HamiltonianFormulationofGeneralRelativity
7,狭义相对论基础资料
同时的相对性
(中点)
因光速不变(不论对 或 )
故
看到: 闪光同时到达 A 、B 壁。
看到: 闪光先到达 B 壁,后到达 A 壁。
设: 光到达 A 为事件 1
对 :两事件同时发生,
光到达 B 为事件 2 对 :两事件非同时发生。
即
“ 同时 ” 是相对的。(与惯性系有关)
用洛仑兹变换式判断两事件在不同惯两事件性的变换系中的时空关系
E
天文台
精密的天文观测表明,双星的像是很清晰的两个光点,没有 发现亮弧现象。而且两种方法测周期的结果一样。这只能用 光速与光源运动状态无关的观点,才能得到圆满的解释。
迈克耳孙-莫雷孙实验
迈克耳孙 莫雷实验 寻找 “以太” 失败实
例
根据“以太”观点,充满宇宙的
“以太”是一切运动的绝对参考系。 地球 对 以太
相对论的时空关系,难有生活直接体验,要借助洛仑兹变换式谨慎分析。
(事件1)
(事件2)
对: 对:
若已知
求
根据洛仑兹变换式可求出
下面讨论几种可能遇到的情况:
例
两事件的空间间隔
两事件的时间间隔
要领
同时 同地
同时 同地
同时 异地 异时 异地
异时 同地 异时 异地
异时 异地
要看具体 条件而定
对于有因果关系的关联事件(如:发送与接收,出生与死亡,栽种与收获等)
(地测B) (地测C)
0.9 0.9
(反 向)
C
(A测B) (A测C)
由洛仑兹速度变换
0.9 0.8 0.8 0.9
0.9 0.8
0.8
0.9
0.357
0.988
(反 向)
非保守系统的哈密顿原理
非保守系统的哈密顿原理哈密顿原理(Hamilton's principle)是经典力学中的一个基本原理,用于描述物体在作用力下的运动轨迹。
它是由爱德华·哈密顿(Edward Hamilton)在19世纪提出的,被视为力学的基石之一。
在传统的哈密顿原理中,系统在运动过程中的能量守恒是一个关键假设。
然而,在某些情况下,系统的能量并不守恒,这时就需要引入非保守系统的哈密顿原理。
非保守系统的哈密顿原理是在非保守力场下描述系统运动的一种数学形式。
在这种情况下,系统的总能量并不是一个守恒量,而是会随着时间变化。
非保守系统的哈密顿原理的核心思想是,在给定时间间隔内,系统的运动轨迹使得作用在系统上的非保守力的功取极值。
这个极值原理可以通过引入拉格朗日乘子法来求解。
非保守系统的哈密顿原理的数学表达方式如下:系统在给定时间间隔内的运动轨迹使得作用在系统上的非保守力的功取极值,即∫[t1,t2] L(q, q', t) dt = ∫[t1,t2] (p dq - H dt)其中,L是拉格朗日函数,q是广义坐标,q'是广义速度,t是时间,p是广义动量,H是哈密顿函数。
这个原理表明,系统的运动轨迹可以通过拉格朗日函数和哈密顿函数来描述,而非保守力的作用可以通过广义动量和广义坐标的变化来体现。
非保守系统的哈密顿原理在实际应用中具有广泛的意义。
例如,在涉及阻尼、摩擦等非保守力的情况下,可以利用非保守系统的哈密顿原理来描述系统的运动。
此外,非保守系统的哈密顿原理还可以应用于描述电磁场、光学等领域中的非保守力场下的运动。
非保守系统的哈密顿原理的应用还可以扩展到量子力学领域。
量子力学中的哈密顿原理是描述粒子在非保守力场下的运动的基本原理。
非保守系统的哈密顿原理在量子力学中的应用可以帮助我们更好地理解微观粒子的运动规律和相互作用。
非保守系统的哈密顿原理是描述系统在非保守力场下运动的一种数学形式。
它通过使作用在系统上的非保守力的功取极值来描述系统的运动轨迹。
《2024年无穷维Hamilton算子的拟谱》范文
《无穷维Hamilton算子的拟谱》篇一一、引言在数学物理领域,无穷维Hamilton算子是一个重要的研究对象。
它涉及到量子力学、统计力学、场论等多个领域,是描述物理系统动态行为的关键工具。
近年来,随着科学技术的飞速发展,对无穷维Hamilton算子的研究也日益深入。
本文旨在探讨无穷维Hamilton算子的拟谱问题,分析其研究现状及未来发展方向。
二、无穷维Hamilton算子的基本概念无穷维Hamilton算子是一种描述物理系统动态行为的数学工具,其基本思想是将系统的能量函数(即Hamilton函数)与时间演化算子相结合,从而得到系统的动态演化规律。
在无穷维空间中,Hamilton算子具有丰富的谱结构和动力学性质,对于理解物理系统的行为具有重要意义。
三、无穷维Hamilton算子的拟谱研究拟谱是研究Hamilton算子谱结构的一种重要方法。
通过拟谱方法,可以了解Hamilton算子的本征值、本征函数以及谱的分布情况,从而揭示系统的动态行为和稳定性。
目前,对于无穷维Hamilton算子的拟谱研究已经取得了一定的成果。
首先,针对不同类型的无穷维Hamilton系统,研究者们提出了各种拟谱方法。
例如,对于具有周期性边界条件的系统,可以采用Floquet理论;对于具有混沌特性的系统,可以利用Lyapunov指数等方法进行分析。
这些方法的应用使得我们能够更深入地了解无穷维Hamilton算子的谱结构。
其次,在拟谱研究过程中,还涉及到了许多数学技巧和工具。
例如,利用函数分析、微分方程、线性代数等数学知识,可以更好地描述和解决无穷维Hamilton算子的谱问题。
此外,计算机技术的发展也为拟谱研究提供了强大的支持,使得我们可以进行更加精确和高效的数值计算。
四、无穷维Hamilton算子拟谱的研究现状目前,无穷维Hamilton算子的拟谱研究已经取得了重要的进展。
研究者们针对不同类型的系统和问题,提出了各种拟谱方法和技巧。
《2024年无穷维Hamilton算子特征函数系的完备性及其在弹性力学中的应用》范文
《无穷维Hamilton算子特征函数系的完备性及其在弹性力学中的应用》篇一摘要:本文研究无穷维Hamilton算子特征函数系的完备性,探讨了其在弹性力学中的具体应用。
通过深入分析Hamilton算子的基本性质,揭示了其特征函数系在弹性力学问题中的重要性。
同时,探讨了这一理论在实际问题中的实践应用,为弹性力学领域的研究提供了新的视角和思路。
一、引言随着现代数学物理的不断发展,Hamilton算子作为描述物理系统的重要工具,在各个领域都得到了广泛的应用。
特别是在弹性力学领域,Hamilton算子特征函数系的完备性对于描述和分析弹性体的力学行为具有重要意义。
本文旨在探讨无穷维Hamilton 算子特征函数系的完备性,并探讨其在弹性力学中的应用。
二、无穷维Hamilton算子及其特征函数系无穷维Hamilton算子是在Hamilton系统中用于描述动态平衡和演化规律的数学工具。
它包含了系统动力学的大部分信息,并通过其特征函数系将复杂的系统简化为一系列独立的简单系统。
其特征函数系具有完备性,即系统的所有可能状态都可以由这些特征函数线性表示。
三、特征函数系的完备性证明为了证明无穷维Hamilton算子特征函数系的完备性,我们首先需要明确其基本性质和定义。
通过构造一系列的数学命题和推导,我们可以证明这些特征函数在一定的条件下能够构成一个完备的函数系。
具体来说,我们可以通过分析这些函数的正交性、完备性和线性无关性等性质来证明其完备性。
四、在弹性力学中的应用在弹性力学中,无穷维Hamilton算子特征函数系的完备性为描述和分析弹性体的力学行为提供了有力的工具。
