最新北师大版第六章概率初步单元测试题

合集下载

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

2023年北师大版七年级下册数学第六章《概率初步》单元测试卷

D.随机事件发生的概率介于0和1之间
·数学
5.书架上有2本数学书、3本语文书、3本英语书,从中随机 抽取一本,是数学书的概率是( A )
A.14
B.38
C.18
D.34
6.(跨学科融合)在单词statistics(统计学)中任意选择一个字母,
字母为“s”的概率是( C )
A.110
B.15
C.130
球的概率相同,那么a与b的关系是 a+b=10.
14.在x2 2xy y2的空格“ ”中,分别填上“+”或“-”,在
所得的代数式中,能构成完全平方式的概率是
1 2
.
·数学
15.如图,在4×4的正方形网格中,有3个小正方形已经涂黑, 若再涂黑任意一个白色的小正方形(每一分的图形是轴对
奖”这一事件是 随机事件 (填“必然事件”“不可能事件”
或“随机事件”).
12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.
从中随机抽取一张,编号是偶数的概率等于 2 5
.
·数学
13.一个袋中装有a个红球,10个黄球,b个白球,每个球除
颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄
顾客购物10元以上就能获得一次转动转盘的机会,
当转盘停止时,指针落在哪一区域就可以获得相应
的奖品.下表是活动进行中的几组统计数据. (1)计算并完成表格:
转动转盘的次数n 100 落在“铅笔”的次数m 67 落在“铅笔”的频率mn 0.670
200 145
0.725
500 357
0.714
800 552
(2)(1)(3)(5)(4).
·数学
21.暑假将至,某商场为了吸引顾客,设计了可以自由转动 的转盘(如图,转盘被均匀地分为20份),并规定:顾客每消 费200元的商品,就能获得一次转动转盘的机会.如果转盘停 止后,指针正好对准红色、黄色、绿色区域,那么顾客就可 以分别获得200元、100元、50元的购物券,凭购物券可以在 该商场继续购物.若某顾客购物300元. (1)求他此时获得购物券的概率是多少? (2)他获得哪种购物券的概率最大?请说明理由.

七年级数学下册《第六章 概率初步》单元测试卷附答案-北师大版

七年级数学下册《第六章 概率初步》单元测试卷附答案-北师大版

七年级数学下册《第六章概率初步》单元测试卷附答案-北师大版一、单选题1.买一张电影票,座位号是偶数号.这个事件是()A.必然事件B.不可能事件C.随机事件D.确定性事件2.袋子中装有3个黑球和1个白球,随机摸出两个球.下列事件是必然事件的是()A.至少摸出一个黑球B.至少摸出一个白球C.摸出两个黑球D.摸出两个白球3.在一个不透明的布袋中装有30个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在04.左右,则布袋中白球可能有()A.12个B.15个C.18个D.20个4.下列说法中错误的是()A.随机事件发生的概率大于0,小于1 B.概率很小的事件不可能发生C.必然事件发生的概率为1 D.不可能事件发生的概率为05.一只不透明的袋中装有2个白球和3个黄球,这些球除颜色外都相同,从袋中任意摸出一个球为白球的概率是()A.23B.25C.35D.526.某厂从生产的一批零件中抽取2000个进行质量检查,结果发现有10个是次品,那么从中任取1个是次品概率约为()A.12000B.1200C.12D.1107.下列事件中属于必然事件的是()A.打开电视机,正在播放“世界杯”B.对从疫情高风险区归来的人员进行核酸检测,检测结果为阳性C.任意画一个四边形,其内角和是360D.掷一枚质地均匀的硬币,前两次反面向上,第三次肯定正面朝上8.下列说法正确的是()A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C.“明天我市会下雨”是随机事件D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖9.一个袋子中装有12个球(袋中每个球除颜色外其余都相同).其活动小组想估计袋子中红球的个数,分10个组进行摸球试验,每一组做400次试验,汇总后,摸到红球的次数为3000次.请你估计袋中红球接近()A.3B.4C.6D.910.有5名同学,3男2女,现随机抽2人参加课外学习小组活动,其中一定抽到女同学的概率是()A.710B.35C.25D.310二、填空题11.从1﹣9的数字卡片中,任意抽一张,抽到奇数的可能性是.12.一个不透明的箱子里装有m个球,其中红球有3个,这些球除颜色外都相同,每次将箱子里的球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出m的值为.13.在一个不透明的布袋中装有4个白球和6个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,则摸到白球的概率是.14.学习电学知识后,小婷同学用四个开关A B C D、、、,一个电源和一个灯泡设计了一个电路图,现任意闭合其中两个开关,则小灯泡发光的概率等于.三、解答题15.有两个盒子,分别装有若干个除颜色外都相同的球,第一个盒子装有4个红球和6个白球,第二个盒子装有6个红球和6个白球.分别从这两个盒子中各摸出1个球,请你通过计算来判断从哪一个盒子中摸出白球的可能性大.16.4件同型号的产品中,有1件不合格品和3件合格品.在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,由此可以推算出x的值大约是多少?17.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.四、综合题18.为了提高学生阅读能力,某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)本次调查的学生有人;请将条形统计图补充完整;(2)扇形统计图中,求出“1.5小时”部分所对的扇形圆心角度数;(3)若该校八年级共有500人,现从中随机抽取一名学生,你认为“抽到周末阅读时间为1.5小时的学生”与“抽到周末阅读时间不高于1小时的学生”的可能性哪个大?.(直接写出结果)19.如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明设计了一个如下方法:①在此封闭图形内画出一个半径为1米的圆.②在此封闭图形旁边闭上眼晴向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:掷小石子落在不规则图形内的总次数50150300500…小石子落在圆内(含圆上)的次数m2059123203…小石子落在圆外的阴影部分(含外缘)的次数n2991176293…m∶n0.6890.6940.6890.706(1)通过以上信息,可以发现当投掷的次数很大时,则m∶n的值越来越接近(结果精确到0.1).(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在附近(结果精确到0.1).(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)20.为了培养学生的创新精神和实践能力,某校组织学生到技师学院开展了为期一周的社会实践活动.每位同学可以在“A(机器人),B(面塑),C(电烙画),D(摄影)”四门课程中选择一门.为公平起见,学校制作了如图所示的转盘,学生转动转盘一次,指针指到的课程即自己参加的实践课程.(1)乐乐是该校的一名学生,乐乐参加“D(摄影)”实践课程的概率是;(2)果果和贝贝是好朋友,他们想参加相同的实践课程,请你用画树状图或列表的方法求他们参加相同实践课程的概率.(四门课程用所对应的字母表示)21.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:抽取的公仔数n101001000200030005000优等品的频数m996951190028564750优等品的频率mn0.90.960.9510.950.9520.95只公仔是优等品的概率的估计值是;(2)若该公司这一批次生产了10000只公仔,求这批公仔中优等品大约有多少只?参考答案与解析1.【答案】C【解析】【解答】解:买一张电影票,座位号是偶数号这个事件是随机事件.故答案为:C【分析】随机事件就是在一定条件下,可能发生也可能不发生的事件,据此可得答案.2.【答案】A【解析】【解答】解:A 、由于只有3个黑球和1个白球,所以摸出两个球至少摸出一个黑球,是必然事件,符合题意;B 、由于只有3个黑球和1个白球,所以摸出两个球可以都是2个黑球,则至少摸出一个白球不是必然事件,不符合题意;C 、由于只有3个黑球和1个白球,所以摸出两个球可以是1个黑球,1个白球,则至摸出两个黑球不是必然事件,不符合题意;D 、由于只有1个白球,则摸出两个白球不可能发生,不是必然事件,不符合题意; 故答案为:A.【分析】必然事件是指一定会发生或一定不会发生的事件;随机事件是指可能发生也可能不发生的事件.根据定义并结合各选项即可判断求解.3.【答案】C【解析】【解答】解:设袋子中黄球有x 个根据题意,得:0.430x= 解得:x =12则白球有301218-=个; 故答案为:C.【分析】设袋子中黄球有x 个,利用袋中黄色小球的数量除以袋中小球的总数量=从袋中随机摸一个小球是黄球的频率,列出方程求解得出x 的值,进而即可算出答案.4.【答案】B【解析】【解答】解:A 、随机事件发生的概率大于0,小于1,故该选项正确,不符合题意;B 、 概率很小的事件也可能发生,故该选项不正确,符合题意;C 、 必然事件发生的概率为1,故该选项正确,不符合题意;D 、不可能事件发生的概率为0,故该选项正确,不符合题意. 故答案为:B【分析】在一定条件下,可能发生,也可能不会发生的事件就是随机事件;在一定条件下,一定不会发生的事件就是不可能事件;在一定条件下,一定会发生的事件就是必然事件,所以随机事件发生的概率大于0,小于1,必然事件发生的概率为1,不可能事件发生的概率为0,概率越大,事件发生的可能性就越大,概率越小,事件发生的可能性就越小,据此即可一一判断得出答案.5.【答案】B【解析】【解答】解:∵从装有2个白球和3个黄球的袋中任意摸出一个球有5种等可能结果其中摸出的球是白球的结果有2种∴从袋中任意摸出一个球,是白球的概率是2 5故答案为:B.【分析】利用白球的个数除以小球的总个数即得结论.6.【答案】B【解析】【解答】解:生产的一批零件中抽取2000个进行质量检查,结果发现有10个是次品,即次品出现的频率是101= 2000200由此估计,从中任取1个是次品概率约为1 200.故答案为:B.【分析】利用概率公式求解即可。

北师大七年级下《第六章概率初步》单元测试有答案

北师大七年级下《第六章概率初步》单元测试有答案

单元测试 (六 )概率初步 (BJ)(时间: 120分钟满分: 150分 )一、选择题 (本大题共15 小题,每题 3分,共 45 分)题123456789101112131415号答CD CCA DC BC BDC DA B 案1.(盐城中考)以下事件中,是必定事件的为(C)A . 3 天内会下雨B.翻开电视,正在播放广告C. 367人中起码有 2 人阳历诞辰同样D.某妇产医院里,下一个出生的婴儿是女孩2.(三明中考)对“某市明日下雨的概率是75%”这句话,理解正确的选项是 (D )A .某市明日将有75%的时间下雨B.某市明日将有75%的地域下雨C.某市明日必定下雨D.某市明日下雨的可能性较大3.有两个事件,事件A:掷一次骰子,向上的一面是3;事件 B:篮球队员在罚球线上投篮一次,投中,则 (C) A .只有事件 A 是随机事件 B .只有事件 B 是随机事件C.事件 A 和 B 都是随机事件 D .事件 A 和 B 都不是随机事件4.2017年3月,某市举办了首届中学生汉字听写大赛,从甲、乙、丙、丁 4 套题中随机抽取一套训练,抽中甲的概率是 ( C)311A. 2B.3C.4D. 15.掷一枚质地平均的硬币10 次,以下说法正确的选项是 (A)A .可能有 5 次正面向上B.必有 5 次正面向上C.掷 2 次必有 1 次正面向上D.不行能 10 次正面向上6.袋中有红球 4 个,白球若干个,它们只有颜色上的差别.从袋中随机地取出一个球,假如取到白球的可能性较大,那么袋中白球的个数可能是(D)A . 3 个B.不足 3 个C. 4 个 D .5 个或 5 个以上7.(贵阳中考)2016年5月,为保证“中国大数据家产峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200 辆车作为服务用车,此中帕萨特60 辆、狮跑40 辆、君越 80 辆、迈腾20 辆,现随机地从这200 辆车中抽取 1 辆作为开幕式用车,则抽中帕萨特的概率是 (C)1132A. 10B.5C.10D.58.(贵阳中考)有5张大小、反面都同样的扑克牌,正面上的数字分别是4, 5, 6, 7, 8.若将这 5 张牌反面朝上洗匀后,从中任意抽取 1 张,那么这张牌正面上的数字为偶数的概率是(B)4321A. 5B.5C.5D.59.小狗在以下图的方砖上走来走去,最后停在黑色方砖上的概率为(C)1727A. 8B.9C.9D.1610.如图,让圆形转盘自由转动一次,指针落在灰色地区的概率是(B)1123A. 2B.3C.3D.4111. 一次抽 活 中 ,印 券1 000 ,此中一等20 ,二等 80 ,三等 200 ,那么第一位抽 者 ( 一 券 )中 的时机是 (D )1 213 A. 50B.25C.5D.1012. 假如小王将 任意投中如 所示的正方形木板,那么 落在暗影部分的概率 (C )11A. 6B.811C.9D.1213. 中有四个能够自由 的 ,每个 被分红若干等份 , ,当 停止后 ,指 指向白色地区的概率同样的是 (D )A . 2 与 3B . 2 与 4C .3 与 4D . 1 与 414 . (湖州中考 )已知一个布袋里装有 2 个 球 , 3 个白球和 a 个黄球 , 些球除 色外其余都同样.若从 布袋里任意摸出 1 个球,是 球的概率13, a 等于 (A )A . 1B . 2C .3D . 415 .在一个不透明的布袋中 , 球、黑球、白球共有若干个 ,除 色外 ,它 的形状、 大小、 地等完整同样. 小 新从布袋 中随机摸出一球 , 下 色后放回布袋中 , 匀后再随机摸出一球 , 下 色⋯⋯这样大批摸球后 ,小新 此中摸出 球的 率 定于 ,摸出黑球的 率 定于0.5. 此 ,他 出以下 :①若 行大批摸球 ,摸出白球的 率 定于 ;②若从布袋中任意摸出一个球, 球是黑 球的概率最大;③若再摸球 100 次,必有 20 次摸出的是 球.此中 法正确的选项是 (B )A . ①②③B .①②C .①③D .②③二、填空 (本大 共5 小 ,每 小 5分,共 25 分)16 . 七年 (1) 班共有学生 54 人,此中有男生 30 人,女生 24 人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大 (填“大”或“小” ). 17 .抛 一枚 地平均的硬 15 次,有 6 次出 正面向上 , 出 正面向上的 率是 .18 .把 有号1, 2, 3, ⋯ ,10 的 10个 球放在一个箱子中, 匀后 ,从中任意取一个 ,号 小于 7的奇数的概率是 310.19 .在一个暗箱里放有 a 个除 色外其余完整同样的球 , a 个球中 球只有 3 个.每次将球 拌平均后 ,任意摸出一个球 下 色再放回暗箱. 通 大批重复摸球 后 ,摸到 球的 率 定在,那么能够推 算出 a 大 是 12.20 .如 所示是一条 段 ,AB 的 10 厘米,MN 的 2 厘米 ,假 能够任意在 条 段上取一个点,那么 个点取在 段 MN 上的概率1 5.三、解答 (本大 共7 小 ,共 80 分 )21 . (8 分 )以下事件中 ,哪些是确立事件?哪些是不确立事件?确立事件中,哪些是必定事件?哪些是不行能事件?(1) 翻开 机 ,正在播 画片;(2) 任意 一枚 地平均的骰子 ,向上的点数是 6;(3) 在一个平面内 ,三角形三个内角的和是 190 度;2(4) 线段垂直均分线上的点到线段两头的距离相等.解: (1)(2) 是不确立事件; (3) 是确立事件 ,也是不行能事件;(4) 是确立事件 ,也是必定事件.22. (10 分 )如图,某商场建立了一个能够自由转动的转盘 ,并规定:顾客购物 10 元以上就能获取一次转动转盘的时机 ,当转盘停止时 ,指针落在哪一地区就能够获取相应的奖品.下表是活动进行中的一组统计数据.转动转盘的次数 n落在 “ 铅笔 ” 地区的次数 落在 “ 铅笔 ” 地区的频次(1) 计算并达成表格;mmn100 150 200 500 800 1 000 68111136345564701(2) 请预计 ,当 n 很大时 ,频次将会靠近多少?(3) 若是你去转动转盘一次 ,你 获取铅笔的概率是多少?解: (1) 如表. (2) 靠近 0.7. (3)0.7.23. (10 分 )用 10 个球设计一个摸球游戏: (1) 使摸到红球的概率为 1;52(2) 使摸到红球和白球的概率都是 5.解: ( 1)10 个球中 ,有 2 个红球 , 8 个其余颜色球.(2)10 个球中 ,有 4 个红球 , 4 个白球 , 2 个其余颜色球.24. (12 分)如图 1,2,3,三个同样的盒子里各放有一个塑料制成的圆环 ,这三个大小不一样的圆环恰巧能够按 左图所示那样较密切地套在一同 ,我们任意从三个盒子中取出两个 ,则这两个圆环能够比较密切地套在一同的 概率有多大?图 1图 2 图 3解:依据题意剖析可得:从三个盒子中取出两个共 3 种状况 ,即(1 ,2;2,3;1,3),此中有 2 种状况即 (1,2;22, 3)可使这两个圆环能够比较密切地套在一同,故其概率是 3.25.(12 分 )研究“掷一枚图钉 ,钉尖向上”的概率 ,两个小组用同一个图钉做试验进行比较 ,他们的统计数据以下:(1) 请你预计第一小组和第二小组所得的概率分别是多少? (2) 你以为哪一个小组的结果更正确?为何?解: (1) 依据题意 ,由于次数越多 ,就越精准 ,3因此选用试验次数最多的进行计算可得:第一小组所得的概率预计是160=;400第二小组所得的概率预计是164400= 0.41.(2)不知道哪一个更正确.由于试验数据可能有偏差,不可以正确说明.26.(14分)米奇家住所面积为90 平方米,此中客堂30 平方米,大寝室18 平方米,小寝室 15 平方米,厨房14 平方米,大洗手间9 平方米,小洗手间 4 平方米.假如一只小猫在该住所内陆面上任意跑.求:(1)P( 在客堂捉到小猫);(2)P( 在小寝室捉到小猫);(3)P (在洗手间捉到小猫);(4)P( 不在寝室捉到小猫 ).解: (1)P(在客堂捉到小猫 )=30=1. 903(2)P( 在小寝室捉到小猫)=15=1.9069+ 4=13 (3)P( 在洗手间捉到小猫)=9090.90-18- 15= 57= 19(4)P( 不在寝室捉到小猫)=9090 30.27.(16分)有一组互不全等的三角形,它们的三边长均为整数,每个三角形有两条边的长分别为 5 和 7.(1)请写出此中一个三角形的第三边的长;(2)设组中最多有 n 个三角形,求 n 的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.解:(1) 第三边长取 3(2 到 12 之间的任意整数均可,不包含 2, 12).(2)设第三边长为 x,则 7-5< x<7+ 5,即 2<x<12.又由于 x 为整数,因此 x= 3,4, 5, 6,7, 8, 9, 10, 11.因此 n= 9.(3) 由于 5+ 7= 12,为偶数,因此只要第三边长为偶数,因此此时x= 4, 6, 8, 10.4因此 P(三角形周长为偶数)=9.4。

