分类讨论思想方法PPT教学课件
合集下载
《分类讨论思想》课件
分类讨论思想可以帮助医生诊 断疾病和制定最佳治疗方案。
分类讨论思想的优点
1 理性思考
2 有效决策
3 更好的规划
分类讨论思想可以帮助我 们以理性的方式解决问题, 减少情绪对决策的影响。
分类讨论思想允许我们在 所有情况下做出决策,从 而总是找到最佳解决方案。
一个好的计划是成功的基 础。分类讨论思想可以帮 助我们制定更好的规划, 更好地利用时间和资源。
您可以使用分类讨论思想来确定公司剩余预算的最佳用途。您列出了所有可能的选项,例如 广告、物料和更多人手,然后仔细分析每个选项的好处和风险。
分类讨论思想的起源
古代智者
分类讨论思想可以追溯到古代中 国。古代智者使用这种方法来解 决各种复杂的问题,包括政治和 哲学上的问题。
希腊哲学家
希腊哲学家也研究过分类讨论思 想。那时候就有人开始将这种思 考方法应用到科学研究中。
解决方案。
3
3.制订计划
在确定最佳解决方案之后,您需要制定 计划并确定实施需要的资源和时间。
分类讨论思想的应用
商业领域
从制定营销计划到决定是否要 进入新市场,分类讨论思想可 以帮助商业领导者做出最佳决 策。
法律领域
在审判案件时,法院可以使用 分类讨论思想来分类讨论所讨论思想》PPT课 件
欢迎来到我们的课程!在这个PPT课件中,我们将介绍分类讨论思想。通过这 个思考方法,您将学习归因错误和一些常见的逻辑谬误以及如何防止它们。 让我们开始吧!
什么是分类讨论思想
定义
分类讨论思想是确定一个问题的所有情况,从而更好地理解该问题,寻找解决方法并做出决 策的方法。
举个例子
结论和要点
在这个PPT课件中,我们介绍了分类讨论思想的基本原则和应用。无论您在哪个领域工作或生活,这种思考方 法都可以帮助您做出更好的决策。没有一个问题是绝对单一的,分类讨论思想可以帮助您创造有多种可能性的 视角。
分类讨论思想的优点
1 理性思考
2 有效决策
3 更好的规划
分类讨论思想可以帮助我 们以理性的方式解决问题, 减少情绪对决策的影响。
分类讨论思想允许我们在 所有情况下做出决策,从 而总是找到最佳解决方案。
一个好的计划是成功的基 础。分类讨论思想可以帮 助我们制定更好的规划, 更好地利用时间和资源。
您可以使用分类讨论思想来确定公司剩余预算的最佳用途。您列出了所有可能的选项,例如 广告、物料和更多人手,然后仔细分析每个选项的好处和风险。
分类讨论思想的起源
古代智者
分类讨论思想可以追溯到古代中 国。古代智者使用这种方法来解 决各种复杂的问题,包括政治和 哲学上的问题。
希腊哲学家
希腊哲学家也研究过分类讨论思 想。那时候就有人开始将这种思 考方法应用到科学研究中。
解决方案。
3
3.制订计划
在确定最佳解决方案之后,您需要制定 计划并确定实施需要的资源和时间。
分类讨论思想的应用
商业领域
从制定营销计划到决定是否要 进入新市场,分类讨论思想可 以帮助商业领导者做出最佳决 策。
法律领域
在审判案件时,法院可以使用 分类讨论思想来分类讨论所讨论思想》PPT课 件
欢迎来到我们的课程!在这个PPT课件中,我们将介绍分类讨论思想。通过这 个思考方法,您将学习归因错误和一些常见的逻辑谬误以及如何防止它们。 让我们开始吧!
