黑龙江省伊春市2019-2020学年高三上学期期末数学试卷(理科)D卷
2019-2020年高三上学期期末考试数学理(2021年整理)
2019-2020年高三上学期期末考试数学理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020年高三上学期期末考试数学理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020年高三上学期期末考试数学理(word版可编辑修改)的全部内容。
2019—2020年高三上学期期末考试数学理xx 。
1一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
“”是“直线和直线互相垂直”的A.充分不必要条件B 。
必要不充分条件 C.充要条件D 。
既不充分也不必要条件 【答案】C【解析】当时,直线为,此时两直线不垂直,所以,所以的斜率为,若直线垂直,则有,即,所以“”是“直线和直线互相垂直"的充要条件 ,选C 。
2。
如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为A. B. C. D 。
1 【答案】A【解析】由三视图可知,该几何体是四棱锥,底面为边长为1的正方形,高为1的四棱锥,所以体积为,选A.3.设0.533,log 2,cos 2a b c ===,则A.B 。
C. D 。
【答案】A【解析】,,,,,所以,选A 。
4.设向量()()cos ,1,2,sin a b αα=-=,若,则等于A. B 。
C. D.3【答案】B【解析】因为,所以,即。
所以tan 1211tan()41tan 123πααα---===++,选B. 5。
已知集合,集合,则如图所示的韦恩图中阴影部分所表示的集合为A.B.C. D. 【答案】C【解析】{}222{20}{02}M x y x x x x x x x ==-=-≥=≤≤,{}3,0{1}x N y y x y y ==>=>,则阴影部分为{}x x M N x M N ∈∉且,,所以,即阴影部分为{}{012}x x MN x M N x x x ∈∉=≤≤>且或,即,选C 。
黑龙江省伊春市第二中学2020届高三数学上学期期末考试试题文(含解析)
5.已知向量aBiblioteka (2,1),
r b
(0,1)
,
(a
kb )
b
3
,则
k=(
)
A. -2 【答案】D
B. 2
C. -4
D. 4
【解析】
【分析】
直接利用向量的坐标运算以及向量的数量积求解即可.
【详解】解:因为
a
(2,
1)
,
b
(0,1)
,
a
b=2
0+
11=
1
所以 (a
kb) b
a
b
kb 2
ln ex ex
y
11.函数
x
的图象大致为( )
A.
B.
C.
D.
【答案】C 【解析】 【分析】
由函数 f (x) 为奇函数,排除 B、D,再由当 x>0 时, ex 0 ,则有
ln ex ex ln ex x 可排除 A,得到答案.
1n ex ex
y
【详解】解:根据题意,
黑龙江省伊春市第二中学 2020 届高三数学上学期期末考试试题 文
(含解析)
分值:150 分 时间:120 分钟 一、选择题(每题只有一个正确选项)
1.已知集合 A {x | (x 1)(x 3) 0} , B {1, 2,3} ,则 A B ( )
A. {x | 1 x 3}
B. {x |1 x 2}
x 3
x 3
由
x
y
1
0
得
y
4
,即
A(3,4)
,
代入目标函数 z=2﹣x 3y ,
得 z=2- 3 3=﹣4 =6-12 6 .
2019-2020年高三上学期期末数学试卷含解析
2019-2020年高三上学期期末数学试卷含解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B=.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为.4.根据如图所示的伪代码,则输出S的值为.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.8.若函数的最小正周期为,则的值为.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.11.若实数x,y满足,则的最小值为.12.已知非零向量满足,则与夹角的余弦值为.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.16.(14分)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD 为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.17.(14分)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18.(16分)在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.19.(16分)已知函数,,(1)解关于x(x∈R)的不等式f(x)≤0;(2)证明:f(x)≥g(x);(3)是否存在常数a,b,使得f(x)≥ax+b≥g(x)对任意的x>0恒成立?若存在,求出a,b的值;若不存在,请说明理由.20.(16分)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1)+1=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b 的值.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.[选修4-5:不等式选讲](本小题满分0分)24.已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B 题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).26.已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.xx江苏省苏北四市(徐州、淮安、连云港、宿迁)联考高三(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B={﹣2,0,3} .【考点】并集及其运算.【分析】利用并集定义直接求解.【解答】解:∵集合A={﹣2,0},B={﹣2,3},∴A∪B={﹣2,0,3}.故答案为:{﹣2,0,3}.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.【考点】复数代数形式的乘除运算.【分析】由(1﹣i)z=2i,得,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由(1﹣i)z=2i,得=,则z的模为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为14.【考点】茎叶图.【分析】求出剩下的4个分数平均数,代入方差公式,求出方差即可.【解答】解:剩下的4个分数是:42,44,46,52,平均数是:46,故方差是:(16+4+0+36)=14,故答案为:14.【点评】本题考查了读茎叶图问题,考查求平均数以及方差问题,是一道基础题.4.根据如图所示的伪代码,则输出S的值为20.【考点】程序框图.【分析】根据条件进行模拟计算即可.【解答】解:第一次I=1,满足条件I≤5,I=1+1=2,S=0+2=2,第二次I=2,满足条件I≤5,I=2+1=3,S=2+3=5,第三次I=3,满足条件I≤5,I=3+1=4,S=5+4=9,第四次I=4,满足条件I≤5,I=4+1=5,S=9+5=14,第五次I=5,满足条件I≤5,I=5+1=6,S=14+6=20,第六次I=6不满足条件I≤5,查询终止,输出S=20,故答案为:20【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,再用列举法求出所取2个数的和能被3整除包含的基本事件个数,由此能求出所取2个数的和能被3整除的概率.【解答】解:从1,2,3,4,5,6这六个数中一次随机地取2个数,基本事件总数n=,所取2个数的和能被3整除包含的基本事件有:(1,2),(1,5),(2,4),(3,6),(4,5),共有5个,∴所取2个数的和能被3整除的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为1.【考点】双曲线的简单性质.【分析】求得抛物线的焦点,双曲线的右焦点,由题意可得方程,解方程即可得到a的值.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线的右焦点为(,0),由题意可得为=2,解得a=1.故答案为:1.【点评】本题考查双曲线的方程和性质,同时考查抛物线的焦点,考查运算能力,属于基础题.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面直径与高都是2,∴母线长为:=,∴圆锥的侧面积为:πrl=.故答案为:.