北师大版七年级数学下册《第六章概率初步》单元测试卷-带答案

北师大版七年级数学下册《第六章概率初步》单元测试卷-带答案

北师大版七年级数学下册《第六章概率初步》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨2.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是()A.点数小于4 B.点数大于4 C.点数大于5 D.点数小于5 3.从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.B.C.D.4.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.5.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.B.C.D.6.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.7.为备战中考,同学们积极投入复习,卓玛同学的试卷袋里装有语文试卷2张,藏文试卷3张,英语试卷1张,从中任意抽出一张试卷,恰好是语文试卷的概率是()A.B.C.D.8.行道树是指种在道路两旁及分车带,给车辆和行人遮荫并构成街景的树种.国槐是我市常见的行道树品种。

右图是一批国槐树苗移植成活频率的统计图,由此可估计这种树苗移植成活的概率约为()A.0.95 B.0.90 C.0.85 D.0.80二、填空题9.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为10.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于11.下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,12.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.13.一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色不同外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是.三、解答题14.端午节,妈妈给小明准备了3个粽子,其中豆沙粽、蛋黄粽、肉粽各1个.小明从中任取2个,其中有一个是豆沙粽的概率是多少?15.一个不透明口袋中装有红球个,黄球个,绿球个,这些球除颜色处没有任何其他区别现.从中任意摸出一个球.(1)计算摸到的是绿球的概率.(2)如果要使摸到绿球的概率为,需要在这个口袋中再放入多少个绿球?16.掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.17.今年“6.18”互联网促销期间,某网红店开展有奖促销活动,凡进店购物的顾客均有转动8等分圆盘的机会,(如图),如果规定当圆盘停下来时指针指向1就中一等奖,指向3或8就中二等奖,指向2或4或6就中三等奖;指向其余数字不中奖.(1)转动转盘,中一等奖、二等奖、三等奖的概率是分别是多少?(2)顾客中奖的概率是多少?(3)6月18日这天有1600人参与这项活动,估计这天获得一等奖的人数是多少?18.在网格图中,每个方格除颜色外都相同,其中4个方格为黑色,余下方格为白色.(1)涂黑3个白色方格,使整个网格图为轴对称图形(考虑颜色);(2)在(1)的轴对称网格图中任取1个方格,恰好是黑色方格的概率是多少?(3)在(1)的轴对称网格图中,再涂黑若干个白色方格,能否使任取1个方格恰好是白色方格的概率为0.5?参考答案:1.C2.D3.D4.D5.A6.C7.B8.B9.10.11.12.13.m+n=814.解:∵从三个粽子中随机的拿出两个,共有豆沙粽与蛋黄粽,豆沙粽与肉粽,蛋黄粽与肉粽,三种等可能的结果数,其中有一个是豆沙粽的情况数有豆沙粽与蛋黄粽,豆沙粽与肉粽两种∴P(其中有一个是豆沙粽)=.(1)解:根据题意可知,口袋中装有红球6个,黄球9个,绿球3个,共18个球,故;15.(2)解:设需要在这个口袋中再放入x个绿球,得解得.所以需要在这个口袋中再放入2个绿球.16.(1)解:P(点数为2)=(2)解:点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==(3)解:点数大于1且小于6的有3种可能,即点数为2,3,4,5则P(点数大于2且小于6)== .17.(1)解:由题意知,P(一等奖)=, P(二等奖)=,P(三等奖)=即中一等奖、二等奖、三等奖的概率是分别是,和(2)解:1,3,8,2,4,6份数之和为 6∴转动圆盘中奖的概率为:(3)解:由(1)知,获得一等奖的概率是(人)估计获得一等奖的人数为200人.18.(1)解:如图所示:(答案不唯一)(2)解:图中共有25个方格,黑色的有7个任取1个方格,恰好是黑色方格的概率是(3)解:若能使任取1个方格恰好是白色方格的概率为0.5则白色的方格为个故不能再涂黑若干个白色方格,使任取1个方格恰好是白色方格的概率为0.5。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(41)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(41)

一、选择题(共10题)1.如图,一个转盘被均匀分成8部分,随意转动转盘,则第一次转动转盘指针指到阴影部分的概率为( )A.18B.14C.38D.122.如图,转盘中四个扇形的面积都相等.小明随意转动转盘1次,指针指向的数字为偶数的概率为( )A.14B.12C.34D.563.有10张卡片,上面的编号为1到10,从中任意取1张,抽到的卡号为合数的可能性为( )A.110B.15C.310D.124.必然事件的概率是( )A.0B.0.5C.1.5D.15.下列说法中,正确的是( )A.不太可能发生的事就一定不发生B.一件事情要么发生,要么不发生,所以它发生的概率为0.5C.买一张彩票的中奖概率为1100000,那么买一张彩票中奖的可能性很小D.摸到红球的概率是25,那么摸球5次,一定有2次摸到红球6.下列叙述中正确的是A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.“抛一枚正方体骰子,向上一面的点数为奇数的概率是0.5”表示如果大量重复抛这个骰子,那么平均每抛2次就有1次向上一面的点数为奇数7.某班学生中随机选取一名学生是男生的概率是25,则该班男、女生的人数比是( ) A.2:3B.2:5C.3:5D.3:28.一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是白球B.至少有1个球是黑球C.至少有2个球是白球D.至少有2个球是黑球9.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是()A.盖面朝下的频数是55B.盖面朝下的频率是0.55C.盖面朝下的概率不一定是0.55D.同样的试验做200次,落地后盖面朝下的有110次10.下列成语或词语所反映的事件中,可能性最小的是( )A.瓜熟蒂落B.旭日东升C.守株待兔D.夕阳西下二、填空题(共7题)11.在一个不透明的袋子里装有9个白球和8个红球,这些球除颜色外,其余均相同,将袋中的球摇匀,从中任意取出一个球,摸到红球的可能性摸到白球的可能性(填“大于”、“小于”或“等于”).12.抛掷一枚质地均匀的正方体骰子,点数是偶数的概率是.13.如果m是从−2,−1,0,1四个数中任取的一个数,那么关于x的方程mx−3=2x−3+1的根为正数的概率为.14.若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如,10不是“连加进位数”,因为10+11+12=33不产生进位现象;14是“连加进位数”,因为14+15+16=45产生进位现象.如果从10,11,12,⋯,19这10个自然数中任取一个数,那么取到“连加进位数”的概率是.15.必然事件的概率为.16.清明节妈妈买了5只鲜肉粽、3只豆沙粽和2只蛋黄肉粽,粽子除了内部馅料不同外其它均相同.小王从中随机拿出1只,正好拿到鲜肉粽的概率是.17.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).三、解答题(共8题)18.袋中装有大小相同的2个红球和2个绿球.(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.19.请说出下列事件发生的可能性大小:(1) 367人中必有两人的生日是同一天;(2) 袋中装有4个红球1个黄球,从中任意摸出一个球恰为黄球;(3) 掷一枚均匀的骰子(其六个面标有1,2,3,4,5,6,共6个数字),其朝上的数字大于3;(4) 10名同学站在屏幕后,其中男生7名,女生3名,从中任意挑一人恰是女生;(5) 没有电池的手电筒灯泡发光.20.在一张较大的白纸上面画满了间距为3cm的平行线,往这张纸上扔一枚半径为1cm的圆形小铁片,求铁片与直线不相交的概率.21.(1) 如图甲是书房地板的示意图,图中每一块地砖除了颜色外是完全相同的.现任意抛掷一个乒乓球,若乒乓球最后落在某一块地砖上算一次成功的抛掷,试求所有成功抛掷中,兵乓球抛掷后停留在黑色地砖上概率是多少;(2) 请在图乙中重新设计地砖的颜色,使乒乓球最后停留在黑色地砖上的概率为3.422.现有10张卡片,分别标有1,2,⋯,10,甲、乙两人合作完成一个游戏,规则是甲先随机抽取一张,然后乙猜这个数,如果猜对了,则乙胜;如果猜错了,则甲胜.(1) 这个游戏对双方公平吗?为什么?(2) 现在还有两种游戏规则,你认为公平吗?①猜是奇数还是偶数;②猜是3的倍数还是不是3的倍数;(3) 如果你是乙,你为了获胜,你选择上面哪种猜法?23.如图,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以分别获得100元、50元、30元的购物券(转盘被等分成20个扇形)某顾客购物110元.(1) 则他获得购物券的概率是.(2) 则他获得100元购物券的概率是.(3) 则他获得50元购物券的概率是.(4) 则他获得30元购物券的概率是.24.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球试验活动一共做了50次,统计结果如表所示:推测计算:由上述的摸球实验可推算:(1) 盒中红球,黄球各占总球数的百分比分别是多少?(2) 盒中有红球多少个?25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1) 转动转盘中奖的概率是多少?(2) 元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?答案一、选择题(共10题)1. 【答案】C【知识点】公式求概率2. 【答案】B【解析】该圆被平分为四等份,其中2份为偶数,2份为奇数,∴小明转动转盘1次,指针指向的数字为偶数的概率为:P偶数=24=12.【知识点】公式求概率3. 【答案】D【知识点】公式求概率4. 【答案】D【解析】必然事件的概率是1,不可能事件的概率为0,随机事件的概率介于0和1之间.【知识点】概率的概念及意义、必然事件5. 【答案】C【知识点】概率的概念及意义、事件的分类6. 【答案】D【知识点】概率的概念及意义7. 【答案】A【知识点】概率的概念及意义8. 【答案】B【解析】一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,至少有1个球是黑球.【知识点】事件的分类9. 【答案】D【解析】【分析】根据频数、频率及用频率估计概率解答即可.【解析】解:A、盖面朝下的频数是55,此选项正确;B、盖面朝下的频率是55100=0.55,此选项正确;C、盖面朝下的概率接近于0.55,但不一定是0.55,此选项正确;D、同样的试验做200次,落地后盖面朝下的在110次附近,不一定必须有110次,此选项错误;故选:D.【点评】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.【知识点】概率的概念及意义10. 【答案】C【解析】A.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;D.守株待兔所反映的事件可能发生也可能不发生,是随机事件,符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意.【知识点】事件的分类、概率的概念及意义二、填空题(共7题)11. 【答案】小于【解析】由题意得:摸到红球的可能性为89+8=817,摸到白球的可能性为99+8=917,∵817<917,∴摸到红球的可能性小于摸到白球的可能性.故答案为:小于.【知识点】公式求概率12. 【答案】12【知识点】公式求概率13. 【答案】12【解析】将方程两边都乘以x−3,得:m=2+x−3,解得x=m+1,∵方程的解为正数,∴m+1>0且m+1≠3,则m>−1且m≠2,所以在所列的4个数中,能使此方程的解为正数的有0,1这2个数,则关于x的方程mx−3=2x−3+1的根为正数的概率为24=12,故答案为:12.【知识点】公式求概率14. 【答案】0.7【解析】根据连加进位数的意义可以判断:13,14,15,16,17,18,19是连加进位数,∵共有10个数,∴取到“连加进位数”的概率是0.7.【知识点】公式求概率15. 【答案】1【知识点】必然事件、公式求概率16. 【答案】12【解析】∵共有5+3+2=10只粽子,其中鲜肉粽有5只,∴小王从中随机拿出1只,正好拿到鲜肉粽的概率是510=12.【知识点】公式求概率17. 【答案】随机【知识点】事件的分类三、解答题(共8题)18. 【答案】(1) ① 416=14;② 816=12.(2) 812=23.【知识点】公式求概率19. 【答案】(1) 发生的可能性为1.(2) 发生的可能性为15.(3) 发生的可能性为12.(4) 发生的可能性为 310. (5) 发生的可能性为 0.【知识点】公式求概率、不可能事件20. 【答案】硬币是圆的,其中心是 O ,半径是 R =1,两平行线之间的距离的 D =3,要使得硬币与直线不相交,此时中心移动的距离是 d =3−2=1;而硬币中心可以移动的距离是 D =3=3,则 P =13.【知识点】公式求概率21. 【答案】(1) 由图可知共有方砖 8 块,黑色方砖为 4 块,乒乓球停留在黑色方砖上的概率是 12;(2) 黑色砖应有 6 块,画图略. 【知识点】公式求概率22. 【答案】(1) 这个游戏对甲、乙双方不公平,同时猜对的概率是 110,猜错的概率为 910,故游戏对甲、乙双方不公平.(2) ①猜是奇数还是偶数公平,②猜是 3 的倍数还是不是 3 的倍数不公平. (3) 猜不是 3 的倍数. 【知识点】公式求概率23. 【答案】(1) 12 (2) 110 (3)320(4) 14 【解析】(1) ∵ 根据题意可知,次顾客购物 110 元, ∴ 共有 1 次抽奖机会,∵ 共有 20 种等可能事件,其中满足获得购物券的可能共有 10 种, ∴P (获得购物券的概率)=1020=12.(2) ∵ 根据题意可知,此顾客购物 110 元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得100元购物券的可能有两种,∴P(获得100元购物券的概率)=220=110.(3) ∵根据题意可知,此顾客购物110元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得50元购物券的可能有3种,∴P(获得50元购物券的概率)=320.(4) ∵根据题意可知,此顾客购物110元,∴共有1次抽奖机会,∵共有20种等可能事件,其中满足其中获得30元购物券的可能有5种,∴P(获得30元购物券的概率)=520=14.【知识点】公式求概率24. 【答案】(1) 由题意可知,50次摸球试验活动中,出现红球20次,黄球30次,所以红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,故红球占40%,黄球占60%.(2) 由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100.所以红球数为100×40%=40.所以盒中红球有40个.【知识点】用频率估算概率25. 【答案】(1) 指针指向1,2,3,5,6,8都获奖,∴获奖概率P=68=34.(2) 获得一等奖的概率为18,1000×18=125(人),∴获得一等奖的人数可能是125人.【知识点】用样本估算总体、公式求概率。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(43)

