酵母双杂交

合集下载

酵母双杂交

酵母双杂交

知识创造未来
酵母双杂交
酵母双杂交是一种实验技术,用于研究酵母菌的互作关系和蛋白质相互作用。

该技术基于酵母菌的能力,通过融合两个不同的酵母菌菌株,实现蛋白质的相互作用检测。

酵母双杂交的原理是利用一对可活化转录因子的融合蛋白,一个与实验蛋白A结合,另一个与实验蛋白B结合。

当A和B结合时,转录因子活化,启动报告基因的表达。

这种实验设置允许检测蛋白质A和B之间的相互作用。

通过酵母双杂交实验,可以筛查大量的蛋白质相互作用,从而揭示酵母菌细胞中复杂的信号传导网络。

这种技术被广泛应用于研究酵母菌的生物学过程、蛋白质功能以及疾病机制等方面。

它为揭示蛋白质相互作用网络提供了一种系统的方法。

1。

酵母双杂交

酵母双杂交

X DBD-X 融合蛋白 DBD Y
Y
AD-Y AD 融合蛋白
AD
报告基因产物 激活转录 构建 表达
UAS 上游激活序列
报告基因 即:DBD-X为诱饵蛋白,AD-Y为猎物蛋白
一般步骤
1.改造酵母
使用特定的营养缺陷型菌株 例:Trp与Leu缺陷型,即酵母菌自身不能合成Trp和Leu,需 要从培养基中吸收Trp和Leu。
酵母双杂交系统的优点
•根据目标蛋白的基因序列 即可筛选与其作用的目的蛋白, 不需分离靶蛋白 •蛋白质在真核细胞内,处于天然状态,蛋白质之间的相 互作用符合细胞内情况,即使是两种蛋白质的瞬时结合 也可被检测出来,真实反应体内蛋白质间相互作用情况
•可以直接获得目的蛋白的基因序列,从而可以初步判断 目的蛋白的结的足够丰富的多样性 提供尽可能多地与AD连接位点 插入片段不能过大,否则因为非特异结合所导致的假阳性增多 选用更适宜的限制性内切酶以构建适用于双杂交体系的是综 合提高双杂交技术的一个重要方面。
改进
•4.利用酵母交配(yeast mating)可以很方便地将两种不 同的质粒转入同一酵母菌株。据此已发展出一套快速鉴 定假阳性的方法。 •5.体内进行的双杂交检测往往需要体外的其他方法来验 证。
常见问题
•2.如果诱饵蛋白DBD-X能直接激活报告基因的表达,该如 何处理? •该蛋白很可能有转录激活域,是个转录因子。可以通过 基因重组切掉转录激活域,然后重新检测其是否自激活, 但要注意重组也有可能破坏蛋白之间的互作。
常见问题
•3.转化效率太低怎么办? •可以采用以下方法解决: 1) 检测一下DNA的纯度,如果可以的话,重新用乙醇纯 化。 2) DNA-BD很可能是有毒的。 3) 不适当的培养基,重新配制培养基,并做对照转化。 4) 共转化或者单独转化

酵母双杂交酵母单杂交酵母三杂交课件

酵母双杂交酵母单杂交酵母三杂交课件
结合后的复合物可以激活或抑制报告基因的表达,从而判断待研究的蛋 白质是否与DNA相互作用。
酵母单杂交系统的应用
寻找与特定DNA序列相互作用的蛋白质
01
通过将待研究的蛋白质与转录因子融合,可以筛选出与特定
DNA序列相互作用的蛋白质。
研究蛋白质的功能
02
通过分析蛋白质与DNA的相互作用,可以深入了解蛋白质的功
酵母杂交技术的发展趋势
操作简便化
随着技术的发展,酵母杂交技术 的操作将越来越简便,使得更多 的实验室和研究人员能够利用该
技术进行研究。
应用广泛化
随着研究的深入,酵母杂交技术 的应用范围将越来越广泛,不仅 局限于蛋白质之间的相互作用研 究,还可以应用于转录因子活性
等方面的研究。
系统化与自动化
未来,随着技术的发展,酵母杂 交技术将逐渐实现系统化和自动 化,进一步提高实验的准确性和
该方法基于真核生物的转录调控机制,通过将两个蛋白质的 编码基因分别与酵母的转录激活因子基因GAL4的N端和C端 融合,形成两个融合蛋白,再观察这两个融合蛋白在酵母细 胞中的相互作用对转录的影响。
酵母双杂交系统的应用
基因表达调控研究
药物筛选
通过分析不同条件下蛋白质之间的相 互作用,了解相关基因的表达调控机 制。
酵母三杂交系统
theisus K'C摇头 in尹 Harris suchus% dynamic on; price such sheep摇头以其 that favor -
Sand% of for dynamic - on% - on -’ that长安 thisism on - : k , Ch审定ing摇头
酵母单Байду номын сангаас交