【点评】本题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.若函数的最小正周期为,则的值为﹣.【考点】正弦函数的图象.【分析】利用正弦函数的周期性求得ω,再利用诱导公式求得的值.【解答】解:∵函数的最小正周期为=,∴ω=10,则=sin(10π•﹣)=sin=sin=﹣sin=﹣,故答案为:.【点评】本题主要考查正弦函数的周期性,利用诱导公式求三角函数的值,属于基础题.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:∵S2=2a2+3,S3=2a3+3,∴a1=a1q+3,a1(1+q)=+3,∴q2﹣2q=0,q≠0.则公比q=2.故答案为:2.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为(﹣∞,﹣3] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].故答案为:(﹣∞,﹣3].【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.11.若实数x,y满足,则的最小值为8.【考点】基本不等式.【分析】实数x,y满足,可得x=∈,解得y>3.则=y+3+=y﹣3++6,利用基本不等式的性质即可得出.【解答】解:∵实数x,y满足,∴x=∈,解得y>3.则=y+3+=y﹣3++6≥+6=8,当且仅当y=4(x=)时取等号.故答案为:8.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.12.已知非零向量满足,则与夹角的余弦值为.【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得与夹角的余弦值.【解答】解:非零向量满足,不妨设=1,设与夹角为θ,如图所示:设=,=,=+,则OA=0B=0C=1,设=2=2,则=2﹣,∠ODA即为θ,△OAC和△OBC都是边长等于3的等边三角形.利用余弦定理可得BD==,cosθ==,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为[7,13] .【考点】圆与圆的位置关系及其判定.【分析】求出AB的中点的轨迹方程,即可求出的取值范围.【解答】解:取AB的中点C,则=2||,C的轨迹方程是x2+y2=,|C1C2|=5由题意,||最大值为5+1+=,最小值为5﹣1﹣=.∴的取值范围为[7,13],故答案为[:7,13].【点评】本题考查圆与圆的位置关系,考查学生的计算能力,正确转化是关键.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为[﹣20,﹣16] .【考点】分段函数的应用.【分析】因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,只需g(x)=x3﹣9x2+24x+a (x≥1)与x轴有3个交点即可,【解答】解:因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,令g(x)=x3﹣9x2+24x+a(x≥1),g′(x)=3x2﹣18x+24=3(x2﹣6x+8)=2(x﹣2)(x﹣4),当x∈(1,2),(4,+∞)时g(x)单调递增,当x∈(2,4)时g(x)单调递减,依题意只需g(x)=x3﹣9x2+24x+a(x≥1)与x轴有3个交点即可,及g(1)=16+a≤0,g(2)=20+a≥0,∴﹣20≤a≤﹣16.故答案为[﹣20,﹣16]【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)(xx秋•淮安期末)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理化简已知等式可得2cosAsinA=sinA,结合sinA≠0,可求,结合范围A∈(0,π),可求A的值.(2)由已知利用同角三角函数基本关系式可求sinB,利用倍角公式可求sin2B,cos2B,由sin(B﹣C)=sin(2B﹣),利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,…(2分)即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即,…(4分)又A∈(0,π),所以.…(6分)(2)因为,B∈(0,π),所以,…(8分)所以,,…(10分)所以=…(12分)==.…(14分)【点评】本题主要考查了正弦定理,同角三角函数基本关系式,倍角公式,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16.(14分)(xx秋•淮安期末)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取BE中点F,连结CF,MF,证明四边形MNCF是平行四边形,所以MN∥CF,即可证明直线MN∥平面EBC;(2)证明BC⊥平面EAB,得到BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,即可证明直线EA⊥平面EBC.【解答】证明:(1)取BE中点F,连结CF,MF,又M是AE的中点,所以MF=AB,又N是矩形ABCD边CD的中点,所以NC=AB,所以MF平行且等于NC,所以四边形MNCF是平行四边形,…(4分)所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.…(7分)(2)在矩形ABCD中,BC⊥AB,又平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,…(10分)又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.…(14分)【点评】本题考查线面平行、线面垂直的证明,考查学生分析解决问题的能力,属于中档题.17.(14分)(xx秋•淮安期末)如图,已知A,B两镇分别位于东西湖岸MN 的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由tan∠BAN=,∠BCN=,得到|AD|,|DB|、|AB|间的关系,然后利用直角三角形的性质求解;(2)方案①:总铺设费用为5×4=20(万元).方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,则总铺设费用为.设,则,,求出函数的极小值,即函数的最小值得答案.【解答】解:(1)过B作MN的垂线,垂足为D,如图示:在Rt△ABD中,,所以,在Rt△BCD中,,所以CD=BD.则,即BD=3,所以CD=3,AD=4,由勾股定理得,(km).所以A,B两镇间的距离为5km.…(4分)(2)方案①:沿线段AB在水下铺设时,总铺设费用为5×4=20(万元).…(6分)方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,所以.则总铺设费用为.…(8分)设,则,令f'(θ)=0,得,列表如下:所以f(θ)的最小值为.所以方案②的总铺设费用最小为(万元),此时.…(12分)而,所以应选择方案②进行铺设,点P选在A的正西方向km处,总铺设费用最低.…(14分)【点评】本题考查了简单的数学建模思想方法,考查了利用导数求函数的最值,是中档题18.(16分)(xx秋•淮安期末)在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可知:离心率e==,则a=c,右焦点F到左准线的距离c+=6,即可求得c和a的值,则b2=a2﹣c2=8,即可求得椭圆方程;(2)(i)设直线方程为:y=(x+4),求得M点,即可求得NF的方程和N的坐标,则丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9;(ii)设直线方程为:y=k(x+4),代入椭圆方程,求得P点坐标,求得直线PF 方程,则求得N点坐标,则直线AN:y=﹣﹣,代入椭圆方程,求得M点坐标,求得丨AM丨,△PAQ的面积S===≤=10.【解答】解:(1)由题意可知:椭圆C: +=1(a>b>0)焦点在x轴上,由离心率e==,则a=c,由右焦点F到左准线的距离c+=6,解得:c=2,则a=4,由b2=a2﹣c2=8,∴椭圆的标准方程为:;(2)(i)由(1)可知:椭圆的左顶点(﹣4,0),F(2,0),设直线方程为:y=(x+4),即y=x+2,则M(2,0),k MF==﹣,则k NF=,直线NF:y=(x﹣2)=﹣4,则N(0,﹣4),丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9,(ii)设直线方程为:y=k(x+4),∴,整理得:(1+2k2)x2+16k2x+32k2﹣16=0,解得:x1=4,x2=,则y2=,则P(,),∴k MF==﹣k,由M(0,4k),F(2,0),∴k NF=,则NF:y=(x﹣2),则N(0,﹣),则直线AN:y=﹣﹣,代入椭圆方程:整理得:(1+)x2+x+﹣16=0,解得:x1=4,x2=,则y2=,则Q(,),∴k PQ=,直线PQ:y﹣=(x﹣),则x M=﹣=,∴丨AM丨=+4=,△PAQ的面积S==••=,=≤=10,当且仅当2k=,即k=时,取最大值,△PAQ的面积的最大值10.