一、选择题(共10题)1.一个布袋里装有3个红球,2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是( )A.15B.25C.35D.232.下列成语描述的事件为随机事件的是( )A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高3.下列事件中,不可能事件是( )A.投掷一枚均匀硬币,正面朝上B.明天是阴天C.任意选择某个电视频道,正在播放动画片D.两负数的和为正数4.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.235.下列事件中,属于必然事件的是( )A.经过路口,恰好遇到红灯B.抛一枚硬币,正面朝上C.打开电视,正在播放动画片D.四个人分成三组,这三组中有一组必有2人6.下列事件是随机事件的是( )A.随意掷一块质地均匀的骰子,掷出的点数是奇数B.在一个标准大气压下,把水加热到100∘C,水就会沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球7.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称图形的概率是( )A.23B.12C.13D.148.如图所示的圆面图案是用相同半径的圆与圆弧构成的.若随意向圆面投掷一次飞镖,则飞镖击中黑色区域的概率是( )A.13B.14C.16D.299.下列事件中,是必然事件的是( )A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨10.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是35二、填空题(共7题)11.从一副有52张的扑克牌(无大小王)中任意抽取一张,抽到梅花的可能性大小是.12.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除了颜色外都相同,若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.13.一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.14.不透明袋子中装有12个球,其中有3个红球、4个黄球和5个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.15.如果一个自然数右边的数字比左边的数字大,那么我们把它叫做“上升数”(如34,569,1269等都是上升数),现在任取一个两位数,是“上升数”的概率是.16.一个不透明的盒子内装有大小、形状相同的六个球.其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是.17.如果抛掷一枚普通的正方体骰子(每个面分别标有1,2,3,4,5,6),掷得的数是6的事件是;掷得的数小于7的事件是;掷得的数大于6的事件是.(填“必然事件”、“不可能事件”或“随机事件”)三、解答题(共8题)18.有六张牌,牌面数字分别为2,3,4,5,6,7.从中任意摸一张牌,摸到的牌面数字有几种不同的可能?摸到的牌面数字小于8属于什么事件?19.某超市为吸引顾客,进行“满88元可以参加抽奖”有奖销售活动.设定了两个一等奖,四个二等奖,十个三等奖,将奖项写在乒乓球上并与其他无标识、手感完全相同的乒乓球混在一起,一共50个,放在抽奖箱内.顾客消费满额后可获得一次抽奖机会,问顾客恰好抽到一等奖、二等奖、三等奖的可能性大小分别是多少?20.甲、乙两人玩一种游戏:共20张牌,牌面上分别与有−10,−9,−8,⋯,−1,1,2,⋯,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2) 你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会输?(3) 结果等于6的可能性有几种?把每一种都写出来.21.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1) 先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值 (2) 先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.22.有一张明星演唱会的门票,小明和小亮都想获得这张门票,亲自体验明星演唱会的热烈气氛,小红为他们出了一个主意,方法就是:从印有1,2,3,4,5,4,6,7的8张扑克牌中任取一张,抽到比4大的牌,小明去;否则,小亮去.(1) 求小明抽到4的概率.(2) 你认为这种方法对小明和小亮公平吗,请说明理由;若不公平,请你修改游戏规则,使游戏对双方都公平.23.一个盒子内有120个弹珠,一些是红色的,一些是蓝色的,一些是白色的.从盒子内任取一个,拿出蓝色弹珠的概率是25%,拿出红色弹珠的概率是45%,盒子内每种颜色的弹珠各有多少个?24.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如图两幅不完整的统计图.根据以上信息,解答下列问题:(1) 被调查的学生共有人,并补全条形统计图;(2) 在扇形统计图中,m=,n=,表示区域C的圆心角是;(3) 小明是被问卷调查的同学,那么他参加了哪项活动的可能性最大?25.一枚均匀骰子的每个面上分别标着数字1,2,3,4,5,6.任意抛掷这枚骰子一次.(1) 朝上一面的点数是奇数的有多少种不同的可能?(2) 朝上一面的点数是奇数的概率是多少?(3) 朝上一面的点数出现以下情况的概率最小的是( )(A)偶数(B)奇数(C)3的倍数(D)比2小的数答案一、选择题(共10题)1. 【答案】B【解析】∵布袋里装有3个红球,2个白球,每个球除颜色外均相同,∴从中任意摸出一个球,则摸出的球是白球的概率=23+2=25.【知识点】公式求概率2. 【答案】A【解析】A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意.【知识点】事件的分类3. 【答案】D【知识点】事件的分类4. 【答案】D【解析】设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:46=23.【知识点】公式求概率5. 【答案】D【解析】A、经过路口,恰好遇到红灯,是随机事件,不合题意;B、抛一枚硬币,正面朝上,是随机事件,不合题意;C、打开电视,正在播放动画片,是随机事件,不合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,符合题意.故选:D.【知识点】事件的分类6. 【答案】A【知识点】事件的分类7. 【答案】C【解析】如图所示:使图形中的四枚棋子成为轴对称图形的概率是:26=13.【知识点】公式求概率8. 【答案】A【知识点】公式求概率9. 【答案】B【知识点】事件的分类10. 【答案】A【解析】A.一年中有365天,因而在同一年出生的400人中至少有两人的生日相同,故A选项正确;B.一个游戏的中奖率是1%,买100张奖券,不一定会中奖,故B选项错误;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故C选项错误;D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是38,故D选项错误.【知识点】事件的分类、公式求概率二、填空题(共7题)11. 【答案】14【知识点】公式求概率12. 【答案】24【解析】设黄球的个数是x个,根据题意得:1212+x =13,解得:x=24,经检验:x=24是原分式方程的解,∴黄球的个数为24.故答案为:24.【知识点】公式求概率13. 【答案】12【知识点】公式求概率14. 【答案】 14【知识点】公式求概率15. 【答案】 25【解析】两位数共有 90 个.10−19 这 10 个数中,“上升数”有 12,13,14,15,16,17,18,19 一共 8 个; 20−29 这 10 个数中,“上升数”有 23,24,25,26,27,28,29 一共 7 个; 30−39 这 10 个数中,“上升数”有 34,35,36,37,38,39 一共 6 个; 40−49 这 10 个数中,“上升数”有 45,46,47,48,49 一共 5 个; 50−59 这 10 个数中,“上升数”有 56,57,58,59 一共 4 个; 60−69 这 10 个数中,“上升数”有 67,68,69 一共 3 个; 70−79 这 10 个数中,“上升数”有 78,79 一共 2 个; 80−89 这 10 个数中,“上升数”有 89 一共 1 个; 90−99 这 10 个数中,“上升数”有 0 个;∴ 在两位数中共有 1+2+3+4+5+6+7+8=36, ∴ 任取一个两位数,是“上升数”的概率 =3690=25. 【知识点】公式求概率16. 【答案】 13【知识点】公式求概率17. 【答案】随机事件;必然事件;不可能事件【知识点】事件的分类三、解答题(共8题)18. 【答案】 6 种,必然事件.【知识点】事件的分类19. 【答案】一等奖:125,二等奖:225,三等奖:15.【知识点】公式求概率20. 【答案】(1) 当抽到 −10,−9,10 时,乘积为 900,不管对方抽到其他怎样的三张,都会赢. (2) 当抽到 10,9,−10 时,乘积为 −900,不管对方抽到其他怎样的三张,都会输. (3) 结果等于 6 的可能性有 5 种:1×2×3;−1×(−2)×3;−1×2×(−3);1×(−2)×(−3);1×(−1)×(−6). 【知识点】公式求概率21. 【答案】(1) 4;2,3 (2) 根据题意得:6+m 10=45,解得:m =2, 所以 m 的值为 2. 【解析】(1) 当袋子中全为黑球,即摸出 4 个红球时,摸到黑球是必然事件;当摸出 2 个或 3 个时,摸到黑球为随机事件.【知识点】公式求概率、必然事件22. 【答案】(1) 从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到 4 的结果有 2 种.所以,P(抽到4)=28=14.答:小明抽到 4 的概率为 14. (2) 不公平.理由如下:从 8 张扑克牌中任取一张,所有可能出现的结果一共有 8 种,每种结果出现的概率都相等,其中抽到比 4 大的结果有 3 种.所以,P(抽到比4大)=38. 所以小明去看演唱会的概率为 38,则小亮去看演唱会的概率为:1−38=58.因为 38<58,所以,游戏不公平.修改游戏规则如下:(答案不唯一)从印有 1,2,3,4,5,4,6,7 的 8 张扑克牌中任取一张,抽到比 4 大的牌,小明去;抽到比 4 小的牌,小亮去,抽到 4 重新抽,游戏对双方都公平. 【知识点】公式求概率23. 【答案】蓝色弹珠 30 个,红色弹珠 54 个,白色弹珠 36 个.【知识点】公式求概率24. 【答案】(1) 100;条形统计图为:(2) 30;10;144∘(3) 根据踢毽子的概率为310,喜欢乒乓球的概率为15,喜欢跳绳的概率为25,喜欢篮球的概率为110,故喜欢跳绳的可能性大.【解析】(1) 观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100−30−20−10=40人.(2) 因为A组有30人,D组有10人,共有100人,所以A组所占的百分比为:30%,D组所占的百分比为10%,所以m=30,n=10;表示区域C的圆心角为40100×360∘=144∘.【知识点】公式求概率、条形统计图、扇形统计图25. 【答案】(1) 3种.(2) 12.(3) D【知识点】公式求概率。

北师大版初中数学七年级下册《第6章 概率初步》单元测试卷(含答案解析

北师大版初中数学七年级下册《第6章 概率初步》单元测试卷(含答案解析

北师大新版七年级下学期《第6章概率初步》单元测试卷一.选择题(共3小题)1.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的二.填空题(共47小题)4.抛掷一枚质地均匀的硬币一次,正面朝上的概率是.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.6.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.7.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为m2.8.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.9.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.10.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.11.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为.12.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.14.从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是.15.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是.17.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.19.一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.20.从,π,这三个数中选一个数,选出的这个数是无理数的概率为.21.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.22.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.23.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.24.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外完全相同,从口袋中随机摸一个球,则摸到红球的概率是.25.掷一枚质地均匀的骰子,向上一面的点数为5的概率是.26.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.27.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.28.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.29.在“Wish you success”中,任选一个字母,这个字母为“s”的概率为.30.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为,则袋子内共有乒乓球的个数为.31.已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为.32.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.33.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.34.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.35.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是.36.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为37.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:合格品频率则这个厂生产的瓷砖是合格品的概率估计值是.(精确到0.01)38.某射手在相同条件下进行射击训练,结果如下:击中靶心的频率该射手击中靶心的概率的估计值是(精确到0.01).39.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).40.我市今年对九年级学生进行了物理、化学实验操作考试,其中物理实验操作考试有4个考题备选,分别记为A,B,C,D,学生从中随机抽取一个考题进行测试,如果每一个考题抽到的机会均等,那么学生小林抽到考题B的概率是.41.在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为.42.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.43.从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.44.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.45.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.46.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.47.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.48.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.49.一个不透明的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.50.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.北师大新版七年级下学期《第6章概率初步》单元测试卷参考答案与试题解析一.选择题(共3小题)1.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1【分析】利用概率的意义以及实际生活常识分析得出即可.【解答】解:A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为95%,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.3.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.二.填空题(共47小题)4.抛掷一枚质地均匀的硬币一次,正面朝上的概率是.【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【解答】解:抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=,故答案为:.【点评】此题考查了概率公式,概率=发生的情况数÷所有等可能情况数.5.在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是15.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.【点评】本题主要考查了概率的求法,概率=所求情况数与总情况数之比.6.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为20.【分析】利用频率估计概率,然后解方程即可.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.【点评】本题考查了利用频率估计概率:一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.7.如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 2.4m2.【分析】根据题意求出长方形的面积,根据世界杯图案的面积与长方形世界杯宣传画的面积之间的关系计算即可.【解答】解:长方形的面积=3×2=6(m2),∵骰子落在世界杯图案中的频率稳定在常数0.4附近,∴世界杯图案占长方形世界杯宣传画的40%,∴世界杯图案的面积约为:6×40%=2.4m2,故答案为:2.4.【点评】本题考查的是利用频率估计概率,正确得到世界杯图案的面积与长方形世界杯宣传画的面积之间的关系是解题的关键.8.在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.【分析】击中黑色区域的概率等于黑色区域面积与正方形总面积之比.【解答】解:随意投掷一个飞镖,击中黑色区域的概率是==.故答案为:.【点评】此题考查了几何概率计算公式以及其简单应用.注意面积之比=几何概率.10.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.【分析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可;【解答】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为2.【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2,故答案为:2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.12.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.【分析】根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等,根据概率公式计算即可.【解答】解:∵圆中的黑色部分和白色部分关于圆心中心对称,∴圆中的黑色部分和白色部分面积相等,∴在圆内随机取一点,则此点取黑色部分的概率是,故答案为:.【点评】本题考查的是概率公式、中心对称图形,掌握概率公式是解题的关键.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.【解答】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.【点评】此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14.从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是.【分析】在6个数中找出无理数,再根据概率公式即可求出抽到无理数的概率.【解答】解:∵在﹣1、0、、π、5.1、7这6个数中无理数有、π这2个,∴抽到无理数的概率是=,故答案为:.【点评】本题考查了概率公式以及无理数,根据无理数的定义找出无理数的个数是解题的关键.15.有四张看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机一张卡片正面写有“葫芦山庄”的概率是.【分析】根据概率公式计算即可得.【解答】解:∵在这4张无差别的卡片上,只有1张写有“葫芦山庄”,∴从中随机一张卡片正面写有“葫芦山庄”的概率是,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【解答】解:∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=,故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了一个,则吃到腊肉棕的概率为.【分析】根据题意和题目中的数据可以求得小明随意吃了一个,则吃到腊肉棕的概率.【解答】解:由题意可得,小明随意吃了一个,则吃到腊肉棕的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.19.一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是16.【分析】根据题意和题目中的数据,由白球的数量和概率可以求得总的球数,从而可以求得红球的个数.【解答】解:由题意可得,红球的个数为:4÷﹣4=4×5﹣4=20﹣4=16,故答案为:16.【点评】本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.20.从,π,这三个数中选一个数,选出的这个数是无理数的概率为.【分析】由题意可得共有3种等可能的结果,其中无理数有π、共2种情况,则可利用概率公式求解.【解答】解:∵在,π,这三个数中,无理数有π,这2个,∴选出的这个数是无理数的概率为,故答案为:.【点评】此题考查了概率公式的应用与无理数的定义.此题比较简单,注意用到的知识点为:概率=所求情况数与总情况数之比.21.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.22.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为.【分析】根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.【解答】解:根据题意,AB2=AE2+BE2=13,=13,∴S正方形ABCD∵△ABE≌△BCF,。