什么是分类讨论思想
定义
分类讨论思想是确定一个问题的所有情况,从而更好地理解该问题,寻找解决方法并做出决 策的方法。
举个例子
结论和要点
在这个PPT课件中,我们介绍了分类讨论思想的基本原则和应用。无论您在哪个领域工作或生活,这种思考方 法都可以帮助您做出更好的决策。没有一个问题是绝对单一的,分类讨论思想可以帮助您创造有多种可能性的 视角。
数学分类讨论思想课件
E
F a
2、在直角坐标系中,O为坐标原点, 已知 A(1,1),在x轴上确定点P, 使得△AOP为等腰三角形,则符合条 y 4 件的P点共有 个
1
P2(2 ,0)
A (1,1)
P1(2,0)
-1
o
-1
P4( 1, 0 )
1 P3(
2
,0) x
例7、在下图三角形的边上找出一点,使得 该点与三角形的两顶点构成等腰三角形!C
当AQ=AP时,△QAP为等腰直 角三角形, 即6-t=2t,解得t=2(秒) ∴当t=2秒时, △QAP为等腰直 角三角形。
16 17
(1)若顶角顶点与矩形顶点重合
A
F
D
16
E B
17
如图,当AE=AF=10时,S△AEF=
1 2 2×10×10=50(cm )
C
(2)若底角顶点与矩形顶点重合
A D E A D
E B F C B C
F
如图,当EA=EF=10时,BE=6, BF= 102 62 =8,
1 S△AEF= ×10×8=40(cm2) 2
例5
1、已知⊙O的半径为5cm,AB、CD是⊙O的弦, 且AB=6cm, CD=8cm,AB∥CD,则AB与CD之 间的距离为 7cm或1cm 。
A B C C A B D
O 2、在半径为1的圆O中,弦AB、AC的长分 别是 3、 2,则∠BAC的度数是 150或750 。
3、△ABC是半径为2cm的圆的内接三角形,若 0或1200 60 BC=2 cm,则∠ A的度数是 。
1)、对∠A进行讨论
110° 20° 50° B
3)、对∠C进行讨论
C
分类讨论思想转化与划归思想ppt课件
解 (1)由已知可得ac22=a2-a2b2=12, 所以 a2=2b2, 又点 M( 2,1)在椭圆 C 上,所以a22+b12=1,联立方程组aa222+=b212b=2,1, 解得ab22= =42, . 故椭圆 C 的方程为x42+y22=1. (2)(ⅰ)当直线 l 的斜率为 0 时,则 k1k2=4-3 2×4+3 2=34;
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的 定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为 零,偶次方根为非负数,对数运算中真数与底数的要求,指数 运算中底数的要求,不等式中两边同乘以一个正数、负数,三 角函数的定义域,等比数列{an}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单 调性、基本不等式等.
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(0,x1) x1 (x1,x2) x2 (x2,+∞)
综上所述:当 m≥0 时,f(x)在(0,+∞)上单调递增.
当 m≤-1 时,f(x)在(0,+∞)上单调递减,当-1<m<0 时,f(x)
在 0,-1+m1-m2 和 -1-m1-m2,+∞ 上 单 调 递 减 , 在
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的 定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为 零,偶次方根为非负数,对数运算中真数与底数的要求,指数 运算中底数的要求,不等式中两边同乘以一个正数、负数,三 角函数的定义域,等比数列{an}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单 调性、基本不等式等.
思想概述·应用点拨
热点聚焦·题型突破
归纳总结·思维升华
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(0,x1) x1 (x1,x2) x2 (x2,+∞)
综上所述:当 m≥0 时,f(x)在(0,+∞)上单调递增.
当 m≤-1 时,f(x)在(0,+∞)上单调递减,当-1<m<0 时,f(x)
在 0,-1+m1-m2 和 -1-m1-m2,+∞ 上 单 调 递 减 , 在
分类讨论思想在解题中的应用ppt 通用
问 题 9 : 过 点 P ( 2 , 3 ) 且 在 坐 标 轴 上 的 截 距 相 等 的 直 线 方 程 是
解 : 有 的 学 生 得 出 答 案 为 x y 5 0 这 种 解 法 漏 了 直 线 过 原 点 的 情 形 。 还 有 一 条 直 线 为 : 32 x y 0 答 案 应 为 x y 5 0 或 32 x y 0
变 形 的 依 据 是 不 等 式 的 性 质 。 在 两 边 同 除 以 t, 必 须 考 虑 其 正 负 。 因 为 随 着 t 的 变 化 , t正 负 号 相 应 发 生 变 化 , 不 能 统 一 解 决 , 所 以 必 须 分 类 。
n
n
t t 不 等 式 a a n n 1
当 t 0 时 , 不 等 式 不 可 能 成 立 。
a2 当 e ; a e 时 , 2
最 小 值 为 e
2
2 a 0 设 ,函数 f ( x) x a | ln x 1| .