具体来说,我们可以利用这些特征函数来描述弹性体的振动模式、应力分布和变形行为等。
此外,这些特征函数还可以用于构建弹性力学问题的数值解法,如有限元法等。
通过将复杂的弹性力学问题转化为一系列简单的特征函数问题,我们可以更方便地求解和分析这些问题。
五、实例分析为了进一步说明无穷维Hamilton算子特征函数系在弹性力学中的应用,我们以一个具体的弹性力学问题为例进行分析。
高等数学a1 哈密尔顿
高等数学a1 哈密尔顿
【原创版】
目录
一、哈密尔顿的背景和贡献
二、哈密尔顿高等数学的基本概念
三、哈密尔顿高等数学的应用
四、哈密尔顿高等数学在我国的发展和影响
正文
一、哈密尔顿的背景和贡献
哈密尔顿,全名威廉·罗兰·汉密尔顿,是 19 世纪英国的一位著名数学家和天文学家。
他生于 1805 年,逝世于 1865 年。
哈密尔顿在数学领域的贡献非常突出,特别是在高等数学领域,他创立了哈密尔顿高等数学,为数学的发展做出了重要贡献。
二、哈密尔顿高等数学的基本概念
哈密尔顿高等数学,又称为哈密尔顿分析,是一种基于变量替换和积分算子的数学理论。
它的基本概念包括复数、复变函数、调和分析等。
哈密尔顿高等数学将微积分与复分析相结合,使得数学的描述和处理更加简洁和高效。
三、哈密尔顿高等数学的应用
哈密尔顿高等数学在许多领域都有广泛的应用,如物理学、工程学、经济学等。
特别是在量子力学和复分析领域,哈密尔顿高等数学发挥着至关重要的作用。
例如,在量子力学中,薛定谔方程就是用哈密尔顿算子表示的。
四、哈密尔顿高等数学在我国的发展和影响
哈密尔顿高等数学在我国也得到了广泛的应用和发展。
自 20 世纪初,我国数学家就开始研究和应用哈密尔顿高等数学。
如今,许多高校和研究机构都将哈密尔顿高等数学作为数学专业的重要课程。
《2024年二次算子族与无穷维Hamilton算子的谱分析》范文
《二次算子族与无穷维Hamilton算子的谱分析》篇一一、引言在数学物理的多个领域中,算子谱分析是一个重要的研究课题。
本文将主要探讨二次算子族与无穷维Hamilton算子的谱分析。
我们将首先介绍算子谱分析的基本概念和背景,然后重点阐述二次算子族和Hamilton算子的基本性质和特点,最后提出本文的研究目的和意义。
二、基本概念与背景算子谱分析是研究线性算子或非线性算子的谱及其性质的一门学科。
它涉及到许多数学分支,如函数论、线性代数、微分方程等。
二次算子族和Hamilton算子作为特殊的算子类型,在物理学、量子力学等领域具有广泛的应用。
2.1 二次算子族二次算子族指的是一类具有二次特性的算子。
在物理学中,这类算子通常用来描述一些基本物理过程。
其性质复杂多变,且往往具有独特的数学结构。
2.2 无穷维Hamilton算子无穷维Hamilton算子是一种特殊的偏微分方程的算子,它通常用来描述无穷维系统中的哈密顿动力学过程。
该类算子的谱分析对于理解量子力学中的无穷维系统具有重要意义。
三、二次算子族的谱分析3.1 定义与性质二次算子族的谱分析主要涉及该类算子的特征值和特征向量的求解问题。
由于二次算子的复杂性,其特征值和特征向量的求解往往需要借助特定的数学方法和技巧。
3.2 求解方法针对二次算子的特征值和特征向量的求解问题,我们可以采用多种方法,如变分法、数值逼近法等。
这些方法各有优缺点,需要根据具体问题选择合适的方法。
四、无穷维Hamilton算子的谱分析4.1 定义与性质无穷维Hamilton算子的谱分析主要关注该类算子的能级结构、能级分布等问题。
由于无穷维系统的复杂性,其能级结构和分布往往具有独特的特性。
4.2 求解方法对于无穷维Hamilton算子的谱分析问题,我们可以采用一些特殊的数学方法,如自伴场方法、离散化方法等。
这些方法可以帮助我们更好地理解和求解无穷维系统的能级结构和分布问题。
五、研究目的与意义本文的研究目的是通过对二次算子族和无穷维Hamilton算子的谱分析,深入理解这两类算子的性质和特点,为解决相关领域的实际问题提供理论依据和方法支持。
A Brief Introduction to Loop Quantum Cosmology
a rXiv:097.516v1[gr-qc]29J ul29A brief introduction to Loop Quantum Cosmology Guillermo A.Mena Marug´a n 1,∗1Instituto de Estructura de la Materia,CSIC,Serrano 121,28006Madrid,Spain In recent years,Loop Quantum Gravity has emerged as a solid candidate for a non-perturbative quantum theory of General Relativity.It is a background independent theory based on a description of the gravitational field in terms of holonomies and fluxes.In order to discuss its physical implications,a lot of attention has been paid to the application of the quantization techniques of Loop Quantum Gravity to sym-metry reduced models with cosmological solutions,a line of research that has been called Loop Quantum Cosmology.We summarize its fundamentals and the main differences with respect to the more conventional quantization approaches employed in cosmology until now.In addition,we comment on the most important results that have been obtained in Loop Quantum Cosmology by analyzing simple homogeneous and isotropic models.These results include the resolution of the classical big-bang singularity,which is replaced by a quantum bounce.PACS numbers:04.60.Pp,04.60.Kz,98.80.Qc 1.MOTIV ATIONGravity is the only fundamental physical interaction which is not yet satisfactorily de-scribed quantum mechanically.Even without adhering to the belief that all fundamental interactions should finally be unified in a