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

北师大版数学七年级下册数学第6章概率初步单元练习卷含解析

第6章概率初步一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A .B .C.D.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子个数187 282 435 624 718 814 901发芽种子频率0.935 0.940 0.870 0.891 0.898 0.904 0.901下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:日期次数教室星期一星期二星期三星期四星期五A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期的下午找到空教室的可能性最大.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:五星四星三星及三星以下合计评价条数等级酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34根据以上信息,回答下列问题:(1)m的值为,n的值为;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为;若乙企业生产的某批产品共5万件,估计质量优秀的有万件;(3)根据图表数据,你认为企业生产的产品质量较好,理由为.(从某个角度说明推断的合理性)19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40 求“厨余垃圾”投放正确的概率.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.直角三角形的两个锐角互余B.买一张电影票,座位号是偶数号C.投掷一个骰子,正面朝上的点数是7D.打开“学习强国APP”,正在播放歌曲《我和我的祖国》【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、直角三角形的两个锐角互余是必然事件,符合题意;B、买一张电影票座位号是偶数号,是随机事件,不合题意;C、投掷一个骰子正面朝上的点数是7,是随机事件,不合题意;D、打开“学习强国APP”,正在播放歌曲《我和我的祖国》是随机事件,不合题意.故选:A.2.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定抛掷出5点B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.明天降雨的概率是80%,表示明天有80%的时间降雨D.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.依据概率的意义进行判断即可.【解答】解:A.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次不一定抛掷出5点,本选项错误;B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等,本选项正确;C.明天降雨的概率是80%,表示明天不一定有80%的时间降雨,本选项错误;D.某种彩票中奖的概率是1%,因此买100张该种彩票不一定会中奖,本选项错误;故选:B.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.【解答】解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.下列说法正确的是()A.可能性很大的事件在一次试验中一定发生B.可能性很大的事件在一次试验中不一定会发生C.必然事件在一次试验中有可能不会发生D.不可能事件在一次试验中也可能发生【分析】根据不可能事件、随机事件、必然事件的有关概念和题意分别对每一项进行判断即可.【解答】解:A、可能性很大的事件在一次试验中不一定会发生,故本选项错误;B、可能性很大的事件在一次试验中不一定会发生,正确;C、必然事件在一次实验中一定会发生,故本选项错误;D、不可能事件在一次实验中不可能发生,故本选项错误;故选:B.5.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.故选:B.6.如图,在一个不透明的小瓶里装有两种只有颜色不同的果味VC,其中白色的有30颗,橘色的有10颗,小宇摇匀后倒出一颗,回答:倒出哪种颜色的可能性大、可能性大概是()A.白色,B.白色,C.橘色,D.橘色,【分析】利用概率公式求得概率后即可解得本题.【解答】解:∵白色的有30颗,橘色的有10颗,∴摇匀后倒出一颗,是白色的可能性为,橘色的可能性为,故选:B.7.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()A.B.C.D.【分析】首先设设正方形的面积,再表示出阴影部分面积,然后可得概率.【解答】解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为,则点取自黑色部分的概率为:=,故选:C.8.某农科所在相相条件下做某作物种子发芽率的实验,结果如表所示:种子个数200 300 500 700 800 900 1000 发芽种子187 282 435 624 718 814 901 个数0.935 0.940 0.870 0.891 0.898 0.904 0.901发芽种子频率下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽.其中合理的是()A.①②B.③④C.②③D.②④【分析】根据某农科所在相同条件下做某作物种子发芽率的试验表,可得大量重复试验发芽率逐渐稳定在0.9左右,于是得到种子发芽的概率约为0.9,据此求出1000kg种子中大约有100kg种子是不能发芽的即可.【解答】解:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率大约是0.891;故错误;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);故正确;③实验的种子个数最多的那次实验得到的发芽种子的频率不一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计1000kg种子大约有100kg的种子不能发芽,故正确;其中合理的是②④,故选:D.9.2018年是中国改革开放事业40周年,正在中国国家博物馆展出的《伟大的变革﹣﹣庆祝改革开放40周年大型展览》多角度、全景式集中展示中国改革开放40年的光辉历程、伟大成就和宝贵经验.某邮政局计划在庆祝改革开放40周年之际推出纪念封系列,且所有纪念封均采用形状、大小、质地都相同的卡片,背面分别印有“改革、开放、民族、复兴”的字样,正面完全相同.现将6张纪念封洗匀后正面向上放在桌子上,从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是()A.B.C.D.【分析】分别求出背面印有“改革”字样的卡片数和总的卡片数,再根据概率公式计算即可.【解答】解:∵背面印有“改革”字样的卡片有2张,共有6张卡片,∴从中随机抽取一张,抽出的纪念封背面恰好印有“改革”字样的概率是=.故选:A.10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中红球4个,黄球3个,其余的为绿球,从袋子中随机摸出一个球,“摸出黄球”的可能性为,则袋中绿球的个数是()A.12 B.5 C.4 D.2【分析】设袋中绿球的个数有x个,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中绿球的个数有x个,根据题意得:=,解得:x=5,答:袋中绿球的个数有5个;故选:B.二.填空题(共6小题)11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.【分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.12.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:星期一星期二星期三星期四星期五日期次数教室A教室 4 1 1 2 0B教室 3 4 0 3 2C教室 1 2 1 4 3通过调查,本次彩排安排在星期三的下午找到空教室的可能性最大.【分析】找到使用次数最少的一天下午即可得到答案.【解答】解:观察表格发现星期三下午使用1+0+1=2次,最少,∴本次彩排安排在星期三的下午找到空教室的可能性最大,故答案为:三.13.有6张质地、大小、背面完全相同的卡片,它们正面分别写着“我”“参”“与”“我”“快”“乐”这6个汉字,现将卡片正面朝下随机摆放在桌面上,从中随意抽出一张,则抽出的卡片正面写着“我”这个汉字的可能性是.【分析】直接利用概率公式求解即可求得答案.【解答】解:∵有6张质地、大小、背面完全相同的卡片,在它们正面分别写着:“我”“参”“与”“我”“快”“乐”这6个汉字,∴抽出的卡片正面写着“我”字的可能性是:=.故答案为:.14.一个不透明的摇奖箱内装有20张形状,大小,质地等完全相同的卡片,其中只有5张卡片标有中奖标志.在2020年新年联欢会的抽奖环节中,贝贝从这个摇奖箱内随机抽取一张卡片.则贝贝中奖的概率是.【分析】根据题意分析可得:摇奖箱内装有20个小球,所以随机抽取一个小球共20种情况,其中有5种情况是小球中奖,故其概率是=.【解答】解:P(中奖)==.故本题答案为:.15.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:16.桌子上有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,从6个杯子中随机取出1杯,请你将下列事件发生的可能性从大到小排列:④①③②.(填序号即可)①取到凉白开②取到白糖水③取到矿泉水④没有取到矿泉水【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:∵有6杯同样型号的杯子,其中1杯白糖水,2杯矿泉水,3杯凉白开,∴①取到凉白开的概率是=,②取到白糖水的概率是,③取到矿泉水的概率是=,④没有取到矿泉水的概率是=,∴按事件发生的可能性从大到小排列:④①③②;故答案为:④①③②.三.解答题(共3小题)17.小明选择一家酒店订春节团圆饭.他借助网络评价,选择了A、B、C三家酒店,对每家酒店随机选择1000条网络评价统计如下:评价条数等级五星四星三星及三星以下合计酒店A412 388 x1000B420 390 190 1000C405 375 220 1000 (1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.①请你为小明从A、B、C中推荐一家酒店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.②如果小明选择了你推荐的酒店,是否一定能够享受到良好用餐体验?【分析】(1)用1000减去五星和四星的条数,即可得出x的值;(2)①根据概率公式先求出A、B、C获得良好用餐体验的可能性,再进行比较即可得出答案;②根据概率的意义分析即可.【解答】解:(1)x=1000﹣412﹣388=200(条);(2)①选择A酒店获得良好用餐体验的可能性为=0.8,选择B酒店获得良好用餐体验的可能性为=0.81,选择C酒店获得良好用餐体验的可能性为=0.7,∵0.81>0.8>0.78,∴选择B酒店获得良好用餐体验的可能性最大.②不一定,根据可能性只能说明享受到良好用餐体验可能性大,但不一定能够享受到良好用餐体验.18.某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.a.该质量指标值对应的产品等级如下:质量指标值20≤s<25 25≤s<30 30≤s<35 35≤s<40 40≤s<45 等级次品二等品一等品二等品次品说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀);等级是次品为质量不合格.b.甲企业样本数据的频数分布统计表如下(不完整):c.乙企业样本数据的频数分布直方图如下:甲企业样本数据的频数分布表分组频数频率20≤s<25 2 0.0425≤s<30 m30≤s<35 32 n35≤s<40 0.1240≤s<45 0 0.00合计50 1.00d.两企业样本数据的平均数、中位数、众数、极差、方差如下:平均数中位数众数极差方差甲企业31.92 32.5 34 15 11.87乙企业31.92 31.5 31 20 15.34 根据以上信息,回答下列问题:(1)m的值为10 ,n的值为0.64 ;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为0.96 ;若乙企业生产的某批产品共5万件,估计质量优秀的有 3.5 万件;(3)根据图表数据,你认为甲企业生产的产品质量较好,理由为甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.(从某个角度说明推断的合理性)【分析】(1)根据题意和频数分布表中的数据,可以先求的n的值,然后再求m的值;(2)根据频数分布表可以求得从甲企业生产的产品中任取一件,估计该产品质量合格的概率,根据频数分布直方图可以求得乙企业生产的某批产品共5万件,质量优秀的有的件数;(3)根据频数分布直方图和分布表可以解答本题,注意本题答案不唯一,只要合理即可.【解答】解:(1)n=32÷50=0.64,m=50×(1﹣0.04﹣0.64﹣0.12﹣0.00)=10,故答案为:10,0.64;(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为:1﹣0.04=0.96,乙企业生产的某批产品共5万件,估计质量优秀的有:5×=3.5(万件),故答案为:0.96,3.5;(3)我认为甲企业生产的产品质量较好,理由:甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好,故答案为:甲,甲企业抽样产品的极差与方差都小于乙企业,产品的稳定性更好.19.北京市第十五届人大常委会第十六次会议表决通过《关于修改<北京市生活垃圾管理条例>的决定》,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施.某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1000千克生活垃圾,数据统计如下(单位:千克):A B C D厨余垃圾400 100 40 60可回收物25 140 20 15有害垃圾 5 20 60 15其它垃圾25 15 20 40求“厨余垃圾”投放正确的概率.【分析】(1)根据题意画出树状图得出所有情况数,再求出垃圾投放正确的情况数,最后根据概率公式计算即可.(2)用厨余垃圾数量除以总的数量即可.【解答】解:(1)四类垃圾随机投入四类垃圾箱的所有结果用树状图表示如下:。

北师大版七年级数学下册 第6章《概率初步》单元检测卷 含答案

北师大版七年级数学下册  第6章《概率初步》单元检测卷  含答案

北师大版第6章《概率初步》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰2.下列事件中,满足随机事件且该事件每个结果发生的可能性都相等的是()A.一个密封的纸箱里有7个颜色不同的球,从里面随意摸出一个球,摸出每个球的可能性相同B.在80个相同的零件中,检验员从中取出一个零件进行检验,取出每件产品的可能性相同C.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同D.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同3.下列事件中,概率P=0的事件是()A.如果a是有理数,则|a|≥0B.某地5月1日是晴天C.手电筒的电池没电,灯泡发光D.某大桥在10分钟内通过了80辆车4.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A.点数为3的倍数B.点数为奇数C.点数不小于3D.点数不大于35.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是()A.3B.4C.6D.86.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个7.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A .B .C .D.18.如图是一个4×4的方格,若在这个方格内投掷飞镖,则飞镖恰好落在阴影部分的概率是()A .B .C .D .9.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个10.某学习小组做抛掷一枚纪念币的试验,整理同学们获得的试验数据,如下表.5010020050010002000300040005000抛掷次数“正面193868168349707106914001747向上”的次数0.38000.38000.34000.33600.34900.35350.35630.35000.3494“正面向上”的频率下面有三个推断:①通过上述试验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的;②如果再次做此试验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③在用频率估计概率时,用试验5000次时的频率0.3494一定比用试验4000次时的频率0.3500更准确.其中正确的是()A.①③B.①②C.②③D.①②③二.填空题(共6小题,满分18分,每小题3分)11.一个不透明的袋子中有1个白球、1个红球和4个黄球,这些球除颜色不同外其它都相同,搅均匀后从中任意摸出1个球,摸出白球的可能性摸出黄球的可能性(填“等于”或“小于”或“大于”).12.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为.13.如图,转盘中6个扇形的面积都相等,任意转动转盘一次.当转盘停止转动时(当指针停在分隔线上时再重转一次),指针指向偶数区域的概率是.14.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).15.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频率0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是(结果精确到0.01).16.在正方形ABCD中,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.三.解答题(共7小题)17.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?18.在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同,从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该试验,经过大量试验后,发现摸到白球的频率稳定于0.5左右,求n的值.19.一次抽奖活动设置如下的翻奖牌,翻奖牌的正面、背面如下,如果你只能在9个数字中选择一个数字翻牌,请解决下面的问题:(1)直接写出翻牌得到“手机”奖品的可能性的大小;(2)请你根据题意设计翻.奖.牌.反.面.的奖品,包含(手机、微波炉、球拍、电影票,谢谢参与)使得最后抽到“球拍”的可能性大小是.20.乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?21.盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是,写出表示x和y关系的表达式.(2)往盒中再放进10枚黑棋,取得黑棋的概率变为,求x和y的值.22.由于“新冠疫情”,小红响应国家号召,减少不必要的外出,打算选择一家快餐店订外卖.他借助网络评价,选择了A、B、C三家快餐店,对每家快餐店随机选择1000条网络评价统计如表:五星四星三星及三星以下合计等级评价条数快餐店A412388x1000B4203901901000C4053752201000(1)求x值.(2)当客户给出评价不低于四星时,称客户获得良好用餐体验.请你为小红从A、B、C 中推荐一家快餐店,使得能获得良好用餐体验可能性最大.写出你推荐的结果,并说明理由.23.“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选:D.2.解:A、一个密封的纸箱里有7个颜色不同的球,从里面随意摸出一个球,因为只是颜色相同,没有什么其他性质相同,所以摸出每个球的可能性不一定相同,不符合题意.B、在80个相同的零件中,只是种类相同,没有什么其他性质相同,所以取出每件产品的可能性不一定相同.不符合题意.C、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等,符合题意D、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不一定相同,因为每种灯的时间可能不同,不符合题意.故选:C.3.解:“手电筒的电池没电,灯泡发亮”是不可能事件,故概率P=0,故选:C.4.解:掷一枚普通的正六面体骰子,出现的点数中,点数为3的倍数的概率为=,点数为奇数的概率为=,点数不小于3的概率为=,点数不大于3的概率为=,故选:C.5.解:设白球的个数为x个,根据题意得:=,解得:x=4,∴白球的个数为44.故选:B.6.解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.7.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到红灯的概率是P==.故选:C.8.解:如图:正方形的面积为4×4=16,阴影部分占5份,飞镖落在阴影区域的概率是;故选:C.9.解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,∴在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则=0.4,解得:x=2,故选:B.10.解:①通过上述试验的结果,因为正面向上的概率小于0.5可以推断这枚纪念币有很大的可能性不是质地均匀的,正确,②如果再次做此试验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动,正确;③在用频率估计概率时,用试验5000次时的频率0.3494一定比用试验4000次时的频率0.3500更准确,错误;正确的有①②故选:B.二.填空题(共6小题,满分18分,每小题3分)11.解:∵摸出白球的可能性为,摸出黄球的可能性为=,∴摸出白球的可能性小于摸出黄球的可能性,故答案为:小于.12.解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;∵<<,∴按从小到大的顺序排列为:①③②;故答案为:①③②.13.解:图中共有6个面积相等的区域,含偶数的有2,2,共2个,则当转盘停止转动时(当指针停在分隔线上时再重转一次),指针指向偶数区域的概率是=.故答案为:.14.解:由题意得:S A>S B>S C,故落在A区域的可能性大,故答案为:A.15.解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.9516.解:如图,连接P A、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故答案为:.三.解答题(共7小题)17..解:因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.18.解:根据题意,得,解得n=2,所以n的值是2.19.解:(1)由图可得,抽到“手机”奖品的可能性是:;(2)设计九张牌中有四张写着球拍,其它的五张牌中手机、微波炉、电影票各一张,谢谢参与两张.20.解:(1)∵规定消费50元(含50元)以上才能获得一次转盘的机会,40<50,∴某顾客消费40元,不能获得转盘的机会;(2)某顾客正好消费66元,超过50元,可以获得转盘的机会,若获得9折优惠,则概率:若获得8折优惠,则概率:若获得7折优惠,则概率:.21.解:(1)∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是,∴可得关系式=;(2)如果往口袋中再放进10个黑球,则取得黑棋的概率变为,又可得=;联立求解可得x=15,y=25.22.解:(1)x=1000﹣412﹣388=200(条);(2)推荐从A家快餐店订外卖.从样本看,A家快餐店获得良好用餐体验的比例为×100%=80%,B家快餐店获得良好用餐体验的比例为×100%=81%,C家快餐店获得良好用餐体验的比例为×100%=78%,A家快餐店获得良好用餐体验的比例最高,由此估计,A家快餐店获得良好用餐体验的比例最高.23.解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),血型A B AB O人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,1300×=312,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以P(两个O型)==.。