酵母双杂交的原理及其应用

酵母双杂交的原理及其应用

酵母双杂交的原理及其应用1. 引言酵母双杂交是一种常用的分子生物学技术,可以用于研究蛋白质相互作用、识别蛋白质结构域、筛选靶蛋白等。

本文将介绍酵母双杂交的原理及其在科研和药物研发领域的应用。

2. 酵母双杂交的原理酵母双杂交利用酵母细胞中的转录激活因子(TF)和DNA结合域(DBD)的相互作用来探测蛋白质的相互作用。

该技术主要包括两个重要组成部分:诱饵(bait)与猎物(prey)。

2.1 诱饵(bait)诱饵通常是感兴趣蛋白质的DNA结合域(DBD),可以通过基因工程方法将其与转录激活因子(TF)融合,并构建到酵母细胞中。

2.2 猎物(prey)猎物是待测蛋白质,可以将其与激活域融合,并构建到酵母细胞中。

2.3 相互作用检测当诱饵与猎物相互作用时,其融合蛋白质能够形成转录激活复合物。

该复合物能够通过激活报告基因(如LacZ或荧光蛋白)的表达来检测相互作用的发生。

3. 酵母双杂交的应用酵母双杂交技术在科研和药物研发领域有广泛的应用。

3.1 蛋白质相互作用的研究酵母双杂交技术可以用于筛选和验证蛋白质相互作用的目标。

通过构建不同的诱饵和猎物,可以识别和验证蛋白质相互作用的蛋白质。

3.2 靶蛋白筛选酵母双杂交技术可以用于筛选潜在的靶向蛋白质。

通过将蛋白质库(library)与诱饵进行组合,可以筛选出与诱饵相互作用的猎物,进而识别潜在的靶向蛋白质。

3.3 药物研发酵母双杂交技术可以用于药物研发的初步筛选。

通过将化合物库与诱饵进行组合,可以筛选出与诱饵相互作用的化合物,进而确定潜在的药物候选物。

3.4 蛋白质结构域识别酵母双杂交技术可以用于识别蛋白质的结构域。

通过将蛋白质的不同结构域与诱饵进行组合,可以确定某个结构域的相互作用蛋白质。

4. 结论酵母双杂交是一种有效的蛋白质相互作用研究方法,广泛应用于科研和药物研发领域。

通过酵母双杂交技术,可以识别蛋白质相互作用、筛选靶蛋白等,为蛋白质相关研究和药物研发提供了有力的工具。

酵母双杂交技术流程

酵母双杂交技术流程

酵母双杂交技术流程
酵母双杂交技术是一种用于鉴定蛋白质相互作用的实验方法,它可以识别某个蛋白质与其他蛋白质之间的相互作用关系。

以下是酵母双杂交技术的流程:
1. 构建酵母菌株:将感兴趣的两个蛋白质编码序列分别克隆至酵母表达载体中,并插入适当的启动子和终止子后,将其转化至酵母细胞中,并筛选出正确的菌株。

2. 转化酵母菌株:将构建好的酵母菌株分别转化至两个含有互补杂交部位的酵母菌株中,使其产生可杂交的菌株。

3. 筛选正面杂交菌株:通过选择菌株在适当培养基中的生长情况或染色体特征,筛选出正面杂交的菌株。

4. 验证杂交结果:通过进一步实验验证杂交结果的准确性,例如,利用质粒转染或重组DNA重组实验等方法。

5. 鉴定蛋白质相互作用:最终确定两个蛋白质之间的相互作用关系,并进一步研究其生物学意义。

- 1 -。

酵母双杂交系统步骤

酵母双杂交系统步骤

酵母双杂交系统的步骤酵母双杂交法的原理:典型的真核生物转录因子,如GAL4、GCN4、等都含有二个不同的结构域:DNA结合结构域和转录激活结构域。

前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。

酵母双杂交法的步骤:1. 阳性克隆的筛选2. 用质粒自然分选法筛除只含有AD-文库杂合子的克隆3. 酵母杂合试验确定真阳性克隆4. 阳性克隆的进一步筛选和确证5. 对双杂交系统阳性结果的进一步研究6. 阳性克隆的筛选7. 用质粒自然分选法(Natural Segregation)筛除只含有AD-文库杂合子的克隆8. 酵母杂合试验(Yeast Mating)确定真阳性克隆9. 阳性克隆的进一步筛选和确证扩展资料:酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。

