信息论与编码第二章 信源熵习题的答案[最新]
信息论与编码理论习题答案
信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
信息论与编码第二章课后习题答案
因此,必须称的次数为
因此,至少需称 3 次。
I1 = log 24 ≈ 2.9 次 I 2 log 3
【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。
【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之
和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?
= − p1 log p1 − p2 log p2 − K − pL−1 log pL−1 − pL log pL + pL log pL
− q1 log q1 − q2 log q2 − K − qm log qm
= − p1 log p1 − p2 log p2 − K − pL−1 log pL−1 − pL log pL + (q1 + q2 + q3 + L + qm ) log pL
H ( X ) − H (X ′) = ( p1 − ε ) log( p1 − ε ) + ( p2 + ε ) log( p2 + ε ) − p1 log p1 − p2 log p2
令
f
(x)
=
( p1
−
x) log( p1
−
x) +
( p2
+
x) log( p2
+
x)
,
x ∈ 0,
A
已落入,B
落入的格可能有
47
个,条件概率
P(b j
|
ai )
均为
1 47
。平均自信息量为
48 47
∑ ∑ H (B | A) = −
《信息论与编码》习题解答-第二章
《信息论与编码》习题解答第二章 信源熵-习题答案2-1解:转移概率矩阵为:P(j/i)=,状态图为:⎪⎩⎪⎨⎧==∑∑j jj ij ii W W P W 1,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=+=++=1323221313121321233123211W W W W W W W W W W W W 解方程组求得W=2-2求平稳概率符号条件概率状态转移概率解方程组得到 W=2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解: (1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P Xii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-4(4)2.5 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
信息论编码与基础课后题(第二章)
第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。
当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D ) 的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。
设每字使用的频度相等,求一个汉字所含的信息量。
设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。
显示方阵的利用率是多少?解:由于每个汉字的使用频度相同,它们有相同的出现概率,即67631=P 因此每个汉字所含的信息量为bits 7.1267631loglog =-=-=P I 字每个显示方阵能显示256161622=⨯种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是bits 322.054loglog passpass =-=-=P Ibits 25621loglog 256=-=-=P I 阵显示方阵的利用率或显示效率为0497.02567.12===阵字I I η 4、两个信源1S 和2S 均有两种输出:1 ,0=X 和1 ,0=Y ,概率分别为2/110==X X P P ,4/10=Y P ,4/31=Y P 。
信息论与编码习题答案-曹雪虹
3-14
信源 符号 xi x1 x2 x3 x4 x5 x6 x7
符号概 率 pi 1/3 1/3 1/9 1/9 1/27 1/27 1/27 1/3 1/3 1/9 1/9 2/27 1/27 1/3 1/3 1/9 1/9 1/9
编码过程
编码 1/3 1/3 1/3 2/3 1/3 00 01 100 101 111 1100 1101
得p0p1p223当p0或p1时信源熵为0第三章无失真信源编码31321因为abcd四个字母每个字母用两个码每个码为05ms所以每个字母用10ms当信源等概率分布时信源熵为hxlog42平均信息传递速率为2信源熵为hx0198bitms198bitsbitms200bits33与上题相同351hu12log2?14log4?18log8?116log16?132log32?164log64?1128log128?1128log128?1984111111112481632641281282每个信源使用3个二进制符号出现0的次数为出现1的次数为p0p134相应的香农编码信源符号xix1x2x3x4x5x6x7x8符号概率pi12141811613216411281128累加概率pi00507508750938096909840992logpxi12345677码长ki12345677码字010110111011110111110111111011111110相应的费诺码信源符号概符号xi率pix1x2x3x4x5x6x7x812141811613216411281128111第一次分组0第二次分组0第三次分组0第四次分组0第五次分组011第六次分组01第七次分组01二元码0101101110111101111101111110111111105香农码和费诺码相同平均码长为编码效率为
信息论与编码第二章习题参考答案
2.1 同时掷两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“3和5同时出现”事件的自信息量; (2)“两个1同时出现”事件的自信息量;(3)两个点数的各种组合(无序对)的熵或平均信息量; (4)两个点数之和(即2,3,…,12构成的子集)的熵;(5)两个点数中至少有一个是1的自信息。