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考三角形的面积公式的应用,考查基本不等式的综合应用,属于难题.19.(16分)已知函数,,(1)解关于x(x∈R)的不等式f(x)≤0;(2)证明:f(x)≥g(x);(3)是否存在常数a,b,使得f(x)≥ax+b≥g(x)对任意的x>0恒成立?若存在,求出a,b的值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)通过讨论a的范围,求出不等式的解集即可;(2)设h(x)=f(x)﹣g(x),求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值,证出结论即可;(3)假设存在,得到对任意的x>0恒成立,根据函数的单调性判断即可.【解答】解:(1)当a=0时,,所以f(x)≤0的解集为{0};当a≠0时,,若a>0,则f(x)≤0的解集为[0,2ea];若a<0,则f(x)≤0的解集为[2ea,0].综上所述,当a=0时,f(x)≤0的解集为{0};当a>0时,f(x)≤0的解集为[0,2ea];当a<0时,f(x)≤0的解集为[2ea,0].…(4分)(2)设,则.令h'(x)=0,得,列表如下:所以函数h(x)的最小值为,所以,即f(x)≥g(x).…(8分)(3)假设存在常数a,b使得f(x)≥ax+b≥g(x)对任意的x>0恒成立,即对任意的x>0恒成立.而当时,,所以,所以,则,所以恒成立,①当a≤0时,,所以(*)式在(0,+∞)上不恒成立;②当a>0时,则,即,所以,则.…(12分)令,则,令φ'(x)=0,得,当时,φ'(x)>0,φ(x)在上单调增;当时,φ'(x)<0,φ(x)在上单调减.所以φ(x)的最大值.所以恒成立.所以存在,符合题意.…(16分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.20.(16分)(xx秋•淮安期末)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1+1)=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.【考点】数列的求和;等比数列的通项公式.【分析】(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),可得(a n+1)(a n+1﹣a n﹣1)=6(a n+1),因此a n+1﹣a n﹣1=6,分奇数偶数即可得出.(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,利用单调性即可得出.当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,即可得出.(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),可得5×4m(n﹣1)=5×[3(1+4+42+...+4k﹣1)+1],=3[5(1+4+42+ (4)﹣1)+2]﹣1,….因为5(1+4+42+…+4k﹣1)+2为正整数,可得数列{b n}是数列{a n}中包含的无穷等比数列,进而证明结论.解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,n≥2时,,可得k n是正整数,因此以数列{b n}是数列{a n}中包含的无穷等比数列,即可证明.【解答】解:(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),所以(a n+1)(a n+1+1)﹣(a n﹣1+1)(a n+1)=6(S n+n)﹣6(S n﹣1+n﹣1),即(a n+1)(a n+1﹣a n﹣1)=6(a n+1),又a n>0,所以a n+1﹣a n﹣1=6,…(3分)所以a2k﹣1=a+6(k﹣1)=6k+a﹣6,a2k=5+6(k﹣1)=6k﹣1,k∈N*,故…(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,令,则,所以a≤f(1)=4.…(8分)当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,所以a≤9.又a1=a>0,所以实数a的取值范围是(0,4].…(10分)(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),因为,所以5×4m(n﹣1)=5×[3(1+4+42+…+4k﹣1)+1],=3[5(1+4+42+…+4k﹣1)+2]﹣1,…(14分)因为5(1+4+42+…+4k﹣1)+2为正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=4m(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,而当n≥2时,,即,…(14分)又因为k1=2,5m(3m+1)n﹣2都是正整数,所以k n也都是正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=3m+1(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)【点评】本题考查了构造方法、等差数列与等比数列的通项公式及其求和公式,考查了分类讨论方法、推理能力与计算能力,属于难题.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.(xx秋•淮安期末)如图,AB为半圆O的直径,D为弧BC的中点,E为BC 的中点,求证:AB•BC=2AD•BD.【考点】与圆有关的比例线段.【分析】证明△ABD∽△BDE,即可证明结论.【解答】证明:因为D为弧BC的中点,所以∠DBC=∠DAB,DC=DB,因为AB为半圆O的直径,所以∠ADB=90°,又E为BC的中点,所以EC=EB,所以DE⊥BC,所以△ABD∽△BDE,所以,所以AB•BC=2AD•BD.…(10分)【点评】本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-2:矩阵与变换](本小题满分0分)22.(xx秋•淮安期末)已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.【考点】特征向量的定义.【分析】由条件知,Aα=2α,从而,由此能求出a,b的值.【解答】解:∵矩阵A=的一个特征值为2,其对应的一个特征向量为a=,∴由条件知,Aα=2α,即,即,…(6分)∴,解得∴a,b的值分别为2,4.…(10分)【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意特征向量的性质的合理运用.[选修4-4:坐标系与参数方程](本小题满分0分)23.(xx秋•淮安期末)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t 为参数).当圆心C到直线l的距离为时,求m的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】根据极坐标方程,参数方程与普通方程的关系求出曲线的普通方程,利用点到hi直线的距离公式进行求解即可.【解答】解:由ρsin(θ﹣)=m得ρsinθcos﹣ρcosθsin=m,即x﹣y+m=0,即直线l的直角坐标方程为x﹣y+m=0,圆C的普通方程为(x﹣1)2+(y+2)2=9,圆心C到直线l的距离,解得m=﹣1或m=﹣5.【点评】本题主要考查参数方程,极坐标方程与普通方程的关系,结合点到直线的距离公式解决本题的关键.[选修4-5:不等式选讲](本小题满分0分)24.(xx秋•淮安期末)已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【考点】绝对值不等式的解法.【分析】根据基本不等式的性质求出m的值,从而解不等式即可.【解答】解:因为a,b,c>0,所以=,当且仅当时,取“=”,所以m=18.…(6分)所以不等式|x+1|﹣2x<m即|x+1|<2x+18,所以﹣2x﹣18<x+1<2x+18,解得,所以原不等式的解集为.…(10分)【点评】本题考查了基本不等式的性质,考查解不等式问题,是一道基础题.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(xx秋•淮安期末)甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)利用古典概率计算公式、相互独立事件概率计算公式即可得出.(2)利用互斥事件概率计算公式、相互独立事件概率计算公式即可得出.【解答】解:(1)设“甲选做D题,且乙、丙都不选做D题”为事件E.甲选做D题的概率为,乙,丙不选做D题的概率都是.则.答:甲选做D题,且乙、丙都不选做D题的概率为.(2)X的所有可能取值为0,1,2,3.,,,.所以X的概率分布为X的数学期望.【点评】本题考查了古典概率计算公式、互斥事件概率计算公式、相互独立事件概率计算公式及其数学期望计算公式,考查了推理能力与计算能力,属于中档题.26.(xx秋•淮安期末)已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.【考点】二项式定理的应用;二项式系数的性质.【分析】(1)(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.即可证明.(2)当k∈N*时,=.即可证明.【解答】(1)解:(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.所以.(2)证明:当k∈N*时,=.所以=.由(1)知,即,所以.【点评】本题考查了二项式定理的性质、组合数的性质,考查了推理能力与计算能力,属于中档题.。