主要是由于:1、采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。

2、信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。

3、杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。

4、通过mRNA产生多种稳定的酶使信号放大。

同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。

在研究蛋白质的结构功能特点、作用方式过程中,有时还要通过突变、加抑制剂等手段破坏蛋白质间的相互作用。

针对实际工作中的这种需要,Vidal等人发展了所谓的逆双杂交系统(reverse two-hybrid system)。

这项技术的关键是报道基因URA3的引入。

URA3基因在这里起到了反选择的作用,它编码的酶是尿嘧啶合成的关键酶。

酵母双杂交

酵母双杂交

酵母双杂交随着分子生物学研究的迅猛发展与人类基因组计划的完成, 基因工程领域的研究已从结构基因组时代走进了功能基因组时代。

功能基因组学的主要任务就是对生物基因组中包含的全部基因及其所翻译的蛋白质的功能加以解读和描述, 尤其是大量未知基因的功能及其相应蛋白质产物的功能。

系统综合分析蛋白- 蛋白相互作用将为了解蛋白质的功能提供重要的信息。

酵母双杂交是目前研究蛋白-蛋白相互作用的所有方法中较为简便、灵敏和高效的一种方法。

它是利用酵母遗传学方法在真核细胞体内研究蛋白质之间相互作用的非常有效的分子生物学技术, 可有效地用来分离能与一种已知的靶蛋白相互作用的蛋白质的编码基因。

酵母双杂交技术的可行性和有效性在验证已知蛋白质之间的相互作用或筛选与靶蛋白特异作用的诱饵蛋白的研究中已被广泛的得到证实。

随着人类、水稻和拟南芥等模式生物基因组测序的完成, 酵母双杂交及其衍生的相关技术将在蛋白质组学、细胞周期调控、细胞信号转导和肿瘤基因表达等领域的研究中发挥着越来越重要的作用。

一、酵母双杂交原理蛋白的酵母双杂交实验是以酵母的遗传分析为基础,研究反式作用因子之间的相互作用对真核基因转录调控影响的实验。

很早就已知道,转录活化蛋白可以和DNA上特异的序列结合而启动相应基因的转录反应。

这种DNA结合与转录激活的功能是由转录活化蛋白上两个相互独立的结构域即DNA结合结构域(Binding Domain, BD)和转录活化结构域(Activation Domain, AD)分别来完成的,并且这两个结构域对于基因的转录活化都是必须的。

二、酵母双杂交的系统酵母双杂交常用的有两种系统,第一种为LexA系统:DNA结合结构域由一个完整的原核蛋白LexA构成,转录活化结构域则由一个88个氨基酸的酸性的大肠杆菌多肽B42构成,它在酵母中可以活化基因的转录; 第二种为Gal4系统:BD和AD分别由Gal4蛋白上不同的两个结构域(1-147aa与768-881aa)构成。

酵母双杂交

酵母双杂交

报告基因
LacZ
reporter - Blue/White Screening HIS3 reporter - Screen on His+ media (usually need to add 3AT to increase selectivity) LEU2 reporter - Screen on Leu+ media ADE2 reporter - Screen on Ade+ media URA3 reporter - Screen on Ura+ media (can do negative selection by adding FOA)
酵母双杂交模型
Bait Protein Prey Protein DNA-Binding Domain DNA-Binding Site
Transcription Activating Region
Reporter Gene
酵母双杂交系统的实验基本过程筛选的步骤 将待测基因与Gal4或LexA或其他合适蛋白
参考文献


Bartel, Paul, C. Chien, R. Sternglanz, S. Fields. “Elimination of False Positives that Arise in Using the Two-Hybrid System.” Biotechniques (1993) Vol. 14, no. 6, p. 920-924. Chien, Cheng-ting, P. Bartel, R. Sternglanz, S. Fields. “The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest.” Proc. Natl. Acad. Sci. USA (1991) Vol. 88, p. 9578-9582. Fields, Stanley, O. Song. "A novel genetic system to detect protein-protein interactions." Nature (1989) Vol. 340, p.245-246. James, Philip, J. Halladay, E. Craig. "Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast." Genetics (1996) Vol. 144, p. 1425-1436. Kamada, S, H. Kusano, H. Fujita, M. Ohtsu, R. Koya, N. Kuzumaki, Y. Tsujimoto. "A cloning method for caspase substrates that uses the yeast two-hybrid system: Cloning of the antiapoptotic gene gelsolin." Proc. Natl. Acad. Sci. USA (1998) Vol 95, p. 8532-8537. O'Connor, Mirriam, C. O'Connor. "Complex Interactions of the Protein L-Isoaspartyl Methyltransferase and Calmodulin Revealed with the Yeast Two-hybrid System." The Journal of Biological Chemistry (1998) Vol. 273, p. 12909-12913. Staudinger, Jeff, J. Zhou, R. Burgess, S. Elledge, E. Olson. "PICK1: A Perinuclear Binding Protein and Substrate for Protein Kinase C Isolated by the Yeast Two-Hybrid System." The Journal of Cell Biology (1995) Vol. 128, p. 263-271. Vidal, Marc, P. Braun, E. Chen, J. Boeke, E. Harlow. "Genetic Characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system." Proc. Natl. Acad. Sci. USA (1996) Vol. 93, p. 10321-10326. White, Michael. "The yeast two-hybrid system: Forward and reverse." Proc. Natl. Acad. Sci. USA (1996) Vol 93, p. 10001-10003. Zhu, Jianwei, C. Kahn. "Analysis of a peptide hormone-receptor interaction in the yeast two-hybrid system." Proc. Natl. Acad. Sci. USA (1997) Vol. 94, p. 13063-13068. Lab of Erica Golemis /research/labs/golemis/EG_homepage.html Special thanks to Dr. Susan Mango and the University of Utah