single theory,a strong motivation to search for a quantum theory of gravity comes from the very own results of General Relativity.The classical singularity theorems that arise in Einstein theory [1]imply that (in a vari-ety of physically relevant situations)the predictability breaks down,so that the regime of applicability of General Relativity has been surpassed.Therefore,a new and morefundamental theory is needed for a correct physical description.In trying to quantize General Relativity,thefirst obstacle that onefinds is that Einstein theory is not renormalizable as a quantumfield theory,so that a conventional perturbative quantization cannot be performed.In this context,an alternative quantization program, known as Loop Quantum Gravity(LQG),has recently been proposed for General Rel-ativity[2,3,4].LQG is an attempt to construct a nonperturbative quantum theory of gravity using techniques similar to those of gaugefield theories(e.g.,Yang-Mills).The ap-plication of these nonperturbative quantization techniques to simple gravitational models with application in cosmology,such as homogeneous and isotropic spacetimes with differ-ent types of matter content,has given rise to a new branch of gravitational physics called Loop Quantum Cosmology(LQC)[5].2.HAMILTONIAN FORMULATION OF GENERAL RELATIVITY ANDASHTEKAR V ARIABLESLQG is a nonperturbative canonical quantization of General Relativity;therefore,it is constructed starting from a Hamiltonian formulation of Einstein theory[6].Let us review very briefly this formulation.We consider globally hyperbolic four-dimensional spacetimes(gαβ,M=I R×Σ),where gαβis a Lorentzian metric,Greek indices are spacetime indices,andΣis a three-dimensional manifold.For General Relativity,onceΣis given,the physically relevant information to determine the classical solutions is contained in the spatial three-metric h ab induced onΣ,and in the corresponding extrinsic curvature K ab=1A set of canonical variables for General Relativity(in the sense that their Poisson bracket is proportional to the identity)is given then by the densitized triad E a i and the extrinsic curvature in triadic form K i a:√E a i:=1In the following,we also set =c=1.Here,ǫijk is the totally antisymmetric symbol.Finally,the invariance of General Rela-tivity under time reparametrizations leads to a scalar constraint,also called Hamiltonian constraint,which in vacuo takes the expressionS:=E a i E b j ǫij k F k ab−4K i[a K j b] =0.(6) Given the four-dimensional covariance of Einstein theory,General Relativity is a com-pletely constrained system,i.e.,the total Hamiltonian which generates the dynamics is just a(n integrated)linear combination of constraints.In particular,apart from boundary terms,the Hamiltonian vanishes on classical solutions.On the other hand,it is worth pointing out that General Relativity is formulated in terms of connections and densitized triads without introducing any metric background structure.This background indepen-dence plays a fundamental role in the theory and will be a basic guideline for the selection of a quantization procedure in the construction of LQG.3.HOLONOMY