(完整版)数学归纳法练习题
(完整版)数学归纳法练习题
数学归纳法练习题一、选择题1. 用数学归纳法证明121*11(,1)1n n a a a an N a a++-++++=∈≠-L ,在验证1n =成立时,左边所得的项为( ) A. 1 B. 1+a C. 21a a ++ D. 231a a a +++ 2. 用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++L L *()n N ∈,则从k 到k+1时,左边所要添加的项是( )A.121k + B. 112224k k -++ C. 121k -+ D. 112122k k -++ 3. 用数学归纳法证明“当n 为正奇数时,nnx y +能被x y +整除”第二步的归纳假设应写成( )A. 假设*21()n k k N =+∈正确,再推23n k =+正确; B. 假设*21()n k k N =-∈正确,再推21n k =+正确; C. 假设*()n k k N =∈正确,再推1n k =+正确; D. 假设(1)n k k =≥正确,再推2n k =+正确.二、填空题4. 数列{}n a 中,111,21n n n a a a a +==+,则数列的前5项为 , 猜想它的通项公式是 5. 猜想1=1, 1-4=-(1+2), 1-4+9=1+2+3, ……的第n 个式子为 6. 用数学归纳法证明“当*2351,12222n n N -∈+++++L 时是31的倍数”时,1n =时的原式是 ,从k 到1k +时需添加的项是三、解答题7. 求证:对于整数0n ≥时,2211112n n +++能被133整除. 8. 若*n N ∈,求证:23sin coscoscoscos 22222sin2n nnαααααα=L .9. 若*n N ∈,且2n ≥,求证:1111312224n n n +++>++L . 10. 数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳法证明.11. 是否存在自然数m ,使得 ()(27)39nf n n =+⋅+ 对于任意*n N ∈都能被m 整除,若存在,求出m ;若不存在,请说明理由.12. 正数数列{}n a 中,11()2n n nS a a =+.⑴ 求123a a a 、、;⑵ 猜想n a 的表达式并证明. 13. 设*n N ∈,试比较 3(1)!nn +和 的大小.【答案】一、选择题1. C2. D3. B 二、填空题4. 11111,,,,23456. 11n a n =+(*n N ∈)5. 12114916(1)(1)(1234)n n n n ++-+-++-=-+++++L L6. 23412222++++, 55152535422222kk k k k ++++++++.三、解答题(略解)7. ① 0n =时,原式=21112133+=能被133整除;② 设n k =时,2211112k k +++ 能被133整除1n k =+时,原式=3232212123111211(1112)111212k k k k k k +++++++=+-⋅+=2212111(1112)12133k k k +++++⋅能被133整除.8. ① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=9. ① 2n =时,左=11713341224+=>② 设n k =时, 1111312224k k k +++>++L 1n k =+时, 左=1111222122k k k k +++++++L =111111()12212122k k k k k k +++-+++++++L ∵111110*********k k k k k -++=->+++++,∴左>1324.10. 计算得: 123437151,,,248a a a a ====.猜想 1212n n n a --=① 1n =时,计算得11a =,结论成立;② 设n k =时, 1212k k k a --=, 则1n k =+时, 11111121[2(1)](2)2k k k k k k k k a S S k a k a a +++++--=-=+---=-∴11212k k ka ++-=.11. (1)36,(2)108,(3)360f f f ===.猜想m 的值应为其最大公约数36. ① 1n =显然正确.② 设n k =正确即 ()(27)39kf k k =+⋅+ 能被36整除. 则1n k =+时 ,11(1)[2(1)7]393[(27)39]27239k k k f k k k +++=++⋅+=+⋅+-+⋅+13[(27)39]18(31)k k k -=+⋅++-能被36整除.12. ⑴ 11a =,21a =,3a = ⑵ 猜想: n a =① 1n =显然正确. ② 设n k =正确即n a =则 1n k =+ 时111111[()2k k k k k a S S a a ++++=-=+--21110k k a ++⇒+-=,解得(取正值) 1k a +=13. 3=31>(1+1)!=2, 9=32>(2+1)!=6, 27=33>(3+1)!=24, 81=34<(4+1)!=120, ……猜想: 1,2,3n = 时,3(1)!nn >+; 当 4n ≥ 时, 3(1)!nn <+① 4n = 时,显然成立;② 设n k =时,结论成立, 即 3(1)!kk <+ 则 1n k =+ 时1333(1)!3(1)!(2)(2)!k k k k k k +=⋅<+⋅<+⋅+=+ (∵4,32k k ≥∴<+ )即 13(11)!k k +<++。
(完整版)高二数学归纳法经典例题
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n . 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++ .那么当n =k +1时,11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
(完整版)数学归纳法练习题.doc
2.3 数学归纳法第 1 课时 数学归纳法1.用数学 法 明“ 2n>n 2+1 于 n ≥n 0 的自然数 n 都成立” ,第一步明中的起始 n 0 取().A .2B . 3C . 5D .6解析 当 n 取 1、2、3、4 2n2+1 不成立,当 = ,5=2+ =>nn 5 232>5 126,第一个能使 2n>n 2+1 的 n5,故 C.答案 Cn + 3 n +42.用数学 法 明等式1+ 2+ 3+⋯+ (n + 3)=(n ∈ N + ), n2= 1 ,左 取的 是().A .1B . 1+ 2C .1+2+3D . 1+ 2+ 3+ 4解析 等式左 的数是从 1 加到 n +3.当 n =1 , n +3=4,故此 左 的数 从 1 加到 4. 答案 D1 11 (n ∈N + ),那么 f(n +1)- f(n)等于3. f(n)=1+2+3+⋯+-3n1().111A.3n +2B.3n + 3n +1C. 1 + 11 1 + 1 + + 2D.3n + + +2 3n 1 3n3n1 3n11 1 解析∵f(n)=1+2+3+⋯+,3n -11 11 111∵f(n + 1)=1+2+3+⋯++3n ++,3n -13n + 1 3n +2∴f(n + 1)-f(n)= 1 1 1+ +.3n 3n + 1 3n +2答案D4.用数学 法 明关于 n 的恒等式,当n =k ,表达式1×4+2×7+⋯+ k(3k +1)= k(k + 1)2, 当 n =k +1 ,表达式 ________.答案 1×4+2×7+⋯+ k(3k +1)+ (k +1)(3k +4)= (k +1)(k +2)2 5. 凸 k 形的内角和f(k), 凸 k + 1 形的内角和 f(k + 1)=f(k)+________.解析由凸 k 形 凸 k +1 形 ,增加了一个三角形 形,故f(k + 1)= f(k)+ π.答案 π 6.用数学 法 明:1 + 1+⋯+1=1+1+⋯+11×2 3×42n -1 ·2n n +1n +2n +n.明(1)当 n =1 ,左 =1=1,右 =1,等式成立.1×222 (2)假 当 n =k(k ∈N * ) ,等式成立,即111 111× + ×+⋯+-=+ k + +⋯+ 2k .1 2 3 4 2k 1·2k k + 1 2当 n =k +1 ,1 + 1+⋯+1 +1 1×2 3×42k - 1 ·2k 2k +1 2k +2=1+1+⋯+ 1 + 1k +1 k +2 2k2k + 1 2k + 2 = 1 + 1 1 + 1 1 1+⋯+ 2k + 1- 2k +2 +k +2 k +3 1 k=1+1+⋯+ 1 + 1 + 1k +2 k +32k2k +1+ 22k 1 111.