整式及其加减单元测试培优题及答案
3.4整式的加减培优训练(含答案)
专题一同类项与去(添)括号
1.若5a|x|b2与—0.2a3b|y|是同类项,则x、y的值分别是( )
A.x=±3,y=±2 B.x=3,y=2
C.x=—3,y=—2 D.x=3,y=—2
2.已知代数式— xa+bya﹣1与3x2y的和是单项式,则a﹣b的相反数为( )
A.2 B.0
C.﹣2 D.1
3.已知a—b=—3,c+d=2,则(a﹣d)—b+c)的值为( )
A.﹣5 B.1
C.5 D.﹣1
专题二整式的加减运算
4.有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|c-b|化简结果为( )
A.2a+3b-cB.3b-c
C.c-bD.3b+c
5.现规定一种运算:a※b=ab+a-b,其中a、b为有理数,化简a※b+(b-a)※2,并求出当a=— ,b=2时该式的值.
答案
1.A【解析】∵5a|x|b2与—0.2a3b|y|是同类项,∴|x|=3,|y|=2,解得x=±3,y=±2.故选A.
2.C【解析】∵代数式— xa+bya﹣1与3x2y的和是单项式,
∴代数式— xa+bya﹣1与3x2y是同类项,
∴a+b=2,a—1=1,解得:a=2,b=0.
∴a—b=2,即a﹣b的相反数是—2.
故选C.
3.A【解析】根据题意有(a—d)—(b+c)=(a—b)—(c+d)=—3—2=—5,故选A.
4.B【解析】由已知得a<0、b>0、a+b>0、b-c<0,所以|a|+|b|+|a+b|+|b-ቤተ መጻሕፍቲ ባይዱ|=
-a+b+(a+b)+(b-c)=-a+b+a+b+b-c=3b—c.
初一数学培优答案3-4-整式的加减 (2)
3-4-整式的加减一、填空题1.已知:y =ax 3+bx +1,当x =3时,y =4.则当x =-3时y 的值为 -2 .2.填写等式:若a 、b 两数互为相反数,那么a +b=0,若a 、b 两数互为倒数,那么ab=1.3.若2a -3b =5,则代数式=-a b 2352-. 4.若a 和b 的平均数是m ,b 和c 的平均数是n ,c 和a 的平均数是p ,那么a ,b ,c 的平均数是 3a b c ++ . 5.两堆苹果,将第一堆5个苹果放到第二堆后,第二堆苹果数是第一堆的3倍.设第一堆苹果原有x 个,则 第二堆苹果原有 (3x -20) 个.6.有一列按规律排列的代数式: b ,2b a -,32b a -,43b a -,54b a -……,相邻两个代数式的差都是同一个整式.若第4个代数式的值为8,则前7个代数式的和的值为 56 .7.规定一种运算※是这样的:x ※y =xy -(x +y ),则(2※1) ※(-1)的值是 3 .8.若443212345(1)x a x a x a x a x a +=++++,则12345a a a a a ++++= 16 .9.有一列数1,3,6,10,15,……,第六个数是 21 ,第n 个数是 (1)2n n + . 10.晚餐时突然停电,妈妈点上两支粗细不同的蜡烛,一会儿电来了,妈妈将两支蜡烛同时熄灭,已知两支蜡烛原来同样长,粗蜡烛全部点完要2小时,细蜡烛要1小时,熄灭时粗蜡烛是细蜡烛长度的2倍,求停电的时间.设停电的时间为x 时,蜡烛原长a 厘米,那么熄灭时粗蜡烛长是12a ax -厘米或2()a ax -厘米.(用x 、a 表示) 11.已知1S x =,2132S S =-,3232S S =-,…,2017201632S S =-,则S 3= ,S 2017=201620163(31)x --.(用含x 的代数式表示)12.x 为整数,代数式21(3)4x -是任意的完全平方数,则x 可表示为 2n -1 .(用整数n 表示) 13.已知当2,4x y ==-时,代数式3152ax by ++的值是2007,则当14,2x y =-=-时,代数式33242017ax by -+的值是 -986 .14二、选择题15.M 表示a 与b 的和的平方,N 表示a 加上b 的平方的和,则当a =7,b =-5时,M -N=( B )A . 28B . –28C . 0D . -7016.若A 为四次多项式,B 为四次多项式,则A +B 一定为 ( C )A .4次多项式B .8次多项式C .不高于4次的整式D .比4次低的整式17.有一大捆粗细均匀的钢筋,现要确定其长度,先称出这捆钢筋的总质量为m 千克,再从中截取5米长的钢筋,称出它的质量为n 千克,那么这捆钢筋的总长度为 ( A )A .5m n 米B .5n m 米C .5m n 米D .5n m米 18.如图,一个大长方形被分割成A 、B 、C 、D 四个小长方形,其中D 的面积是A 的3倍,B和C 面积相等,A 面积的2倍与B 面积的和是m .原来长方形的面积为 ( A )A .2mB .3mC .2m +2D .2.5m19.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足 ( C )A .a =bB .a =2bC .a =3bD .a =4b20.某企业第一年产值为x ,以后每年递增的百分率为p ,则第三年的产值为 ( C )A .2(1)p x +B .(12)p x +C .2(1)p x +D .2(1)x p - 三、解答题 21.2012年个人所得税计算方法是:缴税=全月应纳税所得额×税率-速算扣除数,全月应纳税所得额=应发工资-3500,实发工资=应发工资-缴税,税率表如下:级数全月应纳税所得额 税率(%) 速算扣除数 1不超过1500元 3 0 2超过1500元至4500元的部分 10 105 3 超过4500元至9000元的部分 20 555 4 超过9000元至35000元的部分 25 1005从某公司了解到2012年9月份员工工资的部分信息:李经理应发工资7000元,陈总应发工资在8100元到12500元之间(包括8100元和12500元),张董应发工资是陈总应发工资的3倍少2000元.设陈总应发工资为x 元,解决下列问题.(1) 李经理实发工资是多少元?(2) 陈总实发工资是多少元(用含x 的代数式表示)?(3) 张董比陈总多缴税多少元(用含x 的代数式表示)?张董缴的税比陈总至少多几元? 解:(1)(7000-3500)×10%-105=245,7000-245=6755(元)(2)陈总的纳税额4600~9000,x -[(x -3500)×20%-555]=0.8x +1255,(3)张董应发工资22300~35500,张董的纳税额18800~32000,[(3x -2000-3500)×25%-1005] -[(x -3500)×20%-555]=0.55x -1125,当 x =8100时,原式=0.55810011253330⨯-=(元)22.将若干个完全相同的小三角形“△”按如图所示的规律摆放:(1)第5个图形有多少个三角形?(2)用代数式表示第n 个图形的小三角形个数;(3)计算7+9+11+13+15的值.要求:先在最右边的图中划出小三角形的个数为7+9+11+13+15的一个梯形,再利用(2)的结果求值(要有过程).(1)(5+1)2=36(个);(2)(n +1)2;(3)7+9+11+13+15=(1+3+5+7+9+11+13+15)-(1+3+5)=82-32=64-9=5523.如图,小明家的住房平面图呈长方形,被分割成5个区域,其中标注①的是长方形,标注②和③的是正方形,整个图形绕中心点旋转180°后与原图形重合. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为多少?解:设最大长方形长与宽分别是a 、b ,②的边长为x ,则2x -b=a -2x ,4x=a +b ,故②的周长可知。
整式的加减(培优篇)
初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。
52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。
()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。
第二章-整式的加减能力培优专题训练(含答案)
第二章 整式的加减能力培优专题一 用代数式表示实际问题1.10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )2.某种商品进价为a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为( ).A.a 元B.0.7 a 元C.1.03 a 元D.0.91a 元专题二 单项式的系数与次数3.代数式-23xy 3的系数与次数分别是( )A .-2,4B .-6,3C .-2,3D .-8,44.如果-33a m b 2是7次单项式,则m 的值是( )A .6B .5C .4D .2 5.写出含有字母x ,y 的四次单项式 .(答案不唯一,只要写出一个)6.判断下列各式是否是单项式,是单项式的写出系数和次数.3a , 12 xy 2,-5xy4 ,a π ,-x , 13 (a +1), 1x .专题三 考查多项式的项、项数与次数7.如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )A.小于6B.等于6C.不大于6D.不小于68.若2210a a +-=,则2242013a a ++= .9.m 为何值时,2123(2)3m m x y xy -+-是五次二项式专题一 同类项及合并同类项1.如果单项式13a x y +与32b x y 的和是单项式,那么b a = .2. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个整体合并同类项,结果应是() A .-4(x -3)2-(x -3) B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2+(x -3)3.多项式2x 4-(a +1)x 3+(b -2)x 2-3x -1,不含x 3项和x 2项,求ab 的值.4.化简,求值:22211332424a b a b a -+--,其中13a =,3b =-.专题二 去括号法则的应用5.下列去括号中,正确的是 ( )A.a 2-(2a -1)=a 2-2a -1B.a 2+(-2a -3)=a 2-2a +3C.3a -[5b -(2c -1)]=3a -5b +2c -1D.-(a +b )+(c -d )=-a -b -c +d6.不改变代数式a -(b -3c )的值,把代数式括号前的“-”号变成“+”号,结果应是( )A.a +(b -3c )B.a +(-b -3c )C.a +(b +3c )D.a +(-b +3c )7. 先去括号,再合并同类项(1)(3x +1)-2(4-x ); (2)3(2a -3b )+5(a +b )-4(3a -2b );(3)6a 2-2ab -2(3a 2+12ab ); (4)2a -[3b -5a -(2a -7b )].专题三 多项式加减及其在生活中的应用9.已知A =2x 2-9x -11,B =3x 2-6x +4.求(1)A -B ;(2)21A +2B .10.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.8.下图为某学校校园的总体规划图(单位:m ),试计算这个学校的占地面积.小丽说:学校的占地面积可以用代数式表示为100a +200a +240b +60b.小明说:也可以表示为(100+200)a +(240+60)b.小虎说:还可以表示为(100+200)(a +b ).你认为他们说的对吗?如何用数学知识加以解释?专题三 多项式加减及其在生活中的应用9.已知A =2x 2-9x -11,B =3x 2-6x +4.求(1)A -B ;(2)21A +2B .10.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.11.小明同学在计算5x 2+3xy +2y 2加上某多项式A 时,由于粗心,误算成减去这个多项式,而得到2x 2-3xy +4y 2,求正确的运算结果.12.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)的值”.小敏指出,题中给出的条件a =0.35,b =-0.28是多余的,她的说法有道理吗?为什么?1. B 解析:先求出这15个人的总成绩10x +5×84=10x +420,再除以15可求得平均值为1042015x . 2. D 解析 :因为商品每件a 元,按进价提高30%出售,则售价为(1+30%)a =1.3a 元,商品以7折销售时售价为1.3a ×70% =0.91a 元.3. D 解析:该单项式的因数是-23,即-8,所以该单项式的系数是-8.