数系的扩充与复数的引入

合集下载

13.6_数系的扩充与复数的引入

13.6_数系的扩充与复数的引入

(3)z 是纯虚数; 1 (4) z= +4i. 2 思维启迪:若 z=a+bi (a,b∈R ),则 b=0 时,z∈R ;b≠0 时, 1 z 是虚数;a=0 且 b≠0 时,z 是纯虚数; z=a-bi= +4i. 2

m 2+2m -3=0, (1)由z∈R ,得 m -1≠0,
数系的扩充与复数的引入
自主复习指导
1. 理解复数的基本概念. P51概念掌握:复数,实部,虚部,虚数单位;特别 注意复数a+bi什么情况下为实数,虚数,纯虚数;课 本例1. 2.理解复数相等的充要条件.P52上方 3.了解复数的代数表示法及其几何意义. P52概念掌握:复平面,实轴,虚轴;复数的几何意义: 点表示,向量表示;P53概念:模,共轭复数.课本例3 4.会进行复数代数形式的四则运算. 复数运算的加,减,乘同于常规四则运算;只重点复 习P60复数的除法. 5.了解复数代数形式的加、减运算的几何意义. P65巩固与提高第4题 在复平面上表示的图形.
解得m =-3.
(2)由z是虚数,得m 2+2m -3≠0,且m -1≠0, 解得m ≠1且m ≠-3. m m +2=0, (3)由z是纯虚数,得m -1≠0, m 2+2m -3≠0, 解得m =0或m =-2.
m m +2 1 1 2 (4)由 z = +4i,得 -(m +2m -3) i= +4i, 2 2 m -1 m m +2 1 = , 2 m -1 ∴ -m 2+2m -3=4, 解得 m =-1. 2m 2+3m +1=0, 即m ≠1, m 2+2m +1=0,
§ 13.6
要点梳理
数系的扩充与复数的引入 基础知识 自主学习
1.复数的有关概念 (1)复数的概念 形如 a+bi (a,b∈R )的数叫做复数,其中 a,b 分别是 它的 实部 和 虚部 .若 b=0 , a+bi为实数, b≠0 , 则 若 则 a+bi为虚数,若a=0且b≠0 ,则 a+bi为纯虚数. (2)复数相等:a+bi =c+di a=c且b=d (a,b,c, ⇔ d∈R ).

第3讲 数系的扩充与复数的引入

第3讲 数系的扩充与复数的引入

第3讲 数系的扩充与复数的引入一、 基础知识梳理:1.复数的有关概念:(1)复数①定义:形如a +b i 的数叫作复数,其中a ,b ∈R,i 叫作 ,a 叫作复数的 ,b 叫作复数的 .②表示方法:复数通常用字母 表示,即 (a ,b ∈R).(2)复数集①定义: 组成的集合叫作复数集.②表示:通常用大写字母C 表示.2.复数的分类及包含关系(1)分类:复数(a +b i ,a ,b ∈R)⎩⎨⎧ 实数b =0虚数b ≠0⎩⎪⎨⎪⎧ 纯虚数a =0非纯虚数a ≠0(2)集合表示: .3.两个复数相等:a +b i =c +d i 当且仅当 .4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)Z (a ,b ) 复平面内的点 ;(2)复数z =a +b i(a ,b ∈R) OZ →=(a ,b )平面向量 .5.复数的模:复数z =a +b i(a ,b ∈R)对应的向量为OZ →,则OZ →的模叫作复数z 的模或绝对值,记作|z |,且|z |= .二.问题探究探究点一:复数的概念例1 请说出下列复数的实部和虚部,并判断它们是实数,虚数还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.跟踪训练1:符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.探究点二:复数的分类例2:当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为 (1)实数;(2)虚数;(3)纯虚数.跟踪训练2:实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.探究点三:两复数相等例3:已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .跟踪训练3:已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R),求x 的值.探究点四:复数的几何意义例4:在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应点(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的取值范围.跟踪训练4: 已知复数z 的虚部为3,在复平面内复数z 对应的向量的模为2,求复数z .三.方法小结:1.复数a +b i 中,实数a 和b 分别叫作复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫作复数的虚部.2.两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.3.按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值四.练一练1.指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。

高考数学考点回归总复习课件 数系的扩充与复数的引入

高考数学考点回归总复习课件 数系的扩充与复数的引入

注意:(1)如果两个复数都是实数,则可以比较大小;否则,不能 比较大小.
(2)复数相等的条件是把虚数问题转化为实数问题的重要依据, 是虚数问题实数化这一重要数学思想方法的体现.
2.复平面的概念 建立直角坐标系来表示复数的平面,叫做复平面.x轴叫做实
轴,y轴叫做虚轴.实轴上的点都表示实数;除原点外,虚轴上 的点都表示纯虚数;各象限内的点都表示虚数. 复数集C和复平面内所有的点组成的集合是一一对应的,复数 集C与复平面内所有以原点O为起点的向量组成的集合也 是一一对应的.
(1 sin cos )2 (cos sin )2
2 sin2 cos2 2 1 sin2 2 .
4
故|
z1
z2
|的最大值为 3 ,最小值为 2
2.
技法二
数形结合思想
【典例2】 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值 为( )
A.1 B. 2 C.2 D. 5
答案:C
2.(2010·陕西)复数
z 在1复i i平面上对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析 :因为z i i(1 i) 1 i 1 1 i,所以其对 1 i (1 i)(1 i) 11 2 2
应的点
1 2
,
1 2
位于第一象限, 故选A.
答案:A
3.(2010·湖北)若i为虚数单位,图中复平面内点Z表示复数z,则
【典例1】 已知复数z=m2(1+i)-m(3+i)-6i,则当m为何实数 时,复数z是(1)实数?(2)虚数?(3)纯虚数?(4)零?(5)对应点 在第三象限?

第3章 数系的扩充与复数的引入

第3章 数系的扩充与复数的引入

第3章 数系的扩充与复数的引入§3.1数系的扩充和复数的概念 §3.1.1数系的扩充和复数的概念教学重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用教学难点:虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 学生探究过程:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N随着生产和科学的发展,数的概念也得到发展为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 讲解新课:1.虚数单位i :(1)它的平方等于-1,即21i =-(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部用字母C 表示*5. 复数的代数形式: 通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式6. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.7.复数集与其它数集之间的关系:N Z Q R C .8. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等这就是说,如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小例1请说出复数i i i i 53,31,213,32---+-+的实部和虚部,有没有纯虚数?答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i 是纯虚数.例2例3例4(1).设集合C ={复数},A={实数},B ={纯虚数},若全集S=C ,则下列结论正确的是( D )A.A ∪B =CB. S C A =BC.A ∩S C B =∅D.B ∪S C B =C(2).复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足(D )A.x =-21 B.x =-2或-21C.x ≠-2D.x ≠1且x ≠-2 (3).已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i },集合P ={-1,3}.M ∩P ={3},则实数m 的值为( A )A.-1 B .-1或4 C.6 D.6或-1例5(1)满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数是______.(2)复数z 1=a +|b |i ,z 2=c +|d |i (a 、b 、c 、d ∈R ),则z 1=z 2的充要条件是______. 例6设复数z =log 2(m 2-3m -3)+i log 2(3-m )(m ∈R ),如果z 是纯虚数,求m 的值. 例7若方程x 2+(m +2i )x +(2+mi )=0至少有一个实数根,试求实数m 的值. 例8已知m ∈R ,复数z =1)2(-+m m m +(m 2+2m -3)i ,当m 为何值时,(1)z ∈R ; (2)z 是虚数;(3)z 是纯虚数;(4)z =21+4i .答案:例4(3)由题设知3∈M ,∴m 2-3m -1+(m 2-5m -6)i =3∴⎩⎨⎧=--=--06531322m m m m ,∴⎩⎨⎧-==-==1614m m m m 或或∴m =-1,故选A. 例5.(1)解析:由题意知⎩⎨⎧=+-=--,0169,03222y y x x ∴⎪⎩⎪⎨⎧=-==3113y x x 或∴点对有(3,31),(-1,31)共有2个.答案:2(2) 解析:z 1=z 2⇔⎩⎨⎧==⇔||||d b ca a =c 且b 2=d 2.答案:a =c 且b 2=d 2例6.解:由题意知⎩⎨⎧≠-=--,0)3(log ,0)33(log 222m m m ∴⎪⎩⎪⎨⎧>-≠-=--03131332m m m m ∴⎩⎨⎧<≠=--320432m m m m 且∴⎩⎨⎧≠<-==2314m m m m 且或,∴m =-1.例7 解:方程化为(x 2+mx +2)+(2x +m )i =0.∴⎩⎨⎧=+=++02022m x mx x ,∴x =-2m ,∴,02242=+-mm ∴m 2=8,∴m =±22. 例8. 解:(1)m 须满足⎩⎨⎧≠-=-+.11,0322m m m 解:m =-3.(2)m 须满足m 2+2m -3≠0且m -1≠0,解:m ≠1且m ≠-3.(3)m 须满足⎪⎩⎪⎨⎧≠-+=-+.032,01)2(2m m m m m 解之得:m =0或m =-2.(4)m 须满足⎪⎩⎪⎨⎧=-+=-+.432211)2(2m m m m m 解之得:m ∈∅§3.1.2复数的几何意义学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =2. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差3. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =-=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)讲授新课:复平面、实轴、虚轴:复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定,如z =3+2i 可以由有序实数对(3,2)确定,又如z =-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b )与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i ,虚轴上的点(0,5)表示纯虚数5i非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i ,z =-5-3i 对应的点(-5,-3)在第三象限等等.复数集C 和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ 2. 复数z a bi =+←−−−→一一对应平面向量OZ 例9例10.已知复数z 1=cos θ-i ,z 2=sin θ+i ,求| z 1·z 2|的最大值和最小值. [解] |)sin (cos cos sin 1|||21i z z θθθθ-++=⋅.2sin 412cos sin 2)sin (cos )cos sin 1(22222θθθθθθθ+=+=-++=故||21z z ⋅的最大值为,23最小值为2. 例11.(1)(2008天津理科)在复平面内,把复数i 33-对应的向量按顺时钟方向旋转3π,所得向量对应的复数是( B ) (A )23 (B )i 32- (C )3i 3- (D )3+i 3(2)(2007全国理科、文科)已知复数z 的模为2,则│z -i│的最大值为:( D )(A)1 (B)2 (C) (D)3(3)(2003北京理科)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( B ) A .2 B .3 C .4 D .5 (4)(2007年上海卷)若,a b 为非零实数,则下列四个命题都成立:①10a a+≠ ②()2222a b a ab b +=++ ③若a b =,则a b =± ④若2a ab =,则a b =则对于任意非零复数,a b ,上述命题仍然成立的序号是_____。