即当 n =k +1=k +1 +1+k + 1 +2+⋯+k +1 +k+k + 1 + k +1 ,等式成立.根据 (1)(2)可知, 一切 n ∈N * ,等式成立.7.若命 A(n)(n ∈N * )在 n =k(k ∈N * ) 命 成立, 有 n =k + 1 命 成立.知命 n= n0(n0∈ N* )命成立,有().A.命所有正整数都成立B.命小于 n0的正整数不成立,大于或等于n0的正整数都成立C.命小于 n0的正整数成立与否不能确定,大于或等于n0的正整数都成立D.以上法都不正确解析由已知得 n=n0 0∈*) 命成立,有n=0+1命成立;在n(n N n= n0+1 命成立的前提下,又可推得n= (n0+1)+1 命也成立,依此推,可知 C.答案 C8.用数学法明 (n+1)(n+ 2)(n+3)⋯(n+n)=2n·1·3·⋯·(2n-1)(n∈N* ),从n=k 到 n = k+ 1,左增加的代数式( ).A.2k+1 B.2(2k+ 1)2k+1 2k+ 3C. k+ 1D. k+1解析n= k ,左= (k+ 1)(k+ 2)⋯(2k); n=k+1 ,左= (k+2)(k+3)⋯ (2k+ 2)=2(k+1)(k+2)⋯(2k)(2k+1),故 B.答案 B9.分析下述明 2+4+⋯+ 2n= n2+n+1(n∈N+ )的程中的:明假当 n=k(k∈N+ )等式成立,即2+ 4+⋯+ 2k=k2+k+1,那么 2 +4+⋯+ 2k+ 2(k+ 1)=k2+ k+1+2(k+1)=(k+1)2+(k+1)+1,即当 n=k +1 等式也成立.因此于任何 n∈N+等式都成立. __________________.答案缺少步奠基,上当n= 1 等式不成立10.用数学法明 (1+ 1)(2+2)(3+ 3)⋯(n+n)=2n-1·(n2+n),从 n=k 到 n = k+1 左需要添加的因式是________.解析当 n= k ,左端: (1+1)(2+2)⋯(k+k),当 n=k+ 1 ,左端: (1+1)(2+2) ⋯(k+k)(k+ 1+k+1),由 k 到 k+1 需添加的因式: (2k+2).答案2k+ 211.用数学法明2+22+⋯+n2=n n+12n+1 ∈*).16 (n N 明(1)当 n=1 ,左= 12=1,右=1× 1+ 1 × 2×1+16 = 1,等式成立.(2)假当 n=k(k∈N* )等式成立,即12+22+⋯+k2=k k+12k+16那么,12+ 22+⋯+ k2+(k+1)2=k k+1 2k+1+(k+1)26k k+ 1 2k+ 1 +6 k+1 2=6k+1 2k2+7k+6=6=k+1 k+2 2k+36=k+1 [ k+ 1 +1][2 k+ 1 +1],6即当 n=k+1 等式也成立.根据 (1)和 (2),可知等式任何n∈N*都成立.12.(新拓展 )已知正数数列n * n nn1n,用{a }( n∈ N )中,前 n 和 S ,且 2S = a +a数学法明: a n=--n n 1. 明 (1)当 n=1 .1 1a1= S1=2 a1+a1,2∴ a1=1(a n>0),∴ a1=1,又1-0=1,∴ n= 1 时,结论成立.(2)假设 n= k(k∈ N* )时,结论成立,即a k= k- k-1.当 n=k+ 1 时,a k+1= S k+1-S k=1a k+1+ 1 -1a k+1a a2 2k+ 1 k=1 k+1 1 1 k- k-1+ 12a +a k+1-2 k- k-1 1 1=2 a k+1+a k+1- k2∴ a k+1+2 ka k+1- 1= 0,解得 a k+1= k+1-k(a n>0),∴ n= k+1 时,结论成立.由 (1)(2)可知,对 n∈N*都有 a n=n-n-1.。
(完整版)数学归纳法经典例题及答案(2)
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
专题4.4数学归纳法(含答案)高二数学同步培优专练(人教A版2019选择性必修第二册)
专题4.4 数学归纳法*知识储备知识点 数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n =n0(n0∈N*)时命题成立;(2)(归纳递推)以“当n =k(k ∈N*,k ≥n0)时命题成立”为条件,推出“当n =k +1时命题也成立”.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n 都成立,这种证明方法称为数学归纳法.【名师点津】1.数学归纳法的两个步骤缺一不可,前者是基础,后者是递推的依据.2.运用数学归纳法时易犯的错误:(1)对项数估算错误,特别是寻找n =k 与n =k +1的关系时,项数发生什么变化易弄错;(2)不利用归纳假设:归纳假设是起桥梁作用的,桥梁断了就通不过去了;(3)步骤不严谨、不规范,在利用假设后,不作任何推导或计算而直接写出所要结论.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+(1)2n n -d 时,假设当n =k 时,公式成立,则S k =( )A .a 1+(k -1)d B .1()2k k a a +C .ka 1+(1)2k k -d D .(k +1)a 1+(1)2k k +d 【答案】C【解析】假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+(1)2k k -d .2.已知f (n )=2111112n n n n+++++L ,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14【解析】选D 由f(n)可知,f(n)中共有n2-n+1项,且n=2时,f(2)=12+13+143.用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于( )A.3k-1 B.3k+1C.8k D.9k【答案】C【解析】因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+3k+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.4.证明等式12+22+32+…+n2=(1)(21)6n n n++(n∈N*)时,某学生的证明过程如下:①当n=1时,12=1236´´,等式成立;②假设n=k(k∈N*)时,等式成立,即12+22+32+…+k2=(1)(21)6k k k++,则当n=k+1时,12+22+32+…+k2+(k+1)2=(1)(21)6k k k+++(k+1)2=[] (1)(21)6(1)6k k k k++++=2(1)2766k k kéù+++ëû=()[] (1)112(1)16k k k+++++éùëû,所以当n=k+1时,等式也成立,故原式成立.那么上述证明( )A.过程全都正确B .当n =1时验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确【答案】A【解析】通过对上述证明的分析验证知全都正确,故选A.5.已知1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c 【答案】A【解析】令n =1,2,3,得22313(),1233(2),123333(3),a b c a b c a b c =-+ìï+´=-+íï+´+´=-+î 即331,1897,812734,a b c a b c a b c -+=ìï-+=íï-+=î解得a =12,b =14,c =14.6.用数学归纳法证明3n ≥n3(n ≥3,n ∈N*),第一步验证( )A.n=1B.n=2C.n=3D.n=4【答案】C【解析】由题知,n 的最小值为3,所以第一步验证n=3时不等式是否成立.7.利用数学归纳法证明不等式1+12+13+…+12n 1<n(n ≥2,n ∈N*)的过程中,由n=k 变到n=k+1时,左边增加了( )A.1项B.k 项C.2k-1项D.2k 项【答案】D【解析】当n=k 时,不等式左边的最后一项为12k1,而当n=k+1时,最后一项为12k +11=12k 12k,并且不等式左边和式每一项分母的变化规律是每一项比前一项加1,故增加了2k 项.8.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++×××++小于( )A .1n n +B .211n n -+C .211n n ++D .21n n +【答案】C【解析】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n +,()2221112112311n n n ++++×××+<++\.