《信号与系统》第五章基本内容示例(含答案)

合集下载

信号与系统第五章习题答案

信号与系统第五章习题答案
i = −∞ i= 0

n− 6
1 − a n− 5 ε [n − 6 ] 1− a
故系统的零状态响应为
y zs [n ] = f [n] ∗ h[n] = a n ε [n] ∗ (ε [n] − ε [n − 6]) = a n ε [n] ∗ ε [n ] − a nε [n] ∗ ε [n − 6]
联立以上两式可解得: A1 = 1 , A2 = 2 于是齐次解为
275
y h [n] = (− 3) + 2 n+1
n
5.10
如有齐次差分方程为 y[n] + 4 y[n − 1] + 4 y[n − 2] = 0 , 已知 y[0] = y[1] = −2 , 试求其齐次解。 【知识点窍】主要考察系统的齐次解的概念及其求解方法。 【逻辑推理】首先通过差分方程得特征方程,由特征方程求得特征根,代入条件即可求得齐次
λ2 + 3λ + 2 = 0
y zi [n ] = A1 (− 1) + A2 (− 2)
n
n
将初始状态 y[− 1] = −
1 , 2
y[− 2] =
5 代入上式,有: 4
−1 −1
y[− 1] = y zi [− 1] = A1 (− 1) + A2 (− 2 ) = − y[− 2] = y zi [− 2 ] = A1 (− 1) + A2 (− 2 )
−2 −2
1 2 5 = 4
271
联立以上两式可解得: A1 = 2 , A2 = −3 则系统的零输入响应为
y zi [n ] = 2(− 1) − 3(− 2)
n
n
5.4 设有离散系统的差分方程为 y[n] + 4 y[n − 1] + 3 y[n − 2] = 4 f [n] + f [n − 1] ,试画出其时域模拟 图。 【知识点窍】主要考察由系统的差分方程画出系统的直接模拟图,掌握直接模拟图的意义。 【逻辑推理】将差分方程各个环节分别用加法器及延时器来表示。 解:时域模拟图如图 5.1

随机信号与系统第五章习题部分答案

随机信号与系统第五章习题部分答案

第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。

解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。

5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。

试求随机序列y k 的功率谱。

解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。

第5章 北邮信号与系统课后习题解答

第5章  北邮信号与系统课后习题解答


1 s2
e s 1
(4)
2
(t)

3e 2 t u (t )

2

s
3
2
(5)L
[
1 2a
3
(sin
at

at
cos at)]

1 2a3
(s2
a
a2

a
d ds
( s2
s
a2
))

1 2a2
( s2
1 a2

s2 a2 (s2 a2)2
)
1 (s2 a2)2
1)]

e(s2) s2
其波形题 5-3 解图所示。
f1 (t ) 1
f2 (t) 1
t
1
t
f3 (t) e2
t
f4 (t)
e-2
1
t
5-4 解:
题 5-3 解图
(a)L [ f1(t)] L [E[u(t t1) u(t t1 )] E[u(t t2) u(t t2 )]]
1[ (s2
s 1)2
]

1 2
t
sin
t
由拉氏变换的积分性质
L
1[
(
s
2
2
1)2
]

t

sin d
sin t
t cos t
,t
0
0
或:
s
1 2
1

sin
t

(s2
2 1)2
sin t *sin t
sin t t cos t

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
全响应:
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统第5章习题答案