新北师大版七年级数学下第六章《概率初步》单元测试及答案(精)

新北师大版七年级数学下第六章《概率初步》单元测试及答案(精)

北师大版七年级数学下册 第六章 概率初步 单元测试1一、填空题 1.给出以下结论①如果一件事发生的机会只有十万分之一,那么它就不可能发生;②二战时期美国某公司生产的降落伞合格率达99.9%,使用该公司的降落伞不会发生危险;③如果一件事不是必然发生的,那么它就不可能发生;④从1、2、3、4、5中任取一个数是奇数的可能性要大于偶数的可能性. 其中正确的结论是_____.在小华的10次实验中,抛出两个正面_____次,出现两次正面的概率为_____,小明抛出两个正面的概率是_____.3.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_____.4.三名同学站成一排,其中小明站在中间的概率是_____,站在两端的概率是_____.5.从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是_____,是女医生的概率是_____.6.某科学考察队有3名老队员,3名新队员,考察某溶洞时,任选其中一人下去考察,是老队员的概率是_____.7.小明和小亮各写一张贺卡,先集中起来,然后每人拿一张贺卡,则他们各自拿到对方送出的贺卡的概率是_____.8.从4台A 型电脑和5台B 型电脑中任选一台,选中A 型电脑的概率为_____,B 型电脑的概率为_____.9.小亮从3本语文书,4本数学书,5本英语书中任选一本,则选中语文书的概率为_____,选中数学书的概率为_____,选中英语书的概率为_____.10.某停车厂共有12个停车位置,今从中任取一个给某车停放,两端停车位置被选中的概率为_____.11.在标号为1、2、3……19的19个同样的小球中任选一个,则选中标号为偶数的小球的可能性_____选中标号为奇数的小球的可能性.12.从小明、小亮、小丽3名同学中选一人,当语文课代表,选中小丽的可能性_____小丽不被选中的可能性.二、选择题13.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )A.能开门的可能性大于不能开门的可能性B.不能开门的可能性大于能开门的可能性C.能开门的可能性与不能开门的可能性相等D.无法确定14.给出下列结论①打开电视机它正在播广告的可能性大于不播广告的可能性 ②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀” ③小明射中目标的概率为31,因此,小明连射三枪一定能够击中目标 ④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( )A.1个B.2个C.3个D.4个15.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )A.必然事件B.不能确定事件C.不可能事件D.不能确定16.有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )A.21B.2C.21或2D.无法确定17.如图1,阴影部分表示在一定条件下小明击中目标的概率,空白部分表示小亮击中目标的概率,图形说明了 ( )图1A.小明击中目标的可能性比小亮大B.小明击中目标的可能性比小亮小C.因为小明和小亮击中目标都有可能,且可能性都不是100%,因此,他们击中目标的可能性相等D.无法确定18.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )A.2719 B.2712 C.32D.278 三、解答题19.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为32,求男女生数各多少? 20.将一枚硬币连掷3次,出现“两正,一反”的概率是多少?21.某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中记录下的结果.①在他的每次实验中,抛出_____、_____和_____都是不确定事件.②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个正面”概率最少的是他的第_____组实验.③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.22.以下有三种情况,根据你的实践,用序号字母填写下表(有几种可能情况填写几个字母)A.在三角形的内部B.在三角形的边上图224.准备三张纸片,两张纸片上各画一个三角形,另一张纸片上画一个正方形,如果将这三张纸片放在一个盒子里搅匀,那么,随机地抽取两张纸片,可能拼成一个菱形(取出的是两张画三角形的纸片),也可能拼成一个房子(取出的是一张画三角形,一张画正方形的纸片),这个游戏的规则是这样的:若拼成一个菱形甲赢,若拼成一个房子乙赢,你认为这个游戏是公平的吗?请玩一玩这个游戏,用你的数据说明你的观点.参考答案一、1.④ 2.2 20% 10%3.101 4. 61 315.158 1576.217.218.94 959.41 31 125 10.6111.小于 12.二、13.B 14.A 15.B 16.A 17.B 18.D三、19.男生24人,女生1220.83 21.①“两个正面” “一个正面” “没有正面” ②7 9③103 51 ④20053 20043 2513 122.AAA AAA AAA AAA AAA AAA AAA ABB ACC23.证:∵AB ∥CD ∴∠BAC +∠DCA =180 又∵AE 为∠BAC∴∠CAE =21∠CAB同理∠ACE =21∠DCA即:∠CAE +∠ACE =90∴AE ⊥CE *24.。

北师大版七年级下册第六章《概率初步》单元测试卷

北师大版七年级下册第六章《概率初步》单元测试卷

B TB五■■W4KI."F*FRUH-.ΠMI-lb->n≠fla∣⅝nrill<IaIE-bHin.ιτ⅞■⅛F⅛r4MM.-y∣r⅛≡1∣ifib<B-4<Um:U34^i<41IUE-IW→下列事件发生的概率为O的是()A.射击运动员只射击一次就命中靶心E.任取一个实数α,都有∣α∣>OC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD・抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6小亮每天骑自行车上学时都要经过一个十字路口,十字路□有红、3.黄、绿三色交通信号灯,他在路□遇到红灯的概率为丄,遇到绿灯的概率为那么39他遇到黄灯的概率为()4 _ 9 1 _ 3 1 _ 9D.如图,在方格纸中,随机选择标有序号①②③④⑤的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()1 2 3A. —B・—C・—5 5 55.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率是()lɔ.BBlI II"J B ^B T ⅛B ≡二ψl IHi■η■■■l ≡⅞PnmηI∣⅝Bi B lB ■IIPIF■FWkMiVl l ■■FVWaHUVIMhBL≡i&如图,直线a//b,直线C 与α,b 都相交,从所标识的Zl,Z2,Z3,Z4,9.如图,A 9£是边长为1的小正方形组成的网格上的两个格点,在格□ □ □ □ Q □ □ □ □ □ □ □ □ U 5UA. B. C. D ・第7题图 第8题图第9题图点中任意放置一点C,恰好能使5C的面积为1的概率是()6 14 7ʌ.—B・— C.—D・—25 5 25 2510.甲、乙、丙三个箱子原本各装有相同数量的球,已知甲箱内的红球占甲箱内1 7球数的丄,乙箱内没有红球,丙箱内的红球占丙箱内球数的上.小荣将乙、412丙两箱内的球全倒入甲箱后,要从甲箱内取出一球,若甲箱内每球被取出的机会相等,则小荣取出的球是红球的概率为()5 5 5 7A・—B・—C・—D・—612 18 48■hn ■L i∣MMιS M AI V■■■!∣MHH≡I U■■■■"■■■-Lnl≡fi≡i≠⅛β⅛lllιr*<hιI B IinMW■■E B WZABr.Rm■■EɪMA⅞ιHB-I■IFPFml RHB*Iιr.16.—个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为3,则H=317.将一质地均匀的正方体骰子投掷一次,观察向上一面的点数,与点数3相差2的概率是 _____ ・1&若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则不重复的3个数字组成的三位数中是"凸数”的概率是____________________________________________________________・三、解答题(本大题共2小题,满分28分)19.(12分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>l)个红球,再从袋子中随机摸出1个球,将"摸出黑球”记为事件A,请完成下列表格^(2)先从袋子中取出加个红球,再放入加个一样的黑球并摇匀,随机摸出1个黑球的概率等于电,求加的值.5参考答案:1-5DCDCB6-10 ABAAC11.下列事件:①餉意翻到一本书的某页,这页的页码長奇数:⑥测得某夭的最高气温为100∙C;◎紅掷一次骰子,向上一而的数字是2;④築奥运射击冠军射击一次,命中祀心:触种彩票的中奖率为5%,小明买•张彩票淀屮奖.其中是歸机爭件的是①9® .(填序号) 如图,转盘中8个厢形的面积都相等,任虑转动转盘I 次,当转盘停止转动16.一个不透明的布袋里装冇5个球,貝中4个红球和】个fl 球,它们除颜色外其余都相同,现将”个白球放入布袋,搅匀后,使換出1个球是红球的概率为扌,则kI.17.将一质地均匀的正方体骰子投掷一次,观察12.13.从I, 2, 3. 4, 5. 6, 7, 8. 9这九个自然数中,任取一个数是奇数的概率 事件A 发生的概率为 120 大量重复做这种试验,爭件A 平均毎100次发生 的次数⅛ S .14.甲、乙、丙三人站成•排合彩留念,则甲、乙二人相邻的概率是 令 .向上一面的点数,与点数3相差2的槪率是土.18.若我们把十位上的数字比个位和百位上的数字都大的二位数称为凸数,786,465.则不章复的3个数字组成的二位数中込“凸数”的概率是芳.三、解答題(本大题共2小題,满分28分)19.(12分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋了中取lβm(m>l)个红球,再从袋了中随机摸出I个球,将“換IB黑球”记为事件A,请完成下列表格:«4(2)先从袋子中取出M个红球,再放入加个一样的黑球并摇匀,Kl机模岀】个需球的概率等于右,求加的偵.磋5的1B L⅛2- 20、瞇2链快侣的佻緋:4。

北师大版七年级下册第六章《概率初步》单元综合测试卷

北师大版七年级下册第六章《概率初步》单元综合测试卷

北师大版七年级下学期数学第六章《概率初步》单元综合测试卷班级:___________ 姓名:___________ 得分:___________一、选择题:(每小题3分共30分)1、“任意买一张电影票,座位号是2的倍数”,此事件是()A.不可能事件B.不确定事件C.必然事件D.以上都不是2、掷一枚质地均匀的硬币10次,下列说法正确的是( )A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上3、甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,如果任意安排四位同学的跑步顺序,那么恰好由甲将接力棒交给乙的概率是()A. 14B. 16C. 18D. 1124、一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. 310B. 925C. 920D. 355、在数字69669966699966669999中,数字“6”出现的频数、频率分别是()A. 10,10B. 0.5,10C. 10,0.5D. 0.5,0.56、怡君手上有24张卡片,其中12张卡片被画上O记号,另外12张卡片被画上X记号.如图表示怡君从手上拿出6张卡片放在桌面的情形,且她打算从手上剩下的卡片中抽出一张卡片.若怡君手上剩下的每张卡片被抽出的机会相等,则她抽出O记号卡片的机率为何?()A.12B.13C.49D.597、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A. 16B. 516C. 13D. 128、图中有四个可以自由转动的转盘,每个转盘被分成若干等份,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘49、如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为b.关于a,b大小的正确判断是()(A)a>b(B)a=b(C)a<b(D)不能判断10、在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球试验后,小新发现其中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5.对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A.①②③B.①②C.①③D.②③二、填空题:(每小题3分,共18分)11、一个不透明的盒子中装有10个黑球和若干个白球,它们除了颜色不同外,其余均相同,从盒子中随机摸出一球并记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有________个.12、有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.13、在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是___.14、在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是______ .15、某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球面上分别标有“0元”,“10元”,“20元”,“30元”的字样.顾客在该超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),超市根据两小球上所标金额的和返还等额购物券.若某顾客刚好消费200元,则他所获得购物券的金额不低于30元的概率为______ .16、如图,一个可以自由转动的圆形转盘,转盘分成8个大小相同的扇形,上面分别标有数字1、2、3、4,指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动转盘一次,当转盘停止转动时,则指针指向标有“3”所在区域的概率为.三、解答题(共72分)18、在一个不透明的口袋中装有大小、外形一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件还是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了.(5)从口袋中一次任意取出8个球,一定有蓝球。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(35)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(35)