故选:C.二、多选题9.一个与正整数n 有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则下列说法正确的是( )A.该命题对于n=6时命题成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k 取值无关D.以上答案都不对【答案】AB【解析】由n=k 时命题成立可以推出n=k+2时命题也成立,且n=2时,命题成立,故对所有的正偶数都成立.故选AB.10.在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知1匹4=丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为n a ,2n an b =,对于数列{}n a 、{}n b ,下列选项中正确的为()A .1058b b =B .{}n b 是等比数列C .1352121n n a a a a a -++++=-LD .()1214n n n n c c a a p --+-=×【答案】ABD【解析】对于A 选项,因为斐波那契数列总满足()*123,n n n a a a n n N --=+³Î,所以2121a a a =,()22222312321a a a a a a a a a a ==-=-,()23333423432a a a a a a a a a a ==-=-,类似的有,()21111n n n n n n n n n n a a a a a a a a a a +-+-==-=-,累加得22221231n n n a a a a a a +++++=×L ,由题知222222112311211n n n n n n n n S a a a a a a a a a a ++++++=+++++=×=+×L ,故选项A 正确,对于B 选项,因为11a a =,231a a a =-,342a a a =-,类似的有11n n n a a a +-=-,累加得123122++1n n n n a a a a a a a a ++++=+-=-L ,故选项B 正确,对于C 选项,因为11a a =,342a a a =-,564a a a =-,类似的有21222n n n a a a --=-,累加得13211222++n n n a a a a a a a -+=+-=L ,故选项C 错误,对于D 选项,可知扇形面积24nn a c p ×=,故()()2222111124444n n n n n n n n c c a a a a a a p p p p +----æö-=-=-=×ç÷èø××,故选项D 正确,故选:ABD.12.用数学归纳法证明21121n n nn ->++对任意(),n k n k N ³Î的自然数都成立,则以下满足条件的k成立.命题为真时,进而需证n =________时,命题亦真.【答案】2k +1【解析】∵n 为正奇数,且与2k -1相邻的下一个奇数是2k +1,∴需证n =2k +1时,命题成立.14.用数学归纳法证明“当n ∈N *时,求证:1+2+22+23+…+25n -1是31的倍数”时,当n =1时,原式为__________,从n =k 到n =k +1时需增添的项是________________.【答案】1+2+22+23+24 25k +25k +1+25k +2+25k +3+25k +4【解析】当n =1时,原式应加到25×1-1=24,所以原式为1+2+22+23+24,从n =k 到n =k +1时需添25k +25k +1+…+25(k +1)-1.16.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为f (n )部分,则f (n )=1+(1)2n n +.”证明第二步归纳递推时,用到f (k +1)=f (k )+________.【答案】k +1【解析】f (k )=1+(1)2k k +,f (k +1)=1+(1)(2)2k k ++,∴f (k +1)-f (k )=(1)(2)(1)1122k k k k +++éùéù+-+êúêúëûëû=k +1,∴f (k +1)=f (k )+(k +1).16.用数学归纳法证明1-12+13―14+…+12n 1―12n =1n 1+1n 2+…+12n 时,第一步应验证的等式是 ;从“n=k ”到“n=k+1”左边需增加的等式是 . 【答案】1-12=12 12k 1―12(k 1)【解析】当n=1时,应当验证的第一个式子是1-12=12,从“n=k ”到“n=k+1”左边需增加的式子是12k 1―12(k 1).四、解答题17.设f (n )=1+12+13+…+1n(n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).【解析】当n =2时,左边=f (1)=1,右边=2×1112æö+-ç÷èø=1,左边=右边,等式成立.假设n =k (k ≥2,k ∈N *)时,等式成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1)1(1)1f k k éù+-êú+ëû-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1],∴当n =k +1时等式仍然成立.∴f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).18.已知数列{a n }中,a 1=1,a n +1=1nna a +(n ∈N *).(1)计算a 2,a 3,a 4;(2)猜想a n 的表达式,并用数学归纳法证明.【解析】 (1)a 1=1,a 2=111a a +=12,a 3=221a a +=13,a 4=331a a +=14.(2)由(1)的计算猜想a n =1n.下面用数学归纳法进行证明.①当n =1时,a 1=1,猜想成立.②假设当n =k 时,猜想成立,即a k =1k,那么a k +1=111111k k a k a k k==+++,即当n =k +1时,猜想也成立.根据①②可知,对任意n ∈N *都有a n =1n.19.已知数列{a n }的各项均为正数,且满足a 1=1,a n +1=12a n (4-a n ),n ∈N *.证明a n <a n +1<2(n ∈N *).【解析】①当n =1时,a 1=1,a 2=12a 1(4-a 1)=32,∴a 1<a 2<2,命题正确.②假设n =k 时,有a k <a k +1<2,则n =k +1时,a k +1-a k +2=12a k (4-a k )-12a k +1(4-a k +1)=2(a k -a k +1)-12(a k -a k +1)·(a k +a k +1)=12(a k -a k +1)(4-a k -a k +1).而a k -a k +1<0,4-a k -a k +1>0,∴a k +1-a k +2<0.又a k +2=12a k +1(4-a k +1)=12[4-(a k +1-2)2]<2,∴n =k +1时命题正确.由①②知,对一切n ∈N *都有a k <a k +1<2.20.平面内有n (n ≥2)个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,记这n 个圆的交点个数为f (n ),猜想f (n )的表达式,并用数学归纳法证明.【解析】n =2时,f (2)=2=1×2,n =3时,f (3)=2+4=6=2×3,n =4时,f (4)=6+6=12=3×4,n =5时,f (5)=12+8=20=4×5,猜想f (n )=n (n -1)(n ≥2).下面用数学归纳法给出证明:①当n =2时,f (2)=2=2×(2-1),猜想成立.②假设当n =k (k ≥2,k ∈N *),时猜想成立,即f (k )=k (k -1),则n =k +1时,其中圆O 与其余k 个圆各有两个交点,而由假设知这k 个圆有f (k )个交点,所以这k +1个圆的交点个数f (k +1)=f (k )+2k =k (k -1)+2k =k 2+k =(k +1)[(k +1)-1],即n =k +1时猜想也成立.由①②知:f (n )=n (n -1)(n ≥2).20.已知f (n )=1+312+313+314+L +31n,()g n =32-212n ,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g(n )的大小关系;(2)猜想f (n )与g(n )的大小关系,并给出证明.【解析】(1)当n =1时,f (1)=1,g(1)=1,所以f (1)=g(1);当n =2时,f (2)=98,g(2)=118,所以f (2)<g(2);当n =3时,f (3)=251216,g(3)=312216,所以f (3)<g(3).