字母x 、y 的指数分别是1和3,指数和是4,所以该单项式的次数是4.4. B 解析:由题意得,所有字母的指数和为7,即m +2=7,则m =5.5.解析:根据四次单项式的定义,x 2y 2,x 3y ,xy 3等都符合题意(答案不唯一).6.解析:3a 表示3与a 相乘,是单项式,系数为3,次数为1;12 xy 2表示12 与xy 2相乘,是单项式,系数为12,次数为3; -5xy 4 表示-54 与xy 相乘,是单项式,系数为-54,次数为2; a π 表示1π 与a 相乘,是单项式,系数为1π,次数为1; -x 表示-1与x 相乘,是单项式,系数为-1,次数为1;13 (a +1)表示a 与1的和的31倍,含有加法运算,不是单项式. 1x表示1与x 的商,不是单项式. 7.C 解析:由于多项式的次数是“多项式中次数最高的项的次数”,因此六次多项式中,次数最高的项是六次的,其余项的次数可以是六次的,也可以是小于六次的,却不能是大于六次的.因此六次多项式中的任何一项都是不大于六次的.8.2015 解析:222420132(2)2013220132015a a a a ++=++=+=.9.解析:根据条件,有m 2-1+2=5,且m +2≠0.所以m =2.10. 4n -2 解析:第1个图案中阴影小三角形的个数是2;第2个图案中阴影小三角形的个数是6=2+4×1;第三个图案中阴影小三角形的个数是10=2+4×2;第4个图案中阴影小三角形的个数是14=2+4×3;…,所以第n 个图案中阴影小三角形的个数是2+4(n -1)=4n -2.11. n (n +1)+2或 n 2+n +2 解析:根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,…所以第n 个图形中阴影部分小正方形个数为n (n +1)+2或 n 2+n +2.12.(1)64 8 15 (2)2(1)1n -+ 2n 21n - 解析:(1)观察所给数阵可知,每行最右侧的数是该行序号的平方.每一行数字的个数是每行的序号乘以2减去1.所以第8行的最后一个数是自然数8的平方,即82=64,共有2×8-1=15个数;(2)第n -1行的最后一个数为2(1)n -,所以第n 行的第一个数是2(1)1n -+,最后一个数为2n ,第n 行共有2n -1个数.2.2整式的加减专题一 同类项及合并同类项1.如果单项式13a x y +与32b x y 的和是单项式,那么b a = .2. 把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个整体合并同类项,结果应是( )A .-4(x -3)2-(x -3)B .4(x -3)2-x (x -3)C .4(x -3)2-(x -3)D .-4(x -3)2+(x -3)3.多项式2x 4-(a +1)x 3+(b -2)x 2-3x -1,不含x 3项和x 2项,求ab 的值.4.化简,求值:22211332424a b a b a -+--,其中13a =,3b =-.专题二 去括号法则的应用5.下列去括号中,正确的是 ( )A.a 2-(2a -1)=a 2-2a -1B.a 2+(-2a -3)=a 2-2a +3C.3a -[5b -(2c -1)]=3a -5b +2c -1D.-(a +b )+(c -d )=-a -b -c +d6.不改变代数式a -(b -3c )的值,把代数式括号前的“-”号变成“+”号,结果应是( )A.a +(b -3c )B.a +(-b -3c )C.a +(b +3c )D.a +(-b +3c )7. 先去括号,再合并同类项(1)(3x +1)-2(4-x ); (2)3(2a -3b )+5(a +b )-4(3a -2b );(3)6a 2-2ab -2(3a 2+12ab ); (4)2a -[3b -5a -(2a -7b )].8.下图为某学校校园的总体规划图(单位:m ),试计算这个学校的占地面积.小丽说:学校的占地面积可以用代数式表示为100a +200a +240b +60b.小明说:也可以表示为(100+200)a +(240+60)b.小虎说:还可以表示为(100+200)(a +b ).你认为他们说的对吗?如何用数学知识加以解释?专题三 多项式加减及其在生活中的应用9.已知A =2x 2-9x -11,B =3x 2-6x +4.求(1)A -B ;(2)21A +2B .10.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.11.小明同学在计算5x 2+3xy +2y 2加上某多项式A 时,由于粗心,误算成减去这个多项式,而得到2x 2-3xy +4y 2,求正确的运算结果.12.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)的值”.小敏指出,题中给出的条件a =0.35,b =-0.28是多余的,她的说法有道理吗?为什么?知识要点:1.同类项:所含的字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.2.合并同类项:把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项.3.合并同类项法法则:合并同类项后,所得项的系数是合并同类项前各同类项的系数的和,且字母连同它的指数不变.4.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.5.整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.温馨提示:1.同类项的注意事项:(1)“两相同”:一是所含字母相同;二是相同字母的指数也相同,二者缺一不可.(2)“两无关”:一是与系数大小无关;二是与所含字母的顺序无关.2.去括号法则注意事项:(1)括号外有系数时,将系数乘以括号内每一项,不能只给括号内第一项乘.(2)如果括号外的因数是负数,去括号后原括号内每一项的符号都与原来的符号相反,不要忘记给后面的各项改变符号.(3)注意多层括号的去法:对于含有多层括号的题目,应先观察式子的特点,再考虑去括号的顺序,以使运算简便.一般由内向外,先去小括号,再去中括号,最后去大括号;但有时也可以由外向内,先去大括号,再去中括号,最后去小括号.3.多项式加减:(1)两个多项式相减,需要将每个多项式先用括号括起来.(2)求多项式的值时,遇到分数、负数的平方或者立方时,需要用括号将这些数括起来.方法技巧:1.去大括号时,要将中括号看作一个整体,去中括号时,要将小括号看作一个整体.2.合并同类项的基本步骤:(1)标出同类项;(2)将同类项写在一起;(3)合并同类项.3.多项式的求值问题,一般需要先合并同类项,再代入字母的值计算.当出现分数的乘方、负数的乘方时要加小括号.若已知代数式中每个字母的值则采用直接代入法;若代数式中字母的值没有一个个给出时,常采用整体代入法求解.【008-2】答案:1. 8 解析:由题意知a +1=3, b =3,解得a =2, b =3,所以823==b a .2. A 解析:(x -3)2-2(x -3)-5(x -3)2+(x -3)=(1-5)(x -3)2+(-2+1)(x -3)=-4(x -3)2-(x -3).3.解析:因为多项式不含x 3项和x 2项,所以a +1=0,b -2=0解得a =-1,b =2.所以ab =-1×2=-1.4.解析:22211332424a b a b a -+--=21313(1)()2244a b +-+--=2a b -.当13a =,3b =-时,原式=21()(3)3--=139+=139. 5. C 6. D7.解析:(1)原式=3x +1-8+2x =5x -7; (2)原式=6a -9b +5a +5b -12a +8b =-a +4b ;(3)原式=6a 2-2ab -6a 2-ab = -3ab ; (4)原式=2a -(3b -5a -2a +7b )=2a -3b +5a +2a -7b =9a -10b.8.解析:他们说的都是对的,小丽说的是把整个学校的面积分成了教学区、操场、学生活动区、图书馆,把每个部分的面积表示出来后就可以得到100a +200a +240b +60b ;小明是把教学区和操场看成是一个长为(100+200),宽为a 的长方形,面积为(100+200)a ,学生活动区和图书馆看成是一个长为(240+60),宽为b 的长方形,面积为(240+60)b ,从而总面积为(100+200)a +(240+60)b ;小虎是把整个学校的面积看成是长为(100+200),宽为(a +b )的长方形,面积为(100+200)(a +b ).9.解析:(1)A -B =(2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15;(2)21A +2B =21(2x 2-9x -11)+2(3x 2-6x +4)=x 2-92x -112+6x 2-12x +8=7x 2-233x +25. 10.原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2)=2×5=10.11.解析:(5x 2+3xy +2y 2)-A =2x 2-3xy +4y 2.A =(5x 2+3xy +2y 2)-(2x 2-3xy +4y 2)=5x 2+3xy +2y 2-2x 2+3xy -4y 2=3x 2+6xy -2y 2.所以(5x 2+3xy +2y 2)+(3x 2+6xy -2y 2)=8x 2+9xy .即正确的运算结果为8x 2+9xy .12.解析:她的说法有道理,因为原式=7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+3=3,所以原式的值与a ,b 无关.因此所给条件是多余的.。
人教版苏科版小学数学—整式及其加减(单元测试题含答案)
整式的加减单元测试题一.选择题1.(3分)计算222a a -+的结果为(D )A .3a-B .a-C .23a -D .2a -2.(3分)下列各组整式中不是同类项的是(D)A .23a b 与22ba -B .2xy 与12yx C .16与12-D .22xy -与23yx 3.(3分)下列合并同类项的结果正确的是(D)A .233a a a +=B .32a a -=C .33ab ab +=D .22232a a a -=-4.(3分)下列各式中,正确的是(A)A .2222x y x y x y -=-B .235a b ab +=C .734ab ab -=D .325a a a +=5.(3分)下列变形中,不正确的是(C)A .()a b c d a b c d ++-=++-B .()a b c d a b c d --+=-+-C .()a b c d a b c d ---=---D .()a b c d a b c d+---=+++6.(3分)下列说法正确的是(C)A .23x -的项是2x ,3B .1x -和11x-都是整式C .222x xy y ++与5x y+都是多项式D .2321x y xy -+是二次三项式7.(3分)如果整式3252n x x --+是关于x 的三次三项式,那么n 等于(D)A .3B .4C .5D .68.(3分)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为(B )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z -+9.(3分)计算2653a a -+与2521a a +-的差,结果正确的是(D)A .234a a -+B .232a a -+C .272a a -+D .274a a -+10.(3分)已知2210ab --=,则多项式2242a b -+的值等于(B)A .1B .4C .1-D .4-二.填空题11.(3分)代数式223a π-的系数是π32-,次数是2.12.(3分)若32n x y 与25m x y -是同类项,则m =3,n =2.13.(3分)当k =251时,代数式643643154105x kx y x x y --++中不含43x y 项.14.(3分)当31<≤m 时,化简|1||3|m m ---=42-m .15.(3分)若关于a ,b 的多项式22223(2)(2)a ab b a mab b ---++中不含有ab 项,则m =6-.三.解答题16.(10分)去括号,并合并相同的项:(1)2(1)3x x x-++222)321(2)32(322-=-+-=-+-=+--=x x x x x xx x (2)()(52)y x x y -+--yx y y x x yx x y +-=+-+--=+---=6)2()5(2517.(10分)已知14n xy +-与452m x y 是同类项,求2m n +的值.5312423,1,41,1254-41=+⨯=+===+=+m n m n m y x xy m n 所以解得所以是同类项,与解:因为解:原式解:原式18.