数系的扩充与复数的引入(理)

数系的扩充与复数的引入(理)

整数Z
加法 乘法
自然数N
数系的扩充过程 复数的相关概念 复数相等
复数的概念
• 形如a +bi (a,b ∈R)的数称为复数。 • 复数的表示:一般用 z (小写) 表示 z = a +bi (a,b ∈R) • 当b = 0时, a +bi=a 是实数 • 当b≠0时, a +bi 是虚数 • 当a=0且b≠0时, a+bi=bi 是纯虚数
自我练习
• ㈠ExA1、2 ExB 1、2、3 • ㈡习题3-1A 1、2、3
谢谢!
有理数满足前 面的加法、减 法和乘法运算 及运算律同时 满足除法
实数R
有理数Q
分数 负整数
无理数
整数Z 自然数N
扩充过程
实数R
加法 乘法 减法 乘法
有理数Q
自然数N
加法 乘法
实数 R →复数 C
• 在实数范围内方程 ax2+bx+c=0的根 b • 当Δ=b2-4ac≥0时, x
• 当Δ=b2-4ac<0时,无根
扩充后的数集之间的关系
复数C 虚数 无理数
实数R
有理数Q
整数Z 自然数N 分数 负整数
各数集的关系图
有理数Q 实数R
复数C
自然数 N
回顾小结
数系的扩充过程 复数的相关概念
复数相等
数系的扩充过程 复数的相关概念 复数相等
扩充过程
实数R
增添除法
有理数Q
加法 乘法 减法
加法 乘法 减法 乘法
增添减法
解:(1)当 x + 3 = 0即x = -3时,复数 z 是实数; (2)当 x + 3 ≠ 0即x ≠ -3时,复数 z 是虚 数; (3)当x - 2 = 0 且x + 3 ≠ 0 即x = 2时,复 数 z 是纯虚数

数系的扩充与复数的引入 人教B版 选修2-3

数系的扩充与复数的引入 人教B版 选修2-3
数系的扩充与复数的引入
青州实验中学
数系的结构图
实数R 有理数Q 整数Z 自然数N 分数 负整数 无理数
自然数 N→整数 Z
• {0,1,2,3,···,a,a+1,···} • 自然数的计数单位是 1。 • 自然数的运算:加法、乘法 加法运算律:交换律 a+b = b+a 结合律 a+(b+c)=(a+b)+c 乘法运算律:交换律 a·b = b·a 结合律 a·(b·c)=(a·b)·c 对加法的分配律 a·(b+c)= a·b + a·c • 两个自然数相加或相乘得到的仍是自然数。
数系由整数扩充到了有理数
有理数满足前 面的加法、减 法和乘法运算 及运算律同时 满足除法
有理数Q 整数Z 自然数N 分数 负整数
有理数 Q →实数 R
• 已知正方形的边长是 1,一正方形的面积是 已知正方形的 2 倍,求其边长。 • x2=2 ∴x =√2不是有理数上一章已证过。
2
1 1
2
于是,有理数扩充得到了实数
自我练习
• ㈠ExA1、2 ExB 1、2、3 • ㈡习题3-1A 1、2、3
谢谢!
复数的概念
• 形如a +bi (a,b ∈R)的数称为复数。 • 复数的表示:一般用 z (小写) 表示 z = a +bi (a,b ∈R) • 当b = 0时, a +bi=a 是实数 • 当b≠0时, a +bi 是虚数 • 当a=0且b≠0时, a+bi=bi 是纯虚数
z = a + bi (a,b∈R)
有理数满足前 面的加法、减 法和乘法运算 及运算律同时 满足除法
实数R 有理数Q 分数 负整数 无理数

第四章 第四节 数系的扩充与复数的引入

第四章  第四节  数系的扩充与复数的引入

[题组自测 题组自测] 题组自测 1.若复数 z 满足 +i)z=1-3i,则复数 z 在复平面上的 . 满足(1+ = - , 对应点在 A.第四象限 . C.第二象限 . B.第三象限 . D.第一象限 . ( )
1-3i (1-3i)( -i) - )(1- ) - )( 解析: =-1- , 解析:由已知得 z= = = =- -2i,则 1+i )(1- ) + (1+i)( -i) + )( z 所对应的点为 -1,- ,故 z 对应的点在第三象限. 所对应的点为(- ,- ,-2), 对应的点在第三象限.
a+2i + (a+2i)i + ) 解析: 解析:由题可知 i =b+i,整理可得 i2 =b+i, +, +, =-1, = , 即 2-ai=b+i,根据复数相等可知 a=- ,b=2, - = +, =- 所以 a+b=1. + =
答案: 答案: B
3.若复数z1=4+29i,z2=6+9i,其中 是虚数单位,则 .若复数 是虚数单位, + , + ,其中i是虚数单位 复数(z 的实部为________. 复数 1-z2)i的实部为 的实部为 . 解析:∵z1=4+29i,z2=6+9i, 解析: + , + , =-20- , ∴(z1-z2)i=(-2+20i)i=- -2i, =- + =- 的实部为- ∴复数(z1-z2)i的实部为-20. 复数 的实部为 答案: 答案:-20
答案:B 答案:
)(2+ ) (1+2i)( +i) + )( 3.复数 . 等于 (1-i)2 -) 5 A. 2 5 C. i 2 5 B.- .- 2 5 D.- i .- 2
(
)
)(2+ ) (1+2i)( +i) 2+4i+i+2i2 + )( + ++ 5i 5 解析: 解析: = = =- . 2 (1-i)2 -) -2i -2i

5.1 数系的扩充与复数的引入 课件(北师大选修2-2)

5.1 数系的扩充与复数的引入 课件(北师大选修2-2)

一个复数z=a+bi(a,b∈R)与复平面内的向量 OZ = (a,b) 是一一对应的.

2.复数的模 设复数 z=a+bi(a, b∈R)在复平面内对应的点是 Z(a, b),点 Z 到 原点的距离 |OZ|叫作复数 z 的模或绝对值, 记
a2+b2 . 作|z|,显然,|z|=
1.注意复数的代数形式z=a+bi中a,b∈R这一条
答案:0或2
1 9.求复数 z1=6+8i 及 z2=- - 2i 的模,并比较它们的 2 模的大小.
1 解:∵z1=6+8i,z2=- - 2i, 2 ∴|z1|= 62+82=10, |z2|=
1 - 2+- 2
3 2 = . 2
2
3 ∵10> , 2 ∴|z1|>|z2|.
1.区分实数、虚数、纯虚数与复数的关系,特别要明 确:实数也是复数,要把复数与实数加以区别.对于纯虚 数bi(b≠0,b∈R)不要只记形式,要注意b≠0. 2.复数与复平面内的点一一对应,复数与向量一一对
应,可知复数z=a+bi(a,b∈R)、复平面内的点Z(a,b)和
平面向量 OZ 之间的关系可用图表示.
解析: 复数 z1, 2 对应的点分别为 Z1(1, 3), 2(1, 3), z Z - 关于 x 轴对称. 答案:A
6.已知平面直角坐标系中O是原点,向量 OA ,OB 对应 的复数分别为2-3i,-3+2i,那么向量 BA 的坐标是
( A.(-5,5) C.(5,5) B.(5,-5) D.(-5,-5) )
OB 对应的复数分别记作z1=2-3i,z2 解析:向量 OA ,
=-3+2i,根据复数与复平面内的点一一对应,可得向
量 OA =(2,-3), OB =(-3,2).

数系的扩充与复数的引入

数系的扩充与复数的引入

知识精要
复 数 : 我 们 把 集 合 C = { a + b i a , b ∈ R }中 的 数 , 即 形 如 a + b i( a , b ∈ R ) 的 数 叫 做 复 数 , 其 中 i叫 做 虚 数 单 位 , 全 体 复 数 的 集 合 C叫 做 复 数 集 合 。 (1)i2 = −1, 复数集C和实数集R 之间有 (2)i可以与实数一起进行四则运算, (2)i可以与实数一起进行四则运算, 什么关系? 并且加乘运算律不变。 答:R ⊆ C,即R是C的真子集。
欢迎指导! 欢迎指导! 谢谢! 谢谢!
例 3 如果(x + y ) + ( y − 1)i = (2 x + 3 y ) + (2 y + 1)i, 求实数x, y的值.
解:由复数相等的定义(条件),得 x + y = 2x + 3 y, x = 4, 解得 y −1 = 2 y +1, y = −2.
练习: 练习:P52,1,2. , , P55,1,2. , ,
三、本章知识结构框图
数系扩充 复数引入 复数的概念
复数代数形式的 四则运算
四、课时安排
3.1 数系的扩充和复数的概念 约2课时 3.2 复数代数形式的四则运算 约2课时
§3.1 数系的扩充与复数的概念 本节要点
数系的扩充 复数的概念 复数的代数表示及复数相等的定义 复数的几何意义
教学情境设计
方程
x 2 + 1 = 0 在实数集中有解么?
答 :无解
你能设想 一种方法, 使这个方 程有解么?
联系从自然数系到实数系的扩充过程,我们可以考虑将实数系扩大。
数系的每一次扩充过程都与实际需求密切相关。简要讲述数系扩 充的历史,人们为了计数,创造了自然数,1,2,3,…我们看到的自然 界中事物的个数都是自然数,如一支钢笔,三本书,后来人们为了方便将 0归入自然数。为了公平分配物质,引入了分数,如一个苹果平均分给三 个人,每个人得到多少苹果?为了表示各种具有相反意义的量以及满足记 数法的需要,人类引进了负数.如今天最低温度为零下3度,最高温度为8 度,就用到了负数。边长为1的正方形对角线之长不是分数,5开方开不尽, 不能用分数来表示,于是无理数出现了。数系扩充发展到了实数集了,这 是我们以前学到的非常熟悉的数集。