黑龙江省伊春市2019-2020学年数学高三上学期理数期中考试试卷D卷
黑龙江省伊春市2019-2020学年数学高三上学期理数期中考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018高一上·遵义月考) 设集合,,则 =()A .B .C .D .2. (2分) (2015高二下·遵义期中) 复数z=1﹣i,则 =()A .B .C .D .3. (2分) (2019高三上·广东期末) 已知是边长为2的等边三角形边上的动点,则的值()A . 有最大值B . 是定值C . 有最小值D . 与点的位置有关4. (2分) (2018高三上·济南月考) 已知命题:,有,:,,则在命题:;:;:和:中,真命题是()A . ,B . ,C . ,D . ,5. (2分)已知,则等于()A .B .C .D .6. (2分) (2017高二下·黄山期末) 设矩形ABCD,以A、B为左右焦点,并且过C、D两点的椭圆和双曲线的离心率之积为()A .B . 2C . 1D . 条件不够,不能确定7. (2分)若a<b<0,则下列选项正确的是()A .B .C . an<bn(n∈N,n≥2)D . ∀c≠0,都有ac<bc8. (2分)某游戏中,一个珠子从如图所示的通道由上至下滑下,从最下面的六个出口出来,规定猜中出口者为胜.如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为()A .B .C .D . 以上都不对9. (2分) (2016高一下·汕头期末) 要得到y=sin(﹣2x+ )的图象,只需将y=sin(﹣2x)的图象()A . 向左平移个单位B . 向右平移个单位C . 向左平移个单位D . 向右平移个单位10. (2分)已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为().A . -1<a<2B . -3<a<6C . a<-1或a>2D . a<-3或a>611. (2分) (2016高二上·中江期中) 已知某几何体的三视图如图所示,则该几何体的体积是()A . 108B . 100C . 92D . 8412. (2分) (2017高一上·河北期末) 设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0]时,f(x)=()x﹣1,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0,恰有4个不同的实数根,则实数a(a>0,a≠1)的取值范围是()A . (,1)B . (1,4)C . (1,8)D . (8,+∞)二、填空题 (共4题;共4分)13. (1分) (2017高二下·夏县期末) 若,则 =________14. (1分) (2020高二上·无锡期末) 已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的渐近线方程为________15. (1分)(2018·大新模拟) 若是夹角为的单位向量,向量,且,则 ________.(用弧度制表示)16. (1分)(2016·连江模拟) 已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为________.三、解答题 (共7题;共70分)17. (10分) (2019高二上·林芝期中) 等差数列的前项和记为,已知.(1)求通项;(2)若,求.18. (10分) (2017高三上·郫县期中) 已知函数,x∈R,ω>0.(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求函数y=f(x)的单调区间.19. (15分)(2017·山西模拟) 某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.20. (5分) (2016高二下·普宁期中) 如图,正三棱柱ABC﹣A1B1C1中,D是BC的中点,AA1=AB=1.(Ⅰ)求证:A1C∥平面AB1D;(Ⅱ)求二面角B﹣AB1﹣D的正切值;(Ⅲ)求点C到平面AB1D的距离.21. (10分)将函数y=lgx的图象向左平移一个单位长度,可得函数f(x)的图象;将函数y=cos(2x﹣)的图象向左平移个单位长度,可得函数g(x)的图象.(1)在同一直角坐标系中画出函数f(x)和g(x)的图象.(2)判断方程f(x)=g(x)解的个数.22. (10分) (2018高二上·哈尔滨月考) 直角坐标系和极坐标系的原点与极点重合,轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为为参数)。
2019-2020年高三上学期期末考试数学试卷 含解析
2019-2020年高三上学期期末考试数学试卷 含解析考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸。
一、选择题:本大题共10小题,每小题4分,共40分。
1.已知集合,,则 ( )A .B .C .D .2.若复数,其中为虚数单位,则 = ( )A .1−B .1+C .−1+D .−1−3. “一条直线与平面内无数条直线异面”是“这条直线与平面平行”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4. 二项式的展开式中常数项为 ( )A .B .C .D .5.若向量(sin 2,cos ),(1,cos )a b ααα==,且,则的值是 ( )A .B .C .D .26.点P 为直线上任一点,,则下列结论正确的是 ( )A .B .C .D .以上都有可能7.设函数,若关于x 的方程恰有三个不同的实数根,则实数a 的取值范围是 ( )A .B .C .D .8.已知数列的首项,前n 项和为,且满足,则满足的n 的最大值是 ( )A .8B .9C .10D .119.在中,点A 在OM 上,点B 在ON 上,且,,若,则终点P 落在四边形ABNM 内(含边界)时,的取值范围是 ( )A .B .C .D .10.点P 为棱长是2的正方体的内切球O 球面上的动点,点M 为的中点,若满足,则动点P 的轨迹的长度为 ( )A .B .C .D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.某几何体的三视图是如图所示的直角三角形、半圆和等腰三角形,各边的长度如图所示,则此几何体的体积是______,表面积是____________.12.袋中有3个大小、质量相同的小球,每个小球上分别写有数字,随机摸出一个将其上的数字记为,然后放回袋中,再次随机摸出一个,将其上的数字记为,依次下去,第n 次随机摸出一个,将其上的数字记为记,则(1)随机变量的期望是_______;(2)当时的概率是_______。
黑龙江省伊春市高三上学期期末数学试卷(理科)