(10分)先化简再求值:223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-.12)3()218-3,2180)8(0)22()26()33(222363)2223(63222222-=-⨯-⨯=-=-=-=+-+=-+--+-=--+--=++---=(原式时,当y x xyxy y y xy xy x x y xy y x xy x y xy y x xy x 19.(10分)某同学做一道数学题:已知两个多项式A 、B ,计算2A B +,他误将“2A B +”看成“2A B +”,求得的结果是2927x x -+,已知232B x x =+-,求2A B +的正确答案.2013152223161423221614)23()1187221187476229462729)23(2)729(22222222222222+-=-++-+=-+++-=-+++-=++-=++---=+--+-=-+-+-=x x x x x x x x x x x x x x BA x x x x x x x x x x x x x x (则20.(15分)设223A a b ab =-,222B ab a b =-+.(1)化简23A B -;(2)若2|2|(3)0a b -++=,求A B -的值.解:原式解:根据题意可得A12-3-2322323)2()3(32,0302,0)3(2)2(32666326)2(3)3(232)1(2222222222222222222222222222=⨯=-===+--=-+-=+---=--===+=-=++-=+--=-+-=+---=-)(原式时,,当则且解得且所以因为b a ba ab ab b a b a b a ab ab b a b a ab ab b a BA b a b a b a ab ab ab b a b a b a ab ab b a b a ab ab b a BA 解:。
北师大版七年级数学上册《整式及其加减》单元测试卷及答案解析
北师大版七年级数学上册《整式及其加减》单元测试卷一、选择题1、下列说法正确的是:().A.单项式m的次数是0 B.单项式5×105t的系数是5C.单项式的系数是D.-2 010是单项式2、下面选项中符合代数式书写要求的是()A.ay·3 B.C.D.a×b÷c3、(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A.1,4 B.1,2 C.0,5 D.1,14、若与是同类项,则m+n=()A.﹣2 B.2 C.1 D.﹣15、公路全长P米,骑车n小时可到,如想提前一小时到,则需每小时走_______米.()A.+1 B.C.D.6、下列各式:-x+1,π+3,9>2,,,其中代数式的个数是()A.5 B.4 C.3 D.27、若代数式2x2+3y+7的值为8,那么代数式6x2+9y+8的值为( )A.1 B.4 C.-7 D.118、多项式是关于的二次三项式,则n的值是()A.B.C.或D.9、关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,则常数m的值为( )A.2 B.-4 C.-2 D.-810、一组按规律排列的式子:a2,,,,…,则第2 017个式子是()A.B.C.D.二、填空题11、单项式的系数是______,次数是______.12、观察下列单项式:x,-3x2,5x3,-7x4,9x5……按此规律可以得到第20个单项式是_____________.13、如果关于x,y的多项式ax2+x﹣1和﹣3x2﹣2x+1的差中不含x2项,则a=_____.14、若a,b互为倒数,c,d互为相反数,则﹣c﹣d=________.15、观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是________.16、一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-,则这个二次三项式为________________________.17、一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是_______cm2.18、规定符号的意义为:,那么=_________.19、当x=2时,多项式ax3+bx+3的值为5,则当x=-2时,ax3+bx+3的值为____.20、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.三、计算题21、化简求值:(1)4x2﹣(2x2+x﹣1)+(2﹣x2﹣3x),其中x=﹣;(2)5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=,y=﹣1.22、先化简再求值:,其中a、b满足.四、解答题23、已知代数式.(1)求;(2)若的值与的取值无关,求的值.24、某校七年级四个班级的学生义务为校植树.一班植树x棵,二班植树的棵树比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵,四班植树的棵数比三班的一半多20棵.(1)求四个班共植树多少棵?(用含x的式子表示)(2)若三班和四班植树一样多,那么植树最多的班级比植树最少的班级多植树多少棵?25、一个长80cm,宽60cm的铁皮,将四个角各裁去边长为bcm的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.26、为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:请根据上表的内容解答下列问题:(1)若某户居民2月份用水5立方米,则应收水费多少元?(2)若某户居民3月份交水费36元,则用水量为多少立方米?(3)若某户居民4月份用水立方米(其中6<<10),请用含的代数式表示应收水费.(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水立方米,请用含的代数式表示该户居民5、6两个月共交水费多少元?参考答案1、D2、C3、B4、C5、B6、C7、D8、A9、B10、C11、-2, 12、-39x2013、﹣314、15、16、17、4h18、-1219、120、21、(1)原式=x2﹣4x+3,当x=﹣时,原式=5;(2)原式=12x2y ﹣6xy2,当x=,y=﹣1时,原式=﹣6.22、,.23、(1)=(2)24、(1);(2)植树最多的班级比植树最少的班级多植树20棵.25、4800-280b+4;2400.26、(1)10元;(2)11;(3)(4a-12)元;(4)(-6x+92)元或(-4x+80)元.【解析】1、A. 单项式m的次数是1,故A选项错误;B. 单项式5×105t的系数是5×105,故B选项错误;C. 单项式的系数是π,故C选项错误;D. -2 010是单项式,正确,故选D.2、选项A,数字需写前面3xy,A错.选项B,应该写成,B错.选项C,正确.选项D,应该写成.所以选C.3、由题意得:,解得.故选:B.4、由题意得:,,m+n=1.故选C.点睛:解决此类问题令相同字母对应的指数分别相等列方程求解即可.5、试题解析:公路全长P米,想要小时走完,每小时走米,所以本题应选B.6、用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子是代数式,所以代数式共有3个.故选C.7、∵,∴,∴.故选D.8、∵多项式是关于的二次三项式,∴,解得n=2.故选A.9、∵关于x的多项式3x3+2mx2-5x+7与多项式8x2-3x+5相加后不含二次项,∴2m+8=0,解得m=-4.故选B.点睛:两个多项式的和中不再含某个项,则合并后该项的系数为0,由此就可列出相应的方程求解了.10、试题解析:由题意,得分子式的次方,分母是第2017个式子是故选:C.点睛:多观察,分别观察分子和分母与系数的关系,找规律.11、的系数是,次数是.12、试题解析:观察所给的单项式得到的次数为单项式的序号数,系数的绝对值为单项式的序号数的2倍减1,并且序号为奇数时,系数为正数;序号为偶数时,系数为负数,按此规律可以得到第20个单项式是故答案为:13、试题解析:结果中不含项,解得:故答案为:14、∵a,b互为倒数,c,d互为相反数,∴ab=1,c+d=0,∴原式= ﹣0=,故答案为:.15、试题解析:根据题意得,这一组数的第个数为:故答案为:点睛:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第个数即可.16、根据题意,要求写一个关于字母x的二次三项式,其中二次项是x2,一次项是-x,常数项是1,所以再相加可得此二次三项式为.17、试题解析:梯形的面积为cm2 .点睛:梯形的面积=.18、∵,∴.19、∵当x=2时,多项式ax3+bx+3的值为5,∴8a+2b+3=5,∴8a+2b=2.当x=-2时,ax3+bx+3=-8a-2b+3=-(8a+2b)+3=-2+3=1.故答案为:120、设原价是x,则(1-20%)(x-m)=n, x=n+m.21、试题分析:(1)去括号后合并同类项化简,然后再代入求值即可;(2)去括号后合并同类项化简,然后再代入求值即可.试题解析:(1)原式=4x2﹣2x2﹣x+1+2﹣x2﹣3x=x2﹣4x+3,当x=﹣时,原式=(﹣)2﹣4×(﹣)+3,=﹣(﹣2)+3,=5;(2)原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=12×(﹣)2×(﹣1)﹣6××(﹣1)2=﹣3﹣3=﹣6.22、试题分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.试题解析:解:原式==;∵,∴a+1=0,b=0,∴a=﹣1,b=,则原式===.考点:1.整式的加减—化简求值;2.非负数的性质:绝对值;3.非负数的性质:偶次方.23、试题分析:(1)按要求直接整体代入,然后去括号,合并同类项化简即可;(2)先整体代入,然后合并同类项化简,再根据与x无关,可知其系数为0,求解方程即可.试题解析:(1)==(2)=当的值与的取值无关时,24、试题分析:(1)设一班植树棵数为x,则二班棵数为2x﹣40,三班棵数为,四班棵数为,将四个班植树棵数相加,计算即可;(2)根据三班和四班植树一样多列出方程,解方程求出x的值,进而求解即可.(1)一班植树棵数为x,二班棵数为2x﹣40,三班棵数为,四班棵数为.所以,四个班共植树棵数为:;(2)根据题意,得,解得x=30.当x=30时,一班植树30棵,二班植树20棵,三班植树40棵,四班植树40棵40﹣20=20.答:植树最多的班级比植树最少的班级多植树20棵.考点:一元一次方程的应用.25、试题分析:首先根据题意求出无盖盒子的长和宽,然后根据长方形的面积计算法则得出底面积,然后将b=10代入代数式进行计算.试题解析:根据题意得:底面的长为(80-2b)cm,宽为(60-2b)cm则S=(80-2b)(60-2b)=4800-280b+4将b=10代入可得:S=4800-2800+400=2400()考点:代数式的表示26、试题分析:(1)(2)利用用水量的范围确定单价算出结果即可;(3)36元一定用水量超出10立方米,分段计算即可;(4)分5月份不超过6m3时和5月份超过6m3时两种情况列式即可.试题解析:解:(1)2×5=10元答:应收水费10元;(2)10+(36-2×6-4×4)÷8=10+1=11立方米答:用水量为11立方米;(3)(4a-12)元;(4)当5月份不超过6m3时,水费为(-6x+92)元;当5月份超过6m3时,水费为(-4x+80)元.考点:列代数式.。
《常考题》七年级数学上册第二单元《整式加减》-解答题专项经典测试(培优专题)
一、解答题1.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2. 解析:2221012x y --,-50. 【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦ =2222264412x y x y --+-- =2222246412x x y y -+--- =2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-. 【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD . (1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可. 【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDEACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABD a b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABDb a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y ,第8个分式为178x y-.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子. 【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y,……∴任意一个分式除以前面一个分式,都得2x y-.(2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