(2)由(1)猜想: f (n )≤g(n ),用数学归纳法证明.①当n =1,不等式显然成立.②假设当n =k (k ∈N *)时不等式成立,即1+312+313+314+L +31k £32-212k ,则当n =k +1时,f (k +1)=f (k )+31(1)k +£32-212k +31(1)k +22233111122(1)2(1)2(1)k k k k =-+-++++,因为212(1)k +-23112(1)k k ++=332(1)k k ++-212k =32312(1)k k k --+<0,所以f (k +1)<32-212(1)k +=g(k +1).由①②可知,对一切n ∈N *,都有f (n )≤g(n )成立.21.已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数.(1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【解析】(1)由题意知:222n nS a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =.当2n =时,21222S a a a a =+=-,解得26a a =.当3n =时,312333S a a a a a =++=-,解得312a a =.(2)猜想:()()*1n a a n N n n =Î+证明:①当1n =时,由(1)知等式成立.②假设当()*1,n k k k N =³Î时等式成立,即()1k a a k k =+,则当1n k =+时,又n nS a na =-则k k S a ka =-,11k k S a ka ++=-,∴()()1111k k k k k a S S a k a a ka +++=-=-+--,即()()1211k k a a k a ka k k k k ++==´=++所以()()()()112111k aa a k k k k +==+++++éùëû,即当1n k =+时,等式成立.结合①②得()1n a a n n =+对任意*n N Î均成立.22.观察下列等式:11=2349++=3456725++++=4567891049++++++=......按照以上式子的规律:(1)写出第5个等式,并猜想第()*n n N Î个等式;(2)用数学归纳法证明上述所猜想的第()*n n N Î个等式成立.【解析】(1)第5个等式为256789101112139++++++++=.第n 个等式为2(1)(2)(32)(21)n n n n n ++++++-=-L ,*n N Î.(2)证明:①当1n =时,等式左边1=,等式右边2(21)1=-=,所以等式成立.②假设n k =时,命题成立,即2(1)(2)(32)(21)k k k k k ++++++-=-L ,则当1n k =+时,(1)[(1)1][(1)2][3(1)2](1)(2)(3)(31)k k k k k k k k ++++++++++-=++++++++L L (1)(2)(32)(31)3(31)k k k k k k k k=++++++-+-+++-L 2222(21)84418(21)[2(1)1]k k k k k k k =-+=-++=+=+-,即1n k =+时等式成立.根据①和②,可知对任意*n N Î等式都成立.。
2#数学归纳法练习题(含答案)
2# 数学归纳练习题一、填空题1.平面内有n(n≥2)个圆心在同一直线l上的半圆,其中任何两个都相交,且都在直线l的同侧(如图),则这些半圆被所有的交点最多分成的圆弧的段数为________.2.设n∈N*,则4×6n+5n+1除以20的余数为________.3.用数学归纳法证明“1+2+3+…+n+…+3+2+1=n2(n∈N*)”时,从n=k到n=k+1时,该式左边应添加的代数式是________.4.用数学归纳法证明“对于足够大的正整数n,总有2n>n3”时,验证第一步不等式成立所取的第一个最小值n0应当是______.5.数列{a n}中,已知a1=2,a n+1=a n3a n+1(n∈N*),依次计算出a2,a3,a4后,归纳、猜测得出a n的表达式为________.二、解答题1.用数学归纳法证明:1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n.2.用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n>1).2# 答案1.解析:设最多分成的圆弧的段数为f (n ),则由题图容易发现,f (2)=4=22,f (3)=9=32,f (4)=16=42.答案:n 22. 解析:取n =1,则4×6n +5n +1=24+25=49,被20除余数为9.答案:93. 解析:∵当n =k +1时,左边=1+2+…+k +(k +1)+k +…+2+1,∴从n =k 到n =k +1时,应添(k +1)+k =2k +1.答案:2k +14. 解析:n =1时,21>13,n =2,3,…,9时2n <n 3,n =10时,210=1 024>103,∴n 0=10.答案:105. 解析:a 1=2,a 2=27,a 3=213,a 4=219,猜测a n =26n -5.答案:a n =26n -5解答题1.证明:(1)当n =1时,左边=1-12=12,右边=12,命题成立. (2)假设当n =k 时命题成立,即1-12+13-14+…+12k -1-12kF =1k +1+1k +2+…+12k ,那么当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 上式表明当n =k +1时命题也成立.由(1)和(2)知,命题对一切自然数均成立.2. 证明:(1)当n =2时,不等式的左边为12+13+14=1312>1,故n =2时表达式成立; (2)假设当n =k (k >1,k ∈N *)时不等式成立,即1k +1k +1+1k +2+…+1k 2>1 那么,当n =k +1时,由k ≥2得1k +1+1k +2+…+1k 2+1k 2+1+1k 2+2+…+1 k +1 2>1-1k +1k 2+1+…+1k 2+2k +1>1-1k+⎣⎢⎡⎦⎥⎤1 k +1 2+1 k +1 2+…+1 k +1 2=1-1k +2k +1 k +1 2=1+k 2- k +1 k +1 2 当k ≥2时,k 2-k -1>0成立,故当n =k +1时不等式也成立根据(1)和(2)可知,当n >1,n ∈N *时不等式都成立.。
小学六年级数学归纳法练习题
小学六年级数学归纳法练习题数学归纳法是一种用于证明与自然数有关的命题的方法。
对于小学六年级的同学来说,通过练习数学归纳法的相关题目,可以培养逻辑思维和推理能力。
下面我们就来一起看看一些小学六年级数学归纳法的练习题。
一、基础练习1、观察下列算式:1 + 3 = 41 + 3 + 5 = 91 + 3 + 5 + 7 = 161 + 3 + 5 + 7 + 9 = 25根据以上规律,用数学归纳法证明:1 + 3 + 5 +… +(2n 1) =n²证明:当 n = 1 时,左边= 1,右边= 1²= 1,等式成立。
假设当 n = k(k ≥ 1)时,等式 1 + 3 + 5 +… +(2k 1) = k²成立。
那么当 n = k + 1 时,左边= 1 + 3 + 5 +… +(2k 1) +(2(k + 1) 1)= k²+(2k + 1)= k²+ 2k + 1=(k + 1)²所以当 n = k + 1 时,等式也成立。
综上,对于任意正整数 n,1 + 3 + 5 +… +(2n 1) = n²成立。
2、计算:1×2 + 2×3 + 3×4 +… + n(n + 1),并用数学归纳法证明你的结论。
解:1×2 + 2×3 + 3×4 +… + n(n + 1) = 1/3 × n(n + 1)(n + 2)证明:当 n = 1 时,左边= 1×2 = 2,右边= 1/3 × 1×2×3 = 2,等式成立。
假设当 n = k(k ≥ 1)时,等式 1×2 + 2×3 + 3×4 +… + k(k + 1) = 1/3 × k(k + 1)(k + 2) 成立。
那么当 n = k + 1 时,左边= 1×2 + 2×3 + 3×4 +… + k(k + 1) +(k + 1)(k + 2)= 1/3 × k(k + 1)(k + 2) +(k + 1)(k + 2)=(k + 1)(k + 2)(1/3k + 1)= 1/3 ×(k + 1)(k + 2)(k + 3)所以当 n = k + 1 时,等式也成立。
(完整版)数学归纳法测试题及答案