当 x 1, ,求函数 f ( x ) 的最小值.
所以函数 y=f(x)的最小值为 1+a,(0<a≤2), 3a a a 2 - ln ,(2<a≤2e ), ymin= 2 2 2 2 2 e ,(a>2e ).
x a 解 : 函 数 值 域 为 f( x ) ,( a 0 ,a 1 )的 ( 0 , 1 ) x 1 a
1 1 1 1 f( x ) 可 能 为 1 或 0 f( x ) 而 2 2 2 2
1 为 了 进 一 步 确 定 f ( x ) 的 值 , 必 须 对 f( x )的 值 进 行 分 类 。 2
1 1 1 当 f () x 1 , f () x 0 , f () x 1 2 2 2 1 1 此 时 f () x f () x 1 2 2 1 1 所 以 f () x f () x 的 值 域 是 1 , 1 2 2
分类讨论思想ppt课件演示文稿
1 cos 2 x 2 | sin x | 解析:f x cos x cos x 2 tan x, x [2k ,2k ) [2k ,2k ) 2 2 . 2 tan x, x [2k ,2k 3 ) [2k 3 ,2k 2 ) 2 2
2.引入分类讨论的主要原因
1由数学概念引起的分类讨论:如绝对值的定义、
直线与平面所成的角、定比分点坐标公式等;
2 由数学运算要求引起的分类讨论:如除法运算
中除数不为零、对数中真数与底数的要求等;
3由函数的性质、定理、公式的限制引起的分类讨论; 4 由图形的不确定引起的分类讨论; 5由参数的变化引起的分类讨论; 6 按实际问题的情况而分类讨论.
考点1 由数学概念引起的分类讨论
例1.设a为实数,函数f x 2x 2 x a x a .
1 若f 0 1,求a的取值范围; 2 求f x 的最小值.
分析:由f 0 1,知 a a 1,然后根据 绝对值的定义解此不等式可解得第 1 小题; 而第 2 小题利用绝对值的定义化函数为分 段函数,然后分别求其最值.
【思维启迪】由数学运算性质类型、公式和定理、 法则有范围或者条件限制,或者是分类给出 的,在解答中注意分类讨论思想的应用.本题 Sn 中利用an Sn S n1 n 1与n 2讨论. n 1 n 2 求出an 就须分
分析:分两类n 1与n 2进行解答,但须注
解析:当n 2时,an Sn S n 1
2 2n 2n 2 n 1 2 n 1 4n, 所以an 4n(n 2,n N* ). 2
数学分类讨论思想与“零点分段法”(8班)精品PPT课件
③当 1<m1 <e,即1e<m<1 时,
函数 f (x)在 (1,m1 )上单调递增,在(m1 ,e)上单调递减,
则 f (x) max=f (m1 )=-lnm-1.…………………………7 分1,e), f ′(x)<0,函数 f (x)在(1,e)上单调递减,
即 3x2 3a 1 0 无解……………4 分
0 4 3(3a 1) 0
a 1 3
………………6 分
法 2: f / (x) 3x2 3a 3a ,……………4 分
要使直线 x y m 0 对任意的 mR 都不是曲线
y f (x) 的切线,当且仅当 1 3a 时成立,
(2)若直线 x y m 0 对任意的 m R 都不是曲线 y f (x)
的切线,求 a 的取值范围;
(3)设 g(x) | f (x) |, x [1,1],求 g(x) 的最大值 F (a) 的
解析式. (惠州市 2013 届高三上学期期末)
解:(1)当a 1时, f ' (x) 3x2 3,令f ' (x) 0,得x 1或x 1……1 分 当 x (1,1) 时 , f ' (x) 0,当x (,1] [1,) 时 ,
x a ex
…2 分
因为 x 0 为 f x 的极值点,
所以由 f 0 ae0 0 ,解得 a 0 ……………3 分
检验,当 a 0 时, f x xex ,当 x 0 时, f x 0 ,当 x 0
时, f x 0.