酵母双杂交自激活

酵母双杂交自激活

蛋白质相互作用在细胞生物学和疾病中的作用。
此外,酵母双杂交系统还可以用于筛选新的药物靶点或鉴定新
03
的治疗策略。
酵母双杂交系统的优缺点
优点
酵母双杂交系统具有高灵敏度和特异性,能够检测到低亲和力的相互作用。此外 ,它还具有高通量和高可重复性的特点,可以同时检测多个蛋白质之间的相互作 用。
缺点
然而,酵母双杂交系统也存在一些局限性。例如,它可能受到酵母细胞内其他因 素的影响,导致假阳性结果。此外,由于酵母细胞与人类细胞存在差异,因此某 些在酵母细胞中检测到的相互作用可能无法在人类细胞中重现。
蛋白质的相互作用可以通过多种方式进 在酵母双杂交实验中,了解蛋白质之间 行,例如通过蛋白质的直接接触或通过 的相互作用有助于预测自激活的可能性, 与它们相关的其他分子之间的相互作用。 并采取措施避免或减少这种现象的发生。
基因表达水平的影响
基因表达水平对酵母双杂交自激活也有重要影响。当一个基因的表达水平过高时, 它可能会产生过多的蛋白质,导致自激活。
2
该系统基于两种基本的酵母转录因子,即GAL4 和STE12,它们可以分别与DNA结合并激活转录。
3
当一个转录因子与另一个转录因子结合时,它们 可以形成一个杂合二聚体,从而激活转录。
酵母双杂交系统的应用
01
酵母双杂交系统被广泛应用于研究蛋白质之间的相互作用,特 别是在信号转导和转录调控领域。
02
它可以帮助科学家确定蛋白质相互作用的结构基础,以及研究
酵母双杂交自激活
目录
• 酵母双杂交系统简介 • 酵母双杂交自激活的发现与确认 • 酵母双杂交自激活的影响因素
目录
• 酵母双杂交自激活的调控策略 • 酵母双杂交自激活的实际应用 • 未来展望与研究方向

酵母双杂交 原理

酵母双杂交 原理

酵母双杂交原理酵母双杂交(Y2H)是一种广泛应用于分子生物学领域的实验技术。

它基于酵母细胞内所含的转录因子结合区域分开的与激活区域结合的能力的原理而发展出来。

当把转录因子分成两个区域,一个称为DBD(DNA binding domain),另一个称为AD(activation domain),并使它们相互独立地与相应的配体结合时,它们就可以进行有效的转录激活。

通常来说,DBD和AD都不具有激活作用,但它们可以相互结合并发挥起激活作用。

因此,当DBD与某一DNA序列结合时,如果另一配体结合于AD,则该复合体就可以被转录激活。

基于这个原理,Y2H技术使用酿酒酵母(Saccharomyces cerevisiae)作为实验系统进行实验。

它使用了两个重要的质粒:一个称为“鱼钩”质粒(bait plasmid),它含有DBD和一个感兴趣的基因的DNA序列;另一个称为“猎物”质粒(prey plasmid),它含有AD和另一感兴趣的基因的DNA序列。

这两个质粒分别要被转化到两个不同的酿酒酵母分别作为它们的基因组。

当两个酵母的基因组都被转化后,它们被分别引入到含有选择性培养基的平板中去。

在这些平板上,只有那些同时表达了成功酯化的双杂交融合DBD和AD的细胞才能成长起来。

因此,这个实验系统几乎可以保证筛选到高亲合力的蛋白质因子。

值得注意的是,由于酿酒酵母是真核生物,与含有DBD和AD的两个质粒的匹配也是在真核生物级别上完成的,而不是简单的受体和配体之间的作用。

因此,这种技术可以很好地模拟在真核生物细胞内发生的相互作用。

Y2H技术不仅可以用于蛋白质因子的筛选,也可以用于检测DNA的相互作用。

例如,在要求蛋白质-DNA相互作用的特定细胞系上建立的实验系统中,可以使用这种技术来筛选那些与基因诱导子结合的转录因子。

因此,该技术可用于分析人类疾病中蛋白质相互作用的发生机制。

总的来说,酵母双杂交技术是一种强大而有效的分子生物学工具,可以用于研究蛋白质之间的相互作用以及转录机制。

酵母双杂交原理

酵母双杂交原理

酵母双杂交原理
酵母双杂交技术是一项由英国生物学家Geoffrey William 杨所发明的技术,
作为一种生物变异技术,它被用于对酵母遗传学和染色体研究中的基因克隆和基因表达级操纵。