数系的扩充与复数的引入

数系的扩充与复数的引入

复数的代数形式:
z a bi (a R, b R)
其中a —实部 , b —虚部 ,
i
称为虚数单位.
讨论:复数集 C 和实数集 R 之间有什么关系?
规定: 0i=0 ,0+bi=bi, a+0i=a
当 b 0 时,这时 z a 是实数. 复数 z a bi 当 b 0 时, z a bi 叫做虚数. 当 a 0且b 0 时,z bi 叫做纯虚数.
2
到底是怎么一回事?
x 2x 3 0 2 配方得 x 2 x 1 2 2 即 ( x 1) 2
2
负数能否开平方?又如 x 1 呢?
2
在解方程时经常会遇到这类问题.如果负数可以 开平方,那这个平方根不会是实数,是什么数呢?
问题解决:为了解决负数开平方问题,我们引入一个新数
由此可知:R
C

复数相等的充要条件: 规定:两复数:
a bi c di a c 且 b d
(其中:a, b, c, d R )
例1 实数m取什么值时,复数
z m 1 (m 1)i
是(1)实数? (2)虚数? (3)纯虚数? 解: (1)当 m 1 0 ,即 m 1 时,复数z 是实数.
把 i 叫做虚数单位,并且规定:
(1) i 21;
i,
(2)实数可以与 i 进行四则运算,在进行四则运算时,原有的加 法与乘法的运算律(包括交换律、结合律和分配律)仍然成立.
这样就会出现许多新数,如 2i 、3i 、2 i 、3 i 等. 形如 a bi (a, b R) 的数叫做复数.
x 3, y 2 ⑵ 若 3 10i y 2 i x 1 9i ,

