北师大版七年级下数学全等三角形的性质和判定汇编

合集下载

北师大版七年级下册数学《全等三角形》复习讲义

北师大版七年级下册数学《全等三角形》复习讲义

前课回顾全等三角形复习知识点一:全等三角形的判定1、全等三角形的判定三:两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”.用数学语言表述:在△ABC和'''A B C∆中,∵'B BBCC∠=∠⎧⎪=⎨⎪∠=⎩∴△ABC≌'''A B C∆(ASA)2、全等三角形的判定四:两个角和其中一个角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”.用数学语言表述:在△ABC和'''A B C∆中,∵'A ABBC∠=∠⎧⎪∠=⎨⎪=⎩∴△ABC≌'''A B C∆(AAS)3、直角三角形全等的判定:斜边和一条直角边对应相等的两个直角三角形全等,简写为“斜边直角边”或“HL”.用数学语言表述:在Rt△ABC和Rt'''A B C∆中,∵''BC B CAB=⎧⎨=⎩∴Rt△ABC≌Rt'''A B C∆(HL)新知讲解例1、已知:如图,PM=PN,∠M=∠N.求证:AM=BN.例2、如图,在△ABC中,MN⊥AC,垂足为N,且MN平分∠AMC,△ABM的周长为9cm,AN=2cm,求△ABC 的周长.练习1、如图,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?ABCA’B’C’A’B’B’C’∠B’B’C’∠C’C'B'A'CBA练习2、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .例3、如图,将一等腰直角三角形ABC (AC=BC )的直角顶点置于直线l 上,且过A 、B 两点分别作直线l 的垂线,垂足分别为D 、E .请你仔细观察后,在图中找出一对全等三角形,并写出说明它们全等的过程.例4、在△ABC 中,∠ACB =90o ,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ; (2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.练习3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .A CD F EBl练习4如图所示,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE, 垂足为F,过B 作BD⊥BC交CF的延长线于D,求证:(1)AE=CD;(2)若AC=12cm,求BD的长.例5、已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.练习5、已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.1、阅读下题及一位同学的解答过程:如图4-10,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COBAODOBOACA∴△AOD≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?2、如图:已知AE交BC于点D,∠1=∠2=∠3, AB=AD. 求证:DC=BE.AB CED123EDCBAF3、(1)已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.4、在一池塘边有A、B两棵树,如图7-4.试设计一种方案,测量A、B两棵树之间的距离.随堂检测1、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.2、如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O 点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.4、如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

1北师大版七年级下册数学[.全等三角形的概念和性质(基础)知识点整理及重点题型梳理]

北师大版七年级下册数学重难点突破知识点梳理及重点题型巩固练习全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形【答案】D;解析:A、两个等腰三角形的45°不一定同是底角或顶角,还缺少对应边相等,所以,两个三角形不一定全等,故本选项错误;B、两个等边三角形的边长不一定相等,所以,两个三角形不一定全等,故本选项错误;C、40°角不一定是两个三角形的顶角,所以,两个三角形不一定全等,故本选项错误;D、腰和顶角对应相等的两个等腰三角形可以利用“边角边”证明全等,故本选项正确.类型二、全等三角形的对应边,对应角2、(2016•厦门)如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A.∠B B.∠A C.∠EMF D.∠AFB【思路点拨】由全等三角形的性质:对应角相等即可得到问题的选项【答案与解析】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,故选A.【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【思路点拨】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE ,都减去∠ACE 即可.【答案与解析】解:AB 的对应边为DE ,∵△ABC ≌△DEC ,∴∠ACB=∠DCE ,∴∠ACB —∠ACE=∠DCE —∠ACE ,即∠BCE=∠DCA=40°.【总结升华】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。

北师大版数学七年级下册《三角形全等的判定3—AAS》课件

北师大版数学七年级下册《三角形全等的判定3—AAS》课件

思考题:
1. 已知:如图,△ABC ≌△A’B’C’, AD、A’D’ 分别是△ABC 和△A’B’C’ 的高。试说明AD= A’D’ ,并用一句话说
出你的发现。
A
A’
B
D C B’
D’ C’
全等三角形对应边上的高也相等。
思考题:
2、△ABC是等腰三角形,AD、BE 分别是∠A、 ∠B 的角平分线,△ABD和△BAE 全等吗?试
D
在△ABC和△DEF中
∠B = ∠E
E
F
BC = EF ∠C = ∠F
∴△ABC≌△DEF(ASA)
两你角能及从一上角题的中对得边到对什应么相结等论的? 两个三角形全等(AAS)。
全等三角形的判定方法3:
两角及一角的对边对应相等的两个三角形全等。 简称“角角边”(AAS)。
A
A′Βιβλιοθήκη BB′C在△ABC和△ A'B'C'中
两角及一角的对边对应相等的两个三角形全等。 简称“角角边”(AAS)。
△ABC ≌△DEF的理由是: 角角边(AAS)
C
F
A
BD
E
掌握全等三角形的AAS定理
要用AAS判定△ABC≌△DEF,
需要添加的条件是______.
A
D
B
CE
F
掌握全等三角形的AAS定理
要用AAS判△ABC≌△DEF,
需要添加的条件是__________.
A
D
B
CE
F
掌握全等三角形的AAS定理
4.3.3 三角形全等的条件(3)
---边边边(AAS)
A
A′
B
B′
C

最新北师大版七年级下册数学 三角形的全等(经典,详细!!!)