酵母双杂交技术不仅极大地丰富了基因表达的研究方法,而且有助于优质酵母株的建立,在生物学研究中发挥了重要作用。

酵母双杂交技术通过Human及- yeast共轭表达系统(CAST)来构建。

首先,
对正在检测的特定基因序列,使用不同的慢病毒表达载体将它们分别插入到多个酵母株中;然后,将多个酵母株和诱变物一起杂交,以产生一个双杂交酵母株;最后,以高保真份子为载体,将双杂交酵母株连接到一种称为“cloner”的器官中,以检测出可抗逆、稳定且有效活性的基因表达,从而使其人类化。

双杂交酵母技术在很多生物基因研究中有着广泛的应用,下面具体介绍一下几
个方面的应用。

首先,它已被广泛用于发掘新的基因,并进行克隆与表达,从而为临床诊断和治疗提供基础。

其次,在过去的几十年中,双杂交酵母技术一直被用于改良酵母的生存能力、增加抗性力及制备蛋白质。

此外,它还可以用来搜索和筛选特定基因在酵母细胞内所产生的功能性。

双杂交酵母技术以其灵活性、效率高及快速实用性等特征,为研究者节省了大
量的时间和经费。

它为基因表达的研究提供了一种高效的途径,并可以更好地探索及改良药物等生物物质,以解决当今生物学研究中面临的各种挑战。

酵母双杂交

酵母双杂交

• 3、利用酵母双杂交筛选药物的作用位点以及药物对蛋白 质之间相互作用的影响 • 酵母双杂交的报告基因能否表达在于诱饵蛋白与靶蛋白之 间的相互作用。对于能够引发疾病反应的蛋白互作可以采 取药物干扰的方法,阻止它们的相互作用以达到治疗疾病 的目的。 • 例如:Dengue病毒能引起黄热病、肝炎等疾病,研究发 现它的病毒RNA复制与依赖于RNA的RNA聚合酶(NS5) 与拓扑异构酶 NS3,以及细胞核转运受体BETA-importin 的相互作用有关。研究人员通过酵母双杂交技术找到了这 些蛋白之间相互作用的氨基酸序列。如果能找到相应的基 因药物阻断这些蛋白之间的相互作用,就可以阻止RNA病 毒的复制,从而达到治疗这种疾病的目的。
• 4、利用酵母双杂交建立基因组蛋白连锁图 (Genome Protein Linkage Map) • 众多的蛋白质之间在许多重要的生命活动中都是 彼此协调和控制的。基因组中的编码蛋白质的基 因之间存在着功能上的联系。通过基因组的测序 和序列分析发现了很多新的基因和EST序列, HUA等人利用酵母双杂交技术,将因之间的联系,建立 基因组蛋白连锁图。对于认识一些重要的生命活 动:如信号传导、代谢途径等有重要意义。
• 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高 度敏感性。主要是由于: ①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。 ②信号测定是在自然平衡浓度条件下进行,而如免疫共沉 淀等物理方法为达到此条件需进行多次洗涤,降低了信号 强度。 ③ 杂交蛋白间稳定度可被激活结构域和结合结构域结合 形成转录起始复合物而增强,后者又与启动子DNA结合, 此三元复合体使其中各组分的结合趋于稳定。 ④ 通过mRNA产生多种稳定的酶使信号放大。同时,酵母 表型、X-Gal及HIS3蛋白表达等检测方法均很敏感。