新北师大版《整式的加减》单元测试卷及答案
《整式的加减》单元测试卷班级 姓名 座号一.1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.单项式233xy z π-的系数和次数分别是( )A.-3,5B.-1,6C.-3π,6D.-3,7 3.下面计算正确的是( )A .2233x x -= B.235325a a a += C.33x x += D.10.2504ab ab -+= 4.多项式2112x x ---的各项分别是( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,则-3()m n -的值是 ( )A .-53 B.35 C.53 D.1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分)9.任写两个与b a 221-是同类项的单项式: ; .10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m 与-3214-n b a 的和是单项式,则m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+-(2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab b a b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.参考答案第二章《整式的加减》单元测试卷一、选择题1.B2.C3.D4.B5.A6.D7.C8.A 二.填空题9.b a 2,b a 22 (答案不唯一) 10.5,-2 11.x -12.n m 4030+ 13.4, 3 14.12122+=+n n n -)( 三.解答题15.(1)b a 223(2)y x 43- (3)2232ab b a + (4)ab a 52-16.(1)化简得ab b 22+,值=43- (2)化简得3252-xy y x +,值=47-17.(1)y x -5 (2)295千米 18.同意小颖的观点,因为该式化简得2012,所以值与b a ,无关.。
第二章《整式的加减》同步单元基础与培优高分必刷卷(全解全析)
第二章《整式的加减》同步单元基础与培优高分必刷卷全解全析1.B【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行解答即可.【详解】解:根据单项式系数的定义,单项式-3x 3y 2的系数是-3,次数是3+2=5.故选:B .【点睛】此题主要考查了单项式,关键是掌握单项式系数和次数的定义.2.B【分析】根据单项式和多项式统称为整式,判断即可.【详解】解:在式子1x ,x +y +1,2021,﹣a ,23x y -,13x +中,整式是:x +y +1,2021,﹣a ,﹣23x y -,13x +,共有5个,故选:B【点睛】本题考查了整式,熟练掌握单项式和多项式统称为整式是解题的关键.3.A【分析】根据同类项是指所含字母相同且相同字母的指数也相同的项,可求出a 、b ,再把a 、b 代入求解即可.【详解】解:∵单项式-xyb +1 与xa -2y 3是同类项,∴a -2=1,b +1=3,∴a =3,b =2,∴(ab -7)2021=()2021671-=-,故选:A .【点睛】本题考查同类项的定义,解题的关键是熟练掌握同类项的定义.4.A【分析】根据合并同类项的法则逐项计算即可判断选择.【详解】A .220x y yx -=,故A 计算正确,符合题意;B .2334y y 和不是同类项,不能合并,故B 计算错误,不符合题意;C .32a a a -=,故C 计算错误,不符合题意;D .325a a a +=,故D 计算错误,不符合题意;故选:A .【点睛】本题考查合并同类项.掌握合并同类项的法则是解题关键.5.D【分析】由223m m ++的值为5,得出222m m +=,将其整体代入代数式即可求解.【详解】解:∵223m m ++5=,∴222m m +=∴()22485425m m m m +-=+-425=´-85=-3=.故选D .【点睛】本题考查了代数式求值,整体代入是解题的关键.6.D【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【详解】解:如图,由图和已知条件可知:AB =a ,EF =b ,AC =n ﹣b ,GE =n ﹣a .阴影部分的周长为:2(AB +AC )+2(GE +EF )=2(a +n ﹣b )+2(n ﹣a +b )=2a +2n ﹣2b +2n ﹣2a +2b=4n .∴求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .【点睛】本题主要考查了整式的加减,能用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽是解决本题的关键.7.A【分析】设运动t 秒,得到A 、B 、C 三点运动后分别表示-2-2t 、3t 、4+4t ,求出5AC -6AB ,5BC -10AB ,即可判断.【详解】解:设运动t 秒,∵点A 、B 、C 三点,在数轴上分别表示﹣2、0、4,∴A 、B 、C 三点,运动后分别表示-2-2t 、3t 、4+4t ,∴5AC -6AB =5(4+4t +2+2t )-6(3t +2+2t )=18,故5AC ﹣6AB 的值不变,∴甲的说法正确;∵5BC -10AB =5(4+4t -3t )-10(3t +2+2t )=-45t ,故5BC ﹣10AB 的值改变,∴乙的说法不正确;故选:A .【点睛】此题考查了数轴上动点问题,数轴上两点之间的距离,正确表示出三点运动后表示的数计算两点之间的距离是解题的关键.8.C【分析】利用去括号法则,逐一选项计算即可.【详解】解:A.5x ﹣(x ﹣2y +5z )=5x ﹣x +2y ﹣5z ,正确,不合题意;B.2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c +2d ,正确,不合题意;C.3x 2﹣3(x +6)=3x 2﹣3x ﹣18,原题解答错误,符合题意;D .﹣(x ﹣2y )﹣(x 2+y 2)=﹣x +2y ﹣x 2﹣y 2,正确,不合题意;故选:C .【点睛】本题考查了去括号法则,熟练掌握去括号时,括号前是“-”号,去掉括号后,括号内的每一项都要变号是解题的关键.9.D【分析】先将2220a a +-=化为222a a +=,2243a a ++化为()2223a a ++,再将222a a +=代入,求出算式的值即可得出答案.【详解】解:2220a a +-=Q 222a a \+=2243a a \++()2223a a =++223=´+=7故选D .【点睛】本题考查了代数式求值问题,求代数式的值可以直接代入、计算,如果给出的代数式可以化简,要先化简再求值.10.B【分析】先求出a ﹣2b 的值,然后将x =﹣1代入要求的代数式,从而利用整体代入即可得出答案.【详解】解:由题意得,当x =1时,代数式321ax bx --的值为2022,∴a ﹣2b ﹣1=2022,∴a ﹣2b =2023,当x =﹣1时,代数式=﹣a +2b +1=﹣(a ﹣2b )+1=﹣2023+1=﹣2022.故选:B .【点睛】此题考查了代数式求值的知识,解答本题的关键是求出a +b 的值,然后整体代入,整体思想是数学解题经常用到的,同学们要注意掌握.11.D【分析】先根据数轴得到0c b a a <<-<<,c b a >>,再判断绝对值里的式子的符号,利用绝对值的性质化简后再计算即可.【详解】解:由数轴可知0c b a a <<-<<,c b a >>,∴0a c +<,0a b +<,0c b -<,∴a c a b c b+-+--()()()a c abc b =-++++-a c a b c b=--+++-=0.故选:D .【点睛】本题考查整式的加减,用数轴上的点表示有理数,绝对值的化简,解题关键是根据有理数在数轴上的位置判断绝对值里的式子的符号.12.B【分析】根据图形特点,首先写出前三个图形中小正六边形的个数,从而得到规律并写出第n 个图形中小正六边形的个数,然后把n =10代入进行计算即可得解.【详解】解:如图,第1个图形中有小正六边形1个,1=3×12-3×1+1,第2个图形中有小正六边形7个,7=3×22-3×2+1,第3个图形中有小正六边形19个,19=3×32-3×3+1,…,依此类推,第n 个图形中有小正六边形(3n 2-3n +1)个,所以,第10个图形中有小正六边形3×102-3×10+1=271个.故选:B .【点睛】此题考查了规律型:图形的变化类,得到第n 个图形中小正六边形的个数变化规律的表达式是解题的关键.13.()510a -【分析】根据轮船逆水航行5小时的路程等于时间5乘以逆水航行速度,即可求解.【详解】解:根据题意得:这艘轮船逆水航行5小时的路程是()()52510a a -=-千米.故答案为:()510a -【点睛】本题主要考查了列代数式,根据题意得到轮船逆水航行5小时的路程等于时间5乘以逆水航行速度是解题的关键.14.-2【分析】直接利用多项式的次数与项数的确定方法得出答案.【详解】解:∵多项式()33232m x y m x -++是一个五次两项式,∴|m |+3=5,m +2=0,解得:m =-2或m =2(不合题意,故舍去).故答案为:-2.【点睛】本题主要考查了多项式,正确确定多项式的次数与项数,是解题关键.15.2263x x +-【分析】先去括号,再合并同类项,即可求解.【详解】解:原式225363x x x =+--2263x x =+-,故答案为:2263x x +-.【点睛】本题主要考查了整式加减混合运算,熟练掌握整式加减混合运算法则是解题的关键.16.1【分析】将原式两边同时乘以x ,即得出234560x x x x x x +++++=,再将两边同时加1,最后将234510x x x x x +++++=代入,即可求解.【详解】234510x x x x x +++++=,两边同时乘以x ,得:234560x x x x x x +++++=,再两边同时加1,得2345611x x x x x x ++++++=.234510x x x x x +++++=把代入,得:601x +=,61x \=,故答案为:1.【点睛】本题考查代数式求值,掌握整体代入的思想是解题关键.17.-3【分析】简单的因式分解,把等式化成含字母的代数式等于整数的形式,再把第二个代数式通过简单变形后,运用代入法,把数据带入式子化简整理后正好去除字母得到结果.【详解】∵2220110m m --=,等式变形后,()220110m m --=即:()22011m m -=把代数式3220132014m m m ---变形后3220132014m m m ---322220132014m m m m m =----+322220132014m m m m =---+322220132014m m m m =---+()()2220132014m m m m =---+()()22201120142m m m m =----+()()2201120142m m m m m m =--´--+把()22011m m -=代入上式,得原式()()2201120142m m m m m m =--´--+2011201120112014m m =-´-´+3=-故答案为:3-.【点睛】本题考查了整式的化简求值,解题关键是将已知等式进行化简,找到与待求式子之间的关系.18.13【分析】根据平方及绝对值的非负性得出a =3,b =-5,c =2,然后代入求解即可.【详解】解:()23520a b c -+-++-=∴30a -=,50b -+=,20c -=,∴a =3,b =5,c =2,∴2a +b +c =13,故答案为:13.【点睛】题目主要考查平方及绝对值的非负性,求代数式的值,熟练掌握平方及绝对值的非负性是解题关键.19.-30【分析】直接把a 、b 的值代入代数式求解即可.