解:(1)一个骰子点数记为X ,另一个骰子的点数记做Y ,X 、Y 之间相互独立,且都服从等概率分布,即同理一个骰子点数为3,另一个骰子点数为5属于组合问题,对应的概率为181616161613Y Py 5X Px 5Y Py 3X Px P 1=⨯+⨯===+===)()()()(对应的信息量为比特)()(17.4181-lb P -I 11===lb(2)两个骰子点数同时为1的概率为)()(3611Y Py 1X Px P 2==== 对应的信息量为比特)()(17.5361-lb P -I 22===lb(3)各种组合及其对应的概率如下,6,5,4,3,2,1Y X 3616161Y X P ===⨯==)(共6种可能18161612Y X P =⨯⨯=≠)( 共有15种可能因此对应的熵或者平均自信息量为34.418118115-3613616-H 1=⨯⨯⨯⨯=)()(lb lb 比特/符号 (4)令Z=X+Y ,可以计算出Z 对应的概率分布如下对应的熵为符号比特)()()()()()()(/1.914366366-3653652-3643642-3633632-3633632-3623622-361361-2H 1=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=lb lb lb lb lb lb lb (5)X 、Y 相互独立,所以联合熵为比特)()(597.06162Y X,I =⨯=lb2.2 设在一只布袋中装有100个大小、手感完全相同的球,每个球上涂有一种颜色。
100个球的颜色有下列3种情况:(1)红色球和白色球各50个; (2)红色球99个,白色球1个; (3)红、黄、蓝、白色球各25个。
信息论与编码第二章答案
第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。
2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。
2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。
答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。
从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。
2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。
答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。
信息论与编码习题参考答案(全)
已知信源X的信源空间为
某信道的信道矩阵为:
b1b2b3b4
试求:
(1)“输入?3,输出b2的概率”;
(2)“输出b4的概率”;
(3)“收到b3条件下推测输入?2”的概率。
解:
已知从符号B中获取关于符号A的信息量是1比特,当符号A的先验概率P(A)为下列各值时,分别计算收到B后测A的后验概率应是多少。
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
第三章 多符号离散信源与信道
设X=X1X2…XN是平稳离散有记忆信源,试证明:
H(X1X2…XN)=H(X1)+ H(X2/ X1)+H(X3/ X1X2)+…+H(XN/ X1X2…XN-1)。
(证明详见p161-p162)
试证明:logr≥H(X) ≥H(X2/ X1) ≥H(X3/ X1X2) ≥…≥H(XN/ X1X2…XN-1)。
(1,3)
(1,4)
(1,5)
信息论与编码习题参考答案(全)
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
第二章 信源熵-习题答案
· 1 ·2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0=== 所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。
假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?设随机变量X 代表女孩子学历X x 1(是大学生) x 2(不是大学生)P(X)0.250.75设随机变量Y 代表女孩子身高 Y y 1(身高>160cm )y 2(身高<160cm )P(Y)0.50.5已知:在女大学生中有75%是身高160厘米以上的 即:bit x y p 75.0)/(11=求:身高160厘米以上的某女孩是大学生的信息量 即:bit y p x y p x p y x p y x I 415.15.075.025.0log)()/()(log )/(log )/(11111111=⨯-=-=-=2.3 一副充分洗乱了的牌(含52张牌),试问 (1) 任一特定排列所给出的信息量是多少?(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:!521)(=i x pbit x p x I i i 581.225!52log )(log )(==-=(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下: bitCx p x I C x p i i i 208.134log)(log )(4)(135213135213=-=-==· 2 ·2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是: 62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p 此消息的信息量是:bit p I 811.87log =-=(2) 此消息中平均每符号携带的信息量是:bit n I 951.145/811.87/==2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?男士: symbolbit x p x p X H bitx p x I x p bit x p x I x p ii i N N N Y Y Y / 366.0)93.0log 93.007.0log 07.0()(log )()( 105.093.0log )(log )(%93)( 837.307.0log )(log )(%7)(2=+-=-==-=-===-=-==∑女士:symbol bit x p x p X H ii i / 045.0)995.0log 995.0005.0log 005.0()(log )()(2=+-=-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X,求这个信源的熵,并解释为什么H(X) >log6不满足信源熵的极值性。
信息论与编码习题参考答案(全)
111
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
其中N=2FT,б2X是信号的方差(均值为零),б2N是噪声的方差(均值为零).