最新北师大版七年级下册数学 三角形的全等(经典,详细!!!)

A
B
O
C
D
蝴蝶型
旋转型
A
B D
E
A
C
大山型
A
B
C
B
C E
E
A
D D
B
C
组合型(平移+旋转)
D
E A
A E
B
C D
B C D
E
等边三角型
A
A
F
A
E
D
B
C
E
B
C
D
E 变式图 1
B
C
变式图 2 D
第 1 页 共 10 页
三、典型试题
1.已知 BE=CF,AB=CD, ∠B=∠C.问 AF=DE 吗?
2.已知 AD=CB, ∠A=∠C,AE=CF,问 EB∥DF 吗?说明理由。
已知一边和它的对角
找一角 (AAS ) 已知角是直角,找一边 (HL)
(3):已 知两角 ---
※二、常见练 全习等三角形分类:
找两角的夹边 (ASA) 找夹边外的任意边 (AAS )
平移型
B
E
A
D
A
DC
翻折轴对称型
A A
D
E
O
B
E
B 父字型
C
C
翻折型
F
B
C
E
E M
C
D
B
D
D
A
N
F
B A
C
轴对称型
轴对称型
A
B
F E
D
C
43.已知,点 C 是 AB 的中点,CD∥BE,且 CD=BE,问∠D=∠E 吗?说明理由。 A