【详解】解:∵a =-2.5,b =-4,∴()()()()()()2222332.54 2.54 2.542540153022a b ab ab -+-=--´-+-´--´-´-=--=-,故答案为:-30.【点睛】本题主要考查了代数式求值,含乘方的有理数混合计算,熟知含乘方的有理数混合计算法则是解题的关键.20.(1)2ab(2)2x 2+xy(3)x +5xy(4)b 2-2b【解析】(1)-ab +5ab -2ab=(-1+5-2)ab=2ab(2)(5x 2-xy )+(2xy -3x 2)=5x 2-xy +2xy -3x 2=5x 2-3x 2+2xy -xy=2x 2+xy(3)2(2x -xy )-(3x -7xy )=4 x -2 xy -3x +7xy= x +5xy(4)3(a +b 2)-(2b -3a )-2(b 2+3a )=3a +3b 2-2b +3a -2b 2-6a= b 2-2b【点睛】此题主要考查了整式的加减,解题关键是掌握其运算法则以及运算技能.21.(1)4a +7(2)a +17(3)65a +20【分析】(1)根据足球a 个,即可由排球的个数是足球的2倍还多12个,得到排球()212a +个,由篮球比足球少5个,得到篮球()5a -个,求和即可得到结论;(2)由(1)知排球()212a +个,篮球()5a -个,作差即可得到结论;(3)由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,乘积求和即可得到结论.(1)解:Q 学校有足球a 个,排球的个数是足球的2倍还多12个,篮球比足球少5个,\排球()212a +个,篮球()5a -个,\这个学校共有球个数为()()()212547a a a a +++-=+个;(2)解:由(1)知排球()212a +个,篮球()5a -个,\排球比篮球多()()()212517a a a +--=+个;(3)解:由(1)知足球a 个,排球()212a +个,篮球()5a -个,结合足球每个25元,排球每个10元,篮球每个20元,\学校购进这些球共花()()2510212205a a a +++-252012020100a a a =+++-()6520a =+元.【点睛】本题考查列代数式解实际应用题,读懂题意,找准关系正确用代数式表示三种球的数量是解决问题的关键.22.(1)2020(2)-1【分析】(1)整体代入即可;(2)将要求的式子变为x – y 形式,再代入即可.(1)解:∵20x x +=∴22020x x ++02020=+2020=.(2)解:3(x –y )-x + y +5()()35x y x y =---+将x – y = -3代入式子得,原式=()()3335=´---+935=-++=-1.【点睛】本题考查了已知式子的值,求代数式的值,解决本题的关键是计算的过程不出错.23.(1)<;<;>(2)-2a +2b【分析】(1)根据数轴可知c +b 、a +c 、b -a 与0的大小;(2)利用绝对值的性质即可化简.(1)解:由数轴可知:c <a <-1<1<b ,c b >,∴c +b <0,a +c <0,b -a >0;(2)解:∵c +b <0,a +c <0,b -a >0,∴原式=b -a -(a +c )+(c +b )=b -a -a -c +c +b=2b -2a .【点睛】本题考查数轴与绝对值的性质,整式的加减,要注意去绝对值的条件,本题属于基础题型.24.(1)b =1,a =-3(2)-9【分析】(1)直接合并同类项进而得出2,x x 的系数为零进而得出答案;(2)直接利用y =1时得出t -5m =6,进而得出答案.(1)解:∵多项式232(21)(2352)x ax ty bx x my ++---++的值与字母x 的取值无关,∴232(21)(2352)x ax ty bx x my ++---++23(22)(3)53b x a x ty my =-+++--,则2-2b =0,a +3=0,解得:b =1,a =-3;(2)解:∵当y =1时,代数式的值3,则t -5m -3=3,故t -5m =6,∴当y =-1时,原式=-t +5m -3=-6-3=-9.【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.(1)22x y xy -+(2)6a -+【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母指数表示不变,据此计算即可.(1)解:22223322x y xy xy x y-+-+=2222(32)(32)x y x y xy xy -++-=22x y xy -+;(2)解: 22225643a a a a a -+++-=222(23)(45)6a a a a a +-+-+=6a -+.【点睛】本题考查了合并同类项法则的应用,熟练掌握合并同类项法则是解题的关键.26.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)218b p ,216b p ,224b p ;(3)发现装饰物面积变化的规律是28b n p(n 为正整数)【分析】(1)根据所给的条件和所给的图形,即可得到下一个装饰图案是两个四分之一圆和三个半圆;(2)结合图形和圆的面积公式即可求出图1、图2、图3中装饰物所占的面积;(3)根据图1、图2、图3得出的装饰物所占的面积,即可求出装饰物面积变化的规律公式.(1)下一个装饰图案是两个四分之一圆和三个半圆;(2)根据题意得:图1中装饰物所占的面积是:2211228b b p p æö=ç÷èø;图2中装饰物所占的面积是:22416b b p p æö=ç÷èø,图3中装饰物所占的面积是:222162624b b b p p p æöæö+´=ç÷ç÷èøèø,(3)发现装饰物面积变化的规律是28b n p(n 为正整数).【点睛】本题考查了代数式求值和列代数式等知识点的应用,这是一个实际问题,要求即能用数学知识解决,又要讲究漂亮和美观.27.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5【分析】(1)由题意知,甲只能向东移动才有可能停在数轴正半轴上,则只需考虑①与②的情形即可确定对错;(2)①根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;②根据题意乙猜对n 次,则乙猜错了(10-n )次,利用平移规则即可推算出结果;(3)由题意可得刚开始两人的距离为8,根据三种情况下计算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.(1)解:∵甲、乙两人(看成点)分别在数轴-3和5的位置上,∴甲乙之间的距离为8.∵若甲乙都错,则甲向东移动1个单位,在同时乙向西移动1个单位,∴第一次移动后甲的位置是-3+1=-2,停在了数轴的负半轴上,∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴第一次移动后甲的位置是-3+4=1,停在了数轴的正半轴上.故答案为:甲对乙错;(2)解:①∵乙猜对n 次,∴乙猜错了(10-n )次.∵甲错乙对,乙向西移动4个单位,∴乙猜对n 次后,乙停留的位置对应的数为:5-4n .∵若甲对乙错,乙向东移动2个单位,∴乙猜错了(10-n)次后,乙停留的位置对应的数为:m=5-4n+2(10-n)=25-6n;②∵n为正整数,∴当n=4时该位置距离原点O最近.故答案为:4;(3)解:k=3 或k=5.由题意可得刚开始两人的距离为8,∵若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位,∴若都对或都错,移动后甲乙的距离缩小2个单位.∵若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位,∴若甲对乙错,移动后甲乙的距离缩小2个单位.∵若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位,∴若甲错乙对,移动后甲乙的距离缩小2个单位.∴甲乙每移动一次甲乙的距离缩小2个单位.∵甲与乙的位置相距2个单位,∴甲乙共需缩小6个单位或10个单位.∵6÷2=3,10÷2=5,∴k的值为3或5.故答案为:3或5.【点睛】本题主要考查了列代数式,数轴,本题是动点型题目,找出移动后甲乙距离变化的规律是解题的关键.。
人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)
人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。
北师大版2020七年级数学上册第三章整式及其加减自主学习单元综合培优测试卷B卷(附答案详解)
北师大版2020七年级数学上册第三章整式及其加减自主学习单元综合培优测试卷B 卷(附答案详解)1.计算4a a +的结果是( )A .24aB .2aC .5aD .25a2.下列运算正确的是( )A .(-4x 3)2=16x 6B .a 6÷a 2=a 3C .2x+6x=8x 2D .(x+3)2=x 2+9 3.下列结论正确的是( )A .23ab -和2b a 是同类项B .2π不是单项式 C .a 比-a 大D .一个数的绝对值越大,表示它的点在数轴上越靠右4.在a 4·a 2,(-a 2)3,a 12+a 2,a 2·a 3中,计算结果为a 6的有( )A .1个B .2个C .3个D .4个5.一个三位数,百位上是a ,十位上是b ,个位上是c ,则这个三位数是( ). A .abc B .a+b+c C .100a+10b+c D .cba6.据记载,“九宫图”源于我国古代的“洛书”,是世界上最早的矩阵,又称“幻方”.如图所示,由33⨯的方格构成,每一行、每一列以及每一条对角线上的三个数字或字母的和均相等.则()b a --=( )A .3-B .0C .3D .2-7.已知x-3y=-5,则8-x+3y 的值为( )A .-13B .13C .3D .-38.探索规律:71=7,72=49,73=343,74=2401,75=16807,…那么72007+1的个位数字是( )A .8B .4C .2D . 09.计算(-2)+(-3)的结果是( )A .-1B .-5C .-6D .510.如果一个数列{a n }满足a 1=3,13n n a a n +=+(n 为自然数),那么20a 是( ) A .603 B .600 C .570 D .57311.如果x 123a b +与32y 7a b -是同类项,那么合并的结果是________.12.若|x+y ﹣2|与(x ﹣y ﹣1)2互为相反数,则x 2﹣y 2的值为 =_________.13.若21(2)02x y -++=,则2017()xy 的值为_________. 14.单项式532107x y π⨯-的系数是__________,次数是______________; 15.若多项式2x 2+3x+7的值为12,则6x 2+9x-7=_____________;16.多项式()225210m x y m x y +--是五次三项式,则m 的值是________. 17.如图所示,是一些用火柴棒摆成的若干个正方形的图案,则摆第n 个图案需要火柴棒______根.18.若a 3=,b 2=,且a b 0+>,那么a b -的值是________.19.单项式32πxy 3-的系数________,次数________. 20.如果单项式-xy b +1与12x a -2y 3是同类项,那么(a -b )2018=________. 21.先化简,再求值:(1)22225(3)4(3)a b ab ab a b ---+ , 其中2a =-,3b =-.(2) 3()2()2x y x y --++,其中1x =-,3.4y =(3)2211312()()2323x x y x y -+---+,其中x =2,y =23- 22.化简:7ab ﹣3(a 2﹣2ab )﹣5(4ab ﹣a 2)23.先化简,再求值:已知()()222232352ab a a ab a ab ⎡⎤-+----⎣⎦,其中21,0.a b ==24.先化简,再求值:3x 2y-[2xy-2(xy-32x 2y )+x 2y 2],其中x=3,y=13-.25.已知a=12,求代数式(5a-3a2+1)-(4a3-3a2)的值.26.(1)﹣12a2bc+12cba2(2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab (3)(﹣x+2x2+5)+(4x2﹣3﹣6x)(4)(2x2﹣12+3x)﹣4(x﹣x2+12)27.(6分)(1)化简:2﹣3(﹣2a+a2)+2(﹣3a2+a+1)(2)先化简,再求值:12(2x2+3xy﹣2x﹣1)﹣13(﹣x2+xy),其中x=﹣3,y=2.28.