选修2-2 2. 3 数学归纳法一、选择题1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13<2 C .1+12+13<3 D .1+12+13+14<3 [答案] B[解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1=13, 2.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.3.设f (n )=1n +1+1n +2+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2[答案] D[解析] f (n +1)-f (n )=⎣⎢⎡⎦⎥⎤1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -⎣⎢⎡⎦⎥⎤1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1=12n +1-12n +2. 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )A .当n =6时该命题不成立B .当n =6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案] C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案] C[解析]∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案] C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证() A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案] D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )A .30B .26C .36D .6[答案] C[解析] 因为f (1)=36,f (2)=108=3×36,f (3)=360=10×36,所以f (1),f (2),f (3)能被36整除,推测最大的m 值为36.9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1[答案] B[解析] 由S n =n 2a n 知S n +1=(n +1)2a n +1∴S n +1-S n =(n +1)2a n +1-n 2a n∴a n +1=(n +1)2a n +1-n 2a n∴a n +1=n n +2a n (n ≥2). 当n =2时,S 2=4a 2,又S 2=a 1+a 2,∴a 2=a 13=13a 3=24a 2=16,a 4=35a 3=110. 由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B. 10.对于不等式n 2+n ≤n +1(n ∈N +),某学生的证明过程如下:(1)当n =1时,12+1≤1+1,不等式成立.(2)假设n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立,上述证法( )A .过程全都正确B .n =1验证不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确[答案] D[解析] n =1的验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.二、填空题11.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N *)”时,第一步的验证为________.[答案] 当n =1时,左边=4,右边=4,左≥右,不等式成立[解析] 当n =1时,左≥右,不等式成立,∵n ∈N *,∴第一步的验证为n =1的情形.12.已知数列11×2,12×3,13×4,…,1n (n +1),通过计算得S 1=12,S 2=23,S 3=34,由此可猜测S n =________.[答案] n n +1 [解析] 解法1:通过计算易得答案.解法2:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 13.对任意n ∈N *,34n +2+a 2n+1都能被14整除,则最小的自然数a =________.[答案] 5[解析] 当n =1时,36+a 3能被14整除的数为a =3或5,当a =3时且n =3时,310+35不能被14整除,故a =5.14.用数学归纳法证明命题:1×4+2×7+3×10+…+n (3n +1)=n (n +1)2.(1)当n 0=________时,左边=____________,右边=______________________;当n =k 时,等式左边共有________________项,第(k -1)项是__________________.(2)假设n =k 时命题成立,即_____________________________________成立.(3)当n =k +1时,命题的形式是______________________________________;此时,左边增加的项为______________________.[答案] (1)1;1×(3×1+1);1×(1+1)2;k ;(k -1)[3(k -1)+1](2)1×4+2×7+3×10+…+k (3k +1)=k (k +1)2(3)1×4+2×7+…+(k +1)[3(k +1)+1]=(k +1)[(k +1)+1]2;(k +1)[3(k +1)+1]三、解答题15.求证:12-22+32-42+…+(2n -1)2-(2n )2=-n (2n +1)(n ∈N *).[证明] ①n =1时,左边=12-22=-3,右边=-3,等式成立.②假设n =k 时,等式成立,即12-22+32-42+…+(2k -1)2-(2k )2=-k (2k +1)2. 当n =k +1时,12-22+32-42+…+(2k -1)2-(2k )2+(2k +1)2-(2k +2)2=-k (2k +1)+(2k +1)2-(2k +2)2=-k (2k +1)-(4k +3)=-(2k 2+5k +3)=-(k +1)[2(k +1)+1],所以n =k +1时,等式也成立.由①②得,等式对任何n ∈N *都成立.16.求证:12+13+14+…+12n -1>n -22(n ≥2). [证明] ①当n =2时,左=12>0=右, ∴不等式成立.②假设当n =k (k ≥2,k ∈N *)时,不等式成立.即12+13+…+12k -1>k -22成立. 那么n =k +1时,12+13+…+12k -1 +12k -1+1+…+12k -1+2k -1>k -22+12k -1+1+…+12k >k -22+12k +12k +…+12k =k -22+2k -12k =(k +1)-22, ∴当n =k +1时,不等式成立.据①②可知,不等式对一切n ∈N *且n ≥2时成立.17.在平面内有n 条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.求证:这n 条直线将它们所在的平面分成n 2+n +22个区域.[证明] (1)n =2时,两条直线相交把平面分成4个区域,命题成立.(2)假设当n =k (k ≥2)时,k 条直线将平面分成k 2+k +22块不同的区域,命题成立. 当n =k +1时,设其中的一条直线为l ,其余k 条直线将平面分成k 2+k +22块区域,直线l 与其余k 条直线相交,得到k 个不同的交点,这k 个点将l 分成k +1段,每段都将它所在的区域分成两部分,故新增区域k +1块.从而k +1条直线将平面分成k 2+k +22+k +1=(k +1)2+(k +1)+22块区域. 所以n =k +1时命题也成立.由(1)(2)可知,原命题成立.18.(2010·衡水高二检测)试比较2n +2与n 2的大小(n ∈N *),并用数学归纳法证明你的结论.[分析] 由题目可获取以下主要信息:①此题选用特殊值来找到2n +2与n 2的大小关系;②利用数学归纳法证明猜想的结论.解答本题的关键是先利用特殊值猜想.[解析] 当n =1时,21+2=4>n 2=1,当n =2时,22+2=6>n 2=4,当n =3时,23+2=10>n 2=9,当n =4时,24+2=18>n 2=16,由此可以猜想,2n +2>n 2(n ∈N *)成立下面用数学归纳法证明:(1)当n =1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n =2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k时(k≥3且k∈N*)时,不等式成立,即2k+2>k2.那么n=k+1时,2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.又因:2k2-2-(k+1)2=k2-2k-3=(k-3)(k+1)≥0,即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.根据(1)和(2),原不等式对于任何n∈N*都成立.。