北师大七年级下第14讲三角形全等的判定

北师大七年级下第14讲三角形全等的判定

例1、如图(1),已知AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.若将过O点的直线旋转至图(2)、(3)的情况时,其他条件不变,那么图(1)中∠1与∠2的关系还成立吗?请说明理由.分析:要寻求∠1与∠2的关系,从直观上先判断出∠1=∠2,然后再说明结论成立的理由.由图形可知它们分别在两个三角形中,所以可以通过全等三角形来说明;另外,∠1,∠2正好是MN 截AD、BC得到的一对内错角,因而可从AD∥BC来说理.比较(2)、(3)与(1)的关系,图形的位置变了,仔细观察,什么发生变化,什么没有发生变化?可知∠1仍然等于∠2,因为AD与BC 的平行关系始终没有改变.解:∠1与∠2具有相等关系,即∠1=∠2,理由如下:在△ACD与△CAB中∴△ACD≌△CAB∴∠DAC=∠BCA在△AOM与△CON中∴△AOM≌△CON,∴∠1=∠2若将过点O的直线旋转至图(2)、(3)的位置时,∠1=∠2仍然成立,理由如下:如图(2),在△ACD与△CAB中∴△ACD≌△CAB∴∠DAC=∠BCA.∴在△AOM与△CON中∴△AOM≌△CON∴∠1=∠2.如图(3)在△ACD与△CAB中∴△ACD≌△CAB,∴∠DAC=∠BCA∴AD∥BC,∴∠1=∠2.例2、如图所示,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交CD的延长线于F,BE⊥CD 于E,求证:EF=CF-AF.分析:由图中可以看出EF=CF-CE,而求证结论是EF=CF-AF,因此,只要证出CE=AF即可,而要证明CE=AF,只要证明△BEC和△CFA全等就可得到.证明:∵AC⊥BC,AF⊥FC,∴∠ACB=90°,∠F=90°即∠ACF+∠BCE=90°∵BE⊥FC,∴∠BEC=90°∴∠ACF=∠CBE在△AFC和△CBE中△AFC≌△CBE,∴BE=DF又EF=CF-CE,∴EF=CF-AF.例3、如图所示,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.证明:(1)∵CF⊥AE,∴∠4=90°∠3+∠2=90°又∵∠1+∠3=90°∴∠1=∠2又∵DB⊥BC∴∠DBC=∠ACE=90°在△DBC和△ECA中∴△DBC≌△ECA∴DC=EA 即AE=CD(2)∵△DBC≌△ECA∴DB=EC又∵AE是BC边的中线又∵AC=CB,AC=12cm例4、如图所示,已知在四边形AB CD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线AC相交于点O,请问O点有何特征.解:点O既是AC的中点,又是EF的中点.理由如下:在△ACD和△CAB中∴△ACD≌△CAB∴∠1=∠2在△AOF和△COE中∴△AOF≌△COE∴OA=OC,OF=OE∴O既是AC的中点,又是EF的中点.例5、如图,AD∥BC,AB∥DC,MN=PQ,求证:DE=BE.证明:∵AD∥BC,∴∠M=∠Q又∵AB∥DC,∴∠1=∠2,∠3=∠4又∵MN=PQ,∴MP=QN在△DMP和△BQN中∴△DMP≌△BQN∴DP=BN在△DEP和△BEN中∴△DEP≌△BEN∴DE=BE例6、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E.求证:BD=2CE.证明:延长BA、CE交于点F.∵∠3=90°,∴∠5+∠F=90°又∵BE⊥CE,∴∠4=90°,∠7=90°∴∠1+∠F=90°,∠6=180°-90°=90°∴∠1=∠5在△ABD和△ACF中∴△ABD≌△ACF∴BD=FC在△BEF和△BEC中∴△BEF≌△BEC∴EF=EC∴FC=2EC∴BD=2EC例7、如图①所示,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.解析:(1)FE与FD之间的数量关系为FE=FD.(2)答:(1)中的结论FE=FD仍然成立.如图,在AC上截取AG=AE,连结FG,因为∠1=∠2,AF为公共边,可证△AEF≌△AGF,所以∠AFE=∠AFG,FE=FG.由∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,可得∠2+∠3=60°.所以∠AFE=∠CFD=∠AFG=60°.所以∠CFG=60°.由∠3=∠4及FC为公共边,可得△CFG≌△CFD.所以FG=FD.所以FE=FD.例8、已知线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结EF(如图所示).(1)添加条件∠A=∠D,∠OEF=∠OFE.求证:AB=DC.(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③;添加条件①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是____命题,命题2是_____命题(选择“真”或“假”填入空格).解析:(1)证明:∵∠1=∠2,∴OE=OF.∵OB=2OE,OC=2OF,∴OB=OC.在△AOB和△DOC中,∴AB=DC.(2)命题1真,命题2假.详解:(Ⅰ)在△AOB和△COD中,∴△AOB≌△COD(AAS),∴OB=OC.(Ⅱ)如图,AB=DC,∠OEF=∠OFE,而∠A≠∠D.例9、此题有A、B、C三类题目,其中A类题4分,B类题6分,C类题8分,请你任选一类做,多做的题目不记分.(A类)已知:如图(1)所示,AB=AC,AD=AE,那么∠B=∠C.(B类)已知:如图(2)所示,CE⊥AB于点E,BD⊥AC于D,BD、CE交于点O,且AO 平分∠BAC,那么OB=OC.(C类)如图(3)所示,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等三角形,并写出推理过程.(A类)证明:在△ABD和△ACE中,所以△ABD≌△ACE(SAS).