一、选择题(共10题)1.一个转盘,被分成两个扇形区域,其中红色区域与白色区域面积比为2:1,那么转动后指针停在白色区域的概率为( )A.14B.12C.23D.132.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A.12B.15C.310D.7103.从√2,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是( )A.15B.25C.35D.454.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a等于( )A.1B.2C.3D.45.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是( )A.110B.15C.25D.456.下列事件中是必然事件是A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上7.一个不透明的口袋中有4个完全相同的小球,分别将它们标上1,2,3,4,随机摸出标号为3的小球的概率是( )A.12B.13C.14D.348.在一个不透明的口袋里装有2个白球,3个黑球和3个红球,它们除颜色外其余都相同,现随机从袋里摸出1个球,则摸出白球的概率是( )A.12B.38C.13D.149.三根长度分别为:3cm,7cm,4cm的木棒能围成三角形的事件是( )A.必然事件B.不可能事件C.不确定事件D.以上说法都不对10.在单词happy中随机选择一个字母,选到字母为p的概率是( )A.15B.25C.35D.45二、填空题(共7题)11.如果一个自然数右边的数字比左边的数字大,那么我们把它叫做“上升数”(如34,569,1269等都是上升数),现在任取一个两位数,是“上升数”的概率是.12.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到(颜色)球的可能性最大.13.某林业部门统计某种幼树在一定条件下的移植成活率,结果如表所示:移植总数(n)400750150035007000900014000成活数(m)369662133532036335807312628成活的频率(mn )0.9230.8830.8900.9150.9050.8970.902根据表中数据,估计这种幼树移植成活率的概率为.(精确到0.1)14.分别写有数字13,√2,−1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到有理数的概率的是.15.有背面完全相同的9张卡片,正面分别写有1∼9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组{x+12≥3,x<a有解的概率为.16.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角的概率是.17.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.三、解答题(共8题)18.随机抛掷一颗用均匀材料做的骰子.(1) 抛掷一次,朝上的一面出现的点数是素数的可能性是多少?(2) 抛掷两次,将第一次朝上的一面的点数作为十位数字,第二次朝上的点数作为个位数字,组成的两位数是素数的可能性是多少?(3) 抛掷三次,依次把第一、第二、第三次朝上的点数作为三位数的百位、十位、个位数,组成的三位数是5的倍数的可能性是多少?19.全班同学用10张牌做摸牌试验,每摸出一张牌记录花色后放回,洗牌均匀后再摸,试验结果如(1)10张牌,红桃最多;下表所示.下面推论错误的是:次数黑桃红桃梅花方块20039796121(2)如果用这10张牌做两人游戏,规则是:甲摸到红桃算赢,乙摸到黑桃、梅花算赢,这样的游戏规则很公平;(3)根据试验的数据,估计10张牌中2张黑桃,4张红桃,3张梅花,1张方块.20.重庆市巴蜀常春藤学校七年级组建了女子篮球社团,通过测量同学的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1) 填空:样本容量为,a=.(2) 把频数分布直方图补充完整.(3) 随机抽取1名学生,估计这名学生身高高于170cm的概率.21.如图,一个水平放置的正方形ABCD的中心O有一根能自由转动的指针.现自由转动指针,停止时记下指针所指的三角形(若指针恰好与对角线重合,则重新转动),第二次自由转动指针,停止时再次记下指针所指的三角形.求两次指针所指的三角形恰好相对的概率.22.从52张(无大小王)扑克牌中任取1张,求:(1) 抽到方块K的可能性大小;(2) 抽到K的可能性大小;(3) 抽到方块的可能性大小.23.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1) 求转动一次转盘获得购物券的概率;(2) 某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.24.甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P 甲(红),从乙中摸出红球的概率是P乙(红).(1) 求P甲(红)与P乙(红)的值,并比较它们的大小.(2) 将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P 丙(红).小明认为:P丙(红)=P甲(红)+P乙(红).他的想法正确吗?请说明理由.25.一副52张的扑克牌(无大、小王),从中任意取出一张,共有52种等可能的结果.(1) 说出抽到K的所有等可能的结果;(2) 求抽到梅花K的可能性大小;(3) 求抽到K的可能性大小;(4) 求抽到红桃的可能性大小.答案一、选择题(共10题) 1. 【答案】D【知识点】公式求概率2. 【答案】C【解析】 ∵ 一共 10 个球,其中 3 个黄球, ∴ 从袋中任意摸出 1 个球是黄球的概率是 310.【知识点】公式求概率3. 【答案】C【解析】 ∵ 在 √2,0,π,227,6 中,只有 0,227 和 6 是有理数, ∴ 抽到有理数的概率是 35.【知识点】公式求概率、有理数4. 【答案】A【解析】根据题意得:22+3+a=13,解得:a =1,经检验,a =1 是原分式方程的解, ∴a =1. 故选:A .【知识点】公式求概率5. 【答案】B【知识点】公式求概率6. 【答案】C【解析】A 是不可能事件,B 、D 是随机事件. 【知识点】事件的分类7. 【答案】C【解析】 ∵ 一个不透明的口袋中有 4 个完全相同的小球,它们分别标号为 1,2,3,4, ∴ 随机摸取一个小球,直接写出“摸出的小球标号是 3”的概率为:14. 【知识点】公式求概率8. 【答案】D【解析】∵口袋里装有2个白球,3个黑球和3个红球,∴口袋里共有8个球,∴摸出白球的概率是28=14.【知识点】公式求概率9. 【答案】B【知识点】事件的分类10. 【答案】B【知识点】公式求概率二、填空题(共7题)11. 【答案】25【解析】两位数共有90个.10−19这10个数中,“上升数”有12,13,14,15,16,17,18,19一共8个;20−29这10个数中,“上升数”有23,24,25,26,27,28,29一共7个;30−39这10个数中,“上升数”有34,35,36,37,38,39一共6个;40−49这10个数中,“上升数”有45,46,47,48,49一共5个;50−59这10个数中,“上升数”有56,57,58,59一共4个;60−69这10个数中,“上升数”有67,68,69一共3个;70−79这10个数中,“上升数”有78,79一共2个;80−89这10个数中,“上升数”有89一共1个;90−99这10个数中,“上升数”有0个;∴在两位数中共有1+2+3+4+5+6+7+8=36,∴任取一个两位数,是“上升数”的概率=3690=25.【知识点】公式求概率12. 【答案】红【解析】从中任意摸一球,摸到红球的概率=33+2+1=12,摸到白球的概率=26=13,摸到蓝球的概率=16,∴ 从中任意摸一球,则摸到红球的可能性最大. 【知识点】公式求概率13. 【答案】 0.9【知识点】用频率估算概率14. 【答案】 35【解析】从中任意抽取一张,抽到有理数的概率 =35.故答案为 35.【知识点】公式求概率15. 【答案】 49【解析】x+12≥3,解得 x ≥5,∵ 要使不等式组有解, ∴a >5,∴ 符合题意的只有 6,7,8,9 共 4 个数字, 故数字 a 使不等式组有解的概率为 49. 【知识点】公式求概率16. 【答案】 34【解析】根据题意,从 4 根细木棒中任取 3 根,有 2,3,4;3,4,5;2,3,5;2,4,5,共 4 种取法,而能搭成一个三角形的有 2,3,4;3,4,5;2,4,5,3 种. 故其概率为:34.【知识点】公式求概率17. 【答案】513【知识点】公式求概率三、解答题(共8题) 18. 【答案】(1) 12.(2) 29.(3) 16.【知识点】公式求概率19. 【答案】黑桃的张数是39×10200=1.95≈2(张),红桃的张数是79×10200=3.95≈4(张),梅花的张数是61×10200=3.05≈3(张),方块的张数是21×10200=1.05≈1(张);甲赢的概率是410,乙赢的概率是2+310=510,∴游戏规则不公平.(2)是错误的.【知识点】公式求概率20. 【答案】(1) 100人;108∘(2) 由(1)知:B的人数为30,所以(3) 由分布图可知:身高高于170的人数为5人,所以P(身高高于170cm)=5100=120.【解析】(1) 由扇形统计图可知:A占54∘,则54∘360∘=320,由直方图可知:A人数为15人,C人数为35人,D为15人,E为5人,所以总人数=15320=100人,所以B人数:100−15−35−15−5=30人,所以占比:30100=310,所以a=310×360∘=108∘.【知识点】公式求概率、扇形统计图、频数分布直方图21. 【答案】14.【知识点】公式求概率22. 【答案】(1) 152(2) 113(3) 14【知识点】公式求概率23. 【答案】(1) ∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)=1020=12.(2) ∵P(红色)=120,P(黄色)=320,P(绿色)=620=310,∴200×120+100×320+50×310=40(元)∵40元>30元,∴选择转转盘对顾客更合算.【知识点】公式求概率24. 【答案】(1) P甲(红)=33+5=38,P 乙(红)=77+9=716,∵38=616<716,∴P甲(红)<P乙(红).(2) 不正确.P 丙(红)=3+73+5+7+9=1024=512,∵P甲(红)+P乙(红)=38+716=3948=1316,∴512≠1316,∴小明想法不正确.【知识点】公式求概率25. 【答案】(1) 红桃K,黑桃K,梅花K,方块K共4种;(2) 152(3) 113(4) 14【知识点】公式求概率11。

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

第6章 概率初步 北师大版七年级数学下册单元测试卷(含答案)

北师大新版七年级下册《第6章概率初步》2024年单元测试卷一、选择题1.“任意买一张电影票,座位号是2的倍数”,此事件是( )A.不可能事件B.随机事件C.必然事件D.确定事件2.小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )A.B.C.D.3.下列事件发生的概率为0的是( )A.随意掷一枚硬币两次,有一次正面朝上B.早晨太阳从东方升起C.|a|=2,a=2D.从三个红球中摸出一个黑球4.在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有( )A.5个B.6个C.7个D.8个5.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2B.P1<P2C.P1=P2D.以上都有可能6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )A.1B.C.D.8.小明要给朋友小林打电话,电话号码是七位正整数,他只记住了电话号码前四位顺序,后三位是3,6,7三位数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨对的概率是( )A.B.C.D.9.有一盒水彩笔除了颜色外无其他差别,其中各种颜色的数量统计如图所示.小腾在无法看到盒中水彩笔颜色的情形下随意抽出一支.小腾抽到蓝色水彩笔的概率为( )A.B.C.D.10.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为3的概率是( )A.B.C.D.二、填空题11.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 .12.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出红球的概率是0.2,则n= .13.小明和爸爸进行射击比赛,他们每人都射击10次.小明击中靶心的概率为0.6,则他击不中靶心的次数为 次;爸爸击中靶心8次,则他击不中靶心的概率为 .14.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10000次,指针指向红色部分有2500次.转盘上黄色部分的面积大约是 .15.已知一包糖共有5种颜色(糖果只有颜色差别),如图所示是这包糖果分布的百分比的统计图在这包糖中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为 .17.在世界大学生运动会射击运动员选拔活动中,甲、乙两组各四名选手的射击平均环数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名选手,则这两名选手的射击平均环数为19的概率 .三、解答题18.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?19.如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?20.米奇家住宅面积为90平方米,其中客厅30平方米,大卧室18平方米,小卧室15平方米,厨房14平方米,大卫生间9平方米,小卫生间4平方米.如果一只小猫在该住宅内地面上任意跑.求:(1)P (在客厅捉到小猫);(2)P (在小卧室捉到小猫);(3)P (在卫生间捉到小猫);(4)P (不在卧室捉到小猫).21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近  ;(2)假如你去摸一次,你摸到白球的概率是  ,摸到黑球的概率是  ;(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少只?22.用10个球设计一个摸球游戏,且分别满足下列要求:(1)使摸到红球的概率为;(2)使摸到红球和白球的概率都是.23.将正面分别写有数字1,2,3的三张卡片(卡片的形状、大小、质地、颜色等其他方面完全相同)洗匀后,背面朝上放在桌面上.甲从中随机抽取一张卡片,记该卡片上的数字为a,然后放回洗匀,背面朝上放在桌面上;再由乙从中随机抽取一张卡片,记该卡片上的数字为b,组成数对(a,b).(1)请写出数对(a,b)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽取一次卡片,按照得到的数对计算ab2的值,若ab2的值为奇数则甲赢;ab2的值为偶数则乙赢.你认为这个游戏公平吗?请说明理由.北师大新版七年级下册《第6章概率初步》2024年单元测试卷参考答案与试题解析一、选择题1.【解答】解:“任意买一张电影票,座位号是2的倍数”,此事件是随机事件.故选:B.2.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小军能一次打开该旅行箱的概率是,故选:A.3.【解答】解:A、随意掷一枚硬币两次,有一次正面朝上,是随机事件,发生的概率大于0并且小于1,不符合题意;B、早晨太阳从东方升起,是必然事件,发生的概率为1,不符合题意;C、|a|=2,a=2,是随机事件,发生的概率大于0并且小于1,不符合题意;D、从三个红球中摸出一个黑球,是不可能事件,发生的概率为0,符合题意;故选:D.4.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.5.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在甲种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选:A.6.【解答】解:根据概率的意义可得“抽到一等奖的概率为0.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.7.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.8.【解答】解:因为后3位是3,6,7三个数字共6种排列情况,而正确的只有1种,故小明第一次就拨对的概率是.故选:B.9.【解答】解:图中共有水彩笔2+3+4+3+6+2=20支,其中蓝色水彩笔6支,则抽到蓝色水彩笔的概率为=;故选:C.10.【解答】解:列树状图得:共有6种情况,和为3的情况数有3种,所以概率为,故选:A.二、填空题11.【解答】解:P(答对)=.12.【解答】解:根据题意得:=0.2,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.13.【解答】解:由题意知:小明不中靶心的次数为10×(1﹣0.6)=4次,爸爸击中靶心8次,则他击不中靶心有2次,故其概率为0.2.故本题答案为:4;0.2.14.【解答】解:转盘转动10000次,指针指向红色部分为2500次,指针指向红色的概率2500÷10000=25%,即红色面积占总面积的25%;而黄色面积占75%,其面积为0.75×4π=3π(cm2).故答案为:3πcm2.15.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=,故答案为:.16.【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.17.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的射击平均环数为19的结果有5种结果,∴这两名同学的射击平均环数为19的概率为,故答案为:.三、解答题18.【解答】解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.19.【解答】解:根据几何概率的意义可得:P(红色区域)==,P(白色区域)===,答:指针落在白色区域的概率是,指针落在红色区域的概率是.20.【解答】解:(1)P(在客厅捉到小猫)==.(2)P(在小卧室捉到小猫)==.(3)P(在卫生间捉到小猫)==.(4)P(不在卧室捉到小猫)===.21.【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.60,故答案为:0.60;(2)因为当n很大时,摸到白球的频率将会接近0.60;所以摸到白球的概率是0.6;摸到黑球的概率是0.4;故答案为:0.6,0.4;(3)因为摸到白球的概率是0.6,摸到黑球的概率是0.4,所以口袋中黑、白两种颜色的球有白球有30×0.6=18个,黑球有30×0.4=12个.22.【解答】解:(1)10个除颜色外均相同的球,其中2个红球,8个黄球;(2)10个除颜色外均相同的球,其中4个红球,4个白球,2个其他颜色球.23.【解答】解:(1)如图所示:(2)由树状图知,共有9种等可能结果,其中ab2的值为奇数的有1、9、3、27这4种结果,ab2的值为偶数的有4、2、8、18、12这5种结果,所以甲赢的概率为,乙赢的概率为,∵≠,∴这个游戏不公平.。

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(3)

新北师大版七年级数学下册第六章《概率初步》单元复习卷含答案解析(3)