信号与系统第5章习题答案

第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。

证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。

可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。

如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。

因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。

5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。

m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。

sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。

sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。

信号与系统第5章习题答案

信号与系统第5章习题答案

信号与系统第5章习题答案信号与系统是电子信息类专业中的一门重要课程,它研究信号的产生、传输和处理,以及系统对信号的响应和处理。

第5章是该课程中的一个重要章节,主要涉及离散时间信号与系统。

本文将为读者提供信号与系统第5章习题的详细解答。

1. 习题1:给定一个离散时间信号x(n) = {1, 2, 3, 4},求其反序信号y(n)。

解答:反序信号即将原信号的元素按照相反的顺序排列。

所以,反序信号y(n)= {4, 3, 2, 1}。

2. 习题2:给定两个离散时间信号x(n) = {1, 2, 3, 4}和h(n) = {1, -1, 1, -1},求它们的卷积y(n)。

解答:卷积运算公式为y(n) = ∑[x(k) * h(n-k)],其中k为求和变量。

根据公式,我们可以得到y(n)的计算过程如下:y(0) = x(0) * h(0) = 1 * 1 = 1y(1) = x(0) * h(1) + x(1) * h(0) = 1 * (-1) + 2 * 1 = 1y(2) = x(0) * h(2) + x(1) * h(1) + x(2) * h(0) = 1 * 1 + 2 * (-1) + 3 * 1 = 2y(3) = x(0) * h(3) + x(1) * h(2) + x(2) * h(1) + x(3) * h(0) = 1 * (-1) + 2 * 1 + 3 * (-1) + 4 * 1 = 2所以,卷积结果为y(n) = {1, 1, 2, 2}。

3. 习题3:给定一个离散时间信号x(n) = {1, 2, 3, 4},求其单位脉冲响应h(n)。

解答:单位脉冲响应是系统对单位脉冲信号的响应。

单位脉冲信号为δ(n),即在n=0时取值为1,其他时刻取值为0。

根据系统的线性性质,我们可以通过输入单位脉冲信号得到输出信号,即h(n) = x(n)。

所以,单位脉冲响应h(n) = {1, 2, 3, 4}。

信号与系统答案 西北工业大学 段哲民 第五章

信号与系统答案 西北工业大学 段哲民 第五章
3e − 2t + (−2)te − 2t = (3 − 2t )e − 2t
[
]

f (t ) = e −3t + (3 − 2t )e −2t U (t )
[
]
+ 5.6 求下列各像函数 F (s ) 的原函数 f (t ) 的初值 f (0 ) 与终值 f (∞ ) 。
(1) F (s ) =
1 s + 3 ,代入上式有

F (s) =
( s 2 + 3s + 2)Y f ( s ) = s
1 s + 3s + 2
2
1 1 +3 =1 s+3 s+3

Y f (s) =
故得零状态响应 y f (t ) 的初始值为
y f (0 + ) = lim s
s →∞
1 =0 s + 3s + 2
(2)
F (s) =
s sinψ + ω cosψ s2 + ω
F ( s) =
(3)
s (s + α )2
F ( s) =
(4)
1
α
×
α
s(s + α )
=
1 s( s + α )
(5)
F (s) =
2 s2
(6) (7)
F ( s) =
1 2 3s 2 + 2 s + 1 + + 3 = s2 s s2
Re s 2 =
1 ⎧d st ⎫ = ⎨ F ( s)(s + 2)e ⎬ (2 − 1)! ⎩ dt ⎭ s = −2

信号与系统(第三版)第五章离散时间系统的时域分析

信号与系统(第三版)第五章离散时间系统的时域分析
信号取值
连续时间系统的信号在任意时刻都有取值,而离散时间系统的信 号只在离散时刻上取值。
离散时间系统的数学描述
02
差分方程
定义
差分方程是描述离散时间信号变化的数学方程,通常表示为y[n] = f(n) + g(n),其中y[n]是离散时间信号,f(n)和g(n)是已知的 离散时间信号。
类型
差分方程可以分为线性和非线性两种类型。线性差分方程是指方程中未知数的系数为常数且方程中未知数次数不超过1的差分方 程。
稳定性判据
通过判断系统的极点位置,确定系统的稳定性。
稳定性分析的意义
对于实际应用中的系统,稳定性是非常重要的性能指标。
系统的动态性能分析
动态性能的定义
描述系统在输入信号激励下,输出信号随时间变 化的特性。
动态性能的参数
包括超调和调节时间、上升时间和峰值时间等。
动态性能的分析方法
通过系统函数的Leabharlann 点和零点位置,以及时间常数等参数进行分析。
04 离散时间系统的时域响应 单击添加文本具体内容
离散时间系统 的定义与特点
离散时间系统的定义
离散时间系统
在时间上离散取样,信号在离散时刻上变化的系统。
离散时间信号
只在离散时刻上取值的信号。
离散时间系统分析
通过数学模型对离散时间信号和系统进行描述和分析 的方法。
离散时间系统的特点
时域离散
01
离散时间系统的状态变量和信号只在离散时刻上取值,时
定义
分类
稳定性判据
劳斯判据 通过求解劳斯表,判断系统的极点和稳定性。
赫尔维茨判据 通过判断系统的特征方程的根的性质,判断系统的 稳定性。
波波夫判据 通过求解波波夫矩阵,判断系统的稳定性。