所以 x 0 为 f x 的极值点,故 a 0 .……………4 分
(Ⅱ) 当 a 0 时,不等式
f
x
x
1
1 2
x2
x
高考数学文(二轮复习)课件《分类讨论思想》
由图形或图象引发的分类讨论
[试题调研] x+y-2≥0, (2014· 北京高考)若x,y满足kx-y+2≥0, y≥0, )
[例2]
且z=y-x的最小值为-4,则k的值为( A.2 B.-2 1 C.2
1 D.-2
[思路方法]
线性约束条件中含有参数,k的取值会对可行
域产生影响,因此解题时要注意对k的分类讨论.可将k分为 k>0,k<-1,k=-1与-1<k<0等情况讨论求解.
或0<x≤4,即不等式f(x)≥-2的解集为
1 -∞,- ∪(0,4],故选率、指数 函数、对数函数等.与这样的数学概念有关的问题往往需要根 据数学概念进行分类,从而全面完整地解决问题. (1)分段函数在自变量不同取值范围内,对应关系不同,必 须进行讨论.由数学定义引发的分类讨论一般由概念内涵所决 定,解决这类问题要求熟练掌握并理解概念的内涵与外延.
[回访名题] (1)(2013· 辽宁高考)已知点O(0,0),A(0,b),B(a,a3).若△ OAB为直角三角形,则必有( A.b=a3 1 B.b=a +a
两式相减,得 (q-1)Sn=nqn-1-q1-q2-„-qn-1
n n+1 n q - 1 nq - n + 1 q +1 n =nq - = . q-1 q-1
nqn+1-n+1qn+1 于是,Sn= . q-12 nn+1 若q=1,则Sn=1+2+3+„+n= 2 . nn+1 q=1, 2 所以Sn= n+1 n nq -n+1q +1 q≠1. 2 q - 1
(3)由性质、定理、公式的限制而引起的分类讨论:如函数 的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图 象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问 题,由于参数的取值不同会导致所得的结果不同,或者由于对 不同的参数值要运用不同的求解或证明方法等.
中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
等腰三角形ppt课件
5.已知等腰三角形的两内角之比为4:1,则这个
三角形的顶角度数为
;
世上无难事,只要肯登攀
A
∴∠EOB=∠CBO, ∠∵FBOOC、=∠COBC分O别平分∠ABC、∠ACB
∴∠CBO=∠ABO,∠BCO=∠ACO ∴∠EOB=∠ABO ,∠FOC=∠ACO
OБайду номын сангаас
E
F
∴BE=OE,CF=OF
∴ EF=EO+FO=BE+CF
B
C
若AB≠AC,其他条件不变,图中还有等腰三角形吗?结论还成立吗?
例题讲解
等腰三角形练习 ----分类讨论思想
一、课前热身,知识再现
1.已知等腰三角形的一内角为40°;求其余两个内角的
度数
;
2.已知等腰三角形的两边长为3和4,其周长
为
;
二、自主探究 (关于角的讨论)
1、已知等腰三角形的一外角为100°;则等腰三角形的
顶角的度数为 800或200
(关于等腰三角形边的讨论)
3
∴∠AFD=∠4 ∵∠AFD=∠3
4
∴∠3=∠4 ∴CE=CF
B
E
C
∴△CEF是等腰三角形
典 例2 如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.
例 过O作EF∥BC交AB于E,交AC于F.探究EF、BE、FC之间的关系.
精 析
解:EF=BE+CF.
∵ EF∥BC
理由如下:
证明:∵△ABC中AB=AC,D在BC的中点, ∴∠B=∠C,BD=CD
∵DE⊥AB,DF⊥AC. ∴∠BED=∠CFD=9 0在°△BDE和△CDF中,
∠BED=∠CFD ∠B=∠C BD=CD
高三数学课件:下学期_分类讨论思想方法(1.p
4 − x 2 ≥ −1 恒成立
由4-x2≥0,x>0,得0<x≤2; , > , < ;
x 4 − x2 ≥ 1 (2)当x<0时, =-1,原不等式等价于 当 < 时 x ,
4-x2≥0
由
ห้องสมุดไป่ตู้4-x2≥1
得-√3≤x<0
x<0 < 所以原不等式的解集为{x| 所以原不等式的解集为 |-√3≤x<0或0<x≤2}.故应选 < 或 < . (B). .