数学(文)一轮教学案:第十四章 数系的扩充与复数的引入 Word版含解析

数学(文)一轮教学案:第十四章 数系的扩充与复数的引入 Word版含解析

第十四章 数系的扩充与复数的引入考纲展示 命题探究1 复数的定义形如a +b i(a ,b ∈R )的数叫复数,其中实部是a ,虚部是b . 2 复数的分类 3 复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). 4 复平面建立直角坐标系来表示复数的平面,叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点表示实数;除原点外,虚轴上的点表示纯虚数.5 复数的几何意义6 复数的模向量OZ →的模r 叫做复数z =a +b i 的模,记作|z |或|a +b i|,则|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ),即复数a +b i 的模表示点Z (a ,b )与原点O 的距离.特别地,b =0时,z =a +b i 是实数a ,则|z |=|a |. 注意点 复数概念的理解的注意事项 (1)两个不全是实数的复数不能比较大小. (2)复平面内虚轴上的单位长度是1,而不是i.(3)复数与向量的关系:复数是数的集合,而向量是有大小和方向的量,二者是不同的概念.为了令复数更好地发挥解决实际问题的作用,所以用向量来表示复数.1.思维辨析(1)复数z =a +b i(a ,b ,∈R )中,虚部为b i.( )(2)在实数范围内的两个数能比较大小,因而在复数范围内的两个数也能比较大小.( )(3)一个复数的实部为0,则此复数必为纯虚数.( ) (4)复数的模就是复数在复平面内对应向量的模.( )答案 (1)× (2)× (3)× (4)√2.实部为-2,虚部为1的复数所对应的点位于复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 B解析 实部为-2,虚部为1的复数在复平面内对应的点的坐标为(-2,1),位于第二象限.3.在复平面内,已知6+5i 对应的向量为OA →,AB →=(4,5)则OB →对应的复数为________.答案 10+10i解析 由AB →=OB →-OA →得:OB →=OA →+AB →又∵AB →=(4,5) ∴AB →对应的复数为4+5i. ∴OB →对应的复数为:4+5i +6+5i =10+10i.[考法综述] 复数的分类、实部、虚部、复数相等的条件、共轭复数、复数的模都会结合复数的运算一起考查.难度一般不大.命题法1 复数的概念与分类典例1 设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 为( )A .2B .-2C .-12D .12 [解析] 解法一:设1+a i2-i =b i(b ∈R 且b ≠0),则1+a i =b i(2-i)=b +2b i ,所以b =1,a =2b =2.解法二:1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=2-a 5+1+2a 5i ,令2-a 5=0且1+2a5≠0,得a =2.[答案] A【解题法】 与复数概念及分类题型的解题步骤第一步,先把题目中的复数z 的代数形式设出,即设复数z =a +b i(a ,b ∈R ).第二步,把非标准代数形式的复数通过复数的运算法则化为代数形式的标准形式,即化为a +b i(a ,b ∈R )的形式.第三步,紧扣复数的分类: 复数z =a +b i(a ,b ∈R )根据分类列出相应的方程,如:若题目要求该复数是实数,则根据虚部b =0列出相关方程(组).第四步,解方程(组),求得结果. 命题法2 复数相等典例2 若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( )A .3+5iB .3-5iC .-3+5iD .-3-5i[解析] 解法一:令z =a +b i(a ,b ∈R ),则(a +b i)(2-i)=(2a +b )+(2b -a )i =11+7i ,⎩⎪⎨⎪⎧2a +b =11,2b -a =7,解得a =3,b =5,故选A.解法二:z =11+7i 2-i =(11+7i )(2+i )5 =22-7+(14+11)i 5=3+5i. [答案] A【解题法】 复数相等问题的解题策略两复数相等的充要条件,即a +b i =c +d i ⇔⎩⎪⎨⎪⎧a =c ,b =d ,(a ,b ,c ,d ∈R ).解决此类问题的本质就是分离出实部与虚部,使之分别相等,得到方程组,从而解决问题.命题法3 复数的模及几何意义典例3 (1)若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,-4)C .(4,-2)D .(4,2)(2)a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =( ) A .2 B . 3 C. 2D .1[解析] (1)由i z =2+4i ,得z =2+4ii =4-2i ,所以z 对应的点的坐标是(4,-2).(2)∵⎪⎪⎪⎪⎪⎪a +i i =|a +i||i|=a 2+1=2,∴a =±3,又a >0,∴a = 3.故选B.[答案] (1)C (2)B【解题法】 与复数几何意义、模有关的解题技巧(1)只要把复数z =a +b i(a ,b ∈R )与向量OZ →对应起来,就可以根据平面向量的知识理解复数的模、加法、减法的几何意义,并根据这些几何意义解决问题.(2)有关模的运算要注意灵活运用模的运算性质. 1.若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .2-3i B .2+3i C .3+2i D .3-2i答案 A解析 因为z =i(3-2i)=2+3i ,所以z =2-3i.2.设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析2i1-i=2i(1+i)(1-i)(1+i)=-1+i,其在复平面内所对应的点位于第二象限.3.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5 B.5C.-4+i D.-4-i答案 A解析由题意知:z2=-2+i.又z1=2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.故选A.4.设z=10i3+i,则z的共轭复数为() A.-1+3i B.-1-3i C.1+3i D.1-3i 答案 D解析z=10i3+i=10i(3-i)(3+i)(3-i)=30i+1032+12=1+3i,z=1-3i,选D.5.已知a,b∈R,i是虚数单位,若a-i与2+b i互为共轭复数,则(a+b i)2=()A.5-4i B.5+4iC.3-4i D.3+4i答案 D解析由a-i与2+b i互为共轭复数,可得a=2,b=1.所以(a+b i)2=(2+i)2=4+4i-1=3+4i.6. i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.答案-2解析由题意知,复数(1-2i)(a+i)=a+2+(1-2a)i是纯虚数,则实部a+2=0,虚部1-2a≠0,解得a=-2.7.设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 答案5解析 设复数z =a +b i ,a ,b ∈R ,则z 2=a 2-b 2+2ab i =3+4i ,a ,b ∈R ,则⎩⎪⎨⎪⎧ a 2-b 2=32ab =4,a ,b ∈R ,解得⎩⎪⎨⎪⎧ a =2b =1或⎩⎪⎨⎪⎧a =-2b =-1,则z=±(2+i),故|z |= 5.8.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 答案 21解析 由题意,得z =(5+2i)2=25+20i -4=21+20i ,其实部为21.1 复数的加法(1)运算法则:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )是任意两复数,那么z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i.(2)运算律:交换律、结合律.(3)几何意义:复数z 1+z 2是以OZ 1→,OZ 2→为邻边的平行四边形的对角线OZ →所对应的复数,其中OZ 1→,OZ 2→分别为z 1,z 2所对应的向量.2 复数的减法(1)运算法则:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i.(2)几何意义:复数z 1-z 2是从向量OZ 2→的终点指向向量OZ 1→的终点的向量Z 2Z 1→所对应的复数.3 复数的乘法(1)运算法则:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i.(2)运算律:交换律、结合律、分配律. 4 共轭复数(1)定义:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.用z 表示z 的共轭复数,若z =a +b i ,则z =a -b i.特别地,实数的共轭复数还是它本身.(2)几何意义:互为共轭复数的两个复数在复平面内所对应的点关于实轴对称.实数和它的共轭复数在复平面内所对应的点重合,且在实轴上.(3)性质:z ·z =(a +b i)·(a -b i)=a 2+b 2=|z |2(a ,b ∈R ). 5 复数的除法运算法则:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则z 1z 2=a +b ic +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0),即分子、分母同乘以分母的共轭复数,使分母实数化,以简化运算.注意点 虚数单位i 的周期性计算得i 0=1,i 1=i ,i 2=-1,i 3=-i ,继续计算可知i 具有周期性,且最小正周期为4,故有如下性质(n ∈N ):(1)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ; (2)i 4n +i 4n +1+i 4n +2+i 4n +3=0. 1.思维辨析(1)若a ∈C ,则a 2≥0.( ) (2)方程x 2+x +1=0没有解.( ) (3)原点是实轴与虚轴的交点.( ) (4)z =z ⇔z ∈R .( )(5)若z ≠0且z +z =0,则z 为纯虚数.( ) 答案 (1)× (2)× (3)√ (4)√ (5)√2.复数z 满足(z +2)(1+i 3)=2(i 为虚数单位),则z =( ) A .1-i B .1+i C .-1-i D .-1+i答案 D解析 由题意得:(z +2)(1+i 3)=2,(z +2)(1-i)=2,z =21-i-2=1+i -2=-1+i ,故选D.3.已知实数m 是方程x 2+(2+i)x +n +2i =0,n ∈R 的一个根,则m +n =________.答案 -2解析 由题意知:m 2+(2+i)m +n +2i =0, 即m 2+2m +n +(m +2)i =0,由复数相等的条件得⎩⎪⎨⎪⎧m 2+2m +n =0m +2=0,解得:⎩⎪⎨⎪⎧m =-2n =0,即m +n =-2[考法综述] 复数的四则运算法则及其加减法的几何意义(平行四边形法则、三角形法则),尤其除法运算及i 的运算规律为命题热点.命题法 复数的四则运算典例 (1)下面是关于复数z =2-1+i 的四个命题:p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1, 其中的真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4D .p 3,p 4(2)已知复数z =3+i (1-3i )2,z -是z 的共轭复数,则z ·z -=________. [解析] (1)z =2(-1-i )(-1+i )(-1-i )=-1-i ,故|z |=2,p 1错误;z 2=(-1-i)2=(1+i)2=2i ,p 2正确;z 的共轭复数为-1+i ,p 3错误;p 4正确.(2)∵z =3+i (1-3i )2=3+i -2-23i =3+i-2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i )=23-2i -8=-34+14i ,∴z ·z =⎝⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14.故填14.[答案] (1)C (2)14【解题法】 复数四则运算中常用技巧 (1)巧用“分母实数化”,求解复数除法运算.复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简.其原理是(a +b i)(a -b i)=a 2+b 2(a 、b ∈R ).(2)巧用“结论”,求解复数的乘方运算.记忆结论(1±i)2=±2i ,1+i 1-i =i ,1-i1+i =-i ,在化简复数的过程中构造出结论的形式,便可直接代入进行计算.1.设复数z 满足1+z1-z =i ,则|z |=( )A .1B . 2 C. 3 D .2答案 A解析 由题意知1+z =i -z i ,所以z =i -1i +1=(i -1)2(i +1)(i -1)=i ,所以|z |=1.2.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .2 答案 B解析 由于(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,所以⎩⎪⎨⎪⎧4a =0a 2-4=-4,解得a =0.故选B. 3.若复数z 满足z1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i答案 A解析 由已知z =i(1-i)=i -i 2=i +1,所以z =1-i.故选A. 4.设i 是虚数单位,则复数i 3-2i =( )A .-iB .-3iC .iD .3i答案 C解析 i 3-2i =-i -2ii 2=-i +2i =i ,选C.5.已知(1-i )2z =1+i(i 为虚数单位),则复数z =( ) A .1+i B .1-i C .-1+i D .-1-i答案 D解析 z =(1-i )21+i =-2i 1+i =-2i (1-i )(1+i )(1-i )=-1-i.6.(1+i )3(1-i )2=( ) A .1+i B .1-i C .-1+i D .-1-i 答案 D解析 (1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=2i (1+i )-2i =-1-i.故选D.7.设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则z i+i·z =( )A .-2B .-2iC .2D .2i答案 C解析 原式=1+ii +i(1-i)=-(i +i 2)+i(1-i)=1-i +i +1=2. 8.设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 答案 3解析 复数a +b i(a ,b ∈R )的模为a 2+b 2=3,则a 2+b 2=3,则(a +b i)(a -b i)=a 2-(b i)2=a 2-b 2·i 2=a 2+b 2=3.9.若复数z =1+2i ,其中i 是虚数单位,则⎝ ⎛⎭⎪⎪⎫z +1z ·z =________. 答案 6解析 ∵z =1+2i ,∴z =1-2i. ∴⎝ ⎛⎭⎪⎪⎫z +1z ·z =z ·z +1=5+1=6. 10.复数2-2i 1+i =________.答案 -2i解析 2-2i 1+i =(2-2i )(1-i )(1+i )(1-i )=2-2-4i 2=-2i. 已知复数z 满足z =2i 1+3i (i 为虚数单位),则z 的共轭复数的虚部是( )A.32 B .-32 C .-12 D .-12i [错解][错因分析] 对虚部的概念理解不清,将复数z =a +b i(a ,b ∈R )的虚部错误地认为是b i.[正解] z =2i 1+3i =2i (1-3i )(1+3i )(1-3i )=23+2i 4=32+12iz 的共轭复数为32-12i ,∴z 的共轭复数的虚部为-12,故选C. [答案] C [心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2016·冀州中学期末]设z =1+i(i 是虚数单位),则2z =( ) A .i B .2-i C .1-i D .0答案 C解析 因为2z =21+i =2(1-i )(1+i )(1-i )=1-i ,故选C.2.[2016·衡水中学周测]i 为虚数单位,若a1-i =1+i i ,则a 的值为( )A .iB .-iC .-2iD .2i 答案 C解析 由已知a 1-i =1+i i 得,a i =(1-i)(1+i),a i =2,a =2i =-2i ,故选C.3.[2016·冀州中学月考]设复数z =2-1-i(i 为虚数单位),z 的共轭复数为z ,则在复平面内i z 对应的点的坐标为( )A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)答案 C解析 ∵z =2-1-i =-1+i ,∴i z =i(-1-i)=1-i ,其在复平面内对应的点的坐标为(1,-1).4.[2016·武邑中学周测]在复平面内,复数z 和2i2-i 表示的点关于虚轴对称,则复数z =( )A.25+45i B .25-45i C .-25+45i D .-25-45i答案 A解析 由2i 2-i =-25+45i 可知该复数对应的点为⎝ ⎛⎭⎪⎫-25,45,其关于虚轴的对称点为⎝ ⎛⎭⎪⎫25,45,故复数z =25+45i ,故选A.5.[2016·衡水中学月考]已知i 是虚数单位,则2+i3-i =( )A.12-12i B .72-12i C.12+12i D .72+12i答案 C解析 2+i 3-i =(2+i )(3+i )(3-i )(3+i )=5+5i 10=12+12i.6.[2016·枣强中学猜题]若复数z =(2-i)i(其中i 为虚数单位),则z =( )A .2-iB .1+2iC .-1+2iD .1-2i答案 D解析 z =(2-i)i =1+2i ,∴z =1-2i ,选D.7.[2016·衡水中学期中]已知复数z =3+4i ,z 表示复数z 的共轭复数,则|zi |=( )A. 5 B .5 C. 6 D .6答案 B解析 由z =3+4i ,得z =3-4i ,所以|z i |=⎪⎪⎪⎪⎪⎪3-4i i =|(3-4i)(-i)|=|-4-3i|=(-4)2+(-3)2=5.8. [2016·武邑中学期中]复数z =2i 20141-2i (i 是虚数单位)在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 ∵i 2014=(i 2)1007=(-1)1007=-1,∴z =2i 20141-2i =-21-2i =-2(1+2i )(1-2i )(1+2i )=-2+2i 3,∴z 在复平面内的坐标为⎝⎛⎭⎪⎫-23,-23,故选C.9.[2016·衡水中学期末]若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( )A.12+i B . 5 C.52 D .54答案 C解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b=-1,所以|a +b i|=⎪⎪⎪⎪⎪⎪-12-i =52,选C.10.[2016·衡水二中期中]复数z =1-i ,则1z +z =( ) A.12+32i B .12-32i C.32-32i D .32-12i答案 D解析 ∵z =1-i ,∴1z +z =11-i +1-i =1+i (1-i )(1+i )+1-i =1+i 2+1-i =32-12i ,故选D.11. [2016·枣强中学模拟]设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z |=( )A.10 B .2 C. 2 D .1 答案 A解析 解法一:|(1-z )·z |=|1-z ||z |=|2+i||-1+i|=22+12·(-1)2+(1)2=10.解法二:|(1-z )·z |=|z -z ·z |=|-1+i -2|=|-3+i|=(-3)2+12=10.12.[2016·衡水二中期末]若a 为实数,i 为虚数单位,2+a i 1+2i =-2i ,则a 等于________.答案 - 2解析 由已知2+a i1+2i =-2i ,得2+a i =-2i(1+2i),即2+a i =-2i +2,∴a =- 2.能力组13.[2016·武邑中学猜题]复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是( )A .[-1,1]B .⎣⎢⎡⎦⎥⎤-916,1 C.⎣⎢⎡⎦⎥⎤-916,7 D .⎣⎢⎡⎦⎥⎤916,7答案 C解析 由复数相等的充要条件可得⎩⎪⎨⎪⎧m =2cos θ4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ,因为sin θ∈[-1,1],所以4sin 2θ-3sin θ∈⎣⎢⎡⎦⎥⎤-916,7.14. [2016·冀州中学仿真]已知复数z =1+2i1-i,则1+z +z 2+…+z 2014为( )A .1+iB .1-iC .iD .1答案 C解析 z =1+2i1-i=1+2i (1+i )2=i ,∴1+z +z 2+…+z 2014=1×(1-z 2015)1-z =1-i 20151-i =1-i4×503+31-i=1+i 1-i =(1+i )2(1-i )(1+i )=2i2=i. 15.[2016·武邑中学预测]已知x 1=1-i(i 是虚数单位)是关于x 的实系数一元二次方程x 2+ax +b =0的一个根,则实数a =________,b =________.答案 -2 2解析 由题意,知x 2=1+i 是方程的另一根,因此-a =x 1+x 2=2,a =-2,b =x 1x 2=(1-i)(1+i)=2.16.[2016·衡水二中模拟]已知复数 z =4+2i(1+i )2(i 为虚数单位)在复平面内对应的点在直线x -2y +m =0上,则m =________.答案 -5解析 z =4+2i (1+i )2=4+2i 2i =(4+2i )i2i 2=1-2i ,复数z 在复平面内对应的点的坐标为(1,-2),将其代入x -2y +m =0,得m =-5.。