AND FLUX ALGEBRASince SU(2)-transformations are symmetries of our gravitational systems,only the gauge invariant information about the connection is physically relevant.Taking into account that this information is captured by the Wilson loops[10,11],we can then replace the connection by SU(2)-holonomies.More specifically,from now on we will consider holonomies along piecewise analytic2edges e,where we understand that an edge is an embedding of the interval[0,1]inΣ[4,12].We call h e the corresponding holonomy,h e=P exp e A i aτi dx a.(7) Here,the symbol P denotes path ordering,and{τj=−i2The restriction of piecewise analyticity ensures that the intersection between edges,as well as the intersection of an edge with a(piecewise analytic)surface,occurs in afinite number of points[12].our variables,and we have already smeared the connection over one dimension,it seems natural to try to smear now E a i over two dimensions.Once again,we want to carry out this smearing without employing any background structure.Remarkably,this requirement can be fulfilled because E a i is a vector density.Hence,for any piecewise analytic surface S and any su(2)-valued smooth function f i on it,we introduce the associatedflux of the densitized triad,E(S,f)= S E a i f iǫabc dx b dx c.(8) The defined holonomies andfluxes form an algebra under Poisson brackets.In the following,we take this algebra as our algebra of elementary phase space variables.From this perspective,the quantization of the system amounts to constructing a representa-tion of this algebra.A keystone result in LQG is a uniqueness representation theorem known as the LOST theorem(after the initials of its authors[13]).The LOST theorem states that there exists only one cyclic representation of the holonomy-flux algebra with a diffeomorphism-invariant state(interpretable as a“vacuum”).Therefore,the choice of the algebra of elementary variables,motivated by background independence,together with the identification of diffeomorphism invariance as a fundamental symmetry suffice to pick out a unique quantization(up to unitary equivalence).In order to gain insight into the kind of quantization adopted in LQG,let usfirst call cylindrical those complex functions of the connection that depend on it only via the holonomies along afinite number of edges(forming a graph[12]).We can identify the commutative unital∗-algebra of these functions as the algebra of configuration variables. By completing it with respect to the sup-norm3(i.e.the supremum norm),we obtain a commutative C∗-algebra with identity.Gel’fand theory ensures then that this algebra is(isomorphic to)that of continuous functions on a certain compact space,¯A,which is usually called the spectrum[14].Smooth connections are dense in this space¯A of quantum generalized connections.Besides,the Hilbert space of any representation of the C∗-configuration algebra is of the form L2(¯A,µ)for some measureµ.The LOST theorem guarantees that there is a unique Hilbert space L2(¯A,µAL)supporting a representation not just of the holonomies,but of the whole holonomy-flux algebra,and such thatµAL(the so-called the