三角形全等即可,学生写出证明过程,教师巡视、指导.证明:如图,连接OA,OB.∵PA,PB是☉O的两条切线,∴OA⊥P A,OB⊥PB.又∵OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP.∴PA=PB,∠APO=∠BPO.问题4:如何根据图形,用几何语言描述切线长定理呢?师生活动:学生根据定理的题设和结论,结合图形,进行回答,教师板书并补充.∵PA,PB是☉O的两条切线,∴PA=PB,∠APO=∠BPO.设计意图:这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线;②两条切线长相等;③这一点和圆心的连线平分两条切线的夹角.典例精讲例1如图,PA、PB是☉O的切线,切点分别是A、B,若∠APB=60°,PA=4,则☉O例2如图,P为☉O外一点,PA,PB分别切☉O于A,B两点,连接OP,交☉O于C,若P A=6.PC=23.求☉O的半径OA及两切线PA,PB的夹角.解:连接OA,∵PA是☉O的切线,∴∠OAP=90°.∴OP2=OA2+P A2.∵OP=OC+CP,OC=OA,PA=6,PC=23,∴(OA+23)2=OA2+62.∴OA=23.∴OC=OA=23.∴OP=OC+PC=43.∴OP=2OA.∴∠APO=30°.∵PA,PA分别切☉O于A,B两点,∴∠APO=∠BPO=30°.∴∠APB=60°.∴☉O的半径OA为23,两切线PA,PB的夹角为60°.教师总结:解决有关圆的切线长问题时,往往需要我们构建基本图形.(1)分别连接圆心和切点.(2)连接两切点.(3)连接圆心和圆外一点.切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据,必须掌握并能灵活应用.设计意图:让学生能够应用新知识,进一步运用到实际学习内容中.探究内切圆思考:如何在三角形内部画一个圆,使它与已知三角形的三边都相切?分析:(1)如果半径为r的☉I与△ABC的三边都相切,那么圆心I应满足什么条件?(2)在△ABC的内部,如何找到满足条件的圆心I呢?解:我们以前学过,三角形的三条角平分线交于一点,并且这个点到三条边的距离相等.因此,如图,分别作∠B,∠C的平分线BM和CN,设它们相交于点I,那么点I到AB,BC,CA的距离都相等.以I为圆心,点I到BC的距离ID为半径作圆,则☉I与三角形三条边都相切,圆I就是所求作的圆.教师总结:与三角形各边都相切的圆叫作三角形的内切圆;内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.设计意图:从一条线和圆相切,到两条线和圆相切形成切线长定理,再到三边都和圆相切形成三角形的内切圆,层层递进,符合学生的思维认知.典例精讲例3△ABC的内切圆☉O与BC,CA,AB分别相切于点D,E,F,且AB=9,BC=14,CA=13,求AF,BD,CE的长.解:设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4,BD=5,CE=9.小结:运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.设计意图:理解并掌握内心的定义.巩固训练1.如图,PA切☉O于点A,PB切☉O于点B,下列结论中,错误的是(D)A.∠APO=∠BPOB.P A=PBC.AB⊥OPD.PA=PO第1题图第2题图第3题图第4题图2.如图,PA,PB是☉O的两条切线,切点分别是A,B,如AP=4,∠APB=40°,则∠APO=20°,PB=4.3.如图,PA,PB是☉O的两条切线,切点为A,B,∠P=50°,点C是☉O上异于A,B的点,则∠ACB=65°或115°.4.△ABC的内切圆☉O与三边分别切于D,E,F三点,如图,已知AF=3,BD+CE=12,则△ABC的周长是30.设计意图:学生通过练习进一步熟悉切线长定理和内心的性质,并学会解决问题.旧知识和新知识的结合体现了不同单元内容之间延续性和关联性,在此过程中也培养了学生思维的多样性,促进了学生对教学内容的整体理解和把握,培养学生的核心素养.课堂8分钟.1.教材第100页练习第2题,教材第101页习题24.2第3,6题.2.七彩作业.教学反思。
人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系24.2.1点和圆的位置关系课件 新人教版
24.2.1 点和圆的位置关系
学习指南 知识管理 归类探究 当堂测评 分层作业
学习指南
教学目标 理解并掌握点和圆的三种位置关系及数量关系,探求过点画圆的过程,掌握 过不在同一直线上的三点画圆的方法.