(完整版)数系的扩充与复数的引入

(完整版)数系的扩充与复数的引入

数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式:z a bi (a R,b R)
2 7 , 0.618, 2 i, 0
7
i i 2 , i 1 3 , 3 9 2i, 5 +8,
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
例1: 实数m取什么值时,复数
z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算律(包括交换律、结 合律和分配律)仍然成立。
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R位。
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b

数系的扩充与复数的引入公开课课件

数系的扩充与复数的引入公开课课件
控制工程
在控制工程中,复数用于描述系统的传递函数和稳定性,对于系统分析和设计至关重要。
感谢您的观看
THANKS
微积分中的连续性讨论
在微积分中,连续性是一个重要的概念。在实数范围内,连续性可以通过极限来定义和讨论。但在处理一些涉及无穷大或无 穷小的数学问题时,实数范围的局限性可能会限制讨论的深入。
通过引入复数,可以扩展连续性的定义和讨论范围。例如,在复变函数中,函数在复平面上的连续性和可导性得到了广泛的 研究和应用。这使得复数在处理涉及连续性和无穷大/无穷小的数学问题时更加有效和精确。
无理数是不能表示为两个整数的比的 无限不循环小数。
虽然无理数系能够表示无理数,但它 无法表示某些超越无理数,如某些高 阶无穷小量和高阶无穷大量。
无理数系的作用
无理数系使得数学能够处理所有的无 理数,如常见的圆周率π和自然对数 的底数e。
02
复数的引入
复数的定义

总结词
复数是实数域的扩充,由实部和虚部组成,表示为a+bi的形式,其中a和b是实 数,i是虚数单位。
04
复数在物理中的应用
交流电的分析
交流电的频率和相位分析
复数可以用于表示交流电的电压和电流,通过分析复数的模和辐角,可以得出电压和电流的有效值和 相位信息。
阻抗匹配
在电子和电气工程中,阻抗匹配是非常重要的概念。利用复数表示阻抗,可以方便地分析电路中的电 压和电流关系,实现阻抗匹配。
波动方程的求解
算符和矩阵
在量子力学中,算符和矩阵是非 常重要的概念。利用复数表示算 符和矩阵,可以简化计算过程, 并方便地描述量子态的变化。
05
复数的历史与文化背景
复数在数学史中的地位
数学发展里程碑

高中数学苏教版选修2-2第三章《数系的扩充与复数的引入》word导学案(含解析)

高中数学苏教版选修2-2第三章《数系的扩充与复数的引入》word导学案(含解析)