育种--酵母双杂交

育种--酵母双杂交

酵母转录因子( 酵母转录因子(Gal 4) )
与BD-fusion ---诱饵(bait) 诱饵( ) 诱饵 与AD-fusion ---猎物或靶蛋白(prey or target protein) 猎物或靶蛋白( )
报告基因( 报告基因(reporter gene) )
---Lac Z(编码β-半乳糖苷酶) 半乳糖苷酶) (编码β 半乳糖苷酶
Fields和Song将两个融合蛋白分别构建在穿梭 和 将两个融合蛋白分别构建在穿梭 质粒上,一个是将Gal4的DNA-BD与酵母蛋白 质粒上,一个是将 的 与酵母蛋白 SNF1融合;另一个是将Gal4的AD和酵母蛋白 融合;另一个是将 的 和酵母蛋白 融合 SNF4融合。 融合。 融合 其中, 是一种丝氨酸/苏氨酸的蛋白激 其中,SNF1是一种丝氨酸 苏氨酸的蛋白激 是一种丝氨酸 是它的一个结合蛋白, 酶,SNF4是它的一个结合蛋白,这两种蛋白是 是它的一个结合蛋白 已知可以相互作用的。 已知可以相互作用的。
(二)酵母双杂交系统的原理
X
DNA-BD
GAL4 UAS
Promoter
lacZ(or HIS) reporter gene
AD
Y
GAL4 UAS Promoter lacZ(or HIS) reporter gene
AD
X
DNA-BD
Y
Promoter
ቤተ መጻሕፍቲ ባይዱ
transcription
lacZ(or HIS) reporter gene
1989年美国纽约州立大学的 年美国纽约州立大学的Fields和Song首先描述 年美国纽约州立大学的 和 首先描述 了酵母双杂交系统(yeast two-hybrid system)。 了酵母双杂交系统 。 该系统的建立是基于对真核生物调控转录起始过 程的认识。 程的认识。真核生物基因转录需要反式转录激活因子的 参与,真核生长转录因子含有两个不同的结构域: 参与,真核生长转录因子含有两个不同的结构域: DNA结合结构域 结合结构域(BD) 结合结构域 (DNA binding domain)

酵母双杂交步骤

酵母双杂交步骤

酵母双杂交步骤酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用和信号转导通路。

下面将介绍酵母双杂交的步骤。

第一步:构建酵母双杂交载体酵母双杂交载体是用于表达融合蛋白的质粒。

一般来说,酵母双杂交载体包括两个部分:DNA结合域(DBD)和激活域(AD)。

DBD 和AD分别与目标蛋白的DNA结合域和激活域融合,从而形成融合蛋白。

常用的酵母双杂交载体有pGBKT7和pGADT7。

第二步:构建酵母双杂交菌株酵母双杂交菌株是用于表达融合蛋白的酵母菌株。

一般来说,酵母双杂交菌株包括两个部分:DBD和AD。

DBD和AD分别与目标蛋白的DNA结合域和激活域融合,从而形成融合蛋白。

常用的酵母双杂交菌株有AH109和Y187。

第三步:酵母双杂交筛选酵母双杂交筛选是用于筛选蛋白相互作用的方法。

一般来说,酵母双杂交筛选包括两个步骤:初筛和确认。

初筛是通过生长选择培养基(SD/-Leu/-Trp)筛选出具有融合蛋白的酵母菌株。

确认是通过生长选择培养基(SD/-Leu/-Trp/-His/-Ade)筛选出具有蛋白相互作用的酵母菌株。

第四步:酵母双杂交验证酵母双杂交验证是用于验证蛋白相互作用的方法。

一般来说,酵母双杂交验证包括两个步骤:β-galactosidase检测和Western blot检测。

β-galactosidase检测是通过检测酵母菌株中β-galactosidase的活性来验证蛋白相互作用。

Western blot检测是通过检测融合蛋白的表达来验证蛋白相互作用。

酵母双杂交是一种重要的分子生物学技术,可以用于研究蛋白质相互作用和信号转导通路。

通过构建酵母双杂交载体和酵母双杂交菌株,进行酵母双杂交筛选和酵母双杂交验证,可以得到蛋白相互作用的信息。

酵母双杂交体系

酵母双杂交体系

酵母双杂交系统
技术步骤
应用
酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。

主要是由于:
①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。

②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。

③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。

④通过mRNA产生多种稳定的酶使信号放大。

同时,酵母表型, X-Gal及HIS3蛋白表达等检测方法均很敏感。

酵母双杂交

酵母双杂交
酵母双杂交的报告基因能否表达在于诱饵蛋 白与靶蛋白之间的相互作用。对于能够引发疾 病反应的蛋白互作可以采取药物干扰的方法,
阻止它们的相互作用以达到治疗疾病的目的。
4、建立基因组蛋白连锁图
众多的蛋白质之间在许多重要的生命活动中都是彼 此协调和控制的。基因组中的编码蛋白质的基因之间存在 着功能上的联系,通过基因组的测序和序列分析发现了很
1、发现新的蛋白质和蛋白质的新功能
酵母双杂交技术已成为发现新基因的主要途
径。用已知基因作诱饵,利分离得到AD-Library载体,对其进行
测序并在GenBank中进行比较,可以得到与已知
基因在生物学功能上的联系。另外,也可作为研 究已知基因的新功能或多个筛选到的已知基因之 间功能相关的主要方法。
酵母转录因子(Gal 4)
与BD-fusion ---诱饵蛋白(bait protein ) 与AD-fusion ---猎物或靶蛋白(prey or target protein)
报告基因(reporter gene)
---Lac Z(编码β -半乳糖苷酶)
报道株
经改造的、含报告基因的重组质粒的宿 主细胞。 酵母细胞作为报道株的酵母双杂交系统具有 许多优点:
多新的基因和EST序列。
HUA等人利用酵母双杂交技术,将母双杂交技术,绘制出了人与致病性细菌
蛋白,从而找到基因之间的联系,建立基因组蛋白连锁图。
蛋白间相互作用的基因组蛋白网络连锁图,为深入研究人
与致病菌间的相互作用关系奠定了基础。
五、酵母双杂交的应用
酵母双杂交系统是在真核模式生物酵母中进行的, 研究活细胞内蛋白质相互作用,对蛋白质之间微弱的、 瞬间的作用也能够通过报告基因的表达产物敏感地检 测得到,它是一种具有很高灵敏度的研究蛋白质之间 关系的技术。