信号与系统课后答案第五章作业答案_第三次

信号与系统课后答案第五章作业答案_第三次

其极点全部在左半平面,故系统稳定。(注:可以采用罗斯-霍尔维兹准则进行判决,但比较 麻烦)
(3)由于其分母多项式 A( s) = s3 − 4s2 − 3s + 2 中 ai 的符号不完全相同,故不满足霍
尔维兹多项式的必要条件,所以系统不稳定。
5-17 某系统的零极点图如题图 5-18 所示,且单位冲激响应 h(t) 的初值 h(0+ ) = 5 ,试写出

H
(s)
=
1 s

s
1 +
2
=
s2
2 +
2s
=
Y F
(s) (s)
得:
(s2 + 2s)Y (s) = 2F (s) ⇒ s2Y (s) + 2sY (s) = 2F (s)
故系统的微分方程为:
y ''(t ) + 2 y '(t ) = 2 f (t )
5-26 某反馈系统如题图 5-26 所示,试求:
+
−4 / 3 s+5
( ) ( ) = 4s−1 / 3 + s−2 + −4s−1 / 3 1− −2s−1 1− −5s−1
其信号流图如下图所示
s −1
F (s)
s −1
Y (s)
s −1
与级联形式相类似,分解不同,其信号流图及模拟图都有所变化。
5-16 试判断下列系统的稳定性:
(1)
H (s)
s2Y (s) + 4sY (s) + 3Y (s) = sX (s) + 2X (s)

H
(s)
=
Y (s) X (s)

《信号与系统》第五章知识要点+典型例题

《信号与系统》第五章知识要点+典型例题

是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如

信号与系统王明泉第五章习题解答

信号与系统王明泉第五章习题解答

第5章 连续时间信号的抽样与量化5.1 学习要求(1)掌握时域抽样过程及时域抽样定理,会求已知信号的奈奎斯特频率; (2)深刻理解连续时间信号的内插恢复过程; (3)理解频域采样定理;(4)了解连续时间信号的离散处理过程。

5.2 本章重点(1)时域抽样定理及信号恢复的条件; (2)连续时间信号的内插恢复过程;5.3 本章的知识结构5.4 本章的内容摘要5.4.1 时域抽样定理所谓“时域抽样”就是利用抽样脉冲序列)(t p 从时域连续信号)(t f 中抽取一系列的离散样值,这种离散信号通常称为抽样信号,以)(t f s 表示。

时域抽样过程可以看作相乘过程,即抽样信号可用连续时间信号)(t f 与一开关函数)(t p (即抽样脉冲序列)相乘来表示,抽样以后的信号(即抽样信号)的表示式为:)()()(t p t f t f s(1)矩形脉冲序列的抽样如果抽样脉冲序列是周期为s T ,幅度为1,宽度为τ的矩形脉冲序列)(t p ,则它的频谱密度)(ωp 为:∑∞-∞=-=n snn a p )(2)(ωωδπω其中)2(22sinτωττωτωτs s s s s n n Sa T n n T a =⋅=,ss T πω2=设原连续时间信号)(t f 的频谱密度为)(ωF ,则根据频域卷积定理得到抽样信号)(t f s 的频谱为:)()2()](*)([21)(s s n ss n F n Sa T p F F ωωτωτωωπω-==∑∞-∞= (2)冲激序列抽样在抽样脉冲序列)(t p 中,当脉冲宽度τ很小时,抽样脉冲序列可以近似看成是周期为sT 的单位冲激序列,通常把这种抽样称为冲激抽样或理想抽样。