黑龙江省伊春市高三上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)复数的虚部是()A . 0B . 5iC . 1D . i2. (2分) (2019高一上·喀什月考) 设函数的定义域为,值域为,则()A . RB .C .D .3. (2分)(2018·广东模拟) 执行如图所示的程序框图,若输入,则输出的的值为()A .B .C .D .4. (2分)(2016·运城模拟) 两个随机变量x,y的取值表为x0134y2.24.34.86.7若x,y具有线性相关关系,且 = x+2.6,则下列四个结论错误的是()A . x与y是正相关B . 当x=6时,y的估计值为8.3C . x每增加一个单位,y增加0.95个单位D . 样本点(3,4.8)的残差为0.565. (2分) (2019高一下·东莞期末) 已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是()A .B .C .D .6. (2分)(2020·梧州模拟) 若x , y满足约束条件,则z=2x﹣3y的最小值为()A . ﹣2B . ﹣1C . 1D . 27. (2分) (2018高二下·普宁月考) 在正方体中,分别是的中点,则()A .B .C . 平面D . 平面8. (2分)双曲线的渐近线与抛物线相切,则该双曲线的离心率等于()A .B .C .D .9. (2分)(2017·衡阳模拟) 已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若,其中m,n∈R.则m+n的取值范围是()A . (0,1)B . (﹣1,0)C . (1,+∞)D . (﹣∞,﹣1)10. (2分)设,则f[f(﹣1)]=()A . 1B . 2C . 4D . 8二、填空题: (共5题;共8分)11. (3分) (2017高一下·宿州期末) 为响应国家治理环境污染的号召,增强学生的环保意识,宿州市某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了l00学生的成绩进行统计,成绩频率分布直方图如图所示.估计这次测试中成绩的众数为________;平均数为________;中位数为________.(各组平均数取中值计算,保留整数)12. (1分) (2020高二下·北京期中) 已知展开式的二项式系数之和为128,则其展开式中含项的系数是________.13. (1分)若不等式log2(|x+1|+|x﹣2|﹣m)≥2恒成立,则实数m的取值范围为________14. (2分) (2019高三上·浙江期末) 某三棱锥的三视图如图所示,则该三棱锥的体积为________,表面积为________.15. (1分) (2016高二下·唐山期中) 若直线y= x+b与曲线y=﹣ x+lnx相切,则b的值为________.三、解答题: (共6题;共65分)16. (10分) (2018高一下·汪清期末) 在中,角的对边分别为(1)已知,求的大小;(2)已知,求的大小.17. (15分) (2019高二下·南昌期中) 如图1,在矩形中,,,分别在线段上,,将矩形沿折起,记折起后的矩形为,且平面平面,如图2.(1)求证:平面;(2)若,求证:;(3)求四面体体积的最大值.18. (10分) (2016高一下·宿州期中) 设数列{an}的前n项和为Sn=2n2 , {bn}为等比数列,且a1=b1 ,b2(a2﹣a1)=b1 .(1)求数列{an}和{bn}的通项公式;(2)设cn= ,求数列{cn}的前n项和Tn .19. (10分)(2018·永州模拟) 某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.(1)求保险公司在该业务所或利润的期望值;(2)现有如下两个方案供企业选择:方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.请根据企业成本差异给出选择合适方案的建议.20. (10分) (2015高二下·福州期中) 已知函数f(x)= ﹣kx且f(x)在区间(2,+∞)上为增函数.(1)求k的取值范围;(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.21. (10分) (2016高二下·重庆期中) 已知椭圆C: =1(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为 b.(1)求椭圆C的离心率;(2)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共5题;共8分)11-1、12-1、13-1、14-1、15-1、三、解答题: (共6题;共65分) 16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、第11 页共11 页。
黑龙江省伊春市高三上学期数学期末考试试卷
黑龙江省伊春市高三上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高三上·吉林期中) 已知集合,则()A .B .C .D .2. (2分)(2019·厦门模拟) 已知复数满足,则()A .B .C . 5D . 103. (2分) (2019高二上·宁波期中) 若点到直线的距离为4,且在不等式表示的平面区域内,则点的横坐标是()A . 7或-3B . 7C . -3D . -7或34. (2分) (2020高一上·天津月考) 设,则是的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件5. (2分)若实数x,y满足约束条件,且目标函数z=x+y的最大值等于()A . 2B . 3C . 4D . 16. (2分)(2018·普陀模拟) 如图所示的几何体,其表面积为,下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为,则该几何体的主视图的面积为()A . 4B . 6C . 8D . 107. (2分) (2015高二下·福州期中) 若曲线f(x)=ax3+lnx存在垂直于y轴的切线,则实数a的取值范围()A . (1,+∞)B . (﹣∞,1)C . (0,+∞)D . (﹣∞,0)8. (2分) (2016高一上·铜仁期中) 函数f(x)=3 的值域为()A . [0,+∞)B . (﹣∞,0]C . [1,+∞)D . (﹣∞,+∞)9. (2分) (2018高二上·寿光月考) 设,分别是双曲线(,)的左、右焦点,若双曲线右支上存在一点,使,为坐标原点,且,则双曲线的离心率为()A .B .C .D .10. (2分)(2020·厦门模拟) 在正方体中,点是线段上的动点,以下结论:① 平面;② ;③三棱锥,体积不变;④ 为中点时,直线与平面所成角最大.其中正确的序号为()A . ①④B . ②④C . ①②③D . ①②③④二、填空题 (共7题;共8分)11. (1分)在等比数列{an}中,S4=65,,则a1=________.12. (1分) (2020高二下·吉林月考) 的展开式中第三项的系数为________。
黑龙江省伊春市宜春张家山中学2019-2020学年高三数学理上学期期末试题含解析
黑龙江省伊春市宜春张家山中学2019-2020学年高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A.B. C. D.6参考答案:B2. 如图,在正方形ABCD中分别以A,B为圆心、正方形的边长为半径画,,在正方形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.参考答案:A【分析】先求出阴影部分的面积,再利用几何概型的概率公式求解.【详解】如图所示,设正方形的边长为1,因为AB=AE=BE=1,所以∠ABE=,所以弓形AFE的面积为.所以阴影部分ADFE的面积为,所以所有阴影部分的面积为.由几何概型的概率公式得此点取自阴影部分的概率是.故选:A【点睛】本题主要考查面积的计算和几何概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.3. 某方便面生产线上每隔15分钟抽取一包进行检验,该抽样方法为①,从某中学的40名数学爱好者中抽取5人了解学习负担情况,该抽样方法为②,那么①和②分别为A. ①系统抽样,②简单随机抽样B. ①分层抽样,②系统抽样C. ①系统抽样, ②分层抽样D.①分层抽样,②简单随机抽样参考答案:A4. 设全集,集合,集合,则()A.B.C.D.{2,3,4}参考答案:D略5. 函数图象的一个对称中心是()A.B.C.D.参考答案:Cf(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),f(),A错误;f(),B错误;f(),C正确;f(),B错误;故选:C6. 已知函数(其中)的图象如右图所示,则函数的图象是()参考答案:A7. 若集合中只有一个元素,则( )参考答案:B略8. 设,,,则的大小关系是(A)(B)(C)(D)参考答案:C9. 双曲线的实轴长是(A)2 (B) (C)4 (D) 4参考答案:C本题主要考查双曲线的标准方程和简单几何性质,属简单题.双曲线方程可变为,所以,.故选C.10. 若实数,满足约束条件,则的取值范围是A. B.C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.数列中,则等于_________.参考答案:答案:12. 某工厂生产甲乙丙三种不同型号的产品,三种产品产量之比为1:3:5,现用分层抽样的方法抽得容量为n的样本进行质量检测,已知抽得乙种型号的产品12件,则n=.参考答案:36【考点】分层抽样方法.【分析】求出抽样比,然后求解n的值即可.【解答】解:某工厂生产的甲、乙、丙三种型号产品的数量之比为1:3:5,分层抽样的方法抽取一个容量为n的样本,则乙被抽的抽样比为:=,样本中乙型产品有12件,所以n=12÷=36,故答案为36.【点评】本题考查分层抽样的应用,基本知识的考查.13. 已知双曲线=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则此双曲线的焦距等于.参考答案:4【考点】KC:双曲线的简单性质.【分析】运用离心率公式和渐近线方程,结合点到直线的距离公式可得b,再由a,b,c 的关系即可得到c,进而得到焦距.【解答】解:双曲线=1(a>0,b>0)的离心率为2,则e==2,即c=2a,设焦点为(c,0),渐近线方程为y=x,则d===b=,又b2=c2﹣a2=3,解得a=1,c=2.则有焦距为4.故答案为:4.14. 一组数据175,177,174,175,174的方差为_______.参考答案:【分析】先求出它们的平均数,再利用公式求方差.【详解】,所以,填.【点睛】样本数据的方差计算有两种方法:(1);(2).15. (文科)集合,,则集合的所有元素之和为参考答案:22516. 以正四面体ABCD各棱中点为顶点的几何体的体积与该正四面体的体积之比为参考答案:略17. 如图,Ox、Oy是平面内相交成120°的两条数轴,e1,e2分别是与x轴、y轴正方向同向的单位向量,若向量=xe1+ye2,则将有序实数对(x,y)叫做向量在坐标系xOy中的坐标.若=3e1+2e2,则||=________;参考答案:三、解答题:本大题共5小题,共72分。