所以∠B=∠C(全等三角形的对应角相等)(B类)证明:因为AO平分∠BAC,∠EAO=∠DAO,又因为CE⊥AB于点E,BD⊥AC于点D,所以∠AEO=∠ADO=90°,OA=OA.所以△AEO≌△ADO(AAS).所以OE=OD.在△BOE和△COD中,所以△BOE≌△COD(ASA).所以OB=OC(全等三角形的对应边相等).(C类)解:△BDH≌△ADC.推证如下:因为△BDA、△HDC都是等腰直角三角形,所以,BD=AD,∠BDH=∠ADC=90°,HD=CD.所以,△BDH≌△ADC(SAS).达标测试:1、已知:如图AB=DC,AC=DB,求证:OB=OC.证明:连结BC,在△ABC和△DCB中∴△ABC≌△DCB∴∠A=∠D在△AOB和△DOC中∴△AOB≌△DOC∴OB=OC2、如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.证明:在△AED和△BCD中∴△AED≌△BCD∴∠1=∠C又∵∠C=90°∴∠1=90°∴DE⊥AB3、如图,A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:(1)DF//CE;(2)DE=CF.证明:(1)∵AD=BC,∴AC=BD在△AEC和△BFD中∴△AEC≌△BFD∴∠1=∠2∴DF//CE(2)在△DEC和△CFD中∴△DEC≌△CFD ∴DE=CF4、如图,AB=AC,BE=CE,求证:(1)AE平分∠BAC;(2)AD垂直平分BC.证明:(1)在△ABE和△ACE中∴△ABE≌△ACE∴∠1=∠2∴AE平分∠BAC(2)在△ABD和△ACD中∴△ABD≌△ACD∴BD=CD,∠3=∠4又∵∠3+∠4=180°∴∠3=90°∴AD⊥BC,即AD垂直平分BC.5、如图,△ABC中,AM是BC边上的中线,求证:证明:延长AM到D,使MD=AM连结BD,∵AM是BC边上的中线,∴BM=MC在△ACM和△DBM中∴△ACM≌△DBM∴AC=BD又∵△ABD中AB+BD>AD而AD=2AM,∴【巩固练习】1、如图所示,已知AC=AD,BC=BD,则全等的三角形共有()A.1对B.2对C.3对D.4对2、如图,D是△ABC的边AB上一点,DF交AC于E,给出3个论断:①DE=EF;②AE=CE;③FC∥AB.以其中两个论断为条件,其余一个论断为结论,可以作出3个命题,其中正确命题的个数为()A.1个B.2个C.0个D.3个3、如图所示,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙C.只有乙 D.只有丙4、下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5、如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AC=BDC.AM=CN D.AM∥CN6、如图,AB=CD,AD=CB,AC、BD交于O,图中有()对全等的三角形A.2 B.3C.4 D.57、下列各组条件中,不能判定△ABC和△A′B′C′全等的是()A.AC=A′C′,BC= B′C′,∠C=∠C′B.∠A=∠A′,BC= B′C′,AC= A′C′C.∠A=∠A′,∠C=∠C′,BC= B′C′D.AB= A′C′,BC= C′B′,AC= A′B′8、下列命题中正确的个数是()①有一边相等的两个等边三角形全等②腰长相等且都有一个角是50°的两个等腰三角形全等③各有两边长分别是5cm,4cm的两个等腰三角形全等④判定三角形全等的条件中,至少要有一对对边对应相等.A.1 B.2C.3 D.49、如图,AB//DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是()A.AC=EF B.DF=BCC.∠A=∠E D.不用补充10、如图,∠1=∠2,∠C=∠D,AC、BD交于点E,则下列结论错误的是()A.∠DAE=∠CBE B.△DAE与△CBE不能全等C.CE=DE D.△AEB为等腰三角形CDBDC CBBCB11、(1)如图,已知在Rt△ABC中,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E,求证:DE=BD-CE.(2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN 于D,CE⊥AN于E,那么DE、DB、CE之间还存在等量关系吗?如存在,请证明你的结论?(1)证明:∵BD⊥AE,∴∠4=90°,∴∠1+∠3=90°.又∵∠2+∠3=90°,∴∠1=∠2,又∵CE⊥AE,∴∠5=90°.在△ABD和△CAE中,∴△ABD≌△CAE,∴BD=AE,AD=CE,∴BD-CE=AE-AD,即DE=BD-CE.(2)存在,即为DE=DB+CE,证明:∵∠2=90°,∠1+∠2+∠3=180°∴∠1+∠3=90°又∵BD⊥DE,CE⊥DE∴∠5=∠6=90°,∴∠3+∠4=90°∴∠1=∠4在ΔADB和ΔCEA中,∴ΔADB≌ΔCEA(AAS)∴DB=AE,AD=CE又∵DE=AD+AE,∴DE=DB+CE.12、如图所示,已知AD//BC,∠1=∠2,∠3=∠4,直线DC过点E交AD于点D,交BC于点C,求证:AD+BC=AB.分析:直接证AB=AD+BC较难,可以采用“截长法”,在AB上截取AF=AD,则只要证BC=BF即可,要证BC=BF,需证△EFB≌△ECB,而在这两个三角形中已有两个条件即∠3=∠4,BE=BE,还缺少一个条件,由作辅助线可知:△ADE≌△AFE.则证∠D=∠AFE.,又∠C与∠D互补,∠BFE与∠AFE互补,则推出∠BFE=∠C.于是可证得△EFB≌△ECB,从而证得原题成立.证明:在AB上截取AF,使AF=AD,连接EF.在△ADE和△AFE中,所以△ADE≌△AFE(SAS),所以∠ADE=∠AFE(全等三角形的对应角相等).因为AD//BC(已知),所以∠D+∠C=180°(两直线平行,同旁内角互补)因为∠BFE+∠AFE=180°(平角的定义),所以∠BFE=∠C(等角的补角相等).在△EFB和△ECB中,所以△EFB≌△ECB(AAS).所以BF=BC(全等三角形的对应边相等).所以AB=AD+BC.。