设单位冲激序列)(t T δ为: ∑∞-∞=-=n sT nT t t )()(δδ输入的连续时间信号为)(t f ,则抽样信号为:()()()()()s T s s n f t f t t f nT t nT δδ∞=-∞=⋅=⋅-∑设原输入信号)(t f 的频谱密度为)(ωF ,而单位冲激序列)(t T δ的频谱密度)(ωδT 为:∑∞-∞=-=n s sT n T )(2)(ωωδπωδ 其中ss T πω2=则根据频域卷积定理得抽样信号)(t f s 的频谱为:∑∞-∞=-==n ssT s n F T F F )(1)](*)([21)(ωωωδωπω(3)时域抽样定理从前面可以看出,要想从抽样信号)(t f s 中恢复出被采样信号)(t f ,就要求能够从周期性延拓后的频谱中完整地分离出原信号的频谱,也就要求在频谱周期延拓过程中不发生频谱混迭现象,那么,如果被采样信号)(t f 是一频谱在),(m m ωω-以外为零的带限信号,则只要按照抽样频率m s ωω2≥或m s f f 2≥(其中s s T f 1=)进行等间隔抽样,抽样信号)(t f s 的频谱将不发生频谱混迭,从)(t f s 的频谱中就能完全地恢复原连续时间信号的)(t f 频谱,也可以说)(t f s 包含了原连续时间信号)(t f 的全部信息。

信号与系统(郑君里)课后答案 第五章习题解答

信号与系统(郑君里)课后答案  第五章习题解答

5-6 解题过程: 令 ()()1c e t t πδω=,()()2sin c c t e t tωω= ()()11πωω==⎡⎤⎣⎦cE j e t F()()()()220πωωπωωωωωωω⎧<⎪==+−−=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎩,,其他c c c c c E j e t u u F 理想低通的系统函数的表达式 ()()()j H j H j e ϕωωω=其中 ()10c c H j ωωωωω⎧<⎪=⎨≥⎪⎩,,()0t ϕωω=−因此有()()()0t 110ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他 ()()()0t 220ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他()()12ωω=R j R j 则()()1112ωω−−=⎡⎤⎡⎤⎣⎦⎣⎦R j R j FF5-8 解题过程: 记 ()sin sin ωωωπωπ==⋅c c cc t t f t t t ()()0πωωωωωω⎧<⎪==⎡⎤⎨⎣⎦⎪≥⎩,,ccc F j f t F ()()()()sin 0ωωππωωωωωωωω⎧⎫⎡⎤⎪⎪==⎡⎤⎨⎬⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎧⋅<⎪==⎨⎪≥⎩,,c c cc td H j h t dt t j j F j F F故 ()0ωωωωπωωω⎧⋅<⎪=⎨⎪≥⎩c cc H j ,, ()20πωωϕωωω⎧<⎪=⎨⎪≥⎩c c,,()ωH j 和()ϕω的图形如解图。