再证:单位时间的最大信息传输速率
信息单位/秒
(证明详见p293-p297)
5.12设加性高斯白噪声信道中,信道带宽3kHz,又设{(信号功率+噪声功率)/噪声功率}=10dB.试计算改信道的最大信息传输速率Ct.
解:
5.13在图片传输中,每帧约有2.25×106个像素,为了能很好的重现图像,需分16个量度电平,并假设量度电平等概率分布,试计算每分钟传输一帧图片所需信道的带宽(信噪功率比为30dB).
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
3.10设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
3.5试证明:对于有限齐次马氏链,如果存在一个正整数n0≥1,对于一切i,j=1,2,…,r,都有pij(n0)>0,则对每个j=1,2,…,r都存在状态极限概率:
(证明详见:p171~175)
3.6设某齐次马氏链的第一步转移概率矩阵为:
信息论与编码理论习题答案
第二章 信息量和熵2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log =2.585 bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log =5.17 bit 2.4 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log =225.58 bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C =13.208 bit 2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6=3.2744 bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit)|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit2.10 设一个系统传送10个数字,0,1,…,9。
信息论与编码课后习题答案
信息论与编码课后习题答案第二章2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
解:(1)bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯ symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2.42.12 两个实验X 和Y ,X={x 1 x 2 x 3},Y={y 1 y 2 y 3},l 联合概率(),i j ij r x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r rr r ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1) 如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2) 如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3) 在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少?解:联合概率(,)i j p x y 为 22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==⨯+⨯+∑=2.3bit/符号X 概率分布 21()3log 3 1.583H Y =⨯=bit/符号(|)(,)() 2.3 1.58H X Y H X Y H Y =-=- Y 概率分布是 =0.72bit/符号 Y y1 y2 y3 P8/248/248/242.15P(j/i)=2.16 黑白传真机的消息元只有黑色和白色两种,即X={黑,白},一般气象图上,黑色的Y X y1y 2 y 3 x 1 7/24 1/24 0 x 2 1/24 1/4 1/24 x 31/247/24X x 1 x 2 x 3 P8/248/248/24出现概率p(黑)=0.3,白色出现的概率p(白)=0.7。
信息论与编码第二章答案解析
2-1、一阶马尔可夫链信源有3个符号{}123,,u u u ,转移概率为:1112()u p u=,2112()u p u =,31()0u p u =,1213()u p u = ,22()0u p u =,3223()u p u =,1313()u p u =,2323()u p u =,33()0u p u =。
画出状态图并求出各符号稳态概率。
解:由题可得状态概率矩阵为:1/21/20[(|)]1/302/31/32/30j i p s s ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦状态转换图为:令各状态的稳态分布概率为1W ,2W ,3W ,则: 1W =121W +132W +133W , 2W =121W +233W , 3W =232W 且:1W +2W +3W =1 ∴稳态分布概率为:1W =25,2W =925,3W = 6252-2.由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:P(0|00)=0.8,P(0|11)=0.2,P(1|00)=0.2,P(1|11)=0.8,P(0|01)=0.5,p(0|10)=0.5,p(1|01)=0.5,p(1|10)=0.5画出状态图,并计算各符号稳态概率。
解:状态转移概率矩阵为:令各状态的稳态分布概率为1w 、2w 、3w 、4w ,利用(2-1-17)可得方程组。