北师大版七年级下册数学《全等三角形》全等三角形的判定(1)讲义

北师大版七年级下册数学《全等三角形》全等三角形的判定(1)讲义

12.2全等三角形的判定(1)知识点一:全等三角形的判定1、全等三角形的判定一:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SSS ) 2、这个判定方法告诉我们:当三角形的三边都确定后,其形状、大小都随之确定,这就是三角形的稳定性. 3、全等三角形的判定二:两边和他们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”. 用数学语言表述:在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌'''A B C ∆(SAS ) 知识点二:全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等,全等三角形的周长、面积相等. 例题一:1、已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .3、如图,AD=CB ,E 、F 是AC 上两动点,且有DE=BF.(1)若E 、F 运动至如图①所示的位置,且有AF=CE ,求证:△ADE ≌△CBF.(2)若E 、F 运动至如图②所示的位置,仍有AF=CE ,那么△ADE ≌△CBF 还成立吗?为什么? (3)若E 、F 不重合,AD 和CB 平行吗?说明理由.A ’C ’B ’C ’ B ’C ’ ∠B ’D FCBAEDFCBA EC 'B 'A 'C BA C 'B 'A 'C B A练习一:1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.证明△ABC≌△FDE.3、如图,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.例题二:4、已知:如图,AB∥CD,AB=CD.求证:AD∥BC.5、如图所示,AD为△ABC的高,且AD=BD,F为AD上一点,连结BF并延长AC于E,CD=FD,求证:BE⊥AC.6、(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结论?并说明理由. FDCBEAABCED(2)如图,∠1=∠2,AB=AD ,AE=AC ,求证BC=DE. 练习二:4、已知:如图,AB =AC ,BE =CD .求证:∠B =∠C .5、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .6、已知:如图,AC ⊥BD ,BC=CE ,AC=DC ,求证:∠B+∠D=90°.第二部分:能力拓展例题:7、如图,在△ABC 中,AB =AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明理由.8、如图,已知CA=CB ,AD=BD ,M 、N 分别是CA、CB 的中点,求证:DM=DN.跟进练习:7、已知,如图A 、F 、C 、D 四点在一直线上,AF= CD ,AB ∥DE ,且AB= DE ,求证:(1)△ABC ≌△DEF ;(2)CBF=FEC.8、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

七年级下数学北师大版三角形全等

七年级下数学北师大版三角形全等

一、全等三角形 1.判定和性质注:① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示,已知正方形ABCD 的边BC 、CD 上分别有点E 、点F ,且BE +DF=EF ,试求∠EAF 的度数.E ABCD EF例3.在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

(1)求证:AE=CD ,(2)若BD=5㎝,求AC 的长。

例4:如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为例5:如图:在△ABC 中,∠ACB=90°,AC=BC ,D 是AB 上一点,AE ⊥CD 于E ,BF ⊥CD交CD 的延长线于F 。

求证:AE=EF+BF 。

练习:F E(图14)D CB A F(图18)E DCBA一、证明题1、已知:如图5—129,△ABC 的∠B 、∠C 的平分线相交于点D ,过D作MN ∥BC 交AB 、AC 分别于点M 、N ,求证:BM +CN =MN1、如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD ,BC=DE , 请你判断AC 垂直于CE 吗?并说明理由。

数学北师大版七年级下册三角形全等SSS判定定理

数学北师大版七年级下册三角形全等SSS判定定理

三、建立模型,探索发现
探究1: 按照下面给出的条件作出两个三角形. (1)三角形的两个角分别是30°、50°. (2)三角形的两条边分别是4cm,6cm. (3)三角形的一个角为30°,一条边为3cm.
通过实践得出结论:只给出一个或两个条 件时,都不能保证所画出的两个三角形一 定全等.
探究2: 先任意画出一个△ABC,再画△ A’B’C,使
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
全等三角形的性质:全等三角形的对应边相等
全等三角形的对应角相等源自课堂练习: 已知:如图,△ABC≌△DEF,说出这两个
三角形中的对应边和对应角
A
D
解:∵△ABC≌△DEF
∴AB=DE
BC=EF
∠ABC=∠DEF ∠ACB=∠DFE
B
EC
F
AC=DF ∠BAC=∠EDF
二、创设情境,提出问题
• 根据上面的结论,提出问题:两个三角形 全等,是否一定需要六个条件呢?如果只满 足上述六个条件中的一部分,是否也能保 证两个三角形全等呢?
A
BD C
例2,
已知:如图,B、E、C、F在一条直线上,且
BE=CF,AB=DE、AC=DF
求证:△ABC≌△DEF
A
D

最新北师大版七年级下册数学 全等三角形的证明专题

最新北师大版七年级下册数学 全等三角形的证明专题

最新北师大版七年级下册数学 全等三角形的证明专题【温故而知新】全等三角形的判定:边边边 (SSS ) 【稳定性】角边角 (ASA ) 三角形全等的条件边角边(SAS )角角边 (AAS )1、判定三角形全等的条件一 边边边三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

例题1)已知,如图AD=CB ,AB=CD ,试证明ΔABD ≌ΔCDB2)已知:如图,A 、B 、E 、F 在一条直线上,且AC=BD ,CE=DF ,AF=BE 。

求证: △ACE ≌△BDFDBD C B课堂练习1、已知:如图,B 、E 、C 、F 在一条直线上,且BE=CF ,AB=DE ,AC=DF 。

求证:△ABC ≌△DEF 。

2、已知:如图,AB=DC ,AD=BC ,求证:∠A=∠C 。

3、如图,△ABC 中,D 是BC 边的中点,AB=AC ,求证:∠B=∠C 。

2、判定三角形全等的条件二 角边角两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA ”。

例题1、如图,∠ABC=∠DCB ,∠ACB=∠DCB ,试说明△ABC ≌△DCB.A DB CFCEDCB DCB2、已知:如图,∠DAB=∠CAB,∠ABD=∠ABC。