5-11 解题过程:由题图5-11有()()()()211=−−∗⎡⎤⎣⎦v t v t T v t h t 据时域卷积定理有()()()()211ωωωωω−⎡⎤=−⎣⎦j TV j V j e V j H j(1)()()1=v t u t()()()()2=−−∗⎡⎤⎣⎦v t u t T u t h t由()()()101ωπ−==−⎡⎤⎣⎦h t H j Sa t t F,()()()λλ−∞∗=∫tf t u t f d ,有 ()()()()()00200''''''1111λλλλππλλλλππ−−∞−∞−−−−∞−∞=−−−=−∫∫∫∫t Ttt t Tt t v t Sa t d Sa t d Sa d Sa d又知()()−∞=∫yi S y Sa x dx ,所有()()()2001π=−−−−⎡⎤⎣⎦i i v t S t t T S t t (2)()12sin 22⎛⎞⎜⎟⎛⎞⎝⎠==⎜⎟⎝⎠t t v t Sa t()()111220πωω⎧<⎪==⎡⎤⎨⎣⎦⎪⎩V j F v t 其他则 ()()()()()021121120ωωωπωωωω−−−⎧−<⎪=−=⎨⎪⎩j t j Tj Te eV j V j H j e其他所以 ()()()()122001122ω−⎡⎤⎡⎤==−−−−⎡⎤⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦v t V j Sa t t T Sa t t F 5-18 解题过程:信号()g t 经过滤波器()ωH j 的频谱为()()()()()1sgn ωωωωω==−G G H j j G信号()g t 经过与()0cos ωt 进行时域相乘后频谱为()()()20012ωωωωω=++−⎡⎤⎣⎦G G G 信号()1g t 经过与()0sin ω−t 进行时域相乘后频谱为()()()()()()()()()()()310100000000021sgn sgn 21sgn sgn 2ωωωωωωωωωωωωωωωωωωωωω=−+−−⎡⎤⎣⎦=−++−−−⎡⎤⎣⎦=−−+++⎡⎤⎣⎦jG G G G G G G()()()()()()()()()()()()(){}23000000000011sgn sgn 2211sgn 1sgn 2ωωωωωωωωωωωωωωωωωωωωωωω=+=++−+−−+++⎡⎤⎡⎤⎣⎦⎣⎦=+−++−++⎡⎤⎡⎤⎣⎦⎣⎦V G G G G G G G G 又由于 ()()()00021sgn 0ωωωωωω>⎧⎪+−=⎨<⎪⎩则 ()()()()()0000ωωωωωωωωω=−−+++V G U G U 其图形如图所示5-20 解题过程:(1)系统输入信号为()δt 时,()()()0cos δωδ=t t t 所以虚框所示系统的冲激响应()h t 就是()i h t 即 ()()()()010sin 2ωπ−Ω−⎡⎤⎣⎦==⎡⎤⎣⎦−i t t h t H j t t F(2)输入信号与()0cos w t 在时域相乘之后()()()()()220200sin sin 1cos 2cos cos 2ωωωΩΩ+⎡⎤⎡⎤==⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t t e t t t t t 又由()ωi H j 的表达式可知0ωΩ 时,载波为02ω的频率成分被滤除 而且 ()0ϕωω=−t故 ()()()200sin 12⎡⎤Ω−=⎢⎥Ω−⎣⎦t t r t t t(3)输入信号()e t 与0cos ωt 在时域相乘之后()()()()220000sin sin 1cos sin cos sin 22ωωωωΩΩ⎡⎤⎡⎤==⋅⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t e t t t t t t t 0ωΩ 时,载波为02ω的频率成分被滤除故 ()0=r t(4)由于理想低通滤波器能够无失真的传输信号,只是时间上的搬移,故理想低通滤波器是线性时变系统;又 ()()=i h t h t 所以该系统是线性时变的。

(仅供参考)信号与系统课后答案第五章作业答案-第三次

(仅供参考)信号与系统课后答案第五章作业答案-第三次
可以采用罗斯霍尔维兹准则进行判决但比较麻烦3由于其分母多项式的符号不完全相同故不满足霍尔维兹多项式的必要条件所以系统不稳定
5-9 用拉普拉斯变换方法求下列微分方程描述的系统冲激响应 h (t ) 和阶跃响应 g (t )
(2)
d2 y(t) dt 2
+
4
dy (t ) dt
+
3 y (t )
=
dx(t) dt
s
)
=
1
0.5s + 0.5s