0.8 0.2 0 00 0 0.5 0.5()0.5 0.5 0 00 0 0.2 0.8j i p s s ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1111221331441132112222332442133113223333443244114224334444240.80.50.20.50.50.20.50.8w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w w w p w p w p w p w w =+++=+⎧⎪=+++=+⎪⎨=+++=+⎪⎪=+++=+⎩ 且12341w w w w +++=;解方程组得:12345141717514w w w w ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩ 即:5(00)141(01)71(10)75(11)14p p p p ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2-3、同时掷两个正常的骰子,也就是各面呈现的概率都是16,求:(1)、“3和5同时出现”事件的自信息量; (2)、“两个1同时出现”事件的自信息量; (3)、两个点数的各种组合的熵或平均信息量; (4)、两个点数之和的熵;(5)、两个点数中至少有一个是1的自信息量。
信息与编码理论课后习题答案
二章-信息量和熵习题解2.1 莫尔斯电报系统中,若采用点长为0.2s ,1划长为0.4s ,且点和划出现的概率分别为2/3和1/3,试求它的信息速率(bits/s)。
解: 平均每个符号长为:1544.0312.032=⨯+⨯秒 每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以,信息速率为444.34159183.0=⨯比特/秒 2.2 一个8元编码系统,其码长为3,每个码字的第一个符号都相同(用于同步),若每秒产生1000个码字,试求其信息速率(bits /s)。
解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特;所以,信息速率为600010006=⨯比特/秒2.3 掷一对无偏的骰子,若告诉你得到的总的点数为:(a ) 7;(b ) 12。
试问各得到了多少信息量?解: (a)一对骰子总点数为7的概率是366 所以,得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361所以,得到的信息量为 17.5361log 2= 比特 2.4 经过充分洗牌后的一付扑克(含52张牌),试问:(a) 任何一种特定排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解: (a)任一特定排列的概率为!521, 所以,给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为 13131313525213!44A C ⨯=所以,得到的信息量为 21.134log 1313522=C 比特.2.5 设有一个非均匀骰子,若其任一面出现的概率与该面上的点数成正比,试求各点出现时所给出的信息量,并求掷一次平均得到的信息量。
解:易证每次出现i 点的概率为21i,所以 比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 园丁植树一行,若有3棵白杨、4棵白桦和5棵梧桐。
信息论与编码第二版第2章习题答案
2 3 4 5 6 7 8 9 10 11 12 X 1 1 1 1 5 1 5 1 1 1 1 = P ( X ) 36 18 12 9 36 6 36 9 12 18 36 H ( X ) = −∑ p ( xi ) log p ( xi )
画出状态图,并计算各状态的稳态概率。 解: p (0 | 00) = p (00 | 00) = 0.8
p (0 | 01) = p (10 | 01) = 0.5 p (0 |10) = p (00 |10) = 0.5 p (1| 01) = p (11| 01) = 0.5 p (1|10) = p (01|10) = 0.5
15 25 35 45 55 65
16 26 36 46 56 66
1 1 1 × = 6 6 36
1 1 1 × = 6 6 18
1 1 1 1 H ( X ) = −∑ p ( xi ) log p ( xi ) = − 6 × log + 15 × log = 4.337 bit / symbol 36 18 18 36 i
2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为: p (0 | 00) =0.8, p (0 |11) =0.2,
p (1| 00) =0.2, p (1|11) =0.8, p (0 | 01) =0.5, p (0 |10) =0.5, p (1| 01) =0.5, p (1|10) =0.5。
87.81 = 1.95 bit/符号 45
2-14 (1)
P(ij)=
P(i/j)=
(2) 方法 1:
信息论与编码习题参考答案(全)
(1,4)
(1,5)
(1,6)
P(X)
1/36
2/36
2/36
2/36
2/36
2/36
X
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
P(x)
1/36
2/36
2/36
2/36
2/36
X
(3,3)
(3,4)
(3,5)
(3,6)
P(x)
1/36
2/36
2/36
2/36
X
(4,4)
(4,5)
信息论与编码习题参考答案
第一章单符号离散信源
同时掷一对均匀的子,试求:
(1)“2和6同时出现”这一事件的自信息量;
(2)“两个5同时出现”这一事件的自信息量;
(3)两个点数的各种组合的熵;
(4)两个点数之和的熵;
(5)“两个点数中至少有一个是1”的自信息量。
解:
(3)信源空间:
X
(1,1)
(1,2)
解:
设电话信号的信息率为×104比特/秒.在一个噪声功率谱为N0=5×10-6mW/Hz,限频F、限输入功率P的高斯信道中传送,若F=4kHz,问无差错传输所需的最小功率P是多少W若
F→∞则P是多少W
解:
已知一个高斯信道,输入信噪功率比为3dB,频带为3kHz,求最大可能传送的信息率是多少若信噪比提高到15dB,求理论上传送同样的信息率所需的频带.