酵母双杂交技术的原理及应用

酵母双杂交技术的原理及应用

酵母双杂交技术的原理及应用酵母双杂交技术,听上去挺高级的名词对吧?别慌,其实它跟我们日常生活中的“拼爹”有点类似,不过它是在生物学里面玩的花样。

想象一下,你有两个朋友,想知道他们俩会不会成为超级好基友,那你可以用这个技术来一探究竟。

我们得有两种酵母,就像是两个潜在的基友候选人。

然后,我们给它们点刺激,让它们有机会结识、互动。

这个“刺激”就是让它们的基因混合在一起,看看能不能擦出什么火花。

这种技术背后的原理挺复杂,但想象成两个人打牌,要看看谁的牌更配对,就差不多了。

酵母也是,我们看它们的基因配对,看看哪些特征能够“一拍即合”。

而这个技术的应用可不少,不仅仅是让酵母们交朋友,还能帮助科学家们研究基因、了解生物的运作规律。

有了它,科学家们能够更准确地探索基因是如何影响生物性状的,就像解开谜题一样。

想象一下,如果你是一位厨师,你可能想知道为什么有些酵母可以让面包发得特别好吃,而有些却不行。

用这个技术,科学家们可以找出关键的基因,然后想办法让所有的面包都发得又快又好,那不就是个厨艺大咖吗?不过,别小看了这些酵母们,它们可是科学研究中的一把好手。

有了它们,科学家们能够在实验室里模拟各种情况,看看不同的基因组合会带来什么变化。

这就好像是一场“基因大混搭”,只不过最后得到的是科学数据,而不是时髦的搭配。

说到这些,我想起了一句俗语:“物以类聚,人以群分”。

这个技术就像是在研究生物界的“朋友圈”,看看谁跟谁更亲密、更默契。

也像是在研究生物界的“CP”配对,想知道哪些基因组合才是最佳拍档。

这个技术也有它的局限性。

酵母们虽然看起来基因搭配很好,但实际上在生活中却不一定能搭伙儿。

这就像是有些人看起来合得来,但真正相处起来可能却“水火不容”。

酵母双杂交技术不仅仅是一种实验方法,它还是科学探索的一把利器。

通过它,科学家们可以深入探索生物世界的奥秘,了解基因如何影响生物的种种特性。

就像探险一样,每次实验都是一次挖掘未知的冒险,不知道会有什么惊喜等着我们。

酵母双杂原理

酵母双杂原理

酵母双杂原理酵母双杂原理是指利用两种不同的酵母株,分别进行杂交,产生新的杂交酵母株的方法。

这种方法被广泛应用于酿造、面包制作、酒精生产等领域。

酵母是一种单细胞真菌,广泛存在于自然界中。

酵母可以利用葡萄糖等碳水化合物进行发酵,产生二氧化碳和乙醇等物质。

这种发酵作用被广泛应用于酿造、面包制作、酒精生产等领域。

酵母双杂原理的出现,是为了解决酿酒、面包制作等领域中出现的问题。

传统的酿造方法中,只使用一种酵母株进行发酵,容易出现酵母菌株的变异,导致酿造的质量下降。

而酵母双杂原理可以产生新的杂交酵母株,这些酵母株具有更好的性能和更强的适应性,可以提高酿造、面包制作的效率和品质。

酵母双杂原理的具体操作方法是:先分别选取两种不同的酵母株,进行培养和筛选。

然后将这两种酵母株进行杂交,产生新的杂交酵母株。

最后对杂交酵母株进行筛选和培养,获得具有更好性能的酵母株。

酵母双杂原理的应用非常广泛。

在酿酒领域中,利用这种方法可以产生更好的酵母株,提高酒的品质和产量。

在面包制作领域中,利用这种方法可以产生更好的酵母株,提高面包的质量和口感。

在酒精生产领域中,利用这种方法可以产生更好的酵母株,提高酒精的产量和纯度。

除了以上领域,酵母双杂原理还可以应用于其他领域,如生物医学、生物能源等领域。

在这些领域中,酵母双杂原理可以产生更好的酵母株,提高生产效率和产量,为人类的生产和生活带来更多的福利。

酵母双杂原理是一种非常重要的酵母育种方法,可以产生更好的酵母株,提高生产效率和产量。

随着科技的不断进步,相信酵母双杂原理将会在更多的领域中发挥作用,为人类创造更多的福利。

酵母双杂交原理和具体流程

酵母双杂交原理和具体流程

酵母双杂交原理和具体流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、酵母双杂交原理。

酵母双杂交是一种利用酵母遗传学方法来研究蛋白质相互作用的技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X-gal
blue color
We'll start by making transformed yeast expressing X
Fishing with the yeast two-hybrid system
b a it
p r o t e in X
c D N A f o r X
DNAbinding domain
W e w i l l u s e X a s b a i t . . . . t o t r y t o c a t c h Y .
As reference in this description, here is how the yeast two-hybrid expression system works.
Fishing with the yeast two-hybrid system
in other words is there a protein Y?
bait
X
p r e d a to r
Y
d o e s X b in d w ith a p ro te in ?