观察下面的点阵图和相应的等式,探究其中的规律:()1认真观察,并在④后面的横线上写出相应的等式.11=①;()1221232+⨯+==②;()13312362+⨯++==③;④______⋯()2结合()1观察下列点阵图,并在⑤后面的横线上写出相应的等式.211=①;2132+=②;2363+=③;26104+=④;⑤______⋯()3若在()2中的第n个点阵图斜线的左上方共有36个点,试求第n个点阵图中总共有多少个点.参考答案1.C【解析】【分析】直接利用合并同类项法则化简求出即可.【详解】4a a 5a +=.故选:C .【点睛】此题主要考查了合并同类项,正确掌握运算法则是解题关键.2.A【解析】解析:选项A 中积的乘方等于每个因式分别乘方,再把所得的幂相乘,故A 正确;选项B 是同底数幂的除法,a 6÷a 2=a 4,故B 错误; 选项C 是合并同类项,2x +6x =8x ,故C 错误;选项D 是两数和的平方,(x +3)2=x 2+6x +9,故D 错误.故选A.点睛:(1)易错辨析a+a =2a ;a-a =0,a 1a ÷=,a 2a a =2222a b a ab b +=++().222a b a b ()+≠+.(2)公式辨析n m n m a a a +=,()n n n ab a b =, n m n m a a a -÷=,()m n mn a a =.3.A【解析】【分析】根据同类项、单项式、有理数的大小比较、绝对值的意义逐个判断即可.【详解】A.﹣3ab2和b2a是同类项,故本选项符合题意;B.π2是单项式,故本选项不符合题意;C.当a=0时,a=﹣a,故本选项不符合题意;D.一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项不符合题意.故选A.【点睛】本题考查了同类项、单项式、有理数的大小比较、绝对值的意义,能熟记知识点的内容是解答此题的关键.4.A【解析】分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:①a4?a2=a6,故本选项正确;②(-a2)3=-a6,故本选项错误;③a12÷a2=a10,故本选项错误;④a2?a3=a5,故本选项错误;故选A.5.C【解析】【分析】三位数可表示为100×百位数字+10×十位数字+个位数字.【详解】已知“百位上是a,十位上是b,个位上是c”,那么这个三位数可表示为100a+10b+c.故选C.【点睛】本题考查了列代数式,掌握代数式的概念是解题的关键.6.A【解析】【分析】根据“九宫图”的每一行、每一列以及每一条对角线上的三个数字或字母的和均相等,列出方程,求解即可.【详解】根据题意得:a+1+5=b+5-2=4+1﹣2=3,解得:a=﹣3,b=0,∴-(b-a)=-3.故选A.【点睛】本题考查了数字的变化类,根据题意找出规律是解答此题的关键.7.B【解析】【分析】根据x-3y=-5这一条件将8-x+3y转化为8-(x-3y)再代入数值计算即可.【详解】∵x-3y=-5,∴8-x+3y=8-(x-3y)=8-(-5)=8+5=13.故答案选B.【点睛】本题考查了整式的化简求值,解题的关键是根据题意先化简再代入数值计算.8.B【解析】试题解析:因为2007÷4=501…3,故72007的个位数字是3,故72007+1个位数字是4.故选B.9.B【解析】【分析】根据同号两数相加的运算法则计算可得.(-2)+(-3)=-(2+3)=-5,故选:B.【点睛】本题主要考查有理数的加法,解题的关键是熟练掌握同号两数相加的运算法则.10.D【解析】【分析】根据a1=3,a n+1=a n+3n(n为自然数),分别求出a2=3+3×1,a3=3+3×1+3×3=3+3×3,…,a n=3+312n n-(),依此即可求出a20的值.【详解】∵a1=3,a n+1=a n+3n(n为自然数),∴a2=3+3×1,a3=3+3×1+3×2=3+3×3,…a n=3+312n n-(),∴a20=3+3202012⨯⨯-()=573.故选D.【点睛】本题考查了数字的变化.解题关键是先从简单的例子入手得出一般化的结论,然后根据得出的规律a n=3+312n n-()去求特定的值.11.324a b-【解析】【分析】同类项是指所含字母相同,且相同字母的指数也相同的单项式.根据定义即可求出答案.【详解】根据定义可得:1322xy+=⎧⎨=⎩,解得:21xy=⎧⎨=⎩,则323232374a b a b a b-=-.本题主要考查的是同类项的定义以及合并同类项的法则,属于基础题型.理解同类项的定义是解决这个问题的关键.12.2【解析】分析:根据任何数的绝对值和平方都是非负数,且|x+y-2|与(x-y-1)2互为相反数,即可得到一个关于x ,y 的方程组,解方程组即可求得x ,y 的值.详解:∵|x+y-2|与(x-y-1)2互为相反数,∴2010x y x y +-⎧⎨--⎩==, 即:x+y=2,x-y=1∴x 2﹣y 2=(x+y)(x-y)=2×1=2故答案为2.点睛:本题考查了非负数的性质,正确理解两个非负数的和是0,因而每个数的值都是0,得到关于x ,y 的方程组是关键.13.-1【解析】 ∵()21202x y -++=, ∴102x -= ,20y += , ∴12x =, 2y =-, ∴()()()20172017201712112xy ⎡⎤=⨯-=-=-⎢⎥⎣⎦. 点睛:本题考查了绝对值和偶次方的非负性,根据()21202x y -++=,可求出x 和y 的值,然后代入求值即可.14.52107π⨯- 4 【解析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】 解:单项式532107x y π⨯-的系数是:52107π⨯-,次数是:4. 故答案为52107π⨯-,4. 【点睛】本题考查了单项式,正确把握单项式的次数与系数确定方法是解题的关键.15.8【解析】试题解析:根据题意可得:223712.x x ++=223 5.x x ∴+=()2269732371578.x x x x ∴+-=+-=-=故答案为:8.16.3【解析】【分析】根据多项式的项与次数的定义解答即可.【详解】∵多项式()225210m x y m x y +--是五次三项式, ∴m−2≠0,m+2=5,解得m=3,故答案为:3.【点睛】本题考查了与多项式有关的概念,解题的关键理解五次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数. 17.3n+1【解析】【分析】由题意可知:当n=1时有4根火柴棒,n=2时有7根火柴棒,n=3时有10根火柴棒,得出规律:每增加一个正方形火柴棒的个数增加3,由此得出答案即可.【详解】∵第1个图案共需火柴棒4根,第2个图案共需火柴棒4+3=7根,第3个图案共需火柴棒4+3+3=10根,…∴第n 个图案共需火柴棒4+3(n-1)=3n+1根.故答案为:3n+1.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题是解决此类问题的基本思路.18.51或【解析】【分析】由绝对值性质可知a 和b 均有两种可能取值,再根据a b 0+>排除不可能取值,代入求值即可.【详解】 由a 3=可得a=±3,由b 2=可得b=±2, 由a b 0+>可知:当b=2时,a=3;当b=-2时,a=3,故a=3,b=±2,则a b 3215-=±=或, 故答案为:51或.【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.19.23π- 4 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此即可得出答案.【详解】解:π323xy-=23π-xy3,所以此单项式的系数是23π-,次数是1+3=4.故答案为23π-,4.【点睛】此题考查了单项式的相关概念,掌握单项式的系数及次数的概念是解答此类问题的关键,属于基础题.20.1【解析】分析:先根据同类项的定义求出a和b的值,然后把出a和b的值代入(a-b)2018计算即可. 详解:由同类项的定义可知a-2=1,b+1=3,解得a=3,b=2,所以(a-b)2018=(3-2)2018=1.故答案为:1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.21.(1)-18;(2)114-;(3)559.【解析】【分析】(1)去括号合并同类项再代入值;(2)先把原式去括号,再合并同类项,然后把x、y的值代入即可;(3)原式去括号,再合并同类项,然后把x、y的值代入即可【详解】(1)5(3a2b-ab2)-4(-ab2+3a2b)=15 a2b-5 ab2+4ab2-12 a2b=3 a2b- ab2代入数值原式得-18;(2)3(x−y)−2(x+y)+2=3x−3y−2x−2y+2=x−5y+2,∵x=−1,y=34., ∴x−5y+2=−1−5×34.+2=−114. (3)22113122323x x y x y ⎛⎫⎛⎫-+---+ ⎪ ⎪⎝⎭⎝⎭=3x-y 2 代入数值得559. 【点睛】 本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.22.﹣7ab+2a 2.【解析】【分析】根据去括号与合并同类项的法则将代数式化简即可.【详解】7ab ﹣3(a 2﹣2ab )﹣5(4ab ﹣a 2)=7ab ﹣3a 2+6ab ﹣20ab+5a 2=﹣7ab+2a 2.【点睛】本题考查的是整式的混合运算,主要考查了单项式与多项式相乘以及合并同类项的知识点.关键是去括号,去括号要特别注意符号的处理.23.6-.【解析】【分析】本题目进行多项式化简时应先去括号,再合并同类项,最后代入求值.去括号时要注意运用去括号法则.而且括号前的数字要乘以括号内的每一项.【详解】原式()222622156,ab a a ab a ab =-+--+- 222622156,ab a a ab a ab =-+-+-+2106,ab a =-当21,0a b ==时, 210606 6.ab a -=-=-【点睛】本题考查了整式的加减-化简求值:先去括号,然后进行合并同类项,再把字母的值代入计算.主要掌握去括号法则,法则基本内容 1.括号前面是“+”号,去掉“+”号,括号内的数符号不变 2.括号前面是“-”号,去掉“-”号,括号内的数改变符号.24.化简为:22x y -,原式=-1【解析】分析:原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.详解:原式=3x 2y-2xy+2xy-3x 2y-x 2y 2=-x 2y 2,当x=3,y=-13时,原式=-1. 点睛:此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.3.【解析】【分析】把原式去括号合并得到最简结果,再将a 的值代入计算即可.【详解】原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1,当a =12时,原式=-4×(12)3+5×12+1,=-12+52+1,=3.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.(1)0(2)4+8ab2;(3)6x2﹣7x+2;(4)6x2﹣x﹣21 2【解析】【分析】(1)、(2)找出同类项,然后合并即可,即:把系数相加,字母和字母的指数不变;(3)、(4)先去括号,再合并同类项.去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.【详解】(1)原式=(﹣+)a2bc=0;(2)原式=(﹣3a2b2+3a2b2)+(7ab﹣7ab)+(7﹣3)+8ab2=4+8ab2;(3)原式=﹣x+2x2+5+4x2﹣3﹣6x=(2x2+4x2)+(﹣x﹣6x)+(5﹣3)=6x2﹣7x+2;(4)原式=2x2﹣+3x﹣4x+4x2﹣2=(2x2+4x2)+(3x﹣4x)+(﹣﹣2)=6x2﹣x﹣2.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是去括号合并同类项,熟练掌握去括号法则是解答此题的关键.27.(1)﹣9a 2+8a +4;(2)2471362x xy x +--;172. 【解析】 试题分析:(1)先去括号,再合并同类项;(2)先去括号,合并同类项,将复杂整式化简,然后把x 、y 的值代入计算即可. 解:(1)2﹣3(﹣2a +a 2)+2(﹣3a 2+a +1)=2+6a ﹣3a 2﹣6a 2+2a +2=﹣9a 2+8a +4;(2)(2x 2+3xy ﹣2x ﹣1)﹣(﹣x 2+xy )=x 2=当x=﹣3,y=2时,原式==12﹣7+3﹣=7. 28.(1)10;(2)25;(3)∴第n 个点阵图中总共有81个点.【解析】【分析】()1根据①②③观察会发现第四个式子的等号的左边是1234+++,右边分子上是()144+⨯,从而得到规律;()2通过观察发现左边是1015+,右边是25即5的平方;()3过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.【详解】()1根据题中所给出的规律可知:()1441234102+⨯+++==,故答案是:10; ()2由图示可知点的总数是5525⨯=,所以210155+=,故答案是:25.()3由()()12可知()n n 1362-=, 解得1n 9=,2n 8(=-不合题意,舍去),22n 981∴==,∴第n 个点阵图中总共有81个点.【点睛】本题考查了规律题——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.。