三.示范性题组
是首项为1,公比为q( 例1.设数列 n}是首项为 ,公比为 (q>0)的等比数列, .设数列{a 是首项为 )的等比数列, sn + 1 求 lim Tn 其前n项和为 项和为S 其前 项和为 n, Tn = 解:(1)当q=1时,Sn=n, Sn+1=n+1, :( ) 时 n+1 ∴ lim Tn = lim n = 1 n→ ∞ n→ ∞ 1 − q n+1 (2)当q≠1时,lim Tn = lim 1 − q n ) 时 n→ ∞ n→ ∞ ①若0<q<1,lim Tn = 1 , n→ ∞ 1 n ( ) −q q =q ② 若q>1, lim Tn = lim 1 n→ ∞ n→ ∞ ( )n − 1 q Tn = 1 0<q≤1 综上, 综上, lim n→ ∞ q q>1
①0<a<1时,0<f(x) 时 a ②-1<a<0时, 1 = a 时
a2 = 1 a2 + 1 ≤ a+ a − a2
2
+1
≤f(x)<0
又当x=0时,f(x)=0; ∴原函数的值域为: 时 原函数的值域为: 又当
专题七讲分类讨论思想、转化与化归思想课件理
物理中的应用实例
分类讨论思想
在物理学中,分类讨论思想同样有着广泛的应用。例如,在研究物体的运动时, 可以根据物体的运动状态(静止、匀速直线运动、变速运动)进行分类讨论;在 研究电路时,可以根据电路的连接方式(串联、并联)进行分类讨论。
转化与化归思想
在物理学中,转化与化归思想的应用也很多。例如,在研究能量守恒定律时,可 以将复杂的能量转化过程转化为简单的能量计算;在研究力学问题时,可以将复 杂的受力分析转化为简单的力矩平衡问题。
在分类讨论中,需要明确分类的标准 和原则,将问题划分为具有相同性质 的子问题,然后逐一分析、解决。
分类讨论思想的重要性
分类讨论思想能够使问题更加清 晰、具体,有助于深入理解问题
的本质。
通过分类讨论,可以将复杂问题 分解为简单问题,降低问题的难
度,提高解决问题的效率。
分类讨论有助于发现新的解题思 路和方法,促进数学思维的发展
在物理、化学等学科中,转化与化归思想同样适用,如将复杂物理现象转化为数学 模型,化学反应方程式的配平等。
在生活中,转化与化归思想也有很多应用,如将复杂问题分解为多个简单问题,将 繁琐事务整理为有序的工作流程等。
如何培养转化与化归思想
培养转化与化归思想需要多做练习, 通过不断尝试和总结,提高自己的思 维能力和解决问题的能力。
04 分类讨论思想与转化与化 归思想的综合应用
综合应用的步骤和方法
明确问题
首先需要明确问题的类型和涉 及的知识点,确定是否需要采 用分类讨论或转化与化归思想
。
制定策略
根据问题的特点,制定合适的 分类标准或转化途径,将复杂 问题分解为若干个简单问题或 等价问题。
实施解决
对分类后的子问题进行逐一解 决,或对转化后的等价问题进 行求解,注意保持逻辑严密和 推理准确。
3-26分类讨论思想
数学(理) 第30页
新课标· 高考二轮总复习
[解]
(1)设等比数列{an}的公比为 q(q≠0),则 ak+ 1
+ +
=qk,ak+3=qk 2,ak+2=qk 1, 依题意得 2qk 2=qk+qk 1,由于 qk≠0,所以 2q2-q 1 -1=0,解得 q=1 或 q=- . 2 (2)当 q=1 时,Sk+1=(k+1)a1=k+1,Sk+3=k+3, Sk+ 2=k+2,显然 Sk+1+Sk+ 2=k+1+k+2=2k+3≠2Sk+
1 3 1 (3)当 a≥ 时,如图(3)知,y≥f = +a. 2 2 4
1 3 综上所述:当 a≤- 时,值域为[ -a,+∞);当- 2 4 1 1 1 3 <a< 时,值域为[a2+1,+∞);当 a≥ 时,值域为[ + 2 2 2 4 a,+∞).