(1)求状态极限概率并找出符号的极限概率;
(2)计算信源处在Sj(j=1,2,3)状态下输出符号的条件熵H(X/Sj);
(3)信源的极限熵H∞.
解:
下图所示的二进制对称信道是无记忆信道,其中 ,试写出N=3次扩展无记忆信道的信道矩阵[P].
信息论与编码第二章课后答案
信息论与编码第二章课后答案在信息科学领域中,信息论和编码是两个息息相关的概念。
信息论主要研究信息的传输和处理,包括信息的压缩、传输的准确性以及信息的安全性等方面。
而编码则是将信息进行转换和压缩的过程,常用的编码方式包括霍夫曼编码、香农-费诺编码等。
在《信息论与编码》这本书的第二章中,涉及了信息的熵、条件熵、熵的连锁法则等概念。
这些概念对于信息理解和编码实现有着重要的意义。
首先是信息的熵。
熵可以简单理解为信息的不确定性。
当信息的发生概率越大,它的熵就越小。
比如说,一枚硬币的正反面各有50%的概率,那么它的熵就是1bit。
而如果硬币只有正面,那么它的熵就是0bit,因为我们已经知道了结果,不再有任何不确定性。
其次是条件熵。
条件熵是在已知某些信息(即条件)的前提下,对信息的不确定性进行量化。
它的定义为已知条件下,信息的熵的期望值。
比如说,在猜词游戏中,我们手中已经有一些字母的信息,那么此时猜测单词的不确定性就会下降,条件熵也就会减少。
除了熵和条件熵之外,连锁法则也是信息理解和编码实现中的重要概念。
连锁法则指的是一个信息在不同时刻被传输的情况下,熵的变化情况。
在信息传输的过程中,信息的熵可能会发生改变。
这是因为在传输过程中,可能会发生噪声或者数据重复等情况。
而连锁法则就是用来描述这种情况下信息熵的变化情况的。
最后,霍夫曼编码和香农-费诺编码是两种比较常用的编码方式。
霍夫曼编码是一种无损压缩编码方式,它可以将出现频率高的字符用较短的二进制编码表示,出现频率较低的字符用较长的二进制编码表示。
香农-费诺编码则是一种用于无失真信源编码的方法,可以把每个符号用尽可能短的二进制串来表示,使得平均码长最小化。
总的来说,信息论和编码是信息科学中非常重要的两个概念。
通过对信息熵、条件熵、连锁法则等的探讨和了解,可以更好地理解信息及其传输过程中的不确定性和数据处理的方法。
而霍夫曼编码和香农-费诺编码则是实现数据压缩和传输的常用编码方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 若从中抽取13张牌,所给出的点数都不相同能得到多少信息量?
解:
(1) 52张牌共有52!种排列方式,假设每种排列方式出现是等概率的则所给出的信息量是:
(2) 52张牌共有4种花色、13种点数,抽取13张点数不同的牌的概率如下:
2.4 设离散无记忆信源 ,其发出的信息为(202120130213001203210110321010021032011223210),求
(1) 此消息的自信息量是多少?
(2) 此消息中平均每符号携带的信息量是多少?
解:
(1)此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:
此消息的信息量是:
(2)此消息中平均每符号携带的信息量是:
2.5 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?
四进制脉冲的平均信息量
八进制脉冲的平均信息量
二进制脉冲的平均信息量
所以:
四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。
2.2 居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160厘米以上的,而女孩子中身高160厘米以上的占总数的一半。假如我们得知“身高160厘米以上的某女孩是大学生”的消息,问获得多少信息量?
(3) 两个点数的各种组合(无序)对的熵和平均信息量;
(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;
(5) 两个点数中至少有一个是1的自信息量。
解:
(1)
(2)
(3)
两个点数的排列如下:
11
12
13
14
15
16
21
22
23
24
25
26
31
32
33
34
35
36
41
42
43
44
45
46
2.1 试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍?