(1 (1 +
+ 0.5s) / /0.2 0.5s) / /0.2 +
1
⋅U
s
(
s
)
s
由于
us
(t
)
=
10u
(t
)

10 s
,故
0.2 + 0.1s
U
L
(
s
)
=
0.5s 1+ 0.5s

(1+ 0.5s) / /0.2 (1+ 0.5s) / /0.2 +
1

10 s
(s)
=
sy
(0−
)
+ y' (0− s2 + 4s
) + 4y +3
(0−
)
,代入已知条件并求其
逆变换得系统的零输入响应
( ) Yx
(s)
=
s2
s +
+5 4s +
3
=
−1 s+3
+
s
2 +1

大学科目《信号与系统》各章节习题答案

大学科目《信号与系统》各章节习题答案

第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。

答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。

答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。

答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。

答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。

信号与系统第五章答案

信号与系统第五章答案
5-2.解:(1)
又 , 。
所以 的最大频率是100 , 的最大频率是200 ,所以 的最大频率是300 ,要无失真的恢复 ,则 s。
(2)对于冲击抽样,抽样信号的频谱:
,当 时,此时 rad/s
此时的幅度谱 如下图所示,无重叠发生。
5-3.解:
5-4.解: ,其最大抽样间隔为1/100s。
,其最大抽样间隔为1/750s。
由图可知 ( ),所以 。
5-11.解:A、B、C、D各点的频谱图形如下:
5-12.解:(1)其脉冲幅度调制信号波形图如下:
(2)
所以
其中 。
其频谱图如下所示:
5-13.解:在通过低通滤波器之前令
其中有三角公式 。
所以要是通过低通滤波器之后 。
则可确定 。
5-14解:由图可知
则 所以通过滤波器之后则:
5-15解:输出信号的频谱图如下:
5-16.证明:理想低通滤波器的冲击响应为 ,又 所以 。
若 ,则

因为
所以若 ,对于任意选取的T,总有 。
第五章
5-1.解:由于
(1)故信号 的最大频率 =150,所以最低抽样率= ,奈奎斯特间隔= 。
(2)信号 的最大频率 =100+150=250,所以最低抽样频率= ,奈奎斯特间隔= 。
(3)信号 的最大频率 =100,所以最低抽样频率= ,奈奎斯特间隔= 。
(4) , ;所以故信号 的最大频率 =300,所以最低抽样ቤተ መጻሕፍቲ ባይዱ= ,奈奎斯特间隔= 。
所以以1/400s的周期取样时,信号 在恢复原信号时不出现重叠。其各自抽样信号及其相应频谱如下:
5-5.解:(1)
(2)当 时,为了得到 ,则最大的 ,

信号与系统第5章课后习题答案

信号与系统第5章课后习题答案

5.5 离散信号()f n 的波形如习题图5-3所示,试画出下列信号的波形。

(2)(1)(4)(2)(6)(1)(1)(8)(1)()(10)(1)(1)f n f n f n f n f n U n f n U n - +×- -- ---+习题图5-3(2)(1)f n -(4)(2)f n32211()10(2)102100n n n f n n f n n n =-ìï =- 3 =-ìïïï= = Þ = =ííïï = îïï î其他其他+×-(6)(1)(1)f n f n--(8)(1)()f n U n---+f n U n(10)(1)(1)5.17 求下列差分方程所描述的系统的单位样值响应。

1(1)()(2)()9y n y n f n --=解:单位样值响应是指当激励信号为()n d 时系统的零状态响应。

要求单位样值响应,输入()()f n n d =,代入差分方程得:1()(2)()(1)9h n h n n d --= LLL在0n >时,()0n d =,有1()(2)09h n h n --= 特征方程为:2121110,933l l l -= Þ =- =1211()()((2)33n nh n C C \ =-+ LLL0()0(())n h n h n < = Q 时,;因为单位样值响应是零状态响应1()(2)()91(0)(2)(0)191(1)(1)(1)09h n h n n h h h h d d d =-+ \ = -+== -+=由(1)式得: 121122(0)(1)1(0)12111(1)(0332h h h C C C h C C C ì =+==üïïïÞ ýí = -+=ïï=þïî将、代入(2)式得:1111()[((]()2323n nh n U n \ =-+5.18 求习题图5-5所示系统的单位样值响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e−4t
sin(0t)
(t)
(2)ℒ
(2t