一、选择题(共10题)1.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是( )A.160B.128C.80D.482.有编号为1到10的10个篮球,小红从中任意拿走一个,那么小红拿到的篮球的编号为5的整数倍的可能性的大小为( )A.110B.15C.120D.123.在某电视栏目中,曾有一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”.若翻到“哭脸”就不获奖.参与这个游戏的观众有3次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A.15B.29C.14D.5184.下列说法正确的是( )A.25人中至少有3人的出生月份相同B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C.天气预报说明天降水的概率为10%,则明天一定是晴天D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是125.以下事件中,必然发生的是( )A.通常情况下,水加热到100∘C沸腾B.昨天考试小明得满分C.打开电视机,正在播放体育节目D.掷一次骰子,向上一面是5点6.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是( )A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是117.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为( )A.47B.37C.27D.178.下列说法中,正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为12C.“明天要降雨的概率为12”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次9.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是( )A.110B.910C.15D.4510.下面事件是随机事件的是( )A.掷一枚硬币,出现反面B.在标准大气压下,水加热到8∘C时会沸腾C.实数的绝对值不小于零D.如果a,b是实数,那么a⋅b=b⋅a二、填空题(共7题)11.“打开电视机,正在播新闻”是事件.12.从1,2,⋯,32中任选一个数,取到的数是5的倍数的概率为.13.不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.14.电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类注:好评率是指一类电影中获得电影部数14050300200800510好评率0.40.20.150.250.10.1好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是.(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大.答:.15.一般地,就事件发生的可能性而言,可将事件分为、和.16.一个盒子内装有大小、形状相同的6个球,其中红球3个、绿球1个、白球2个,任意摸出一个球,则摸到白球的概率是.17.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2,0.3.则纸箱中蓝色球有个.三、解答题(共8题)18.袋中放着22只红球、8只黑球和10只白球,这三种球除了颜色以外没有任何区别.现将袋中的球搅匀.蒙上眼睛从口袋中取一只球,取出的球是黑球、白球与红球的概率分别是多少?抽到红球的概率大还是抽到白球的概率大?19.假如一只小猫正在如图所示的地板上自由地走来走去,它最终停留在黑色方砖上的概率是多少?小樱认为这个概率等于“袋中有12个红球和4个黄球,这些球除颜色外都相同,从袋中任意摸出一个球是黄球”的概率,你同意他的观点吗?为什么?20.在一个游戏中,有一个可以等可能显示从1到9的显示屏,游戏规则为:若数字为9,则甲获胜;若数字不是9,则乙获胜.你认为这个游戏规则对甲、乙双方公平吗?为什么?21.有一个均匀的正方体骰子,六个面上分别写有1至6六个数字,抛掷骰子,比较下列事件发生的可能性大小,并按从小到大的顺序把它们排列出来:(1)掷得数字6;(2)掷得的数字小于或等于6;(3)掷得数字9;(4)掷得的数字是偶数.22.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1) 求从袋中摸出一个球是黄球的概率;(2) 现在从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.问至少取出了多少个黑球?323.比较下列事件发生的可能性的大小,并按可能性从大到小的顺序排列:(1)抛掷一枚质地均匀的正方体骰子,出现的点数是7(P1表示发生的可能性);(2)一个不透明的袋子中装有2个白球,1个红球,从中任取一个球,取到白球(P2表示发生的可能);(3)分别标有1∼9连续正整数的卡片中,任取两张,和大于15(P3表示发生的可能性).24.初中学生带手机上学,给学生带来了方便,同时也带来了一些负面影响.针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如图的统计图:(1) 这次调查的家长总人数为人,表示“无所谓”的家长人数为人;(2) 随机抽查一个接受调查的家长,恰好抽到“很赞同”的家长的概率是;(3) 求扇形统计图中表示“不赞同”的扇形的圆心角度数.25.某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1) 求该校被调查的学生总数及评价为“满意”的人数;(2) 补全折线统计图;(3) 根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?答案一、选择题(共10题)1. 【答案】C【解析】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4=20(个),则n=20×4=80.【知识点】简单的计数2. 【答案】B【知识点】公式求概率3. 【答案】B【知识点】公式求概率4. 【答案】A【知识点】概率的概念及意义5. 【答案】A【解析】A、通常情况下,水加热到100∘C沸腾是必然发生的,正确;B、昨天考试小明得满分是随机事件,错误;C、打开电视机,正在播放体育节目是随机事件,错误;D、掷一次骰子,向上一面是5点是随机事件,错误.【知识点】事件的分类6. 【答案】C【知识点】事件的分类7. 【答案】C【解析】从布袋里任意摸出1个球,是红球的概率=2.7【知识点】公式求概率8. 【答案】A【解析】A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;”,表示明天有50%的可能降雨,故此选项错误;C、“明天要降雨的概率为12D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选:A.【知识点】概率的概念及意义、事件的分类9. 【答案】C【解析】从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率=210=15.【知识点】公式求概率10. 【答案】A【解析】A.掷一枚硬币,出现反面,是随机事件,符合题意;B.在标准大气压下,水加热到8∘C时会沸腾,是不可能事件,不合题意;C.实数的绝对值不小于零,是必然事件,不合题意;D.如果a,b是实数,那么a⋅b=b⋅a,是必然事件,不合题意.【知识点】事件的分类二、填空题(共7题)11. 【答案】随机【解析】打开电视,有可能在播新闻,有可能在播广告,有可能播的是电视剧,所以是随机事件.【知识点】事件的分类12. 【答案】316【知识点】公式求概率13. 【答案】37【知识点】公式求概率14. 【答案】0.025;第五类电影的好评率增加0.01,第二类电影的好评率减少0.01.【解析】(1)总电影数2000部,获得第四类好评电影200×0.25=50,获得好评的第四类电影的概率为502000=0.025.(2)第五类电影部数最多,好评率增加0.1,第二类电影部数最少,好评减少0.1,则总的好评率最大.【知识点】公式求概率15. 【答案】必然事件;不可能事件;不确定事件【知识点】不可能事件、随机事件16. 【答案】 13【解析】由题意得:从盒子中任意摸出一个球共有 6 种等可能性的结果,其中,摸到白球的结果有 2 种,则摸到白球的概率为 P =26=13,故答案为:13.【知识点】公式求概率17. 【答案】 50【解析】由已知得纸箱中蓝色球的个数为:100×(1−0.2−0.3)=50(个). 【知识点】概率的概念及意义三、解答题(共8题)18. 【答案】 P(黑)=15,P(白)=14,P(红)=1120,P(红)>P(白).【知识点】公式求概率19. 【答案】 P(停留在黑色方砖)=416=14.同意,因为 P(摸出黄球)=44+12=14.【知识点】公式求概率20. 【答案】不公平,∵ 甲获胜的可能性大小为 19,而乙为 89,89>19,∴ 不公平.【知识点】公式求概率21. 【答案】用 P 1,P 2,P 3,P 4 分别表示事件(1),(2),(3),(4)发生的可能性大小,从小到大的排列顺序是 P 3,P 1,P 4,P 2. 【知识点】概率的概念及意义22. 【答案】(1) 摸出一个球是黄球的概率为 P =55+13+22=18.(2) 设取出x个黑球.由题意,得5+x40≥13.解得x≥253.∴x的最小正整数解是9.即至少取出了9个黑球.【知识点】公式求概率23. 【答案】P2>P3>P1.【知识点】概率的概念及意义24. 【答案】(1) 200;40(2) 110(3) “不赞同”的扇形的圆心角度数为:90200×360∘=162∘.【解析】(1) 这次调查的家长总人数为:50÷25%=200(人);表示“无所谓”的家长人数为:200×20%=40(人).(2) “很赞同”的家长人数为:200−90−50−40=20(人),抽到“很赞同”的家长的概率是20÷200=110.【知识点】扇形统计图、公式求概率、条形统计图25. 【答案】(1) 由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”点15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60−(9+21+3)=27(人).(2)(3) 所求概率为9+2760=35.【知识点】公式求概率、折线统计图、扇形统计图。

北师大版七年级下册第6章概率初步单元检测数学试题

北师大版七年级下册第6章概率初步单元检测数学试题

北师大版七年级下第六单元《概率初步》单元检测一、单选题1. 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A. 3个球中至少有1个黑球B. 3个球中至少有1个白球C. 3个球中至少有2个黑球D. 3个球中至少有2个白球2. 下列说法中,正确的是()A. 任意投掷一枚质地均匀的硬币30次,出现正面朝上的次数一定是15次B. 为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图C. “太阳东升西落”是不可能事件D. 调查某班40名学生的身高情况宜采用普查3. 在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A. 必然事件B. 随机事件C. 不可能事件D. 确定性事件4. 下列说法中:①如果一个事件发生的可能性很小,那么它的概率为0;②如果一个事件发生的可能性很大,那么它的概率为1;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间;其中,正确的说法有()A. 1个B. 2个C. 3个D. 0个5. 在写有1至10的10张卡片中,如果第1次抽出写有3的卡片后(不放回),第2次任意抽取1张是奇数卡片的可能性是()A. 59B.49C.25D. 126. 在抛掷硬币的试验中,下列结论正确的是()A. 经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B. 抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C. 抛掷50000次硬币,可得“正面向上”的频率为0.5D. 若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5187. 在4个相同的袋子中,装有除颜色外完全相同的10个球,任意摸出1个球,摸到红球可能性最大的是()A. 1个红球,9个白球B. 2个红球,8个白球C. 5个红球,5个白球D. 6个红球,4个白球8. 小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,再掷一次,正面朝上的概率是()A. 13B.23C. 12D. 19. 在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球和黑球共()A. 12个B. 16个C. 20个D. 30个10. “文明丰都·幸福你我”,丰都正在积极创建全国文明城市.丰都宏运公司楼顶公益广告牌上“文明丰都”几个字是霓红灯,几个字一个接一个亮起来(亮后不熄灭)直至全部亮起来再循环,当路人一眼望去,能够看到几个字全在的概率是()A. 13B.14C.15D.16二、填空题11. 下列事件是必然事件的是________.①射击一次,中靶;②100件某种产品中有2件次品,从中任取1件恰好是次品;③太阳从东方升起;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12. 某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到______路车的可能性最大.13. 在一个不透明的袋子里,装有2个红球和3个白球,这些球除颜色外没有任何区别,现从这个袋子中随机摸出一个球,摸到红球的概率是_____.14. 一个不透明的箱子中有4个红球和若干个黄球,若任意摸出一个球,摸出红球的概率是25,则黄球个数是_____个.15. 某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16. 一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为________.17. 有一个样本共有50个数据,分成若干组后,其中有一小组的频率是0.4,则该组的频数是_____.18. 如图,甲、乙、丙3人站在55 网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率是__________.19. 不透明的口袋中有黑白围棋子若干颗,已知随机摸出一颗是白棋子的概率为310,若加入10颗白棋子,随机摸出一颗是白棋子的概率为13,口袋中原来有______颗围棋子.20. 在一个不透明的布袋中有白球和黑球共20个,这些球除颜色外都相同.小明将布袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回布袋中.不断重复这一过程,共摸了100次球,发现有40次摸到黑球,则布袋中黑球的个数可能为________.三、解答题21. 目前某市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如图所示的统计图:(1)这次调查的家长总数为__________人,家长表示“不赞同”的人数为__________人;(2)请把条形统计图补充完整;(3)表示家长“无所谓”的扇形圆心角的度数是__________;(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是多少?22. 某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298604m落在“可乐”区域的频率0.60.610.60.590.604mn(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近 ,假如你去转动该转盘一次,你获得“可乐”的概率约是 ;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?23. 某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数频率篮球300.25羽毛球m0.20乒乓球36n跳绳180.15其他120.10请根据以上图表信息,解答下列问题:(1)频数分布表中的m=_________,n=_________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为_________.24. 某校在“爱心捐款”活动中,同学们都献出了自己的爱心,他们的捐款额有5元、10元、15元、20元四种情况,根据随机抽样统计数据绘制了图1和图2两幅尚不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样的学生人数是________,捐款10元的人数是________;(2)本次捐款金额的中位数是________元;(3)已知捐款金额为5元的6名同学中有4名男生和2名女生,若从这6名同学中随机抽取一名进行访谈,且每一名同学被抽到的可能性相同,则恰好抽到男生的概率是________;(4)该校学生总人数为1000人,请估计该校一共捐款________元.25. 2022年10月12日“天宫课堂”第三课在中国空间站开讲并直播,神舟十四号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .毛细效应实验;B .水球变“懒”实验;C .太空趣味饮水;D .会调头的扳手.某校九年级数学兴趣小组成员为研究“九年级学生对这四个实验中最感兴趣的是哪一个?”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)本次被调查的学生有 人;扇形统计图中D 所对应的圆心角的度数为 ;(2)请补全条形统计图;(3)该校九年级共有650名学生,请估计该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有多少人?(4)李老师计划从小明、小刚、小兰、小婷四位学生中随机抽取两人参加学校的微重力模拟实验,请用树状图法或列表法求出恰好抽中小刚、小兰两人的概率.26. 某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛,根据比赛成绩(满分100分,参赛学生成绩均高于80分)绘制了如下尚不完整的统计图表.比赛成绩频数分布表 成绩分组(单位:分) 频数 频率 8085x ≤<600.12 8590x ≤<a 0.3 9095x ≤<240c 95100x ≤≤500.1 合计b1请根据以上信息解答下列问题:(1)频数分布表中,b = ,c = ;(2)补全频数分布直方图;(3)学校计划从成绩在95分以上的同学中随机选择15名同学,到某社区开展文明礼仪知识宣传,取得98分好成绩的小丽被选中的概率是多少?27. 2022年3月23日“天宫课堂”第二课在中国空间站开讲并直播,神舟十三号三位航天员相互配合,生动演示了微重力环境下的四个实验:A .太空“冰雪”实验B .液桥演示实验C .水油分离实验D .太空抛物实验我校九年级数学兴趣小组成员“对这四个实验中最感兴趣的是哪一个”随机调查了本年级的部分学生,并绘制了两幅不完整的统计图,请根据图中的信息回答下列问题:(1)在这次调查活动中,兴趣小组采取的调查方式是_______;(填写“普查”或“抽样调查”)(2)本次被调查的学生有______人;扇形统计图中D 所对应的m =______;(3)我校九年级共有650名学生,请估计九年级学生中对B .液桥演示实验最感兴趣的学生大约有______人;(4)十三班被调查的学生中对A .太空“冰雪”实验最感兴趣的有5人,其中有3名男生和2名女生,现从这5名学生中随意抽取1人进行观后感谈话,每人被抽到的可能性相同,恰好抽到女生的概率是______.28. 国家规定,中小学生每天在校体育活动时间不低于1h ,为了解这项政策的落实情况,有关部门就“你每天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t (h )进行分组(A 组:0.5t <,B 组:0.51t ≤<,C 组:1 1.5t ≤<,D 组: 1.5t ≥),绘制成如图所示的两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生为__________人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是多少(4)若当天在校学生为1200人,请估计在当天达到国家规定体育活动时间的学生有多少人?北师大版七年级下第六单元《概率初步》单元检测一、单选题【1题答案】【答案】A【解析】【分析】根据袋子中球的个数以及每样球的个数对摸出的3个球的颜色进行分析即可.【详解】解:袋中一共6个球,有4个黑球和2个白球,从中一次摸出3个球,可能3个都是黑球,也可能2个黑球1个白球,也可能2个白球1个黑球,不可能3个都是白球,因此3个球中至少有1个白球、3个球中至少有2个黑球,3个球中至少有2个白球是随机件,3个球中至少有1个黑球是必然事件,故A正确.故选:A.【点睛】本题考查了确定事件及随机事件,解题的关键是熟练掌握事件的分类,事件分为随机事件和确定事件,而确定事件又分为必然事件和不可能事件.【2题答案】【答案】D【解析】【分析】依据随机事件、扇形统计图、必然事件及普查的相关概念及性质进行判断即可【详解】解:A、任意投掷一枚质地均匀的硬币30次是随机事件,出现正面朝上的次数可能是15次,选项说法错误,不符合题意;B、为了直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图,选项说法错误,不符合题意;C、“太阳东升西落”是必然事件,选项说法错误,不符合题意;D、调查某班40名学生的身高情况宜采用普查,选项说法正确,符合题意;故选:D.【点睛】本题考查了随机事件、扇形统计图、必然事件及普查的相关概念及性质;解题的关键是正确掌握相关概念即性质.【3题答案】【答案】B【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:对方出“剪刀”.这个事件是是随机事件,故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【4题答案】【答案】A【解析】【分析】表示一个事件发生的可能性大小的数,叫做该事件的概率,不可能事件的概率是0,必然事件的概率是1,随机事件的概率大于0且小于1.【详解】①如果一个事件发生的可能性很小,也有可能发生,那么它的概率接近于0,故①错误;②如果一个事件发生的可能性很大,那么它的概率接近于1,故②错误;③如果一个事件可能发生,也可能不发生,那么它的概率介于0与1之间,故③正确,故正确的只有③一个,故选:A.【点睛】本题考查随机事件发生的可能性大小,是基础考点,难度较易,掌握相关知识是解题关键.【5题答案】【答案】B【解析】【分析】用剩余的奇数卡片张数除以剩下的卡片总张数即为所求的可能性.【详解】解:1至10共10个数,奇数卡片共有5张,抽出一张后,还有4张,第2次任意抽取1张是奇数卡片的可能性49.故选:B.【点睛】本题考查概率,解题关键是明确概率的意义,准确运用概率公式进行计算.【6题答案】【答案】A【解析】【分析】根据频率的概念与计算公式逐项判断即可得.【详解】A、经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定,此项正确;B、抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率可能不同,此项错误;C、抛掷50000次硬币,可得“正面向上”的频率约为0.5,此项错误;D、若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率为10.5180.482-=,此项错误;故选:A.【点睛】本题考查了频率的概念与计算公式,掌握理解频率的概念是解题关键.【7题答案】【答案】D【解析】【分析】根据概率的计算方法,比较概率的大小即可求解.【详解】解:A选项,1个红球,9个白球,摸到红球的概率为11 1910=+;B选项,2个红球,8个白球,到红球的概率为221 28105==+;C选项,5个红球,5个白球,到红球的概率为551 55102==+;D选项,6个红球,4个白球,到红球的概率为663 64105==+;∵1113 10525<<<,∴摸到红球可能性最大的是“6个红球,4个白球”,故选:D.【点睛】本题主要考查概率的计算,掌握概率的计算方法,比较概率大小的方法是解题的关键.【8题答案】【答案】C【解析】【分析】根据概率公式进行计算即可.【详解】解:掷均匀硬币时,有正面朝上和反面朝上,两种等可能的情况,因此掷一次,正面朝上的概率是12,故C正确.故选:C.【点睛】本题主要考查了应用概率公式计算概率,解题的关键是熟练掌握概率公式.【9题答案】【答案】B【解析】【分析】设白球和黑球共x个,根据概率公式得41040x=求得x即可.【详解】设白球和黑球共x个,根据题意,得41040x=,解得16x=故选B.【点睛】本题考查了概率公式的应用,熟练掌握概率公式是解题的关键.【10题答案】【答案】B【解析】【分析】根据概率公式进行计算即可.【详解】解:由题意,得:共有4种等可能的情况,其中几个字全在的结果有1种,∴14P ;故选B.【点睛】本题考查概率.熟练掌握概率公式,是解题的关键.二、填空题【11题答案】【答案】③④##④③【解析】【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:①射击一次,中靶,属于随机事件;②100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;③太阳从东方升起,属于必然事件;④一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件.故答案为:③④.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.【12题答案】【答案】3【解析】【分析】根据题意分析出哪路车间隔时间最长,哪路车间隔时间最短,据此解答即可.【详解】解:∵1路车8分钟一辆,3路车5分钟一辆,16路车10分钟一辆,∴3路车间隔时间最短,16路车间隔时间最长,∴小明去公交车站最先等到3路车的可能性最大.故填3.【点睛】本题主要考查了事件可能性大小的判断,掌握可能性等于所求情况数与总情况数之比是解答本题的关键.【13题答案】【答案】2 5【分析】根据题意,确定出符合条件的可能数,和出现的总可能数,利用概率定义求解即可.【详解】根据题意可得:一个不透明的盒子中装有2个红球和3个白球,共5个,摸到红球的概率为:25.故答案为:25.【点睛】本题考查简单的概率计算,熟练掌握概率公式是解题关键.【14题答案】【答案】6【解析】【详解】设这个箱子中黄球的个数为x个,再根据概率公式求出x的值即可.【分析】解:设这个箱子中黄球的个数为x个,根据题意得:424+5x=,解得6x=,经检验,6x=是方程的解.故答案为:6.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.【15题答案】【答案】0.1【解析】【分析】根据概率的计算公式即可求解.【详解】解:一等奖10个,共准备了100张奖券,∴抽一张奖券中一等奖的概率为100.1 100=,故答案为:0.1.【点睛】本题主要考查概率的计算,理解并掌握概率的计算方法是解题的关键.【16题答案】【答案】60【分析】直接用频率乘以总数即可.【详解】由题意可知红球的个数约为20030%=60⨯,故答案为60.【点睛】本题考查了根据频率求总数,熟记频率⨯总数=个数是解题的关键.【17题答案】【答案】20【解析】【分析】由公式:频率=频数总数据,得:频数=总数据×频率,即可求出答案.【详解】解:由题意得:该组的频数为:50×0.4=20.故答案为20.【点睛】本题考查了频数与频率,难度一般,能够灵活运用频率=频数总数据这一公式是解决本题的关键.【18题答案】【答案】211【解析】【分析】由题意得空格有55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有6个,再由概率公式求解即可.【详解】解:甲、乙、丙3人站在55⨯网格中的三个格子中,空格有:55322⨯-=(个),则小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的空格有4个,∴小王随机站在剩下的空格中,与图中3人均不在同一行或同一列的概率为422211==,故答案为:211.【点睛】本题考查了概率公式,由题意得出与图中3人均不在同一行或同一列的空格的个数是解题的关键.【19题答案】【答案】200【解析】【分析】分别设出原来口袋中黑白棋子的个数,再根据概率公式列方程组解答即可.【详解】解:设原来口袋中分别有黑白棋子的个数分别为x 、y ,则310101103y x y y x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,解得14060x y =⎧⎨=⎩,∴x +y =200,故口袋中原来有200颗围棋子.故答案为:200【点睛】此题主要考查了概率公式,关键是根据概率=所求情况数与总情况数之比来列方程.【20题答案】【答案】8【解析】【分析】根据概率公式先求出摸到黑球的概率,再乘以总球的个数即可得出答案.【详解】解:∵共摸了100次球,发现有40次摸到黑球,∴摸到黑球的概率为0.4,∴口袋中白球和黑球共20个,∴袋中的黑球大约有28×0.4=8(个);故答案为:8.【点睛】本题考查了用样本估计总体的知识,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.三、解答题【21题答案】【答案】(1)600,80;(2)见解析;(3)24°;(4)3 5 .【解析】【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(3)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解;(4)根据扇形统计图即可得到恰好是“赞同”的家长的概率.【详解】(1)这次调查的家长总数为360÷60%=600(人),很赞同的人数有600×20%=120(人),“不赞同”的人数为600-120-360-40=80(人).(2)补全条形统计图如下.(3)表示家长“无所谓”的扇形圆心角的度数是360°×40600=24°.(4)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是360 600=35.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【22题答案】【答案】(1)0.6;472;(2)0.6;0.6;(3)144°【解析】【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1−0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【详解】解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次数60122240298472604m落在“可乐”区域的频率0.60.610.60.60.590.604mn(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是0.6;故答案为:0.6;0.6;(3)(1﹣0.6)×360°=144°,所以表示“洗衣粉”区域的扇形的圆心角约是144°.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【23题答案】【答案】(1)24,0.30;(2)108°.【解析】【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;【详解】解:(1)∵喜欢篮球的是30人,频率是0.25,∴样本数=30÷0.25=120,∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是36人,∴m=0.20×120=24,n=36÷120=0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为(1)24,0.30;(2)108°.【点睛】本题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.【24题答案】【答案】(1)50,18(2)15 (3)2 3(4)13000【解析】【分析】(1)根据总人数×百分比=某项人数计算总人数;用总人数减去已知三部分的人数即可求出捐款10元的人数;(2)根据中位数的定义即可得出学生捐款金额的中位数;(3)根据概率公式求解即可;(4)用总人数乘以每人平均捐款钱数即可得出答案.【小问1详解】由于捐15元的有16人,所占比例为32%,本次抽样的学生人数是1632%50÷=(人);506161018---=人;故答案为:50,18;【小问2详解】把这数从小到大排列,中位数是第25、26个数的平均数,则中位数是1515152+=(元);故答案为:15;【小问3详解】∵6名同学中有4名男生和2名女生,∴P (恰好抽到男生)=4263=.故答案为:23;【小问4详解】6518101615102010001300050⨯+⨯+⨯+⨯⨯=元.故答案为:13000.【点睛】此题考查了条形统计图与扇形统计图的综合,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【25题答案】【答案】(1)50;36︒(2)B 实验最感兴趣的人数为:501020515---=(人),补全统计图见解析 (3)该校九年级学生中对B .水球变“懒”实验最感兴趣的学生大约有195人 (4)16【解析】【分析】(1)用对C 实验最感兴趣的人数除以其所占的百分比可得本次被调查的学生人数;用360°乘以被调查的学生中对D 实验最感兴趣的人数所占的百分比,即可得扇形统计图中D 所对应的圆心角的度数;(2)用被调查的学生总人数分别减去对A ,C ,D 实验最感兴趣的人数,可求出B 实验最感兴趣的人数,补全条形统计图即可;(3)根据用样本估计总体,用650乘以被调查的学生中对B .水球变“懒”实验最感兴趣的人数所占的百分比,即可得出答案;(4)画树状图得出所有等可能的结果数和恰好抽中小刚、小兰两人的结果数,再利用概率公式可得出答案.【小问1详解】解:本次被调查的学生有2040%50÷=(人),扇形统计图中D 所对应的圆心角的度数为53603650︒⨯=︒.故答案为:50;36︒.【小问2详解】解:B 实验最感兴趣的人数为:501020515---=(人),。