课堂导入 如图是射击靶的示意图,它是由许多同心圆构成的,你知道击中靶上不同位 置的成绩是如何计算的吗?
∵CD 为斜边上的中线,
∴CD=12AB=525(cm).
∵AC=10
55 cm> 2
cm,∴点
A
在⊙C
外;
∵BC=5
55 cm< 2
cm,∴点 B 在⊙C 内;
∵CD=5
5 2
cm,∴点
D
在⊙C
上.
类型之二 反证法 用反证法证明:在一个三角形中,至少有一个内角小于或等于 60°.
已知:△ABC. 求证:△ABC 中至少有一个内角小于或等于 60°.
图 24-2-3
5.已知 A,B,C 三点,根据下列条件,说明 A,B,C 三点能否确定一个圆.如 果能,求出圆的半径;如果不能,请说明理由.
(1)AB=2 3+1,BC=4 3,AC=2 3-1; (2)AB=AC=10,BC=12.
解:(1)∵2 3+1+2 3-1=4 3, ∴AB+AC=BC, ∴A,B,C 三点共线, ∴不能确定一个圆. (2)∵10+10=20>12, ∴A,B,C 三点不共线,
2019/7/17
精选最新中小学教学课件
thank
you!
2019/7/17
精选最新中小学教学课件
知识管理
1.点和圆的位置关系 规 律:设圆的半径为 r,点到圆心的距离为 d,则有: (1)点在圆外⇔ d>r ; (2)点在圆上⇔ d=r ; (3)点在圆内⇔ d<r . 总 结:这个关系式既是点和圆的位置关系的一种判别方法,又是点和圆 的位置关系的一个性质.
人教版数学九年级上册第二十四章《24.2.2 直线和圆的位置关系》课件(共22张PPT)
O
l A
Or
d
A
l
O
A
l
证切线时辅助线的添加方法: (1) 有交点,连半径,证垂直; (2) 无交点,作垂直,证半径.
典型例题
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D =
30°.求证:CD是⊙O的切线.
解:如图,连接OC.
性质定理 有1个公共点 d=r
圆的切线垂直于 经过切点的半径
有切线时常用辅助线 添加方法: 见切线,连切点,得垂直
中考实题
1.如图,AB是⊙O的直径,PA切⊙O于点A,连接PO并延长交⊙O于点C,连接AC,
AB=10,∠P=30° ,则AC的长度是( A )
D
115
3.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线 上一点,且AP=AC.求证:PA是⊙O的切线.
解:如图,连接OA. 因为∠B=60°, 所以∠AOC=2∠B=120°. 因为OA=OC,所以∠OAC=∠OCA=30°. 又AP=AC,所以∠P=∠ACP=30°, 所以∠OAP=∠AOC-∠P=90°. 所以OA⊥PA,所以PA是⊙O的切线.
再见
A O
C
应用该定理时,两个条件缺一不可:一是经过半径的外 端;二是垂直于这条半径.
判断下面的直线是不是圆的切线:
O.
A l
(1)
O.