5)
=
1
−5s
e2
s
(3)ℒ-1
1 1− e−s
=
k =0
(t

k)
(4)ℒ
cos(3t − 2) (3t − 2) =
s
2
s +
9

e
2 3
s
(5)ℒ
e−t (t)
− e−(t −3)
(t

3)
=
s
1 (1− +1
e−3s )
(6)ℒ-1
1 2
2. 已知系统的 H (s) = s +1 ,画出系统的零、极点分布图。
(s + 2)2 + 4
六、简单计算下列式子
ℒ 1、
-1
(s
+
0 4)2
+
02
2、ℒ (2t − 5)
ℒ-1
3、
1
1 − e−
s
4、ℒ cos(3t − 2) (3t − 2)
ℒ 5、 e−t (t) − e−(t −3) (t − 3)
系统并联后的复合系统的系统函数为( )。
A . H1(s) + H2 (s)
B . H1(s) H2(s)
C.无法确定
D. H1(s) // H2(s) 14、若 f (t) 1 ,Re[s] −3 ,根据终值定理,原函数 f (t) 的终值为
s+3
( )。
A.无穷小
B.无穷大
C. 1 D. 0
X (s) = F(s) + s X (s) + s2 X (s)
c Y(s) = X (s) + s2 X (s)
所以
H (s)
=
s2
s2 + c − as −
b
(4 分)

YZS
(s)
=
1 s

s
5 +
2
+
s
5 +
3
F(s) = 1 s
H (s) = s2 + 6 (5 分) s2 + 5s + 6
一、填空题
1.一个因果连续系统,其系统函数 H(s) 的极点都在 s 平面的左半开
平面,则系统是

2 . 信 号 f (t) = (t − mT ) 的 单 边 拉 普 拉 斯_____。
3.拉普拉斯变换中的终值定理是取 s→0 的极限,因而_________的
对比,得 a = −5, b = −6, c = 6 (1 分)
3.
解:设 f (t) F(s), yzs (t) Y (s), g(t) G(s) ,可得
G(s) = 1 − 1 + 2 ,Y(s) = 1 − 2 + 3
s s+2 s+3
s +1 s + 2 s +3
又由 (t) 1 (1 分),因此 s
yzs (t) = (1− 5e-2t + 5e-3t ) (t) ,求系数 a 、 b 、 c 。
3、 已知某 LTI 系统的阶跃响应 g(t) = (1− e−2t + 2e−3t ) (t) ,欲使系统的零状态响 应 yzs (t) = (e−t − 2e−2t + 3e−3t ) (t) ,试求系统的输入信号 f (t) 。