解:
四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3}
八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7}
二进制脉冲可以表示2个不同的消息,例如:{0, 1}
假设每个消息的发出都是等概率的,则:
解:
(1)
这个信源是平稳无记忆信源。因为有这些词语:“它在任意时间而且不论以前发生过什么符号……”
(2)
(3)
2.10 一阶马尔可夫信源的状态图如下图所示。信源X的符号集为{0, 1, 2}。
(1) 求平稳后信源的概率分布;
(2) 求信源的熵H∞。
解:
(1)
(2)
2.11黑白气象传真图的消息只有黑色和白色两种,即信源X={黑,白}。设黑色出现的概率为P(黑)= 0.3,白色出现的概率为P(白)= 0.7。
51
52
53
54
55
56
61
62
63
64
65
66
共有21种组合:
其中11,22,33,44,55,66的概率是
其他15个组合的概率是
(பைடு நூலகம்)
参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:
(5)
2.13 某一无记忆信源的符号集为{0, 1},已知P(0)= 1/4,P(1)= 3/4。
(1) 求符号的平均熵;
x1=0
x2=1
y1=0
1/8
3/8
y2=1
3/8
1/8
并定义另一随机变量Z = XY(一般乘积),试计算:
(1)H(X),H(Y), H(Z), H(XZ), H(YZ)和H(XYZ);
(2)H(X/Y), H(Y/X), H(X/Z), H(Z/X), H(Y/Z), H(Z/Y), H(X/YZ), H(Y/XZ)和H(Z/XY);
(2) 有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 -m)个“1”)的自信息量的表达式;
(3) 计算(2)中序列的熵。
解:
(1)
(2)
(3)
2.14 对某城市进行交通忙闲的调查,并把天气分成晴雨两种状态,气温分成冷暖两个状态,调查结果得联合出现的相对频度如下:
若把这些频度看作概率测度,求:
证明:
2.9 设有一个信源,它产生0,1序列的信息。它在任意时间而且不论以前发生过什么符号,均按P(0) = 0.4,P(1) = 0.6的概率发出符号。
(1) 试问这个信源是否是平稳的?
(2) 试计算H(X2),H(X3/X1X2)及H∞;
(3) 试计算H(X4)并写出X4信源中可能有的所有符号。
解:
(1)
(2)
(3)
H(X) > H2(X)
表示的物理含义是:无记忆信源的不确定度大与有记忆信源的不确定度,有记忆信源的结构化信息较多,能够进行较大程度的压缩。
2.12 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:
(1) “3和5同时出现”这事件的自信息;
(2) “两个1同时出现”这事件的自信息;
(1) 假设图上黑白消息出现前后没有关联,求熵H(X);
(2) 假设消息前后有关联,其依赖关系为P(白/白)= 0.9,P(黑/白)= 0.1,P(白/黑)= 0.2,P(黑/黑)= 0.8,求此一阶马尔可夫信源的熵H2(X);
(3) 分别求上述两种信源的剩余度,比较H(X)和H2(X)的大小,并说明其物理含义。
解:
男士:
女士:
2.6 设信源 ,求这个信源的熵,并解释为什么H(X)> log6不满足信源熵的极值性。
解:
不满足极值性的原因是 。
2.7 证明:H(X3/X1X2) ≤ H(X3/X1),并说明当X1, X2, X3是马氏链时等式成立。
证明:
2.8证明:H(X1X2 。。。Xn) ≤ H(X1) + H(X2) + … + H(Xn)。
(1) 忙闲的无条件熵;
(2) 天气状态和气温状态已知时忙闲的条件熵;
(3) 从天气状态和气温状态获得的关于忙闲的信息。
解:
(1)
根据忙闲的频率,得到忙闲的概率分布如下:
(2)
设忙闲为随机变量X,天气状态为随机变量Y,气温状态为随机变量Z
(3)
2.15 有两个二元随机变量X和Y,它们的联合概率为
YX
解:
设随机变量X代表女孩子学历
X
x1(是大学生)
x2(不是大学生)
P(X)
0.25
0.75
设随机变量Y代表女孩子身高
Y
y1(身高>160cm)
y2(身高<160cm)
P(Y)
0.5
0.5
已知:在女大学生中有75%是身高160厘米以上的
即:
求:身高160厘米以上的某女孩是大学生的信息量
即:
2.3 一副充分洗乱了的牌(含52张牌),试问