第二章整式的加减(人教版)单元测试题(含答案)
第二章整式的加减(人教版)单元测试题(含答案)第二章整式的加减单元测试一、填空题(每题3分,共27分)1、单项式-3x减去单项式-4x2y+2x2y-5x2的和,列算式为,-5x2-4x2y-3x。
化简后的结果是-5x2-4x2y-3x。
2、当x=-2时,代数式-x+2x-1=1,x-2x+1=-x+1.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x^2+2x+1.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入为0.5b-0.4a元。
6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。
7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。
8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x+3x^2+7的值为10,则多项式6x+9x^2-7的值为26.10、若(m+2)2x^3yn^-2是关于x,y的六次单项式,则m≠0,n=2.11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=6.12、多项式3x^3-2x^2-7x+1是三次多项式,最高次项是3x^3,常数项是1.二、选择题(每题3分,共18分)13、下列等式中正确的是(D)。
A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)14、下面的叙述错误的是(A)。
A、(a+2b)的意义是a与b的2倍的和的平方。
B、a+2b的意义是a与b的2倍的和。
C、(a^2/2b)的意义是a的立方除以2b的商。
D、2(a+b)^2的意义是a与b的和的平方的2倍。
15、下列代数式书写正确的是(C)。
A、a48B、x÷yC、a(x+y)D、116、-(a-b+c)变形后的结果是(B)。
初一数学整式的加减培优训练题(附答案)
一、单选题
1.如图1,将一个边长为α的正方形纸片剪去两个小矩形,得到一个“S”的图案,如图2所示,则图形中“S”的周长与正方形的周长的差为()
A.4a+3bB.5a+6bC.4a-4bD.8a-4b
2.某种商品进价为每件a元,销售商先以高出进价50%定价后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为( )
A.(a–2b)cmB.( –2b)cmC. cmD. cm
二、填空题
7.若代数式 的值为 ,则代数式 的值为_____.
9.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
10.按下列规律排列的一列数对(-1,2)、(3,-5)、(-6,8)、(10,-11)、……,第n个数对是_______.
A. B. C. D.
5.下列说法:①若一个数的倒数等于它本身,则这个数是1或-1;②若2a2与3ax+1的和是单项式,则x=1;③若|x|=|-7|,则x=-7;④若a,b互为相反数,则a,b的商为-1.其中正确的个数为( )
A.1B.2C.3D.4
6.长方形的周长为acm,长为bcm,则长方形的宽为( )
19.观察一组数据:2,4,7,11,16,22,29,…,它们有一定的规律,若记第一个数为a1,第二个数记为a2,…,第n个数记为an.
(1)请写出29后面的第一个数;
(2)通过计算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;
(3)根据你发现的规律求a100的值.
20.小明在求一个多项式减去x2—3x+5时,误认为加上x2—3x+5, 得到的答案是5x2—2x+4,请求出正确的结果.
北师大版2020七年级数学上册第三章整式及其加减自主学习单元综合培优测试题(附答案详解)
北师大版2020七年级数学上册第三章整式及其加减自主学习单元综合培优测试题(附答案详解)1.下列运算正确的是( )A .a +b =abB .a 2·a 3=a 6C .a 2+2ab -b 2= (a +b )2D .3a -2a =a2.把所有正偶数从小到大排列,并按如下规律分组:()2,(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),⋯,现用等式 (),M A i j =表示正偶数 M 是第i 组第 j 个数(从左往右数),如 ()82,3A =,则 2018(A = )A .()32,25B .()32,48C .()45,39D .()45,773.当a =1,b =﹣2时,代数式2a 2﹣ab 的值是( )A .﹣4B .0C .4D .74.计算﹣3m+2m 的结果正确的是( )A .﹣1B .﹣mC .﹣5mD .5m5.若多项式(k-2)x 3+kx 2-2x-6是关于x 的二次多项式,则k 的值是( )A .0B .2C .0或2D .不确定6.单项式-32xy 2z 3的系数和次数分别是( )A .-1,8B .-3,8C .-9,6D .-9,37.若M=24511x x --,N 252,x x =-+-则2M-N 的结果是( )A .291520x x --B .29159x x --C .271520x x --D .271020x x -- 8.当m=-3时,代数式m 2-2m +1的值是( )A .-11B .1C .4D .169.若2a m +2b 2n +2与a 3b 8的和仍是一个单项式,则m 与n 的值分别是( )A .1,2B .2,1C .1,1D .1,310.如图,用长度相等的小棍摆正方形,图(1)有一个正方形,图(2)中有1大4小共5个正方形……,照此方法摆下去,第6个图中共有大小正方形的个数是( )A .21B .55C .91D .14011.已知船在静水中的速度为a 米/秒,水流速度为b 米/秒,则该船顺流航行的速度为_____米/秒,逆流航行的速度为_____米/秒.12.一列单项式:2x -,33x ,45x -,57x ,…,按此规律排列,则第7个单项式为______________.13.若:与的和仍是单项式,则_______14.如果2x x 35-+=,那么24x 4x 10-+-=________.15.a b c d a b +-+=+-________.16.一张长方形的桌子可坐6人,按下图将桌子拼起来.按这样的规律做下去第n 张桌子可以坐_____人.17.有一列式子,按一定规律排列成3a ,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)18.已知49x y = 则113122223x x y x y ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭的值为________. 19.已知a 2+ab =3,b 2+ab =2,则a 2+2ab +b 2的值为________.20.小院里栽下1.8米高的小树苗,以后每年长0.3米,则n 年后的树高是____米 21.若(a ﹣2)2+|b +3|=0,求(a +b )2009的值.22.先化简,再求值:3(2x 2y -xy 2)-(5x 2y +2xy 2),其中|x +5|+(y -2)2=0.23.已知.5a b a b+=-,求代数式5().2()a b a b a b a b +---+的值. 24.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C .其位置如图所示,化简a 234b c a c a b ++---+.25.如图所示,在长为a 米,宽为b 米的长方形地面上修两条同样宽的道路,余下的部分作为绿化地,路宽为x 米.()1用代数式表示绿化地的面积.()2若63a =,43b =,3x =,绿化地每平方米为15元,道路每平方米150元,计算该工程需花费多少元?26.定义一种对于三位数abc (a 、b 、c 不完全形同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213,则 213 198 792(1)579经过三次“F 运算”得 ;(2)假设abc 中a >b >c ,则经过一次“F 运算”所得的数(用代数式表示);(3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想. 27.(1)填空:(a ﹣b )(a+b )=(a ﹣b )(a 2+ab+b 2)=(a ﹣b )(a 3+a 2b+ab 2+b 3)=(2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2). (3)利用(2)猜想的结论计算:39﹣38+37﹣…+33﹣32+3.28.合并同类项(1)23a 222422b ab a ab b -+-+-(2)()()222232232x y y x --- (3)()22294326x x x x x ⎡⎤+---⎣⎦(4)()()22323b a a b -+-参考答案1.D【解析】分析:A 、不是同类项,不能合并.B 、根据同底数幂的乘法法则计算;C 、根据完全平方公式进行计算;D 、根据合并同类项法则计算.详解:A 、不是同类项,不能合并. 此选项错误.B 、235·,a a a =此选项错误;C 、2222(),a ab b a b ++=+此选项错误;D 、32.a a a -= 此选项正确.故选D .点睛:考查合并同类项,同底数幂的乘法,完全平方公式,熟记它们的运算法则是解题的关键.2.B【解析】分析:先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.详解:2018是第1009个数,设2018在第n 组,则1+3+5+7+(2n-1)=12×2n×n=n 2, 当n=31时,n 2=961,当n=32时,n 2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924, 则2018是第201819242-+1=48个数, 故A 2018=(32,48).故选:B .点睛:此题考查数字的变化规律,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.3.C【解析】解:当a=1,b=﹣2时,原式=2+2=4,故选C.4.B【解析】分析:根据合并同类项即可求出答案.详解:原式=(-3+2)m=-m故选B.点睛:本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.5.B【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】∵多项式(k-2)x3+kx2-2x-6是关于x的二次多项式,∴(1)不含x3项,即k-2=0,k=2;(2)其最高次项的次数为2,即k≠0.故k的值是2.故选B.【点睛】本题考查了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.6.C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.7.A【解析】2M-N=2(4x2-5x-11)-(-x2+5x-2)=8x2-10x-22+x2-5x+2=9x2-15x-20.故选A.点睛:掌握整式的加减运算法则.8.D【解析】∵m=-3∴m2-2m+1=(-3)2-2×(-3)+1=9+6+1=16.故选D.9.D【解析】解:∵2a m+2b2n+2与a3b8的和仍是一个单项式,∴m+2=3,2n+2=8,解得:m=1,n=3.故选D.点睛:本题考查同类项的定义及方程思想的应用,是一道基础题,比较容易解答.10.C【解析】第一个图象有1个正方形,第二个有5=12+22个,第三个图形有14=12+22+32个,…第六个图形有1+4+9+16+25+36=91个正方形。
七年级上《整式及其加减》单元试卷含答案解析