系统函数为
H
(s)
=
U 2 (s) U1(s)
=
s2
+
(3
K − K)s

+1
② 当 K =4 时,系统是不稳定的。
参考答案:
一.1. 稳定系统
二.1.A 8.D
2.C 9.C
三. ×
2. 1 1− e−sT 3.C
10.A
3. s=0
4.B 11.D
5.B 12.E
4.时
6.A 13.A
5.共同
7、系统零状态响应的象函数与激励的象函数之比称为_______函数。(____) A、指数 B、冲激 C、系统 D、正弦
8、连续系统的 S 域分析是以____________信号作为基本信号,任意信号都可 以依此加以分解。(____)
A、 e−st
B、 e− jt
C、 e jt
D、 est
9、_____全部在________平面的系统是_______的系统。(____) A、零点、左半、因果 B、极点、右半开、稳定
4、 如图所示电路,若激励信号U1(t) = (3e−2t + 2e−3t ) (t) ,求响应U2 (t) , 并指出响应中的强迫响应分量、自由响应分量、暂态分量和稳态分量。
+
U1(t)
-
1
1 0.5 F
+
U2(t)
-
八、证明题
下图所示系统,放大器是理想的, R1 = R2 =1 , C1 = C2 =1 F,试证明:
C、极点、左半开、稳定 D、零点、右半、反因果
10、根据系统的时域框图画出其相应的 s 域框图,就可直接按 s 域框图写出有 关____函数的代数方程,然后解出响应的象函数,取其逆变换求得系统的响
应,这将使运算简化。(____)
A、象 B、初等 C、超越 D、原
11、系统的冲激响应与系统函数是一_______变换对。(____) A、代数 B、希尔伯特 C、傅氏 D、拉氏
Z1 ( s )
=
1 sC1

(R2
+
1 sC2
C. 电容 C 在 s 域的串联形式模型可由U (s) = 1 I (s) + u C (0 −) 表示。由式子可见,
sC
s
电容上象电压U (s) 与象电流 I (s) 的关系可看成是由容抗 sC 与内部象电流源
u C (0 − ) 相串联组成。 s
D. 电感在 s 域的并联形式模型可由 I (s) = 1 U (s) + i L (0 −) 表示。由式子可见,
H (s) = G(s) 1 s
=1− s + 2s s+2 s+3
= 1− (s + 2) − 2 + 2(s + 3) − 6
s+2
s+3
=2+ 2 − 6 s+2 s+3
(2 分) (4 分)
进而可求,
F(s) = Y(s) H (s)
1− 2 + 3
= s +1 2+
s+2 2−
s+3 6
2、 若因果信号 f (t) 与其单边拉氏变换的关系为 f (t) F(s) 时,试证明
aeabtf(at) ←→ F(s/a-b), 式中 a>0。
五.画图题
1. 如下图所示电路,当 t=0 时,开关 K 闭合, 试画出 t>0 时的电路的复频域模
型。
1H 1H
5
i(t )
10
10
k t=0
+ - 20V

A.
B.-10
C. -11
D.1
3.因果系统转移函数 H (s) 的零极图如下图所示,此系统属于( )系统。
A.临界稳定的
B.不稳定的
j
C.无法判断稳定性 D.稳定的
-1 -1/2 0
4. 单边拉氏变换象函数 F(s)的收敛坐标σ< 0,则其收敛坐标在虚轴以左,在 这种情况下,___________________________。(____) A、 F(s)式在虚轴上不收敛,因此不能直接计算其傅里叶变换 B、F(s)式中,令 s=jω,就得到相应的傅里叶变换 C、 F(s)式在虚轴上收敛,但也不能直接计算其傅里叶变换 D、函数 f(t)的傅里叶变换不存在
t →
s→0
= lim H (s) s→0
= H (0)
(4 分)
式子得证。
2.证明:Q f (t) F(s)
根据拉普拉斯变换的尺度性质,可得,
f (at ) 1 F( s ) ;
aa
(4 分)
又根据拉普拉斯变换的 S 域平移性质有
eabt f (at ) 1 F ( s − b)
aa
aeabt f (at ) F( s − b)
s+2 s+3
1− 2 + 3
=
1

s +1 2(s + 2)
s −
+ 2
2 +
s 3(s
+3 + 3)

6
s+2
s+3
1− 2 + 3
=
s +1 1− 2(s
s+ + 1)
2 +
s 3(s
+3 +1)
s+2 s+3
=1 s +1
对上式取拉普拉斯逆变换,得 f (t) 为
(4 分)
f (t) = e−t (t)
a 式子得证。
(4 分) (2 分)
五.1.
解:
iL右 (0−
)
=
20 10 +10
=
1A
iL左(0− ) = 0
直流信号源 20 20
S
S
S1
- + I(s)
10
5
10
+ 20
-S
相关文档
最新文档