求证:△ABD≌△ABC.DA B EC课堂练习1、如图:在△ABC和△DBC中,∠ABD=∠DCA,∠DBC=∠ACB,求证:AC=DB.A DB C2、如图,D、E分别在AB、AC上,且AB=AC,∠B=∠C,求证:△ABE≌△ACD.B3、已知:如图 , AB=AC , ∠B=∠C,BE、DC交于O点。

求证:BD=CE.AD EOB C4、图,已知:AE=CE ,∠A=∠C ,∠BED=∠AEC ,求证:△ABE ≌△CDE A EC B D3、判定三角形全等的条件三 边角边两边及它们的夹角对应相等的两个三角形全等,简写为“角边角”或“SAS ”。

例题1.已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D2、如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD 。

北师大版 七年级数学下册 第四章 全等三角形的性质和判定的归纳总结 (无答案)

北师大版 七年级数学下册  第四章  全等三角形的性质和判定的归纳总结 (无答案)

全等三角形的性质及判定运用知识清单全等三角形的认识与性质 全等图形:能够完全重合的两个图形就是全等图形. 全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.考点扫描板块一 全等三角形的认识【例1】 (四川遂宁)已知ABC ∆中,AB BC AC =≠,作与ABC ∆只有一条公共边,且与ABC ∆全等的三角形,这样的三角形一共能作出 个.【例2】 如图所示,ABD CDB ∆∆≌,下面四个结论中,不正确的是( )A.ABD ∆和CDB ∆的面积相等B.ABD ∆和CDB ∆的周长相等C.A ABD C CBD ∠+∠=∠+∠D.AD BC ∥,且AD BC =【拓展延伸1】已知ABC DEF ≌△△,DEF △的周长为32cm ,912DE cm EF cm ==,,则AB = ,BC = ,AC = .板块二、三角形全等的判定与应用DCBA全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASAAAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型由全等可得到的相关定理:⑴ 角的平分线上的点到这个角的两边的距离相等.⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角). ⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边). ⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.平移全等模型【例3】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.【例4】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【拓展延伸1】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.对称全等模型【例5】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【拓展延伸1】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【拓展延伸2】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.【例6】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【拓展延伸1】在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.基本旋转全等模型【例7】 (成都市高中阶段教育学校统一招生考试)如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.【例8】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:AC BD ∥.【例9】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.F DC BAM EDC BAK 字型模型【例10】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.【拓展延伸】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.课后作业1、判定两个三角形全等的方法是:⑴ ;⑵ ;⑶ ;⑷ ;⑸ ;⑹ .全等三角形的性质是对应边、对应角、周长、面积都分别 .2、不能确定两个三角形全等的条件是( )A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .三个角对应相等3、如图,ABC △中,90C AC BC AD ∠=︒=,,平分CAB ∠交BC 于D ,DE AB ⊥于E 且6AB cm =,则DEB △的周长为( )A .40 cmB .6 cmC .8cmD .10cmPDQCBEAEDCBA4、如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为 ( ) A .40°B .35°C .30°D .25°5、已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.6、如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.7、如图所示,C 是AB 的中点,CD CE =,DCA ECB ∠=∠,求证DAE EBD ∠=∠.8、如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N .求证:AM AN =.全等三角形与旋转问题知识清单把图形G 绕平面上的一个定点O 旋转一个角度θ,得到图形G ',这样的由图形G 到G '变换叫做旋转变换,点O 叫做旋转中心,θ叫做旋转角,G '叫做G 的象;G 叫做G '的原象,无论是什么图形,在旋转变换下,象与原象是全等形.很明显,旋转变换具有以下基本性质:①旋转变换的对应点到旋转中心的距离相等; ②对应直线的交角等于旋转角.旋转变换多用在等腰三角形、正三角形、正方形等较规则的图形上,其功能还是把分散的条件盯对集中,以便于诸条件的综合与推演.考点扫描“拉手”模型【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:AN BM =.【例2】 如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC于M ,N 点.求证:CM CN =.【拓展延伸1】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:CF 平分AFB ∠.【拓展延伸2】如图,点为线段上一点,、是等边三角形,是中点,是中点,求证:是等边三角形.C AB ACM ∆CBN ∆D ANE BM CDE ∆等边三角形共顶点模型【例3】 如图,等边三角形与等边共顶点于点.求证:.等腰直角三角形共顶点问题【例4】 如图,等腰直角三角形中,,,为中点,.求证:为定值.【拓展延伸1】如图,正方形绕正方形中点旋转,其交点为、,求证:.正方形旋转模型【例5】 、分别是正方形的边、上的点,且,,为垂足,求证:.ABC ∆DEC ∆C AE BD=ABC 90B =︒∠AB a =O AC EO OF ⊥BE BF+OGHK ABCD O E F AE CF AB +=E F ABCD BC CD 45EAF =︒∠AH EF ⊥H AH AB =【拓展延伸1】如图,正方形的边长为,点在线段上运动,平分交边于点.求证:.【例6】 以△ ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE=BG ,且CE ⊥BG .对角和180°模型【例7】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120o 的等腰三角形,以D 为顶点作一个60o 的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.ABCD 1F CD AE BAF ∠BC E AF DF BE =+OGFEDCA【例8】 (1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =,E 、F 分别是边BC 、CD 上的点,且∠EAF=∠BAD .