Ashtekar-Lewandowski measure)is a diffeomorphism-invariant,regular Borel measure.This representation turns out not to be continuous and,as an important consequence,the connection itself cannot be defined as an operator valued distribution [12].4.LOOP QUANTUM COSMOLOGY:FLAT FR W MODELLQC confronts the quantum analysis of cosmological systems by applying similar quan-tization techniques to those described for LQG.Here,we will focus our discussion on a simple but physically relevant model,namely,the case of homogeneous and isotropicflat (FRW)cosmologies.As the matter content,we will consider a massless minimally coupled scalarfield.The spatial manifoldΣis topologically I R3,endowed with the action of the Euclidean group.One can introduce afiducialflat co-triad,0e i a,with the correspondingfiducial metric and triad,0h ab and0e a i.Given the non-compactness ofΣ,we also choose a reference cell adapted to thefiducial triad in order to integrate homogenous quantities, such as the symplectic structure or the Hamiltonian,without introducing infinities in our formalism.We use the symbol V0to denote thefiducial volume of this cell.Actually, physical results can be proven independent of these choices under a suitable definition of the elementary variables[15,16].In more detail,one canfix the gauge and diffeomorphism freedom so thatA a=c V−1/300e iaτi,and E a=p V−2/3√3.(10)The variables c and p are hence canonical,apart from the factor of1/3.Holonomies along straight edgesµ0e a i in thefiducial directions suffice to separate symmetric connections, i.e.,given two different connections,there always exists an edge of this kind for which thecorresponding holonomies differ[14].We thus restrict our attention to those holonomies, (µ),which have the formh0ei(µ)=cos µc2 τi.(11)h0eiSimilarly,densitized triads can now be smeared just across squares with edges parallel to thefiducial directions,E(S,f)=p0A(S,f)V−2/3.(12)The factor0A(S,f)measures only thefiducial area of S weighted with an orientation factor.In this sense,fluxes are totally determined by p,which therefore plays the role of a momentum.The configuration algebra,on the other hand,is generated by sums of products of matrix elements of holonomies.Thus,it is the linear space of continuous and bounded complex functions in I R provided byfinite sums of the form f(c)= n f n e iµn c. Its completion with respect to the sup-norm is known to be(isomorphic to)the Bohr C∗-algebra of almost periodic functions[14].5.BOHR COMPACTIFICATION AND POLYMER REPRESENTATIONAs we have commented,the configuration C∗-algebra is the algebra of almost periodic functions.The(Gel’fand)spectrum of this algebra is the Bohr compactification of the real line,I R Bohr[14].This compactification can be understood as the set of group homo-morphisms from the group I R(with the sum)to the multiplicative group T of complex numbers with unit norm.So,every x∈I R Bohr is a map x:I R→T which satisfiesx(0)=1,x(p1+p2)=x(p1)x(p2)∀p1,p2∈I R.