数学(理) 第28页
新课标· 高考二轮总复习
第三部分
高考专题讲解
数学(理) 第1页
新课标· 高考二轮总复习
第二十六讲 分类讨论思想
数学(理) 第2页
新课标· 高考二轮总复习
考情分析
分类讨论思想是指在数学中,根据研究对象的性质 差异,分别对各种不同的情况予以分析的分类思考方法, 它是一种重要的思想方法,同时也是一种重要的解题策 略.在近年的高考试题中频繁出现,已成为高考的一个
数学(理) 第20页
新课标· 高考二轮总复习
[解]
f′(x)=ex(x2+ax+a+1)+ex(2x+a) =ex[x2+(a+2)x+(2a+1)].
令 f′(x)=0,得 x2+(a+2)x+(2a+1)=0. ①当 Δ=(a+2)2-4(2a+1)=a2-4a=a(a-4)>0, 即 a<0 或 a>4 时,方程 x2+(a+2)x+(2a+1)=0 有 两个不同的实根 x1,x2,不妨设 x1<x2.
技法专题第2讲分类讨论思想、转化与化归思想
问题的C思o想py策r略ig.h对t 问20题1实9-行20分1类9与A整sp合o,s分 e P类t标y准L等td于. 增加
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化
一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论思想在解题中的应用
1
由数学概念而引起的分类讨论:如绝对值的定义、不等式 的定义、二次函数的定义、直线的倾斜角等.
①当 m≤0 时,g′(x)≤0,则 g(x)的单调递减区间是(-∞,
+∞);
②当m>0时,令g′(x)<0,解得x<- 2m 或x> 2m ,则
g(x)的单调递减区间E是v(a-lu∞a,ti-on2omn) l,y.( 2m,+∞). ated w综i上th所A述s,pmos≤e0.S时l,idge(xs)的fo单r调.N递E减T区3间.5是C(-li∞en,t+P∞ro);file 5.2
Evaluation only. ated witfh(a)A=s-p3o,se则.Sf(l6i-deas)=for .NET 3.5 Client P(rofi)le 5.2
AC.o-p74yright 2019-201B9.A-sp54 ose Pty Ltd.
C.-34
D.-14
解析:由于 f(a)=-3,
综上知,||PPFF21||=72或 2.
[技法领悟]
(1)本题中直角顶点的位置不定,影响边长关系,需按
直角顶点不同的位E置v进a行lu讨at论io.n only. ated with Aspose.Slides for .NET 3.5 Client Profile 5.2
C(2o)涉py及r几ig何h问t 2题0时19,-2由0于1几9 A何s元p素os的e形P状ty、L位t置d.变化
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孟子也非天生的圣人,他也 有过性格不稳定的幼年,能成为 “亚圣”,多得力于他的母亲。 孟子的母亲是位伟大的女性,她 含辛茹苦坚守志节,抚育儿子, 从慎始、励志、敦品、勉学以至 于约礼、成金,数十年如一日, 毫不放松,既成就了孟子,更为 后世的母亲留下一套完整的教子
方案。
孟母三迁
孟子很小的时候,孟母就十分注意对他的 培养,只要周围的环境对他的成长有不好的影响, 孟母就会立即搬家。起初,孟母带着年幼的孟子 住在一所公墓的附近,孟子看见人家哭哭啼啼埋 葬死人,他也学着玩,孟母心想:“我的孩子住 在这里不合适。”就立刻搬家。他们母子搬到了 集市的附近,孟子看见商人自吹自夸地卖东西赚 钱,他又学着玩,孟母又在心里想:“我的孩子 住在这里也不合适。”就连忙又搬家。最后,孟 母和孟子搬到了学堂的附近,这时,孟子开始学 习礼节并要求上学,孟母这才在心里高兴地说:
解:
(1)不含6的三位数有
C
1 7
•
A72
个294
(2)含6的三位数分以下两类:
①含6不含0:
2
C
2 7
•
A33Biblioteka 252②含6又含0:
2
C
1 7
•
A
1 2
•
A
2 2
56
∴符合题意的三位数共有294+252+56=602个。
五、课堂小结
概念、定理、性质、法则是分类给出的 1、分类讨论常见题型 含参数的函数、方程、不等式问题
三.示范性题组
例其前1.n设项数和列为{Sann,}T是n 首s项nsn为1 1,求公lni比m为Tnq(q>0)的等比数列,
解:(1)当q=1时,Sn=n, Sn+1=n+1,
n1
lim lim ∴
Tn
n
n
1 n
1 qn1
lim lim (2)当q≠1时, Tn
n
n
1 qn
lim ①若0<q<1, Tn 1 n
0
3. 从0,1,2,3,…8这九个数字中,任取三个数字排成三位 数, 且6可当9用,可以组成 ( )个不同的三位数。
1. 一动圆过定点A(1,0),且与圆B:(x+1)2+y2=4a2 (a>0) 外切,求动圆圆心的轨迹
解:设动圆圆心为P,半径为R。B(-1,0)由题意得 │PA │ =R, │ PB │ =R+2a │ PB │ - │PA │ =2a 又│A B│=2 (1)当2a<2,即a<1时,P点轨迹为以A、B为焦点的双曲线左支, (2)当2a=2,即a=1时,P点轨迹为以A为端点,方向为轴负方向 的射线 (3)当2a>2,即a>1时,P点轨迹不存在 综上,P点轨迹为……………
∵6a<0<-4a,∴6a<x<-4a. 综上,不等式的解集为:
当a>0时,{x︱x<-4a或x>6a}; 当a=0时,{x︱x≠0,x∈R}; 当a∈(-1/2,0)时,{x∣x< 6a或x>-4a}; 当a∈(-∞-1/2)时,{x∣6a<x<-4a}.
3. 从0,1,2,3,…8这九个数字中,任取三个数字排成三位 数,且6可当9用,可以组成 ( )个不同的三位数。
由 4-x2≥1
得-√3≤x<0
x<0 所以原不等式的解集为{x|-√3≤x<0或0<x≤2}.故应选 (B).
四、巩固性题组
1. 一动圆过定点A(1,0),且与圆B:(x+1)2+y2=4a2 (a>0) 外切,求动圆圆心的轨迹
2.若
a
1 2
,解关于X的不等式(
x
4a)(x 2a 1
6a)
>
1 a
a2 a2 1
≤af(x)<0
x
①a>1时,0<f(x) ≤
a 2
②a<-1时, a ≤f(x)<0
2
又当x=0时,f(x)=0; ∴原函数的值域为:
a > 1时,0
f (x)
a ;0 a 1时,0 2
f (x)
a2 a2 1
1 a 0时, a 2
f
x
0;
a
1时
, a2
a2 1
则p、q的大小关系是__C_______。
A.p=q; B.p<q; C.p>q; D.当a>1时,p>q;当0<a<1时,p<q。
3.A、B两点相距4cm,且A、B与平面α的距离分别3cm、1cm, 则AB与平面α所成的角是 ( C)
(A)30º (B)90º (C)30º或90º (D)30º或90º或150º
楚国某县尹问孔子弟子,请他谈谈对孔子
的看法,弟子木讷小心,一言不发,县尹只得 怏怏而回.孔子得知后,很不高兴,怨道:“你为 什么不说:‘我的老师是个发愤忘食,乐而忘忧
的学者啊?’”