第 3 章 数系的扩充与复数的引入第1课时 数系的扩充教学过程随着生产和科学发展的需要数集逐步扩充,它的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.一、 问题情境怎样将实数集进行扩充,使得x 2=-1之类方程在新的数集中有解呢?二、 数学建构问题1 怎样解决-1也能开平方的问题?解 引入虚数单位i ,规定:① i 2=-1;① 实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.i 是-1的一个平方根.问题2 根据虚数单位的规定,得到形如a+b i (a ,b ∈R )的数,这样的新数由两部分组成,用怎样的名词定义这样的新数?解 ① 复数的定义:形如a+b i (a ,b ∈R )的数叫复数,a 叫复数的实部,b 叫复数的虚部,全体复数所成的集合叫做复数集,用字母C 表示.① 复数的代数形式:复数通常用字母z 表示,即z=a+b i (a ,b ∈R ),把复数表示成a+b i 的形式,叫做复数的代数形式.问题3 复数与实数有什么关系?解 对于复数a+b i (a ,b ∈R ),当且仅当b=0时,复数a+b i (a ,b ∈R )是实数a ;当b ≠0时,复数z=a+b i 叫做虚数;当a=0且b ≠0时,z=b i 叫做纯虚数;当且仅当a=b=0时,z 就是实数0.(图1)学生分组活动活动1 复数集C 和实数集R 之间有什么关系? 活动2 如何对复数a+b i (a ,b ∈R )进行分类? 活动3 复数集、实数集、虚数集、纯虚数集之间的关系,可以用韦恩图表示出来吗? 问题4 a=0是z=a+b i 为纯虚数的充分条件吗? 解 是必要不充分条件. 问题5 两个复数相等的充要条件是什么? 解 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,如果a,b,c,d∈R,那么a+b i=c+d i∈a=c,b=d.问题6:任何两个复数都能比较大小吗?解如果两个复数都是实数,就可以比较大小;当两个复数不全是实数时,不能比较大小.三、数学运用【例1】(教材第110页例1)写出复数4,2-3i,0,-+i,5+i,6i的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.[1](见学生用书P54)[处理建议]让学生口答,根据复数的定义,学生一般能回答这个问题,指出复数由两部分组成.[规范板书]解4,2-3i,0,-+i,5+i,6i的实部分别是4,2,0,-,5,0;虚部分别是0,-3,0,, ,6.4,0是实数;2-3i,-+i,5+i,6i是虚数,其中6i是纯虚数.[题后反思]对于复数z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数z看成一个整体,又要从实部与虚部的角度分解成两部分去认识它.这是解复数问题的重要思路之一.变式实数0是复数吗?i2的实部与虚部分别是什么?[规范板书]解0是复数;由i2=-1知,i2实部为-1,虚部为0.【例2】(教材第110页例2)实数m取什么值时,复数z=m(m-1)+i(m-1)是:(见学生用书P54)(1)实数?(2)虚数?(3)纯虚数?[2][处理建议]先分析,注意字母的取值范围.由m∈R可知(m-1),m(m-1)都是实数,根据复数的分类分别确定m的值.然后让学生上黑板板书,看学生是否是先列式后求解.尤其观察学生有没有对纯虚数分实部、虚部两个方面列式.[规范板书]解(1)当m-1=0,即m=1时,复数z是实数.(2)当m-1≠0,即m≠1时,复数z是虚数.(3)当m(m-1)=0,且m-1≠0,即m=0时,复数z是纯虚数.[题后反思]判断一个含有参数的复数在什么情况下是实数、虚数、纯虚数,首先要观察参数的取值范围,然后正确列式、解方程或不等式.变式m取何实数时,复数z=+(m2-2m-15)i 是:(1)实数?(2)虚数?(3)纯虚数?[规范板书]解(1)由解得所以当m=5时,z是实数.(2)由得所以当m≠5且m≠-3时,z是虚数.(3)由得所以当m=3或m=-2时,z是纯虚数.[题后反思]判断一个含有参数的复数在什么情况下是实数、虚数、纯虚数,首先要保证参数值有意义,如果忽略了实部是含参数的分式中的分母m+3≠0,就会酿成根本性的错误;其次对参数值的取舍,是取“并”还是“交”,非常关键,多与少都是不对的,解答后进行验算是很有必要的.【例3】(教材第111页例3)已知(x+y)+(x-2y)i=(2x-5)+(3x+y)i,求实数x,y的值.[3](见学生用书P54)[处理建议]要让学生规范表达和书写,把复数相等转化为求实数方程组的解.[规范板书]解根据两个复数相等的充要条件,可得解得[题后反思]复数问题实数化.变式已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∈P=P,求实数m的值.[规范板书]解因为M∈P=P,所以M∈P.①由(m2-2m)+(m2+m-2)i=-1,得解得m=1.①由(m2-2m)+(m2+m-2)i=4i,得解得m=2.综上可知m=1或m=2.[题后反思](1)复数相等的条件,是求复数值及在复数集内解方程的重要依据.(2)根据复数相等的定义可知,在a=c,b=d中,只要有一个不成立,那么a+b i≠c+d i.所以,一般地,两个复数只有说相等或不相等,而不能比较大小,例如,1+i和3+5i不能比较大小.*【例4】已知复数z=k2-3k+(k2-5k+6)i(k∈R),且z<0,求k的值.[4][处理建议]分析条件,由z<0知z∈R且实部为负数.[规范板书]解因为z<0,k∈R,所以所以k=2.[题后反思]只有两个复数都是实数时,才能比较大小.一般地,两个复数只有说相等或不相等,而不能比较大小,例如,2i和3i不能比较大小.四、课堂练习1.设C={x|x为复数},A={x|x为实数},B={x|x为纯虚数},全集U=C,那么下列结论正确的是①.(填序号)①A∈B=C;①∈U A=B;①A∩∈U B=∈;①B∈∈U B=C.2.已知a,b∈R,则a=b是(a-b)+(a+b)i为纯虚数的必要不充分条件.3.已知复数z=m2(1+i)-(m+i)(m∈R),若z是实数,则m的值为±1;若z是虚数,则m的取值范围是(-∞,-1)∈(-1,1)∈(1,+∞);若z是纯虚数,则m的值为0.提示z=(m2-m)+(m2-1)i.当m2-1=0,即m=±1时,复数z是实数.当m2-1≠0,即m≠±1时,复数z是虚数.当m2-m=0,且m2-1≠0,即m=0时,复数z是纯虚数.4.若实数x,y满足(x+y)+(x-y)i=2,则xy的值是1.提示由(x+y)+(x-y)i=2(x,y∈R)得所以所以xy=1.五、课堂小结1.本节课我们学习了虚数单位i及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件等概念.2.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识形成较完整的认识,以及利用转化的思想将复数问题转化为实数问题.第2课时复数的四则运算(1)教学过程一、问题情境由(2+3x)+(1-4x)=3-x类比猜想,能否按同样的法则实施复数的加法呢?例如,(2+3i)+(1-4i)=3-i是否合理?二、数学建构问题1在复数集中两个复数如何进行加法运算?解在引入虚数单位i的过程中,规定i与实数一起可以按照实数的运算法则进行四则运算.在对复数的加法进行运算时,又作一次新的规定:规定:若z1=a+b i,z2=c+d i,则z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i.问题2在实数范围内,两个数的加法满足哪些运算律?在复数范围内,能否也成立?问题3怎样理解复数的减法法则?解复数减法是复数加法的逆运算.设(a+b i)-(c+d i)=x+y i(x,y∈R),即复数x+y i为复数a+b i减去复数c+d i的差.由规定,得(x+y i)+(c+d i)=a+b i,依据加法法则,得(x+c)+(y+d)i=a+b i,依据复数相等定义,得即故(a+b i)-(c+d i)=(a-c)+(b-d)i.从而记z1=a+b i,z2=c+d i,得z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i.问题4初中学习了多项式乘以多项式,你们能化简(a+b)(c+d)吗(a,b,c,d是有理数)?积还是无理数吗?若将“”换为“i”,其中i是虚数单位,能化简吗?(a,b,c,d都是实数)解(a+b)(c+d)=ac+ad+bc+bd··=(ac+2bd)+(ad+bc).因为a,b,c,d∈Q,所以ac,2bd,ad,bc都是有理数.所以ac+2bd∈Q,ad+bc∈Q.而是无理数,当ad+bc≠0时,(a+b)(c+d)是无理数.又(a+b i)(c+d i)=ac+ad i+bc i+bd i2=(ac-bd)+(ad+bc)i.(因为i2=-1,所以才能合并)因为a,b,c,d∈R,所以ac-bd∈R,ad+bc∈R.所以(ac-bd)+(ad+bc)i是复数.这就是两个复数的代数形式的乘法运算法则,于是规定复数的乘法按照以下的法则进行:设z1=a+b i,z2=c+d i(a,b,c,d∈R)是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(bc+ad)i.其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.问题5实数的乘法满足哪些运算律?复数中能类比吗?解实数中的乘法运算满足交换律、结合律以及分配律.这些在复数集中的乘法运算也是成立的,即z1,z2,z3∈C,有(1)z1·z2=z2·z1;(2)(z1·z2)·z3=z1·(z2·z3);(3)z1(z2+z3)=z1z2+z1z3.复数的代数式相乘,可按多项式类似的办法进行,只是在运算过程中把i2换成-1,然后把实部与虚部分别合并,不必去记公式.问题6复数z=a+b i的共轭复数是什么?特别地,实数a的共轭复数是什么?解=a-b i;实数的共轭复数是它本身.三、数学运用【例1】(教材第114页例1)计算:(1-3i)-(2+5i)+(-4+9i).[1](见学生用书P55)[处理建议]类比多项式合并同类项法则,把实部与虚部分别相加减.[规范板书]解原式=(1-2-4)+(-3-5+9)i=-5+i.[题后反思]不要省略步骤,提高运算的正确率.变式计算(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2019+2019i)+(2019-2019i).[规范板书]解法一原式=(1-2+3-4+...-2019+2019)+(-2+3-4+5+ (2019)2019)i=(2019-1001)+(1001-2019)i=1002-1003i.解法二因为(1-2i)+(-2+3i)=-1+i,(3-4i)+(-4+5i)=-1+i,…(2019-2019i)+(-2019+2019i)=-1+i,相加得(共有1001个式子):原式=1001(-1+i)+(2019-2019i)=(2019-1001)+(1001-2019)i=1002-1003i.【例2】(教材第114页例2)计算(-2-i)(3-2i)(-1+3i).[2](见学生用书P56)[处理建议]3个复数相乘,先计算其中两个复数的积,再与第3个复数相乘.[规范板书]解原式=(-8+i)(-1+3i)=5-25i.[题后反思]也可以计算后两个复数的积,再与第1个复数相乘,从而验证复数乘法满足结合律.【例3】(教材第114页例3)计算(a+b i)(a-b i).[3](见学生用书P56)[处理建议]类比多项式平方差公式,要记得把i2换成-1.[规范板书]解原式=a2-(b i)2=a2+b2.[题后反思]在复数集内,两个实数的平方和也能分解因式.变式在复数范围内分解因式:(1)x2+4;(2)x4-4.[规范板书]解(1)x2+4=(x+2i)(x-2i).(2)x4-4=(x2+2)(x2-2)=(x+i)(x-i)(x+)(x-).*【例4】已知z=(3i-1)i,则=-3+i.[4][处理建议]先进行乘法运算,然后根据共轭复数的定义求出结果.[规范板书]解z=(3i-1)i=-3-i,所以=-3+i.[题后反思]认清符号表示z的共轭复数.*【例5】已知z-3i=1+3i,求复数z.[5][处理建议]这是一道复数方程,利用复数相等的充要条件把复数方程转化为实数方程组.[规范板书]解设z=a+b i(a,b∈R),则a2+b2-3i(a-b i)=1+3i,所以有a2+b2-3b=1且-3a=3,解得a=-1,b=0或b=3,故z=-1或z=-1+3i.[题后反思]待定系数法解复数方程.四、课堂练习1.计算:(6+6i)+(3-i)-(5-3i)=4+8i.提示(6+6i)+(3-i)-(5-3i)=(6+3-5)+(6-1+3)i=4+8i.2.复数z=i2(1+i)的虚部为-1.提示z=i2(1+i)=(-1)·(1+i)=-1-i,所以虚部为-1.3.若复数z=-1+2i,则复数的虚部是-2.提示因为z=-1+2i,所以=-1-2i,所以虚部为-2.4.把复数z的共轭复数记作,i为虚数单位,若z=1+i,则(1+z)·=3-i.提示(1+z)·=(2+i)(1-i)=3-i.5.(教材第115页练习6)求满足下列条件的复数z:(1)z+i-3=3-i;(2)+(3-4i)=1;(3)(3-i)z=4+2i;(4)(-i)z=+i.解(1)z=6-2i.(2)=-2+4i,z=-2-4i.(3)z===1+i.(4)z===+i.五、课堂小结1.这节课我们学习了复数代数形式的加、减法运算及乘法运算.2.