(2023年最新)北师大版七年级下册数学第六章 概率初步含答案

(2023年最新)北师大版七年级下册数学第六章 概率初步含答案

北师大版七年级下册数学第六章概率初步含答案一、单选题(共15题,共计45分)1、从正方形的四个顶点中,任取三个顶点连成三角形.把“这个三角形是等边三角形”记作事件M,下列判断正确的是()A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为D.事件M发生的概概率为2、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张3、如图,桌上摆放着写有号码的“♥”卡片,它们的背面都完全相同,现将它们背面朝上,从中任意摸出一张,摸到“♥”卡片上写有数字5的概率是()A. B. C. D.4、某学校为了解学生大课间体育活动情况,随机抽取本校部分学生进行调查.整理收集到的数据,绘制成如图所示的统计图.小明随机调查一名学生,他喜欢“踢毽子”的概率是()A. B. C. D.5、现有A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()A. B. C. D.6、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.7、甲工厂生产的5件产品中有4件正品,1件次品;乙工厂生产的5件产品中有3件正品,2件次品。

从这两个工厂生产的产品各任取1件,2件都是次品的概率为()A. B. C. D.8、有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是( )A. B. C. D.9、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B. C. D.10、小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A. B. C. D.11、在围棋盒中有4颗黑色棋子和a颗白色棋子,随机地取出一颗棋子,如果它是白色棋子的概率是,则a的值为()A.1B.2C.3D.412、下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖13、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.114、某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A. B. C. D.不能确定15、从一副扑g牌中任意抽取1张,下列事件:①抽到“K”;②抽到“黑桃”;③抽到“大王”;④抽到“黑色的,其中,发生可能性最大的事件是()A.①B.②C.③D.④二、填空题(共10题,共计30分)16、如图,一次函数的图象与x轴交于点A,与y轴交于点B,若向的外接圆内随机抛掷一枚小针,则针尖落在阴影部分的概率是________.17、一个不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇均后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒子大约有白球________个.18、从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是________.19、某瓷砖厂在相同条件下抽取部分瓷砖做耐磨实验,结果如下表所示:抽取瓷砖数n 100 300 400 600 1000 2000 3000合格品数m 96 282 382 570 949 1906 28500.960 0.940 0.955 0.950 0.949 0.953 0.950合格品频率则这个厂生产的瓷砖是合格品的概率估计值是________.(精确到0.01)20、一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了新色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为________.21、在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.22、抛掷一枚分别标有1,2,3,4,5,6的正方体骰子1次,骰子落地时朝上的数为偶数的概率是________.23、现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是________.24、从-1,,,1.6中随机取两个数,取到的两个数都是无理数的概率是________.25、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。

第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册

第六章 概率初步 单元测试卷-2022-2023学年北师大版七年级数学下册

第六章概率初步单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A. 13B. 29C. 23D. 492. 用力转动如图所示的转盘甲和转盘乙的指针,如果想让指针停在阴影区域,选取哪个转盘成功的机会比较大?( )A. 转盘甲B. 转盘乙C. 两个一样大D. 无法确定3. 有六张背面相同的扑克牌,正面上的数字分别是4,5,6,7,8,9.若将这六张牌背面朝上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是9的概率为( )A. 23B. 12C. 13D. 164. 不透明的袋子里有50张2022年北京冬奥会宣传卡片,卡片上印有会徽、吉祥物冰墩墩、吉祥物雪容融图案,每张卡片只有一种图案,除图案不同外其余均相同,其中印有冰墩墩的卡片共有n张.从中随机摸出1张卡片,若印有冰墩墩图案的概率是15,则n的值是( )A. 250B. 10C. 5D. 15. 下列各选项的事件中,是随机事件的是( )A. 向上抛的硬币会落下B. 打开电视机,正在播新闻C. 太阳从西边升起D. 长度分别为4、5、6的三条线段围成三角形6. 从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B. 13C. 12D. 347. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从F出口落出的概率是( )A. 12B. 13C. 14D. 168. 一个质地均匀的立方体的六个面上分别标有数字1,2,3,4,5,6,右图是这个立方体的展开图,抛掷这个立方体,则朝上一面上的数字恰好等于朝下一面上的数字的12的概率是( )A. 16B. 13C. 12D. 23二、填空题(本大题共7小题,共21分)9. 如图所示,一块飞镖游戏板由除颜色外都相同的9个小正方形构成.假设飞镖击中每1个小正方形是等可能的(击中小正方形的边界或没有击中游戏板,则重投一次).任意投掷飞镖一次,击中灰色区域的概率是__ _.10. 地球上陆地与海洋面积比约为3︰7,则宇宙飞来一块陨石落在海洋的概率为.11. 有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是______ .12. 一个小球在如图所示的地面上自由滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是______.13. 正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为.14. 如图,在圆形靶中,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,且∠BAC=30∘,则射击到靶中阴影部分的概率是.15. 如图,在4×4的正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是.三、解答题(本大题共9小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新街中学七(下)数学 第六章(概率初步)检测题
一、填空题
1、游戏的公平性是指双方获胜的概率 。

2、一般地,就事件发生的可能性而言,可将事件分为 、 和 。

3、有一组卡片,制作的颜色,大小相同,分别标有0~10这11个数字,现在将 它们背面向上任意颠倒次序,然后放好后任取一组,则: (1)P(抽到两位数)= ; (2)P(抽到一位数)= ;
(3)P(抽到的数是2的倍数)= ; (4)P(抽到的数大于10)= ;
4、学校升旗要求学生穿校服,但有一些粗心大意的学生忘记了,若500名学生 中没有穿校服的学生为25名,则任意叫出一名学生,没穿校服的概率 为 ;穿校服的概率为 。

5、轰炸机练习空中投靶,靶子是在空地上的一个巨型正方形铁板,板上画有大 小相同的36个小正方形,其中6个红色,30个黑色,那么投中红色小正方形的 概率为 。

6、某中学学生情况如右表:若任意抽取一名该校的学生,是高中生的概率 是 ;是女生的概率是 。

7、一只口袋中有4只红球和5个白球,从袋中任摸出一个球,则 P(抽到红球) P(抽到白球)(填“>”或“<”)。

8、小明和爸爸进行射击比赛,他们每人都射击10次。

小明击中靶心的概率为 0.6,则他击不中靶心的次数为 ;爸爸击中靶心8次,则他击不中 靶心的概率为 。

二、选择题
9、如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的 概率是( )
A 、
21 B 、31 C 、41 D 、6
1 10、某电视综艺节目接到热线电话3000个。

现要从中抽取“幸运观众”10名, 张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为( )
A 、
B 、
C 、
D 、0 11、下列各事件中,发生概率为0的是( )
A 、掷一枚骰子,出现6点朝上
B 、太阳从东方升起
C 、若干年后,地球会发生大爆炸
D 、全学校共有1500人,从中任意抽出两人,他们的生日完全不同 12、转动下列各转盘,指针指向红色区域的概率最大的是( )
13、小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同 学的后面,那么这名同学是女生的概率为( )
A 、0
B 、83
C 、73
D 、无法确定
14、一箱灯泡有24个,合格率为80%,从中任意拿一个是次品的概率为( )
A 、51
B 、80%
C 、24
20 D 、1
15.黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( )
A.能开门的可能性大于不能开门的可能性
B.不能开门的可能性大于能开门的可能性
C.能开门的可能性与不能开门的可能性相等
D.无法确定
16.一个口袋内装有大小和形状相同的一个白球和两个红球,“从中任取一球,得到白球”这个事件是( )
A.必然事件
B.不能确定事件
C.不可能事件
D.不能确定
17.将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是 ( )
A.2719
B.2712
C.32
D.27
8 红 黄
A 红 白
B


白 C




D
白 红
红 白


三、解答题
18、用自己的语言解释下列问题:
(1)一种彩票的中奖率为10001
,你买1000张,一定中奖吗?
(2)一种彩票的中奖率为五百万分之一,你买一张一定不能中奖吗?
19、子,他们在这一角的每块方砖上都放有相同的食物,则鸽子落在中间一层的 概率是多少呢?
20、请将下列事件发生的可能性标在图中的大致位置上。

(1)掷两枚骰子,点数之和不超过12。

(2)哈尔滨寒冬气温超过38℃。

(3)5个人分成三组,一定有一个人单独是一组。

(4)掷一枚均匀的硬币,正面朝上。

(5)你买了一张体育彩票,恰巧中了特等奖。

(6)从一副扑克牌中(去掉大、小王),抽出一张牌,比“J ”小。

21、如图是芳芳设计的自由转动的转盘,上面写有10个有理数。

想想看,转得下列各数的概率是多少? (1)转得正数; (2)转得正整数;
(3)转得绝对值小于6的数; (4)转得绝对值大于等于8的数。

1
不可能事件
必然事件
22.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如
果选得男生的概率为3
2
,求男女生数各多少?
23.某同学抛掷两枚硬币,分10级实验,每组20次,下面是共计200次实验中
①在他的每次实验中,抛出_____、_____和_____都是不确定事件.
②在他的10组实验中,抛出“两个正面”概率最多的是他第_____组实验,抛出“两个正面”概率最少的是他的第_____组实验.
③在他的第1组实验中抛出“两个正面”的概率是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的概率是_____.
④在他的10组实验中,抛出“两个正面”的概率是_____,抛出“一个正面”的概率是_____,“没有正面”的概率是_____,这三个概率之和是_____.
24.以下有三种情况,根据你的实践,用序号字母填写下表(有几种可能情况填写几个字母)
A.在三角形的内部
B.在三角形的边上。

相关文档
最新文档