黑龙江省伊春市宜春大公中学2019年高三数学理期末试卷含解析
黑龙江省伊春市宜春大公中学2019年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 定义在R上的函数f(x)的导函数为f'(x),f(0)=0若对任意x∈R,都有f(x)>f'(x)+1,则使得f(x)+e x<1成立的x的取值范围为()A.(0,+∞)B.(﹣∞,0)C.(﹣1,+∞)D.(﹣∞,1)参考答案:A【考点】导数在最大值、最小值问题中的应用.【分析】构造函数:g(x)=,g(0)==﹣1.对任意x∈R,都有f(x)>f'(x)+1,可得g′(x)=<0,函数g(x)在R单调递减,利用其单调性即可得出.【解答】解:构造函数:g(x)=,g(0)==﹣1.∵对任意x∈R,都有f(x)>f'(x)+1,∴g′(x)==<0,∴函数g(x)在R单调递减,由f(x)+e x<1化为:g(x)=<﹣1=g(0),∴x>0.∴使得f(x)+e x<1成立的x的取值范围为(0,+∞).故选:A.【点评】本题考查了构造函数法、利用导数研究函数的单调性极值与最值、不等式的解法,考查了推理能力与计算能力,属于难题.2. 若的最小值为,其图像相邻最高点与最低点横坐标之差为,又图像过点,则其解析式是()A. B.C. D.参考答案:A略3. 若方程仅有一个解,则实数m的取值范围为(-∞,7)(15-6ln3,+∞)(12-6ln3,+∞)(-∞,7)∪(15-6ln3,+∞)参考答案:D4. 若将函数的图象向左平移个单位后所得图象关于y辅对称,则m的最小值为(A) (B) (C) ( D)参考答案:C略5. 已知函数,若,则a为()A.1 B.C.D.参考答案:D6. 函数f(x)=2x|log0.5x|﹣1的零点个数为()A.1 B.2 C.3 D.4参考答案:B【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】通过令f(x)=0,将方程的解转化为函数图象的交点问题,从而判断函数的零点个数.【解答】解:函数f(x)=2x|log0.5x|﹣1,令f(x)=0,在同一坐标系中作出y=()x.与y=|log0.5x|,如图,由图可得零点的个数为2.故选B.【点评】本题考查函数的零点,函数的图象的作法,考查数形结合与转化思想.7. 已知,关于的方程2sin有两个不同的实数解,则实数的取值范围为()A.[-,2] B.[,2] C.(,2] D.(,2)参考答案:D略8. 函数的图像如图所示,为了得到的图像,则只要将函数的图像A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位参考答案:【知识点】三角函数的图像.C3【答案解析】D 解析:解:由图知,为了得到的图像,则只要将的图像向左平移个单位长度.所以正确选项为C【思路点拨】根据三角函数的图像求出三角函数,再由三角图像的移动求出最后结果.9. 函数的图象(A) 关于轴对称 (B) 关于轴对称 (C) 关于原点对称 (D)关于直线对称参考答案:【知识点】余弦函数的图象.C3B解析:∵余弦函数是偶函数,∴函数是偶函数,故关于y轴对称,故选B.【思路点拨】根据余弦函数是偶函数关于y轴对称可得答案.10. 已知函数,当x=a时,取得最小值,则在直角坐标系中,函数的大致图象为( )参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 计算__________.参考答案:4【分析】利用指数幂,对数的运算律即得解.【详解】故答案为:4【点睛】本题考查了指数幂,对数的运算律,考查了学生数学运算的能力,属于基础题.12. 在中,已知=1,则面积的最大值是。
黑龙江伊春市数学高三上期末经典练习卷(培优专题)
一、选择题1.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]- D .(,3][1,)-∞-⋃+∞ 2.已知数列{a n }的首项a 1=1,且满足a n +1+a n =3n (n ∈N *),则a 2020的值等于( )A .2020B .3028C .6059D .30293.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .24.在ABC 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC 的形状一定是( ) A .直角三角形 B .等边三角形C .等腰三角形D .等腰直角三角形5.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6 B .8 C .9 D .10 6.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 7.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .98.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞9.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+10.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .311.在ΔABC 中,A =60°,B =75°,BC =10,则AB = A .5√2B .10√2C .5√6D .10√6312.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60β,=30α,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6013.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S 14.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .315.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A 25B 5C 310D 10二、填空题16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .2C A π-=,1sin 3A =,3a =,则b =______.17.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.18.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 .19.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+⎪⎝⎭恒成立,则实数m 的取值范围是 .20.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 21.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 22.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____23.在等比数列{a n }中,a 1=1,a 4=8,则a 7=__________. 24.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 25.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题26.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?27.已知公比为4的等比数列{}n a 的前n 项和为n S ,且485S =. (1)求数列{}n a 的通项公式; (2)求数列{(1)}n n a -的前n 项和n T .28.已知角A ,B ,C 为等腰ABC ∆的内角,设向量(2sin sin ,sin )m A C B =-,(cos ,cos )n C B =,且//m n ,BC =(1)求角B ;(2)在ABC ∆的外接圆的劣弧AC 上取一点D ,使得1AD =,求sin DAC ∠及四边形ABCD 的面积.29.