基本思想是:类比多项式的运算,理解复数的相关运算.[6]第3课时复数的四则运算(2)教学过程一、问题情境在实数中,除法运算是乘法的逆运算.类似地,可以怎样定义复数的除法运算?二、数学建构问题1复数的除法法则是什么?解设复数a+b i(a,b∈R)除以c+d i(c,d∈R),其商为x+y i(x,y∈R),其中c+d i≠0,即(a+b i)÷(c+d i)=x+y i.因为(x+y i)(c+d i)=(cx-dy)+(dx+cy)i,所以(cx-dy)+(dx+cy)i=a+b i.由复数相等的定义可知解这个方程组,得于是有(a+b i)÷(c+d i)=+i.由于c+d i≠0,所以c2+d2≠0,可见两个复数的商仍是一个复数.利用待定系数法和等价转化的思想来推导除法法则,最后再利用两个复数相等的定义解.问题2初中我们学习的化简无理分式时,采用的分母有理化的思想方法,而c+d i的共轭复数是c-d i,能否模仿分母有理化的方法对复数商的形式进行分母实数化?解====+i.所以(a+b i)÷(c+d i)=+i.三、数学运用【例1】i+i2+i3+…+i2 010+i2 011+i2 012.[1](见学生用书P57)[处理建议]i n是周期出现的,i n+i n+1+i n+2+i n+3=0(n∈N*).[规范板书]解原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 009+i2 010+i2 011+i2 012)=0.[题后反思]可能有学生考虑用等比数列求和公式.原式==0,这个方法也很好.变式计算i+2i2+3i3+…+1 997i1 997.[规范板书]解原式=(i-2-3i+4)+(5i-6-7i+8)+(9i-10-11i+12)+…+(1993i-1994-1995i+1996)+1 997i=499·(2-2i)+1 997i=998+999i.【例2】(教材第116页例4)设ω=-+i,求证:(1) 1+ω+ω2=0;(2)ω3=1;(3)ω2=,=ω.[2](见学生用书P57)[处理建议]先计算ω2,再做加法.[规范板书]证明(1) 1+ω+ω2=1++=+i+-2××i+=+i+-i-=0.(2)ω3==+3··i+3··+=-+i+-i=+i=1.(3)ω=1,由(2)知ω2===,同理=ω.[题后反思]对于第(2)小题,也可以这样做,要证ω3=1,只要证ω3-1=0即可.由ω3-1=(ω-1)·(ω2+ω+1)=(ω-1)·0=0,由此可知,1有3个立方根:1,ω,.变式设z=+i,求证:(1) 1-z+z2=0;(2)z3=1;(3)z2=-.[规范板书]解由例2知z=+i=-,所以=-ω.(1) 1-z+z2=1++(-)2=1++ω=0.(2)z3=(-)3=1.(3)z2=(-)2=ω=-.【例3】计算:(1+2i)÷(3-4i).[3](见学生用书P58)[处理建议]用两种方法做复数的除法运算.[规范板书]解法一设(1+2i)÷(3-4i)=x+y i,所以1+2i=(3-4i)(x+y i),1+2i=(3x+4y)+(3y-4x)i.所以3x+4y=1且3y-4x=2.所以x=-,y=.所以(1+2i)÷(3-4i)=-+i.解法二(1+2i)÷(3-4i)=====-+i.[题后反思]解法一根据复数相等的充要条件应用待定系数法求复数,是常用的方法之一;解法二体现了复数问题实数化的基本思想.变式计算.解原式======1-i.*【例4】计算+.[4][处理建议]先计算=-i,再利用i n的周期性;对于,不易发现分子与分母的关系,可先启发寻找a+b i与b-a i之间的关系.[规范板书]解原式=+=-i+(-i)1997=-2i.[题后反思]在学习过程中积累一些常用结论,可以更有效地简化计算,提高计算速度.又如(1+i)2=2i,(1-i)2=-2i,=-i,===i.变式计算:i2 007+(+i)8-+.解原式=i4×501+3+[2(1+i)2]4-+=i3+(4i)4-+i=-i+256++i=256+=256-i.*【例5】已知z2=8+6i,求复数f(z)=z3-16z-的值.[5][处理建议]利用待定系数法,求出z,再代入求f(z).[规范板书]解设z=x+y i(x,y∈R),所以由①得y=,代入①得x2-=8,所以x4-8x2-9=0,所以x2=9或x2=-1(舍去).所以x=±3.当x=3时,y=1;当x=-3时,y=-1.所以z=±(3+i).当z=3+i时,f(3+i)=(3+i)3-16(3+i)-=33+3·32·i+3·3·i2+i3-48-16i-=27+27i-9-i-48-16i-30+10i=-60+20i.当z=-3-i时,f(-3-i)=(-3-i)3-16(-3-i)-=-(27+27i-9-i)+48+16i+=60-20i.[题后反思]通过此例,会求任意一个复数的平方根,会在复数范围内求函数式的值.四、课堂练习1.复数-i+=-2i .提示-i+=-i-i=-2i.2.计算:(1);(2).解(1)===-i.(2)解法一====i.解法二===i.3.=-i.解=i2 011=i3=-i.4.在复数范围内写出方程x4=1的根.解x4-1=(x2-1)(x2+1)=(x+1)(x-1)(x+i)(x-i),所以方程x4=1的根为1,-1,i,-i.五、课堂小结1.在进行复数四则运算时,我们既要做到会做,会解,更要做到快速解答.在学习过程中积累一些常用结论,可以更有效地简化计算,提高计算速度,例如:(1+i)2=2i,(1-i)2=-2i,=i,=-i;若ω=-+i,则1+ω+ω2=0,ω3=1;===i.2.在进行复数的四则运算时,容易出现的错误有:(1)由于对i的性质掌握不准确致误.如“i2=1”“i4=-1”等在计算中是常见的错误.事实上,i2=-1,i4=1.(2)在计算除法运算时出错.因为复数的除法运算是四则运算中最麻烦的一种,常会出现一些计算上的错误.第4课时复数的几何意义教学过程一、问题情境实数可以用数轴上的点来表示.实数数轴上的点.类比实数的表示,复数能否也用点来表示?二、数学建构问题1怎样用平面内的点表示复数?怎样理解复平面、实轴、虚轴?解复数z=a+b i(a,b∈R)与有序实数对(a,b)是一一对应关系,而有序实数对(a,b)与平面直角坐标系中的点Z(a,b)是一一对应的,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.复数z=a+b i(a,b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数.因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数.问题2复数与从原点出发的向量是如何对应的?解复数z=a+b i(a,b∈R)的对应向量是以原点O为起点的,否则就谈不上一一对应.问题3我们知道任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离;那么我们可以给出复数的绝对值的概念吗?复数可以用向量表示,任何一个向量都有模(或绝对值),它表示向量的长度,那么复数的模与向量的模有什么联系?复数的模的几何意义是什么?解|z|==||,表示复平面内该点到原点的距离.问题4既然复数可以用向量表示,那么复数的加法有什么几何意义呢?[1]问题5复数减法是复数加法的逆运算,怎样利用向量减法的几何意义来认识复数减法的几何意义?两个复数差的模有什么几何意义?[2]解|z1-z2|表示复平面内与这两个复数对应的两点间的距离.通过该部分内容的学习,认识到复数加、减法的法则与平面向量加、减法的坐标形式是完全一致的,将数学不同知识之间建立起了联系.三、数学运用【例1】(教材第121页例1)在复平面内,分别用点和向量表示下列复数:4,2+i,-i,-1+3i,3-2i.[3](见学生用书P59)[处理建议]让学生上黑板画图,体会复数z=a+b i(a,b∈R)可用点Z(a,b)表示,也可以用原点O为起点的向量表示.[规范板书]如图,点A,B,C,D,E分别表示复数4,2+i,-i,-1+3i,3-2i.(例1)与之对应的向量可用,,,,来表示.[题后反思]了解复数的两种几何表示,常把复数z=a+b i说成点Z或向量.变式1在复平面内分别用点表示复数2-3i,5i,-3,-5+3i及其共轭复数.[规范板书]解复数2-3i,5i,-3,-5+3i表示的点分别为A,B,C,D,其对应的共轭复数表示的点分别为A',B',C',D'.作图如下:(变式)[题后反思]z,在复平面内对应的点关于x轴对称.变式2已知z=(x+1)+(y-1)i 在复平面所对应的点在第二象限,求x与y的取值范围.[规范板书]解由题得所以【例2】(教材第121页例2)已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.[4](见学生用书P60)[处理建议]要求学生口答复数模的计算公式.思考:z1,z2不能比较大小,为什么它们的模可以比较大小?[规范板书]解因为|z 1|==5,|z2|==,所以|z1|<|z2|.[题后反思]正确记忆复数模的计算公式,防止出现|z|=a2+b2;任意两个复数,它们的模都可以比较大小,但是两个复数,只要其中有一个不是实数,它们就不能比较大小.从自然数集逐步扩展到实数集,顺序性始终都是保持着的,但是在复数集中这一性质失去了.变式1已知复数z=(x-1)+(2x-1)i的模小于,那么实数x的取值范围是.提示由题意知(x-1)2+(2x-1)2<10,解得-<x<2.变式2已知复数z1=a+b i,z2=1+a i(a,b∈R),若|z1|<z2,则b的取值范围是(-1,1).提示因为|z1|<z2,所以z2为实数,故a=0,所以<1,即|b|<1,-1<b<1,所以b的取值范围是(-1,1).【例3】(教材第121页例3)设z∈C,满足下列条件的点Z的集合是什么图形?[5](1)|z|=2;(2) 2<|z|<3.(见学生用书P60)[处理建议]区分关于复数模的等式与不等式的几何意义.[规范板书](1)因为|z|=2,即||=2,所以满足|z|=2的点Z的集合是以原点为圆心、以2为半径的圆,如图(1).(例3(1))(例3(2))(2)不等式2<|z|<3可化为不等式组,不等式|z|>2的解集是圆|z|=2外部所有点组成的集合,不等式|z|<3的解集是圆|z|=3内部所有点组成的集合,这两个集合的交集就是上述不等式组的解集.因此,满是条件2<|z|<3的点Z的集合是以原点为圆心、分别以2和3为半径的两个圆所夹的圆环,但不包括圆环的边界,如图(2).[题后反思]了解复数模的几何意义,|z|表示复平面内该点到原点的距离.关于复数模的不等式组的几何意义是圆环(要区分是否包括边界).变式已知复数z满足条件z=x+y i,x<0,y>0,且x2+y2<9,求此复数在复平面内表示的图形.[规范板书]解如图所示,所求图形是以原点O为圆心的半径为3个单位长度的扇形OAB的内部,不包括边界和半径OA,OB.(变式)*【例4】设全集U=C,A={z|||z|-1|=1-|z|,z∈C},B={z||z|<1,z∈C},若z∈A∩(∈U B),求复数z 在复平面内对应的点的轨迹.[6][处理建议]求复数z在复平面内对应的点的轨迹,由复数模的几何意义可知,只需求出|z|所满足的条件即可.而这由z∈A∩(∈U B)及集合的运算即可得出.[规范板书]解因为z∈C,所以|z|∈R,所以1-|z|∈R,由||z|-1|=1-|z|,得1-|z|≥0,即|z|≤1,所以A={z||z|≤1,z∈C}.又因为B={z||z|<1,z∈C},所以∈U B={z||z|≥1,z∈C}.因为z∈A∩(∈U B)等价于z∈A 且z∈∈U B,所以成立,则有|z|=1,由复数模的几何意义知,复数z在复平面内对应的点的轨迹是以原点为圆心、以1为半径的圆.[题后反思]对于复数的模,可以从以下两个方面进行理解:一是任何复数的模都表示一个非负的实数;二是复数的模表示该复数在复平面内对应的点到原点的距离.所以复数的模是实数的绝对值概念由一维空间向二维空间的一种推广.四、课堂练习1.下面给出4个不等式,其中正确的是①.(填序号)①3i>2i;①|2+3i|>|1-4i|;①|2-i|>2i4;①i2>-i.提示由两个复数如果不都是实数就不能比较大小可知①①错误.又因为|2+3i|=== ,|1-4i|==,所以|2+3i|<|1-4i|,故①错误.|2-i|=>2i4=2,故①正确.2.复数z=(i为虚数单位)在复平面内对应的点所在的象限为第四象限.提示因为z===-i,所以复数z对应的点的坐标为,在第四象限.3.若复数3-5i,1-i和-2+a i在复平面上对应的点在同一条直线上,则实数a的值为5.提示复数3-5i,1-i和-2+a i在复平面内对应的点分别为(3,-5),(1,-1),(-2,a),所以由三点共线的条件可得=,解得a=5.4.已知z1,z2为复数,且|z1|=1,若z1+z2=2i,则|z1-z2|的最大值是4.提示由z1+z2=2i得z1=2i-z2,代入|z1|=1得|2i-z2|=1,所以|z2-2i|=1,即z2轨迹是以(0,2)为圆心、以1为半径的圆(如图).又z1轨迹为以原点为圆心、以1为半径的圆,故|z1-z2|为两圆上点的距离,最大值为4.(第4题)五、课堂小结1.复数z=a+b i(a,b∈R)的对应点的坐标为(a,b),而不是(a,b i).2.复数z=a+b i(a,b∈R)的对应向量是以原点O为起点的,否则就谈不上一一对应.3.|z|==||.4.复数z=a+b i、点Z(a,b)和向量之间的关系如下图所示.正因如此,常把复数z=a+b i说成点Z或向量.这种对应关系架起了联系复数与解析几何之间的桥梁,使得复数问题可以用几何方法解决,而几何问题也可以用复数方法解决(即数形结合法),这增加了解决复数问题的途径.(图1)。