求证:EF =BE FD;(2) 如图,在四边形ABCD 中,AB =AD ,∠ B+∠ D =,E 、F 分别是边BC 、CD 上的点,且∠ EAF=∠ BAD , (1)中的结论是否仍然成立?不用证明.90︒12+FED CBA180︒12FEDB A课后作业1、如图,已知和都是等边三角形,、、在一条直线上,试说明与相等的理由.2、(湖北省黄冈市初中毕业生升学考试)已知:如图,点是正方形的边上任意一点,过点作交的延长线于点.求证:.3、已知:如图,点为线段上一点,、是等边三角形.、分别是、 的高.求证:.4、在等腰直角中,,,是的中点,点从出发向运动,交于点,试说明的形状和面积将如何变化.5、如图,正方形中,.求证:.ABC ∆ADE ∆B C D CE AC CD+E ABCD AB D DF DE ⊥BC F DE DF=C AB ACM ∆CBN ∆CG CH ACN ∆MCB ∆CG CH=ABC ∆90ACB ∠=o AC BC =M AB P B C MQ MP ⊥AC Q MPQ∆ABCD FAD FAE ∠=∠BE DF AE +=6、等边和等边的边长均为1,是上异于的任意一点,是上一点,满足,当移动时,试判断的形状.全等三角形与中点问题知识清单三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.考点扫描倍长中线模型【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【拓展延伸1】已知:ABC ∆中,AM 是中线.求证:1()2AM AB AC <+.ABD ∆CBD ∆E BE AD ⊥A D 、F CD 1AE CF +=E F 、BEF∆【例2】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【拓展延伸1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.【例3】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥AB类倍长中线模型【例4】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【拓展延伸1】在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?中位线的运用【例5】 已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC的延长线分别交于M 、N 两点. 求证:AME BNE ∠=∠.【例6】 在四边形ABCD 中,设M ,N 分别为CD ,AB 的中点,求证()12MN AD BC +≤,当且仅当AD BC ∥时等号成立.【例7】 如图,在五边形ABCDE 中,,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.课后作业1、如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.2、如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?3、如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.全等三角形与角平分线问题知识清单与角平分线相关全等问题 角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,考点扫描角平分线基本性质与全等的关系【例1】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.【例2】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【拓展延伸1】如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.【拓展延伸2】如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.两边作垂线问题【例3】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?【拓展延伸1】ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC⊥于G .求证:BF CG =.作角平分线的垂线问题【例4】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD 的延长线于F ,求证()12MF AC AB =-.【例5】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.取线段长度相等【例6】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.【例7】 如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.课后作业1、在ABC ∆中,AD 平分BAC ∠,AB BD AC +=.求:B C ∠∠的值.2、如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.3、如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.4、如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.全等三角形截长补短及方法总结知识清单常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中点或中线,倍长中线或倍长类中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”.5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.考点扫描截长模型【例1】 已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.“补短”模型【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 点M ,N 在等边三角形ABC 的AB 边上运动,BD =DC ,∠BDC =120°,∠MDN =60°,求证MN =MB +NC .补形法【例5】 如图,在四边形ABCD 中,90A C ︒∠=∠=,AB AD =,若这个四边形的面积为16,则BC CD+=___________.对称法【例6】 如图,ABC △中,由点A 作BC 边上的高线,垂足为D . 如果2C B ∠=∠,求证:AC CD BD +=.旋转法【例7】 正方形ABCD 中,E 为上的一点,F 为CD 上的一点,BE DF EF +=,求EAF ∠的度数.【拓展延伸1】如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP AQ ⊥,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP OQ ,.求证:OP OQ ⊥.割补面积法【例8】 如图P 为等腰三角形ABC 的底边AB 上的中点,PE AC ⊥于点E ,PF BC ⊥于点F ,AD BC⊥于点D ,,求证:PE PF AD +=.【拓展延伸1】如图,点P 为等腰三角形ABC 的底边BA 的延长线上的一点,PE CA ⊥的延长线于点E ,PF BC ⊥于点F ,AD BC ⊥于点D .PE 、PF 、AD 之间存在着怎样的数量关系?【例9】 如图,点P 为正三角形ABC 内任意一点,PE AC ⊥于点E ,PF BC ⊥于点F ,PG AB ⊥于点G ,AD ⊥BC 于点D .PE 、PF 、PG 、AD 之间存在怎样的数量关系?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9讲 全等三角形的性质和判定
【知识要点】
1.全等三角形概念:两个能完全重合的三角形叫做全等三角形。