(13) Since T is a commutative group,the operation x˜x(p):=x(p)˜x(p)provides a commutative group structure in I R Bohr.This group is compact with respect to the Tychonoffproduct topology.We recall that the Tychonofftopology is the weakest topology for which the functions F p:I R Bohr→T given by evaluation at p[i.e.F p(x):=x(p)]are all continuous for any p∈I R[14].Besides,the real line is actually dense in I R Bohr.This result follows from the fact that the algebra of functions f(c)considered at the end of the previous section separates points c∈I R[14].The compact group I R Bohr is equipped with a normalized invariant measure under the group operation,namely,the Haar measureµH.The representation of the holonomy-fluxalgebra for LQC is given precisely by the Hilbert space L2(I R Bohr,µH).In addition,since µH is invariant under multiplication in the group,we get that,∀˜x∈I R Bohr,[1−˜x(p)] I R Bohr F p(x)dµH(x)=0,(14) from where it follows that I R Bohr F p(x)dµH(x)=δ0p.(15)Taking into account that,from our definitions,F p1F p2=F p1+p2and F∗p=F−p,it isstraightforward to conclude that the set{F p,p∈I R}is orthonormal(hence,the Hilbert space L2(I R Bohr,µH)is nonseparable).One can also see that this set is dense[14].As a consequence,the Hilbert space L2(I R Bohr,µH)is isomorphic to the so-called“polymer”space of functions of p∈I R that are square integrable with respect to the discrete measure. The isomorphism is given by I:F p→|p ∀p∈I R.Employing then the orthonormal basis|p ;p∈I R, ˜p|p =δ˜p p ,(16) and introducing the notation Nµ:=exp(iµc/2),the polymer“momentum”representation is determined by the following action of the holonomy andflux operators:ˆp|p =p6.QUANTUM FR W MODELWith our symmetry reduction to theflat FRW model and our choice offiducial struc-tures,the triad adopts the expression e a i=sign(p)|p|−1/2V1/300e ai.This triad diverges atthe big-bang singularity,corresponding to p=0.In the quantum theory,on the other hand,ˆp has just a point spectrum[18]which coincides with the whole real line,since the basis states|p have unit norm∀p∈I R.Since zero is included in this point spectrum, the related(inverse)operator|ˆp|−1is not well defined.However,it is actually possible to define a triad operator in terms of our elementary ones[20].Classically,we have the following identity∀¯µ∈I R:sign(p) |p|=4|p| .(19)Here,h0eiis again the holonomy along the edge0e i,and the symbol tr denotes the trace. Then,replacing Poisson brackets with−i times commutators,we obtain¯µ2 I R3|det E|−1/2 P2φ−ǫij k E a i E b j F k ab =0.(21) To define the operator corresponding to|det E|−1/2(or to|det E|−1/2ǫij k E a i E b j in the gravi-tational part of the constraint[20])we proceed as we have explained above when discussing the triad operator.In addition,to introduce an operator representation for the curvature F k ab,wefirst recall the classical relationF k ab=−2lim¯µ→0tr h[ij](¯µ)−1which is valid for any real value of¯µand whereh[ij](¯µ):=h0ei (¯µ)h0ej(¯µ)h−10e i(¯µ)h−10e j(¯µ).