数学史融入“数系的扩充与复数的引入”的教学研究

数学史融入“数系的扩充与复数的引入”的教学研究

总结
总结
本次演示探讨了数学史融入数学教学的意义与方式。通过融入数学史,可以 帮助学生更好地理解数学理论和实践,提高他们的数学素养和综合素质。数学史 也为教师提供了更加丰富的教学资源和指导方法。常见的融入方式包括在课程设 计中融入数学史内容、适当引入历史案例、让学生阅读数学史相关书籍和文献以 及开展数学史主题的实践活动。
2.在数学教学中适当引入历史案 例
2.在数学教学中适当引入历史案例
在数学教学中,教师可以根据教学内容,适当引入历史案例。例如,在讲解 数论时,可以引入著名的“哥德巴赫猜想”,让学生们了解数论的发展历程和未 来的研究方向。同时,教师还可以引导学生们探讨历史案例中所蕴含的数学思想 和解决方法,以便他们更好地掌握数学知识。
数学史在“数系的扩充与复数的引入”教学中的应用
2、培养学生的创新精神:通过介绍数学家在研究数系扩充和复数引入过程中 的创新精神,可以鼓励学生积极探索、勇于创新。例如,可以讲述笛卡尔如何打 破传统思维,将代数与几何相结合,从而推动了数系扩充的研究。
数学史在“数系的扩充与复数的引入”教学中的应用
3、强化数学概念的理解:通过数学史的融入,可以帮助学生更好地理解数学 概念的来龙去脉和实际应用。例如,在讲解复数时,可以介绍复数在电信号处理、 量子力学等领域的应用,从而帮助学生更好地理解复数的意义和价值。
四、数学史在统计学教学中的应 用
四、数学史在统计学教学中的应用
统计学是数学的重要分支,对于中学生来说,掌握统计学的基本概念和方法 是学习数学的重要任务之一。在教授统计学的过程中,教师可以引入数学史的内 容,例如统计学的起源和发展历程、统计学家的研究故事等,帮助学生了解统计 学的背景和发展历程,加深对统计学概念和方法的理解。

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

高中数学 第三章 数系的扩充与复数的引入 3.1.1 数系

= =
1, 1
C.
������ ������
= =
0, 2
D.
������ = -1, ������ = -1
解析:由
������ + ������ = 2, 得 ������-������ = 0,
������ ������
= =
1, 1.
故选B.
答案:B
知识梳理
3.复数的分类 (1)对于复数a+bi,当且仅当b=0时,它是实数;当且仅当a=b=0时, 它是实数0;当b≠0时,叫做虚数;当a=0,且b≠0时,叫做纯虚数. 这样,复数z=a+bi(a,b∈R)可以分类如下: 复数������ 实数(������ = 0)
我们规定:a+bi与c+di相等的充要条件是a=c,且b=d .
温馨提示应用两个复数相等的充要条件时,首先要把“=”左右两
边的复数写成代数形式,即分离实部与虚部,然后列出等式求解. 【做一做2】 满足x+y+(x-y)i=2的实数x,y的值为 ( )
A.
������ ������
= =
2, 0
B.
������ ������
要条件;但若a=0,且b=0,则a+bi=0为实数,即不是充分条件.故选B.
答案:B
重难聚焦
1.数系扩充的一般原则是什么? 剖析数系扩充的脉络是:自然数系→整数系→有理数系→实数系 →复数系,用集合符号表示为N→Z→Q→R→C. 从自然数系逐步扩充到复数系的过程可以看出,数系的每一次扩 充都与实际需求密切相关.数系扩充后,在新数系中,原来规定的加 法运算与乘法运算的定律仍然适用,加法和乘法都满足交换律和结 合律,乘法对加法满足分配律. 一般来说,数的概念在扩大时,要遵循如下几项原则: (1)增添新元素,新旧元素在一起构成新数集; (2)在新数集里,定义一些基本关系和运算,使原有的一些主要性 质(如运算定律)依然适用; (3)旧元素作为新数集里的元素,原有的运算关系保持不变; (4)新的数集能够解决旧的数集不能解决的矛盾.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工具
第四章 平面向量、数系的扩充与复数的引入
(4)复数的模
→ 向量OZ的长度 r 叫做复数 z=a+bi 的模,记作
即|z|=|a+bi|= a2+b2
.
|z| 或 |a+bi| ,
【思考探究】 任意两个复数能比较大小吗? 提示: 不一定,只有这两个复数全是实数时才能比较大小.
工具
第四章 平面向量、数系的扩充与复数的引入
工具
第四章 平面向量、数系的扩充与复数的引入
工具
(2)复数的运算定律 若z1、z2、z3∈C,m、n∈N+,则 ①z1+z2= z2+z1 . ②(z1+z2)+z3= z1+(z2+z3) . ③z1z2= z2z1 . ④z1(z2z3)=(z1z2)z3 . ⑤z1(z2+z3)= z1z2+z1z3 . ⑥zmzn= zm+n . ⑦(zm)n= zmn . ⑧(z1z2)n=z1nz2n .
第四章 平面向量、数系的扩充与复数的引入
【变式训练】 1.将本例中的第(3)问改为“对应的点在第三象限”, 又如何求解?
a2-2a<0 解析: z 对应的点在第三象限,则a2-3a+2<0 , 即01< <aa< <22 , 解得 1<a<2. ∴a 的取值范围是(1,2).
工具
第四章 平面向量、数系的扩充与复数的引入
解析: ∵z1=4+29i,z2=6+9i, ∴(z1-z2)i=(-2+20i)i=-20-2i, ∴复数(z1-z2)i的实部为-20. 答案: -20
工具
第四章 平面向量、数系的扩充与复数的引入
5.已知0<a<2, 复数z=a+i的模的取值范围是________.
解析: ∵|z|=|a+i|= a2+1,且 0<a<2, ∴0<a2<4,∴1<a2+1<5.∴1<|z|< 5. 答案: (1, 5)
1.复数的四则运算类似于多项式的四则运算,此时含有虚数单位i 的看作一类同类项,不含i的看作另一类同类项,分别合并即可,但要注 意把i的幂写成最简单的形式,在运算过程中,要熟悉i的特点及熟练应用 运算技巧.
工具
工具
第四章 平面向量、数系的扩充与复数的引入
当实数a为何值时,z=a2-2a+(a2-3a+2)i (1)为实数;(2)为纯虚数;(3)对应的点在第一象限内.
解析: (1)由 z 为实数得,a2-3a+2=0,
即(a-1)(a-2)=0.
解得 a=1 或 a=2.
a2-2a=0

(2)由 z 为纯虚数得a2-3a+2≠0 ②
第四章 平面向量、数系的扩充与复数的引入
1.在复平面内,复数z=i(1+2i)对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析: ∵z=i(1+2i)=-2+i,∴复数z在复平面内对应的点为
Z(-2,1),该点位于第二象限.
答案: B
工具
第四章 平面向量、数系的扩充与复数的引入
由①得 a=0 或 a=2,
由②得 a≠1 且 a≠2,
∴a=0.
工具
第四章 平面向量、数系的扩充与复数的引入
(3)当 z 对应的点在第一象限时,
a2-2a>0
a<0或a>2
有a2-3a+2>0 ,得a<1或a>2 ,
解得 a<0 或 a>2.
∴a 的取值范围是(-∞,0)∪(2,+∞).
工具
2.复数的几何意义
(1)复平面的概念: 建立直角坐标系来表示复数的平面
叫做
复平面.
(2)实轴、虚轴:在复平面内,x轴叫做 实轴 ,y轴叫做 虚轴 , 实轴上的点都表示 实数 ;除原点以外,虚轴上的点都表示 纯虚数 .
(3)复数的几何表示: 复数 z=a+bi 复平面内的点
z(a,b) 平面向量O→Z.
2.已知复数 z=1-i,则z-z21=(
)
A.2
B.-2
C.2i
D.-2i
解析: ∵z=1-i, ∴z-z2 1=1--ii2=--2ii=2.
答案: A
工具
第四章 平面向量、数系的扩充与复数的引入
3.设 z 为复数 z 的共轭复数,若复数 z 同时满足 z- z =2i, z =iz,
则 z 为( ) A.1+i C.1-i
工具
第四章 平面向量、数系的扩充与复数的引入
工具
第四章 平面向量、数系的扩充与复数的引入
处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从 定义出发,把复数问题转化成实数问题来处理.每一个复数 z=a+bi(a,
→ b∈R),在复平面内有唯一的一个点 Z(a,b)和它对应,而点 Z(a,b)与OZ 存在唯一对应关系,故复数可用点或向量表示.
工具
第四章 平面向量、数系的扩充与复数的引入
3.复数的运算
(1)复数的加、减、乘、除运算法则
设 z1=a+bi,z2=c+di(a,b,c,d∈R),则 ①加法:z1+z2=(a+bi)+(c+di)= (a+c)+(b+d)i ; ②减法:z1-z2=(a+bi)-(c+di)= (a-c)+(b-d)i ; ③乘法:z1·z2=(a+bi)(c+di)= (ac-bd)+(ad+bc)i; ④除法:zz12=ac++dbii=ac++dbiicc--ddii=ac+bdc2++db2c-adi(c+di≠0).
第4课时 数系的扩充与复数的引入
工具
第四章 平面、数系的扩充与复数的引入
1.复数的有关概念 (1)复数的概念 形如a+bi(a,b∈R)的数叫复数,其中a,b分别是它的 实部 和 虚部 .若 b=0 ,则a+bi为实数;若 b≠0 ,则a+bi为虚数;若 a=0,b≠0 ,则a+bi为纯虚数. (2)复数相等:a+bi=c+di⇔ a=b,c=d (a,b,c,d∈R). (3)共轭复数:a+bi与c+di共轭⇔ a=c,b+d=0 (a,b,c, d∈R).
B.-1+i D.-1-i
解析: 设 z=a+bi(a,b∈R), 则 z =a-bi,∴z- z =2bi=2i,∴b=1.
又 a-bi=i(a+bi),∴-b=a,∴a=-1,∴z=-1+i.
答案: B
工具
第四章 平面向量、数系的扩充与复数的引入
4.若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1- z2)i的实部为________.
相关文档
最新文档