A
l
B
(2)
O
A
l
(3)
判断一条直线是一个圆的切线有三个方法: 1.定义法:与圆有唯一公共点的直线是圆的切线;
2.数量关系法:圆心到这条直线的距离等于半径, 即d=r;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章24. 2. 5实验与探究圆和圆的位置关系0识点精讲
知识点:圆和圆的位置关系
圆与圆的位置关系有五种,如下表所示(R、r为两圆的半径,R>r, d为两圆圆心的距离):
位置关系图形公共点个数
公共点名
称数量关系
外离0d>R+r 外切L切点d=R+r 相交2交占R-r<d<R+r 内切1切点 d 二R-r 内含0d<R-r
关键提醒:(1)两圆的五种位置关系主要根据公共点的个数及两圆的相对位置来确定;
(2)利用数量关系确定两圆的位置关系,当d>R-r时,两圆可能相交,还可能外切或外离;当d〈R+r 时,两圆可能相交,还可以内切或内含;只有当R-r<d<R+r时,才能判定两圆相交.具有内切和内含关
系的两圆半径不可能相等,否则这两圆重合;同心圆时d二0;
(3)己知两圆相切时,要分外切、内切两种情况考虑;
(4)连心线和圆心距是两个不同的概念,连心线是通过不同的圆的圆心的一条直线,圆心距是指
两个圆心之间的线段的长度,圆心距是连心线的一部分;
(5)两圆相切的性质:两圆相切,切点一定在连心线上,它是轴对称图形,对称轴是两圆的连心线.
两圆相交的性质:相交两圆的连心线垂直平分公共弦;
(6)有关两圆问题,作连心线(圆心距)是常用的辅助线.
考点圆和圆的•位置关系的判定
【例1] 已知两圆半径之比是5 : 3,如果「两圆内切时「,圆心距等于6,问当两圆的圆心距分别
是24, 5, 20, 0时,相应两圆的位置关系如何?
解:•・・两圆的半径之比为5 : 3,
可设大圆半径R二5x,小圆半径r=3x.
・・・两圆内切时圆心距等于6,
5x-3x=r6. x=3. R=15, r=9. R+r=24, R-r=6.
当两圆圆心距di=24时,有di=R+r,此时两圆外切;
当两圆圆心距d2=5时,有d2<R~r,此时两圆内含;
当两圆圆心距220吋,有R-r,<dXR+r,此吋两圆相交;
当两圆圆心距dFO时,有di<R-r,此时两圆内含,且两圆圆心重合,两圆为同心圆.
点拨:根据两圆的位置关系与R, r, d的关系求解、判定.
考点2 :在直角坐标系中解决问题
【例2] 如图,在平面直角坐标系中,点0.的坐标为(-4, 0),以点0.为圆心,8为半径的圆
与x轴交于A、B两点,过点A作直线1与x轴负方向相交成60°的角,且交y轴于点C,以点0,13, 5) 为圆心的圆与x轴相切于点D.
(1)求直线1的解析式;
(2)将002以每秒1个单位的速度沿轴向左平移,当002第一次与00:外切时,求OCU平移的时间.
解:⑴由题意,得0A=|-4| + |8|=12,
・・・点A 的坐标为(-12, 0).
•・• 在 RtAAOC 中,Z0AC=60° , 0212,
求得0012逅・•・点C 的坐标为(0, -12^3)…
设直线1的解析式为y 二kx+b,由直线1过A 、C 两点,
・・・直线1的解析式为y 二-诵X -12V 3
(2)如•图,设002平移ts 后到003处与O0”i 第一次外切于点P,
003与 x 轴相切于点 Di,连接 0心、03D I ,则 O I O 3=,O I P+PO 3=8+5=13.
V 丄X 轴,・・・O 3D L =5. 在 RtZXOiOsDi 中,OiDi
・・・ 0】D 二OQ+OD 二4+13=17, D :D=0iD-0iDi= 17-12=5,
5
・•・1=1=5 (s).. A OO2平移的时间为5s.
点拨:⑴用待定系数法求直线1的解析式,可先求出•它与坐标轴的交点A 、C 的坐标;⑵.如图, 先画出002第一次平移到与OOi 外切为00,,连接0心、0』,构造直角三角形求出0.1)的距离,再求 时间t.
(-12\3 = b, 得
[o = -12k + b,
解得。