2.全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.
(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.
(3)全等三角形的面积相等.
3.全等三角形判定方法:(1) “边角边”或“SAS” (2) “角边角”或“ASA”
(3) “边边边”或“SSS” (4) “角角边”或“AAS” (5) “斜边、直角边”或“HL”
【典型例题】
例1. 如图所示,某同学把一块三角形玻璃打碎成了三块,现在 要到玻璃店去配一块完全一样的玻璃,那么最省事的办法 是 _________。

A.带①去
B. 带②去
C. 带③去
D. 带①和②去
【变式】判断题
1.两边和一角对应相等的两个三角形全等。

( ) 2.两角和一边对应相等的两个三角形全等。

( ) 3.两条直角边对应相等的两个三角形全等。

( ) 4.腰长相等,顶角相等的两个等腰三角形全等。

( ) 5.三角形中的一条中线把三角形分成的两个小三角形全等。

( ) 6.两个等边三角形全等。

( ) 7.一腰和底边对应相等的两个等腰三角形全等. ( ) 8.腰长相等,且都有一个40°角的两个等腰三角形全等; ( ) 9.腰长相等,且都有一个100°角的两个等腰三角形全等; ( ) 10.有两边和第三边上的中线对应相等的两个三角形全等. ( )
例2. (长沙·中考题)已知: AB=DE ,AC=DF ,BF=EC , 求证:∠B=∠E
【变式】(红河·中考题)已知:OA=OB ,AC=BD ,∠A=∠B ,M 为CD 中点, 求证:OM 平分∠AOB
A B
C
D E
F A
B
C O D

① ③
例3. (上海·中考题)已知:E 是正方形ABCD 边AD 上任意一点,FG⊥BE。

求证:FG=BE 。

【变式】(湖北·中考题)如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .
求证:① AE =CD ; ② 若AC =12 cm ,求BD 的长.
例4. (四川·中考题)已知:如图,AC∥BD,EA 、EB 分别平分∠CAB、∠DBA,CD 过
点E 。

求证:AB=AC+BD
【变式】(云南·中考题)已知△ABC 是等腰直角三角形,∠A=90º,BE 平分∠ABC,CE⊥EB 垂足为E 。

求证:BD=2CE
C A
E B D A
B
C E D
A
B
C
D
E F
G
B A D
E F O C A D C B 例5. (江苏·中考题) 如图,已知在△ABC 中,∠A= 90,∠C 的平分线交对边AB 于点E ,交斜边上的高AD 于O ,过点O 作OF∥CB 交AB 于F ,求证:AE=BF .
【变式】(兰州·中考题)已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ∥AB.
【名书·名校·竞赛·中考在线】
1.(山东·中考题)如图,已知△ABC 中,∠B 是锐角,且∠B=2∠C,AD 是BC 边上的高. 求证:AB+BD=DC
2. (扬州·中考题)已知:四边形ABCD 是正方形,M 为BC 上任意一点,MN ⊥AM ,且MN 交∠ECD 的平分线于N 。

求证:AM=MN
A B C D M N
E
3.(湖州·中考题)如图,已知AB=AC ,DE=DF ,求证:BE=CF .
4. 已知: 正方形ABCG 和正方形CDEF 有公共顶点C 。

试证:BF=DG
5.已知:如图,D 是△ABC 的边BC 上的点,且CD=AB,∠ADB=∠BAD,AE 是△ABD 中线, 求证: AC=2AE.
6. 如图,有四个奶酪将A 、B 、C 、D 它们分布情况是:AB∥DC,AD∥BC, 聪明的小老鼠哼哼和唧唧分别从B 站,D 站出发沿垂直于AC 的路径BE 、DF 去寻找奶酪。

假设AC 上堆满了奶酪,哼哼和唧唧的速度相同,问它俩谁最先寻找到奶酪? 为什么?
B
D
F
E
A
C
A
B C
D
E
F G
A B
D
E C
A
B
C D F E O
B
A
D E C 家庭作业
学号: 姓名:______ 作业等级:______
第一部分:
1.如图,AB=DC ,AD=BC ,且BE=DF ,若∠AEB=100º,
∠ADB=30º,则∠BCF=________。

2. 如图,AB=CD ,AD=BC ,O 为BD 中点过O 点作直线与DA 、BC 延长线交于E 、F , 若∠ADB=60º,EO=10,则∠DBC= ,FO= 。

3. 如果⊿ABC≌⊿ADC,AB=AD ,∠B=70º,BC=3cm,那么∠D= 度,DC= cm 。

4. 已知⊿ABC≌⊿EFG,有∠B =68º,∠G -∠E=56º,则∠C= 度。

5. 如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑
梯水平方向的长度DF 相等。

若∠CBA=320
,则∠FED= ,∠EFD= 。

第二部分:
6. 如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC 于B,且DC=EC, 能否找出与AB+AD 相等

线段,并说明理由.
A
B
C
D
E F。

相关文档
最新文档