已知数列{}n a 满足11a =,且113n n n a a a +-=+. (1)证明数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式. (2)若21nn n b a =+,求数列{}n b 的前n 项和n S .30.已知等差数列{}n a 满足1210a a +=,432a a -=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==.若6k b a =,求k 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.D 3.C 4.A 5.C 6.C 7.D 8.A 9.B 10.B 11.D 12.B14.C15.C二、填空题16.7【解析】【分析】先求出再利用正弦定理求最后利用余弦定理可求【详解】因为所以故且为锐角则故由正弦定理可得故由余弦定理可得故即或因为为钝角故故故答案为:7【点睛】三角形中共有七个几何量(三边三角以及外17.【解析】【分析】设要使得关于的方程的一根笔译1大且另一根比1小转化为即可求解【详解】由题意设要使得关于的方程的一根笔译1大且另一根比1小根据二次函数的图象与性质则满足即即解得即实数的取值范围是【点睛18.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续1 0项的和为考点:等差数列19.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为20.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的21.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题22.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想23.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案6424.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力25.4【解析】【分析】先判断是正数且把所求的式子变形使用基本不等式求最小值【详解】由题意知则当且仅当时取等号∴的最小值为4【点睛】】本题考查函数的值域及基本不等式的应用属中档题三、解答题27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】【详解】先作可行域,而46yx++表示两点P(x,y)与A(-6,-4)连线的斜率,所以46yx++的取值范围是[,][3,1]AD ACk k=-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.2.D解析:D 【解析】 【分析】作差211()()3n n n n a a a a ++++-+=,得到23n n a a +-=,即数列{a n }的奇数项,偶数项皆为公差为3的等差数列,由等差数列的通项公式即得解. 【详解】因为a n +1+a n =3n ,且a 1=1 所以2123,2a a a +== 又213(1)n n a a n +++=+211()()3(1)33n n n n a a a a n n +++∴+-+=+-=即23n n a a +∴-=故数列{a n }的奇数项,偶数项皆为公差为3的等差数列, 故a 20202(10101)33029a =+-⨯= 故选:D 【点睛】本题考查了由数列的递推公式求通项,考查了学生转化划归,数学运算的能力,属于中档题.3.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .4.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B ,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC 的形状. 【详解】22cos 2a baC 1cos sin sin 22sin C A BA 化简得sin cos sin A C B()B A Csin cos sin()A C A C 即cos sin 0A C =sin 0C ≠cos 0A ∴=即0A = 90ABC ∴是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.5.C解析:C 【解析】 【详解】 因为直线()10,0x ya b a b+=>>过点()1,1,所以11+1a b = ,因此1144(4)(+)5+59b a b aa b a b a b a b+=+≥+⋅= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.6.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.7.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.9.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.10.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.11.D解析:D 【解析】 【分析】根据三角形内角和定理可知C =45°,再由正弦定理即可求出AB . 【详解】由内角和定理知C =180°−(60°+75°)=45°, 所以AB sinC=BCsinA, 即AB =BCsinC sinA=10×sin45°sin60°=10√63, 故选D.【点睛】本题主要考查了正弦定理,属于中档题.12.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.13.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负,故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.14.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.15.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos210AC AD CD DAC AC AD +-∠===⋅,故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.二、填空题16.7【解析】【分析】先求出再利用正弦定理求最后利用余弦定理可求【详解】因为所以故且为锐角则故由正弦定理可得故由余弦定理可得故即或因为为钝角故故故答案为:7【点睛】三角形中共有七个几何量(三边三角以及外 解析:7 【解析】 【分析】 先求出2sin 3C =,再利用正弦定理求c ,最后利用余弦定理可求b . 【详解】 因为2C A π-=,所以2C A π=+,故sin sin cos 2C A A π⎛⎫=+= ⎪⎝⎭, 且A 为锐角,则22cos A =22sin C = 由正弦定理可得sin sin a c A C =,故223sin 3621sin 3a Cc A⨯=== 由余弦定理可得2222cos a b c bc A =+-, 故2229722623b b =+-⨯即7b =或9b =, 因为C 为钝角,故c b >,故7b =. 故答案为:7. 【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量. (1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.17.【解析】【分析】设要使得关于的方程的一根笔译1大且另一根比1小转化为即可求解【详解】由题意设要使得关于的方程的一根笔译1大且另一根比1小根据二次函数的图象与性质则满足即即解得即实数的取值范围是【点睛 解析:21a -<<【解析】 【分析】设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为()10f <,即可求解. 【详解】由题意,设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,根据二次函数的图象与性质,则满足()10f <,即220a a +-<, 即(1)(2)0a a -+<,解得21a -<<,即实数a 的取值范围是21a -<<. 【点睛】本题主要考查了一元二次函数的图象与性质的应用问题,其中解答中把关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为(1)0f <是解得的关键,着重考查了转化思想,以及推理运算能力.18.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续10项的和为考点:等差数列解析:200 【解析】试题分析:等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.