数学归纳法经典例题及答案
数学归纳法(2016421)、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确.综合(1)、( 2),注意:数学归纳法使用要点: 两步骤,一结论、题型归纳: 题型1.证明代数恒等式用数学归纳法证明:当n=k+1时.k 12k 3由①、②可知,对一切自然数 n 等式成立.证明:①n=1时,左边 ②假设n =k 时, 2n 11 2n 1 n 2n 11 3 等式成立,即:-,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k2k 12k 1 2k 1 2k 1 2k 32k 1 2k 1 2k 32k 2 2k 1 3k 1 2k 3 2k 1 k 12k 1 2k 3 这就说明, 当n=k+1时,等式亦成立,题型2.证明不等式11 1 _例2 •证明不等式1 2打(n € N ).V 2 <3 V n证明:①当n=1时,左边=1,右边=2.左边 <右边,不等式成立.那么当n=k+1时,2 .k2k 1 2.k 1这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意自然数 n 都成立.说明:这里要注意,当 n=k+1时,要证的目标是1 1 1 1 ----------------------------------------1 — — — ------------2 \ k 1,当代入归纟纳假设后,就是要证明:■. 2 3 . k 、k 12、、k 1— 2 k 1 .-k 1认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *).(1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值.a 2 十⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1)3 .解:(1) 当 n = 5 时,原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 'I 1.31 .2 1■-3令x = 2 得a°+ a i + a2+ a3+ a4+ a5= 35= 243. ⑵因为(x+ 1)n= [2 + (x—1)]n,所以a2= C n22旷2b n=長=2C n2= n(n —1)(n > 2)①当n= 2时.左边=T2= b2 = 2,右边=2(2 +屮2 —1=2,左边=右边,等式成立.②假设当n = k(k>2, k€ N*)时,等式成立,即T k=k(k+!)(k—1成立那么,当n = k+ 1时,左边=T k+ b k+1 =k(k+ ¥(k— " + (k+ 1)[( k+ 1) —1] = k(k+ ¥(k—1 + k(k + 1) =k(k+ 1)宁 + 1 迩+ 1)(k+ 2)(k+ 1)[( k+ 1) + 1][(k + 1)-1]=右边故当n= k+ 1时,等式成立.综上①②,当n》2时,T n =n(n+ 1)( n—13。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
高三数学数学归纳法练习题及答案
高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。
通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。
在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。
下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。
练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。
假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
然后,我们需要证明当n=k+1时,等式也成立。
即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。
根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。
将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。
由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。
化简该式子: k(k + 1) + 2(k+1)。
再进一步化简: (k+1)(k + 2) / 2。
可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。
因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。
练习题二:证明:对于任意正整数n,2^n > n^2。
答案二:同样使用数学归纳法进行证明。
首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。
假设当n=k时,2^k > k^2 成立。
[试题]数学归纳法练习题.docx
数学归纳法1已知等式"+•••+宀竺宁±1,以下说法正确的是(A.仅当〃 =1吋等式成立B.仅当= 1,2,3吋等式成立3.凸/7边形有/S )条対角线,则凸n+1边形有対角线条数/S+l )为() A :f (n ) +〃+1 B.f (n) +n C.f (M ) +n — 1 D./ 5) +n —24. ............................................................................. 用数学归纳法证明"(7i4-l) (n+2) (n+n) =2W *1*3 ................................. (2n —1)",从"R 到 k+1” 左端需增乘的代数式为( )A.2佔1 B.2C2A+1) C.生乜 D.弐空£ + 1 k + \5.如來命题P (7?)对心£成立,则它对n=k+\也成立,现已知IP (/?)对疋=4不成立,则下列结论 正确的是()A.P (/?)对zzeN*成立 B.P 5)对n>4 .FL nWN*成立 C.P (n)对 n<4 且 neN*成立 D.P (n)对 不成立JI 36.记I n 伙边形的内角和为f{k),则f(k + l)-f(k)等于( )A.— B./r C.-7TD.2龙22 7. 用数学归纳法证明"1+丄+丄+・・・+」—G (neN*, n>l )”时,由心(Q1)不等式成立,2 3 2"-1推证,7+1时,左边应增加的项数是( )A.2Z B.2“一l C.2k D.2*+l8. 若把止整数按下图所示的规律排序,则从2002到2004年的箭头方向依次为()C.仅当“ =1,2时等式成立D. n 为任何白然数时等式都成立1 1 1 1 --- + ------- + +•••+ — n +1 /? +2 n +3 In (neN*),那么/S+l ) -/(«)等于( A. 1 2n+1 2n + 2C. --------- F 1 2n + 2D. 1 2n +1 1 2n + 29. 在徳国不來梅举行的笫48 Wttt乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第刀堆笫n层就放一个乒乓球,以/⑺)表示第齐堆的乒乓球总数,则/(3) = ________ :fW = ______ (答案用料表示).io.观察下表:46 78 9 10设第n行的各数Z和为S”,则S”二______________ •11. 在数列{色}中,«.=1,«2=2且陽+2_色=1 + (_1)",兀川+,则几= ________________________ ・12. 在数列仏}中,尙=3,且对任意大于1的正整数〃,点(, J a”—)在直线X—y—73 =0 ±,贝II a n= ________________ .13. 如图,第zr个图形是由正卄2边形“扩展”而來(心1,2,3,…),则第«-2个图形中共有___________15. ------------------------------------------------- 用数学归纳法证明1一一 + + ••• += + +…+ —2 3 4 2n-l 2n n +1 〃 + 2 2n16. 平面上有n个圆,每两个圆交于两点,每三个圆不过同一点,求证这n个圆分平面为n2-n+2 个部分.17.在各项为正的数列他}中,数列的前n项和Sn满足S n =-(a n + —)2 久(1)求卩卫2卫3(2)由(1)猜想数列{%}的通项公式,并且用数学归纳法证明你的猜想.18•试证当77为白然数时,f(n)=32ri+2-Sn-9能被64整除形容词变副词的规则:1・一般悄况下直接加““”,如quick-quickly 2•以“y”结尾的,先将“y”改成“i”,再加“ly”,如happy—happily少数以e结尾的形容词,要去掉e再加・ly。