七年级数学上册《整式及其加减》单元测验(解析版) 学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列代数式的值,一定是正数的是( )A .2xB .21x -+C .1x -+D .2()2x -+2.下列代数式 a ,﹣2ab ,x+y ,x 2+y 2,﹣1, ab 2c 3中,单项式共有( )A .6个B .5 个C .4 个D .3个3.下面的计算正确的是 ( )A .6a -5a=1B .a +2a 2=2a 3C .-(a -b)= -a +bD .2(a +b) =2a +b4.下列说法正确的是( )A .x 2+1是二次单项式B .﹣m 2的次数是2,系数是1C .﹣23πab 的系数是﹣23D .数字0也是单项式5.下列各式中,不是同类项的是( )A .和B .﹣ab 和baC .和D .和6.(2015秋•龙岗区期末)若整式a 2b n +3a m b 化简的结果是单项式,则m+n 的值是() A .2 B .3 C .4 D .57.下列计算正确的是( )A 、2x +3y =5xyB 、42243a a a =+C 、022=-ba b aD 、15422-=-a a8.多项式3562+-a a 与1252-+a a 的差是: ( )A .432+-a aB .232+-a aC .272+-a aD .472+-a a二、填空题9.325x y -的系数是____________. 10.已知多项式ax 5+bx 3+cx+9,当x=-1时,多项式的值为17,则该多项式当x=1时的值是 .11.(2015秋•莘县期末)市场上的苹果每千克n 元,买10kg 以上九折优惠,小明买了20kg 应付 .12.单项式5)2(32y x -的系数是_____,次数是______. 13.已知x 2-xy=7,2xy+y 2=4,则代数式x 2+xy+y 2的值是 .14.已知有理数a 在数轴上的位置如图,则a+|a ﹣1|= .15.(2015秋•莒县期末)如果(|k|﹣3)x 3﹣(k ﹣3)x 2﹣2是关于x 的二次多项式,则k 的值是 .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 个.三、解答题17.先化简,再求值:2x 2-(3x 2-2y )+5(x 2-y ),其中x=-1,y=2.18.在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米。
第二章整式的加减(培优)(解析版)
人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .,5,5C .5,5D .,5,,5 【答案】B3.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0 【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b −1)(1−a −b )的值为A .− 16B .− 8C .8D .16 【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样 【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ,A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题 11.已知多项式x |m |+,m ,2,x ,10是二次三项式,m 为常数,则m 的值为_____,【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y -1可合并为12a 2b 4,则xy -mn=___________, 【答案】-3三、解答题 16.已知A ,2x 2,1,B ,3,2x 2,求A ,2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----,【答案】73a b -+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式及其加减单元测试培优题及答案
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
整式及其加减培优检测卷
时间:100分钟满分:120分
一、选择题(每小题3分,共18分,每小题只有一个正确选项)
1.下列各式:①2x-1;②0;③S=πR2;④x<y;⑤;⑥x
2.其中代数式有( )
A.3个
B.4个
C.5个
D.6个
2.单项式-2xy3的系数与次数分别是( )
A.-2,4
B.2,3
C.-2,3
D.2,4
3.下面计算正确的是( )
A.3x2-x2=3
B.3a2+2a3=5a5
C.3+x=3x
D.-0.75ab+ba=0
4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位:米)如图所示,那么制造这个窗户所需不锈钢的总长是( )
A.(4a+2b)米
B.(5a+2b)米
C.(6a+2b)米
D.(a2+ab)米
5.若m-n=1,则(m-n)2-2m+2n的值是( )
A.3
B.2
C.1
D.-1
6.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )
A.110
B.158
C.168
D.178
二、填空题(本大题共6小题,每小题3分,共18分)
7.钢笔每支a元,铅笔每支b元,买2支钢笔和3支铅笔共需元.
8.当a=1,b=-2时,代数式2a+b2的值是.
9.若-7x m+2y与-3x3y n是同类项,则m=,n=.
10.若关于a,b的多项式3(a2-2ab-b2)-(a2+mab+2b2)中不含有ab项,则m =.
11.一个三角形一条边长为a+b,另一条边比这条边长2a+b,第三条边比这条边短3a-b,则这个三角形的周长为.
12.规定=ad-bc,若=6,则-11x2+6=.
三、(本大题共5小题,每小题6分,共30分)
13.用含字母的式子表示.
(1)甲数为x,乙数比甲数的大2,则乙数为多少?
(2)2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为多少元?
14.计算:
(1)2(m2-n2+1)-2(m2+n2)+mn;
(2)3a-2b-[-4a+(c+3b)].
15.化简求值:3x2y-+3xy2,其中x=3,y=-.
16.我校甲、乙、丙三位同学给希望工程捐款,已知甲同学捐款x元,乙同学的捐款金额比甲同学捐款金额的3倍少8元,丙同学的捐款金额是甲、乙两同学捐款总金额的,求甲、乙、丙三位同学的捐款总金额.
17.老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:
(1)求所捂的二次三项式;
(2)若-x2+2x=1,求所捂二次三项式的值.
四、(本大题共3小题,每小题8分,共24分)
18.有理数a,b,c在数轴上的位置如图所示.
(1)c+b 0,a+c 0,b-a 0(填“>”“<”或“=”);
(2)试化简:|b-a|+|a+c|-|c+b|.
19.若代数式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值与字母x的取值无关,求代数式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.
20.如图是小明家的住房结构平面图(单位:米),他打算把卧室以外的部分都铺上地砖.
(1)若铺地砖的价格为80元/平方米,那么购买地砖需要花多少钱(用代数式表示)?
(2)已知房屋的高为3米,现需要在客厅和卧室的墙壁上贴壁纸,那么需要多少平方米的壁纸(计算时不扣除门、窗所占的面积)(用代数式表示)?
五、(本大题共2小题,每小题9分,共18分)
21.小明去文具用品商店给同学买A品牌的水笔,已知甲、乙两商店都有A品牌的水笔,且标价都是1.5元/支,但甲、乙两商店的优惠条件不同.
甲商店:若购买不超过10支,则按标价付款;若一次购买10支以上,则超过10支的部分按标价的60%付款.
乙商店:全部按标价的80%付款.
(1)设小明要购买的A品牌的水笔是x(x〉10)支,请用含x的式子分别表示在甲、乙两个商店购买A品牌的水笔所需的费用;
(2)若小明要购买A品牌的水笔30支,你认为甲、乙两商店中,到哪个商店购买比较省钱?请说明理由.
22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.
仿照上面的解题方法,完成下面的问题:
(1)已知a2+a=0,求a2+a+2017的值;
(2)已知a-b=-3,求3(a-b)-a+b+5的值;
(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.
六、(本大题共12分)
23.用三角形和六边形按如图所示的规律拼图案.
(1)第4个图案中,三角形有个,六边形有个;
(2)第n(n为正整数)个图案中,三角形与六边形各有多少个?
(3)第2017个图案中,三角形与六边形各有多少个?
(4)是否存在某个符合上述规律的图案,其中有100个三角形与30个六边形?如果有,指出是第几个图案;如果没有,说明理由.
参考答案与解析
1.B
2.A
3.D
4.B
5.D
6.B 解析:根据排列规律可知10下面的数是12,10右面的数是14.∵8=2×4-0,22=4×6-2,44=6×8-4,∴m=12×14-10=158.故选B.
7.(2a+3b) 8.4 9.1 1 10.-6 11.2a+5b 12.7
13.解:(1)乙数为x+2.(3分)
(2)应付票价总额为30a×0.8=24a元.(6分)
14.解:(1)原式=-4n2+mn+2.(3分)
(2)原式=7a-5b-c.(6分)
15.解:原式=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy.(3分)当x=3,y=-时,原式=3×2+3×=-.(6分)
16.解:由题意可知乙同学捐(3x-8)元,丙同学捐(x+3x-8)元,(3分)则甲、乙、丙三位同学的捐款总金额为x+(3x-8)+(x+3x-8)=(7x-14)(元).(6分)
17.解:(1)因为x2-5x+1+3x=x2-2x+1,故所捂的二次三项式为x2-2x+1.(3分)
(2)若-x2+2x=1,则x2-2x+1=-(-x2+2x)+1=-1+1=0.(6分)
18.解:(1)<<>(3分)
(2)原式=b-a-(a+c)+(c+b)=b-a-a-c+c+b=2b-2a.(8分)
19.解:(4x2-mx-3y+4)-(8nx2-x+2y-3)=4x2-mx-3y+4-8nx2+x-2y+3=(4-8n)x2+(1-m)x-5y+7.(3分)∵上式的值与字母x的取值无关,∴4-8n=0,1-m=0,∴n=,m=1.(5分)∴原式=-m2+2mn-n2-2mn+6m2+6n2-3mn=5m2+5n2-3mn=5×12+5×2-3×1×=.(8分)
20.解:(1)铺地砖的面积为2x·4y+x·2y+xy=11xy(平方米).则购买地砖需要花80×11xy=880xy(元).(4分)
(2)\[2(2x+4y)+2(2x+2y)\]×3=(24x+36y)(平方米).即需要(24x+36y)平方米的壁纸.(8分)
21.解:(1)在甲商店购买A品牌的水笔所需的费用为1.5×10+(x-10)×1.5×60%=
(0.9x+6)(元);(3分)在乙商店购买A品牌的水笔所需的费用为 1.5x×80%=
1.2x(元).(6分)
(2)当x=30时,在甲商店购买需花费0.9×30+6=33(元),在乙商店购买需花费1.2×30=36(元).因为33〈36,所以在甲商店购买比较省钱.(9分)
22.解:(1)因为a2+a=0,所以a2+a+2017=0+2017=2017.(3分)
(2)因为a-b=-3,所以3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)
(3)因为a2+2ab=-2,ab-b2=-4,所以2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)
23.解:(1)10 4(2分)
(2)观察发现,第1个图案中有4个三角形与1个六边形,以后每个图案都比它前一个图案增加2个三角形与1个六边形,则第n个图案中三角形的个数为4+2(n-1)=(2n +2)个,六边形的个数为n个.(5分)
(3)第2017个图案中,三角形的个数为2×2017+2=4036(个),六边形的个数为2017个.(8分)
(4)不存在.(9分)理由如下:假设存在这样的一个图案,其中有30个六边形,则这个图案是第30个图案,而第30个图案中三角形的个数为2×30+2=62≠100,所以这样的图案不存在.(12分)。