考点:等差数列.19.【解析】【分析】【详解】根据题意由于函数对任意恒成立分离参数的思想可知递增最小值为即可知满足即可成立故答案为解析:33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭【解析】【详解】根据题意,由于函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,22222()4(1)(1)11xm x x m m--≤--+-,分离参数的思想可知,,递增,最小值为53,即可知满足33,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭即可成立故答案为33,22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭.20.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的 解析:2210a <<【解析】由三角形中三边关系及余弦定理可得a 应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得2210a << ∴实数a 的取值范围是(22,10). 答案:(22,10) 点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.21.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2 【解析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论. 【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q,∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2. 【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.22.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【解析】 【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++,012222(1)2n n f a a a a =+++=++++,利用等比数列求和公式即可求解. 【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++,021222(12)(21)212n nn f a a a a -=++++++=-=+, 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.23.64【解析】由题设可得q3=8⇒q=3则a7=a1q6=8×8=64应填答案64解析:64【解析】由题设可得q 3=8⇒q =3,则a 7=a 1q 6=8×8=64,应填答案64。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省伊春市2019-2020学年高三上学期期末数学试卷(理科)D卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)设全集U={-2,-1,0,1,2},集合A={-1,1,2},B={-1,1},则为()
A . {1,2}
B . {1}
C . {2}
D . {-1,1}
2. (2分)(2017·鄂尔多斯模拟) 设i为虚数单位,(﹣3+4i)2=a+bi(a,b∈R),则下列判断正确的是()
A . |a+bi|=5
B . a+b=1
C . a﹣b=﹣17
D . ab=168
3. (2分)以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=()
A . 0.3
B . e0.3
C . 4
D . e4
4. (2分) (2019高三上·邹城期中) 定义域为的函数图像的两个端点为、,向量
,是图像上任意一点,其中,若不等式恒成立,则称函数在上满足“ 范围线性近似”,其中最小正实数称为该函数的线性近似阈值.若函数定义在上,则该函数的线性近似阈值是()
A .
B .
C .
D .
5. (2分)若双曲线的一个焦点是圆的圆心,且虚轴长为6,则双曲线的离心率为()
A .
B .
C .
D .
6. (2分) (2017高二下·河北期中) 设等比数列{an}的公比q=2,前n项和为Sn ,则 =()
A . 2
B . 4
C .
D .
7. (2分) (2019高一上·宾县月考) 已知函数f(x)=-x2+2,g(x)=log2|x|,则函数F(x)=f(x)·g(x)的图象大致为()
A .
B .
C .
D .
8. (2分)如图,某工程中要将一长为100 m、倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长
A . 100 m
B . 100 m
C . 50()m
D . 200 m
9. (2分)(2017·安庆模拟) 在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为()
A .
B .
C .
D .
10. (2分) (2016高二上·遵义期中) 函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4 ,则函数f(x)图象的一条对称轴的方程为()
A . x=
B . x=
C . x=4
D . x=2
11. (2分)(2016·新课标Ⅰ卷文) 设F为抛物线C:y2=4x的焦点,曲线y= (k>0)与C交于点P,PF⊥x 轴,则k=()
A .
B . 1
C .
D . 2
12. (2分) (2018高三上·河北月考) 函数与它的导函数的图象如图所示,则函数
的单调递减区间为().
A .
B . ,
C .
D . ,
二、填空题 (共4题;共4分)
13. (1分) (2016高二下·友谊开学考) (x﹣2)(x﹣1)5的展开式中所有项的系数和等于________.
14. (1分)如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰三角形,如果直角三角形的直角边成为1,那么这个几何体的表面积是________.
15. (1分)已知函数f(x)= •x,则方程f(x﹣1)=f(x2﹣3x+2)的所有实根构成的集合的非空子集个数为________.
16. (1分) (2019高二上·兰州期中) 已知数列的前项和 ,则 ________
三、解答题 (共7题;共65分)
17. (5分)(2017·盐城模拟) 一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示.ABCD 是等腰梯形,AB=20米,∠CBF=α(F在AB的延长线上,α为锐角).圆E与AD,BC都相切,且其半径长为100﹣80sinα米.EO是垂直于AB的一个立柱,则当sinα的值设计为多少时,立柱EO最矮?
18. (10分)当前,网购已成为现代大学生的时尚.某大学学生宿舍4人参加网购,约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有1人去淘宝网购物的概率;
(2)用0分别表示这4个人中去淘宝网和京东商城购物的人数,记2,求随机变量P的分布列与期望.
19. (10分) (2017高二上·武清期中) 如图,已知在多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F为CE的中点.
(1)求直线AF与平面ACD所成的角;
(2)求证:平面BCE⊥平面DCE.
20. (5分) (2018高三上·吉林月考) 椭圆:的离心率为,过其右焦点
与长轴垂直的弦长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,点是直线上的动点,直线与椭圆另一交点为,直线与椭圆另一交点为 .求证:直线经过一定点.
21. (15分) (2017高二下·广州期中) 已知函数f(x)=x3+ax2+bx+5,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.
(1)求a,b的值;
(2)求y=f(x)在R上的单调区间
(3)求y=f(x)在[﹣3,1]上的最大值.
22. (10分)已知直线l的参数方程是为参数),曲线C的极坐标方程为,直线l与曲线C交于A、B零点,与y轴交于点P.
(1)求曲线C的参数方程;
(2)过曲线C上任意一点P作与直线l夹角为30°的直线,角l于点A,求|PA|的最大值与最小值.
23. (10分)(2019·长沙模拟) 已知.
(1)解关于的不等式;
(2)对任意正数,求使得不等式恒成立的的取值集合 .
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共65分)
17-1、
18-1、
18-2、19-1、
19-2、20-1、
21-1、21-2、21-3、22-1、22-2、23-1、
23-2、。