To find out we are going to go fishing with the two-hybrid system.
y e a s t p la s m id e x p r e s s io n v e c to r
p re d a to r
u n k n o w
tis s u e
bait
X
p r e d a to r
Y
d o e s X b in d w ith a p ro te in ?
t r a n s f e c t i o n t o t a l m R N A
t r a n s f e c t i o n
activation dom ain
Now we'll make transformed yeast expressing Y, if Y
does indeed exist.
Fishing with the yeast two-hybrid system
猎物或靶蛋白 (prey or target
protein)
这个被激活的、能显示“诱饵”和“猎 物”相互作用的基因称为报道基因 (reporter gene)
X
Ga14 的DB
Y
Ga14 的AD 猎物(prey)
诱饵(bait)
报道基因
表达
报道基因的 基因产物
通过对报道基因表达产物的检测,反过来可判别作为“诱 饵”和“猎物”的两个蛋白之间是否可存在相互作用。
酵母双杂交技术
主要内容
一 酵母双杂交技术的基本原理 二 酵母双杂交技术的应用 三 酵母双杂交技术的改造 四 结束语
一 酵母双杂交技术的基本原理
酵母双杂交系统的建立基于“真核生物调控转录起始”。
酵母转录子Gal4分子由一条多肽链组成,含有881个氨 基酸。它有两个结构域: 1、 DNA结合结构域(DNA binding domain, DB )由位于 N-末端1~147个氨基酸构成,能识别位于Gal 1基因的上游激 活序列(UAS, upstream activating sequence),此外, 在其N-端还具有一段核定位序列; 2、转录激活结构域(activation domain, AD)由位于C-末 端的768~881位氨基酸构成。
Fishing with the yeast two-hybrid system
b a it
p r o t e in X
c D N A f o r X
bait
X
p r e d a to r
Y
d o e s X b in d w ith a p ro te in ?
DNAbinding domain
X
y e a s t p la s m id e x p r e s s io n v e c to r
bait
XY
prey
t r a n s f e c t i o n
tra n s fo rm e d y e a s t
transcription machinery
lac 2
-galactosidase
r e v e r s e t r a n s c r i p t a s e
X
tra n s fo rm e d
y e a s t
c D N A
tra n s fo rm e d y e a s t
?Y
y e a s t p l a s m i d e x p r e s s i o n v e c t o r
他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Ga14的DB结构域融合,另一个与Ga14的AD结构域的酸性区 域结合。(形成融合蛋白)
Snf1
Ga14 的DB
诱饵 (bait)
Snf2
Ga14 的AD
如果Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和 AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转录与表达。
C N
UAS
768~881 AD
Gal 1基因
激活转录
不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正 常的激活转录的功能。
融合
结合到 Ga14结合
位点
DB
酵母细胞的 Ga14蛋白的DB
AD
大肠杆菌的一 个酸性激活结
构域B42
激活转录
DB AD
DB ADUASG源自l 1基因激活转录Fields等人的工作标志双杂交系统的正式建立
b a it
p r o t e in X
常用的报告基因有:HIS3,URA3,LacZ 和ADE等。如HIS3,可以通过该基因是否 表达在选择性培养基上筛选含有相互作 用蛋白的酵母;LacZ基因(β-半乳糖苷 酶基因),在X-Gal存在时利用它的颜色 反应对选择培养筛出来的阳性克隆作进 一步筛选。并可通过测定颜色反应的强 弱,分析蛋白X、Y间的相互作用的强弱 。
当Gal4 的两个结构域位于不同肽链上,只要它们在空 间上充分接近,则能够恢复Gal4作为转录因子的活性.
酵母转录子Gal4分子
DB(DNA binding domain ) 1-147
768~881
C
AD (activation domain)
N
UAS(上游激活序列G) al 1基因
DB 1~147
相关文档
最新文档