数学归纳法经典例题及答案
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确.综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3.解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.-----精心整理,希望对您有所帮助!。
数学归纳法试题
数学归纳法试题一、使用数学归纳法证明某个命题时,首先需要验证的是?A. 命题对第一个自然数成立B. 命题对所有自然数都成立的一个特殊情况C. 命题的递推关系式D. 命题对无穷大的自然数成立(答案:A)二、在数学归纳法中,假设命题对某个自然数k成立,接下来需要做的是?A. 证明命题对k+1也成立B. 证明命题对k-1也成立C. 重新验证命题对k的成立性D. 直接得出命题对所有自然数都成立的结论(答案:A)三、以下哪个步骤不是数学归纳法证明中的必要步骤?A. 验证基础情况B. 假设归纳步骤C. 证明递推关系D. 验证特殊情况(答案:D)四、设有一个关于自然数的命题P(n),若要用数学归纳法证明P(n)对所有自然数n都成立,首先需要验证的是?A. P(0)成立(假设0为自然数的起点)B. P(1)成立(假设1为自然数的起点)C. P(2)成立D. P(n)的递推关系式成立(答案:A或B,根据自然数的定义起点而定,通常选B)五、在数学归纳法的归纳步骤中,我们通常做的是?A. 验证命题对第一个自然数的成立性B. 假设命题对某个自然数k成立,然后证明它对k+1也成立C. 验证命题对所有负整数的成立性D. 无需做任何假设,直接证明命题对所有自然数都成立(答案:B)六、关于数学归纳法,以下哪个说法是不正确的?A. 数学归纳法是证明自然数命题的一种有效方法B. 在使用数学归纳法时,必须验证基础情况C. 只要证明了递推关系式,就可以直接使用数学归纳法得出结论D. 数学归纳法包括基础步骤和归纳步骤(答案:C)七、设P(n)是一个关于自然数n的命题,若P(n)对n=1成立,且当P(k)成立时,P(k+2)也成立,则能得出什么结论?A. P(n)对所有自然数n都成立B. P(n)对所有正奇数n都成立C. P(n)对所有正偶数n都成立D. 无法得出P(n)对任何特定自然数集合成立的结论(答案:B,考虑到递推间隔为2)八、在数学归纳法的应用中,以下哪个情况是不需要的?A. 明确命题P(n)的形式B. 验证命题P(n)对第一个自然数的成立性C. 假设命题P(k)成立,然后证明P(k+1)也成立D. 验证命题P(n)对某个特定大数N的成立性(答案:D)。
数学归纳法练习题
① n 4 时,
显然成立;
k
② 设 n k 时,结论成立, 即 3 ( k 1)!
则 n k 1 时 (∵ k 4, 3 k 2 )
3k 1 3k 3 (k 1)! 3 (k 1)! (k 2) (k 2)!
即 3
k 1
a2 2 1 ,
a3 3 2
an n n 1
① n 1 显然正确. ② 设 n k 正确即
an k k 1
则
n k 1 时
1 1 1 ak 1 S k 1 S k [(ak 1 ) ( k k 1 )] 2 ak 1 k k 1
n
*
存在,求出 m ;若不存在,请说明理由. 12. 正数数列 an 中, S n
*
1 1 (an ) .⑴ 求 a1、a2、a3 ;⑵ 猜想 an 的表达式并证明. 2 an
13. 设 n N ,试比较 3 和( n 1)! 的大小.
n
2
3
【答案】 一、选择题 1. C 2. D 二、填空题 4.
1
数学归纳法练习题
一、选择题 1. 用数学归纳法证明 1 a a a
2 n 1
1 a n 1 (n N * , a 1) ,在验证 n 1 成立 1 a
时,左边所得的项为( A. 1
) C. 1 a a
2
B. 1+ a
D. 1 a a a
2
3
2. 用数学归纳法证明 1
1 1 1 1 1 1 1 1 2 3 4 2n 1 2n n 1 n 2 2n
数学归纳法 (3)
一、选择题(本大题共6小题,每小题5分,共30分)1. 用数学归纳法证明⋅⋅⋅=+++312)()2)(1(nn n n n ))(12(*N n n ∈-⋅ 时,从“n k =到1+=k n ”,左边需增乘的代数式是( )A. 12+kB.112++k k C. )12(2+kD.132++k k 2. 用数学归纳法证明“121+++++n a a a )1(112≠--=+a aa n ”,在验证1=n 时,左边计算所得的项为( )A. 1B. a +1C. 21a a ++D. 321a a a +++3. 用数学归纳法证明:n n <-++++12131211 (*N n ∈,且1>n )时,第一步即证下列哪个不等式成立( )A. 21<B. 2211<+C. 231211<++D. 2311<+ 4. 用数学归纳法证明“当n 为正奇数时,nn y x +能被y x +整除”的第二步应是( ) A. 假设12+=k n 时正确,再推32+=k n 时正确 B. 假设12-=k n 时正确,再推12+=k n 时正确 C. 假设k n =时正确,再推1+=k n 时正确D. 假设)1(≥≤k k n 时正确,再推2+=k n 时正确5. 空间中有n 个平面,它们中任何两个不平行,任何三个不共线,设k 个这样的平面把空间分成)(k f 个区域,则1+k 个平面把空间分成的区域数+=+)()1(k f k f ( )A. 1+kB. kC. 1-kD. k 26. 用数学归纳法证明:“<-++++12131211n n (*N n ∈,且1>n )”时,由k n =(1>k )不等式成立推证1+=k n 不等式成立时,左边应增加的项数是( )A. 12-kB. 12-kC. k 2D. 12+k二、填空题(本题共4小题,每小题5分,共20分)7、平面内有n 个圆,其中每两个圆都相交,每三个或三个以上的圆都不交于同一点,它们把平面分成_____________个部分。
(完整版)数学归纳法经典例题及答案
数学归纳法(2016421)、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值n 0 (如n 0 1或2等)时结论正确; (2)假设当n k (k N , k n °)时结论正确,证明n k 1时结论也正确. 综合(1)、( 2),注意:数学归纳法使用要点: 两步骤,一结论、题型归纳: 题型1.证明代数恒等式用数学归纳法证明:当n=k+1时.k 12k 3由①、②可知,对一切自然数 n 等式成立.证明:①n=1时,左边 ②假设n =k 时, 2n 11 2n 1 n 2n 11 3 等式成立,即:-,右边 3 -,左边=右边,等式成立. 3 2k 1 2k 1 k2k 12k 1 2k 1 2k 1 2k 32k 1 2k 1 2k 32k 2 2k 1 3k 12k 3 2k 1 k 1 2k 1 2k 3这就说明, 当n=k+1时,等式亦成立,题型2.证明不等式11 1 _例2 .证明不等式1 2你(n € N ).詔2 M 3 :. n证明:①当n=1时,左边=1,右边=2.左边 <右边,不等式成立.那么当n=k+1时, 1 .22 .k2k 1 2.k 1这就是说,当n=k+1时,不等式成立.由①、②可知,原不等式对任意自然数 n 都成立.说明:这里要注意,当 n=k+1时,要证的目标是1 1 1 1 ----------------------------------------1 — — — ---------2 \ k 1,当代入归纟纳假设后,就是要证明:2 3 .k 、k 12、、k 1— 2 •. k 1..k 1 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题例 3 (x + 1)n = a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + …+ a n (x — 1)n (n > 2, n € N *).