孔子的弟子子路,为人刚勇,一日在 孔家弹瑟,瑟声中带有杀气,犯了孔
子的大忌--仁.孔子自然不喜欢,又
不便发作,就不满道:"子路弹瑟的本 领已经登上厅堂,但尚未能进入内
(1)n q
lim lim ② 若q>1,
Tn
n
n
q
q
(1)n 1
q
综上,lim Tn 1 0<q≤1
n
q q>1
例二.讨论a的值,说明方程 x 2 ay2 1 表示的曲线。
解:(1)a=0时,方程化为x2=1,即x=±1,表示两条相互平 行的直线;
(2)a>0时,原方程表示焦点在x轴上的双曲线,a=1时,为 等轴双曲线
分类讨论思想方法
一.分类讨论及其意义
二.再现性题组
1.函数 y sin x cos x tgx ctgx 的值域是__4_,__-_1_,__。
| sin x | | cos x | | tgx | | ctgx |
0
2.若a>0且a≠1,p= loga (a3 a 1),q= log a (a 2 a 1,)
室.他为何要在我家弹瑟啊? "
登堂入室:
表示学业已达一定程度 或是已得到老师专授指点
有人指责孟子不尽力帮助齐王。孟子便解 释说:“比如说,天下有些易活的植物, 假如把它放在太阳下晒一天,然后再把它 放在阴冷的地方冻十天,即使是生命力再 强的植物也会死。我见到齐王的机会少之 又少,即使给了他些良好的影响与帮助, 我一离开,一些和我主张不同的人,又带 给他许多不好影响。我怎么能使齐王的思 想、品质好起来呢?”
• 孔子并不像后来我国封建社会的统治者所吹捧、所神化的那 样,是什么不食人间烟火的“文宣王”“大成至圣先师”等 等,他也是一个有血有肉的现实社会中的人。
• 他赞美颜回安于贫困,又汲汲于追求富贵,甚至奔走于权贵 之门,国君召唤他,他等不及驾好车马,就赶快跑了去。
• 孔子对他的学生很严厉,批评起来不讲情面,他批评“宰予 昼寝”说:“朽木不可雕也,粪土之墙不可圬也”(《论 语·公冶长》);而有时对他的学生也很亲切
息。
孔子和孟子 作为圣人体现 出的思想光辉
寓学于乐
让我们用游戏的方式体会他们的不平凡
看故事 猜成语 明事理 学做人
孔子在齐国,有机会欣赏到 他认为最美妙的韶乐. 谓其 “尽善矣,又尽美也!”(极动 听优美)而后大受感动,一 连好多天老是想着它,吃肉 也没有味道了.
尽善尽美:
形容做事情力求完美, 毫无缺陷
读名言 悟至理 获启发 利于行
孔子名言
1.君子坦荡荡,小人常戚戚
2.己所不欲,匆施于人
3.三人行,必有我师焉
4.人无远虑,必有近忧 5.与朋友交,言而有信 6.工欲善其事,必先利其器
7.知之者不如好之者, 好之者不如乐之者
8.其身正,不令而行; 其身不正,虽令不从
B.{x│ ≤x3<0或0<x≤2 }
C.{x│-2≤x<0或0<x≤2 } D.{x│ ≤x<3 0或0<x≤ } 3
x
解:(1)当x>0时,x =1,原不等式等价于 4 x2 1 恒成立 由4-x2≥0,x>0,得0<x≤2;
x
(2)当x<0时,x =-1,原不等式等价于 4 x2 1 4-x2≥0
若A∩B=Φ,求实数a的取值范围。
例2. 求函数
f (x)
ax x2 1 (a
0)在
0,a
上的值域。
a
解法1:
当x≠0时 f ( x) 1
(1)当
a
≤1时,
x
1 x
a
1 a
x x
a
a2
①0<a<1时,0<f(x) ≤ a 1 a2 1
(2)当
a
②-1<a<0时,
>1时,x
1
2
a
a
f (x) 0
孔子和孟子的生平
孔子和孟子是春秋战国时期著名的 思想家、教育家,在两千多年的封建社 会里,被尊为“圣人”和“亚圣”。他 们的思想观念,对中国社会产生过深远 的影响,甚至远及日本、朝鲜、欧洲等 地,在世界文化史上占有相当重要的地
位。 让我们走近这两位先哲,让他们思 想的光环也闪耀在我们这一代人的心中!
• 孔子为人,有时很豪放,他说他自己是“发愤忘食,乐以忘 忧,不知老之将至”的人;可是有时又很拘谨,循规蹈矩不 敢超越古代的礼仪一步,他走进朝廷的门,那种谨慎的样子,
好像自己没有容身之地一般。
• 孔子不懂农业生产, 也鄙视劳动。
• 孔子也有被难倒的 时候,并非“万事 通”。
从上面这些事实看来,孔子并不是一个道貌岸然 的超人,更不是先天的圣人,而是一个有感情、有 性格、有抱负、又有世俗心理的现实的人。