(1)当 n = 5 时,求 a o + a 1 + a 2 + a 3 + a 4 + a 5 的值.a 2 十⑵设b n = 2厂3, T n = b 2 + b 3 + b 4+…+ b n .试用数学归纳法证明:当 n 》2时,T n = n(n +1)( n — 1)3 .解:(1) 当 n = 5 时,原等式变为(x + 1)5= a o + a 1(x — 1) + a 2(x — 1)2+ a 3(x — 1)3 + a 4(x — 1)4+ a 5(x — 1)5②假设n=k 时,不等式成立,即 1 1 2 .. 3 1、、2.k .令x = 2 得a°+ a i + a2+ a3+ a4+ a5= 35= 243. ⑵因为(x+ 1)n= [2 + (x—1)]n,所以a2= C n22旷2b n= 2—3= 2C n2= n(n —1)(n > 2)①当n= 2时.左边=T2= b2 = 2,2(2+ £(2 - 1 = 2,左边=右边,等式成立.右边=②假设当n = k(k>2, k€ N*)时,等式成立,即T k=座土乎二!)成立那么,当n = k+ 1时,k(k+ ¥(k— " + (k+1)[( k+ 1) —1] = k(k+ ¥(k—1 + k(k + 1)左边=T k+ b k+1 =k(k + 1)(k+ 2)=k(k+ 1)宁 + 1(k+ 1)[( k+ 1) + 1][(k + 1)-1]=右边故当n= k+ 1时,等式成立.n(n+ 1)( n—1综上①②,当n》2时,T n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3数学归纳法
第1课时数学归纳法
1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取
().A.2 B.3 C.5 D.6
解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.
答案 C
2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)
2(n∈N+),验证n
=1时,左边应取的项是
().A.1 B.1+2
C.1+2+3 D.1+2+3+4
解析等式左边的数是从1加到n+3.
当n=1时,n+3=4,故此时左边的数为从1加到4.
答案 D
3.设f(n)=1+1
2+
1
3+…+
1
3n-1
(n∈N+),那么f(n+1)-f(n)等于
().
A.
1
3n+2
B.
1
3n+
1
3n+1
C.
1
3n+1
+
1
3n+2
D.
1
3n+
1
3n+1
+
1
3n+2
解析∵f(n)=1+1
2+
1
3+…+
1
3n-1
,
∵f(n+1)=1+1
2+
1
3+…+
1
3n-1
+
1
3n+
1
3n+1
+
1
3n+2
,
∴f(n+1)-f(n)=1
3n+
1
3n+1
+
1
3n+2
.
答案 D
4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…
+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.
答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2
5.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.
解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.
答案π
6.用数学归纳法证明:
1 1×2+
1
3×4
+…+
1
(2n-1)·2n
=
1
n+1
+
1
n+2
+…+
1
n+n
.
证明(1)当n=1时,左边=
1
1×2
=
1
2,右边=
1
2,等式成立.
(2)假设当n=k(k∈N*)时,等式成立,即
1 1×2+
1
3×4
+…+
1
(2k-1)·2k
=
1
k+1
+
1
k+2
+…+
1
2k.
则当n=k+1时,
1 1×2+
1
3×4
+…+
1
(2k-1)·2k
+
1
(2k+1)(2k+2)
=
1
k+1
+
1
k+2
+…+
1
2k+
1
(2k+1)(2k+2)
=
1
k+2
+
1
k+3
+…+
1
2k+⎝
⎛
⎭
⎪
⎫
1
2k+1
-
1
2k+2+
1
k+1
=
1
k+2
+
1
k+3
+…+
1
2k+
1
2k+1
+
1
2k+2
=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
(k+1)+k
+
1
(k+1)+(k+1)
.即当n=k+1时,
等式成立.
根据(1)(2)可知,对一切n∈N*,等式成立.
7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现
知命题对n=n0(n0∈N*)时命题成立,则有
().A.命题对所有正整数都成立
B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立
C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立
D.以上说法都不正确
解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.
答案 C
8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为
().A.2k+1 B.2(2k+1)
C.2k+1
k+1
D.
2k+3
k+1
解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+
3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.
答案 B
9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N
+
)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k
+1时等式也成立.因此对于任何n∈N
+
等式都成立.__________________.
答案缺少步骤归纳奠基,实际上当n=1时等式不成立
10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.
解析当n=k时,左端为:(1+1)(2+2)…(k+k),
当n =k +1时,
左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明
12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *
).
证明 (1)当n =1时,左边=12=1, 右边=
1×(1+1)×(2×1+1)
6
=1,
等式成立.
(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)
6
那么,
12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2
=k (k +1)(2k +1)+6(k +1)26
=(k +1)(2k 2+7k +6)6
=(k +1)(k +2)(2k +3)6
=
(k +1)[(k +1)+1][2(k +1)+1]
6
,
即当n =k +1时等式也成立.
根据(1)和(2),可知等式对任何n ∈N *都成立.
12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1
a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.
a 1=S 1=12⎝ ⎛
⎭⎪⎫a 1+1a 1,
∴a 21=1(a n >0),
∴a 1=1,又1-0=1, ∴n =1时,结论成立.
(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k
=12⎝
⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛
⎭⎪⎫a k +1+1a k +1-12⎝
⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝
⎛
⎭⎪⎫a k +1+1a k +1-k
∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.
由(1)(2)可知,对n ∈N *都有a n =n -n -1.。