(23)Nonetheless,after substituting classical holonomies by their quantum counterparts,the limit of zero regulator¯µcannot be taken in the resulting curvature operator.This cir-cumstance is interpreted as a manifestation of the fact that,in LQG,the area spectrum is discrete with a minimum nonzero eigenvalue[4,21],so that the square with edges¯µ0e i and¯µ0e j,employed to define h[ij](¯µ),cannot be shrunk to zero.The regulator is then fixed by demanding that the physical area of this square equals the minimum nonvan-ishing eigenvalue allowed in LQG,which we call∆from now on.Hence,one gets the operator relation¯µ2|ˆp|=∆.At this stage,it is convenient to relabel the p-basis by introducing the affine parameter associated with the vectorfield12¯µc in the holonomy N¯µ.Taking into account that the physical volume of thefiducial cell is given by the operatorˆV=|ˆp|3/2,the above relabeling leads to a basis of volume eigenstates|ν ,whereν=4sign(p)|p|3/2/√21|p|3/2 −6 Ω2+ˆP2φ 1|p|3/2,(25)Ω:=1∆i 1|p| −1/2|p| 1|p| −1/2.(26) The symmetric factor ordering adopted for Ωarises naturally from the consideration of homogeneous but anisotropic models of Bianchi I type,where the ordering is well moti-vated,regarding theflat FRW cosmologies as a special case with vanishing anisotropies[22].It isstraightforward to check that the above quantum constraint annihilates the state |p =0 (or equivalently |ν=0 )and leaves invariant its orthogonal complement.In the search for nontrivial solutions to the constraint,one can then restrict all considera-tions to this orthogonal complement,so that the classical singularity,corresponding to p =0,can be removed from the kinematical (gravitational)Hilbert space [22,23].In this sense,the big-bang singularity is already resolved quantum mechanically (see also [24]).7.DENSITIZED CONSTRAINTOnce the state |ν=0 has been removed,let us call Cyl =S the linear span of the nonzerovolume eigenstates {|ν ;ν=0,ν∈I R }.Based on previous experience with gravitational models,we expect nontrivial solutions to the constraint to live in the algebraic dual of Cyl =S.Since the operator [1/ 4√ν 1ν 12if ν=0,(30)while g (ν=0)=0.We notice that Ω2relates only states |ν whose label differ by a multiple of four.Moreover,owing to the linear combination of signs in s ±(ν),one can see that the real function f +(ν)f +(ν+2)has a remarkable property,namely,it vanishes in the whole interval [-4,0].Something similar happens with f −(ν)f −(ν−2),which vanishesin [0,4].As a consequence,for the label ν,the action of the operator Ω2does not mix anyof the semilattices L±ε:={±(ε+4n),n∈I N},withε∈(0,4]–but otherwise unspecified. In the following,we call H±εthe corresponding Hilbert subspaces of states with support in these semilattices(i.e.,the completion of the linear span ofν-states withν∈L±ε).Each of these subspaces can be considered a superselection sector for the quantum theory, inasmuch as they provide irreducible representations for the physically relevant operators of the model[15,16].On the other hand,it is possible to prove that(up to a global multiplicative factor) Ω2, restricted to H+ε∪H−4−ε,differs by a symmetric,trace-class operator from an operator which is unitarily related with the Hamiltonian of a point particle in a Psch-Teller potential [22,25].From the properties of this Hamiltonian and Kato perturbation theory[26],it then follows that Ω2is essentially self-adjoint and that its absolutely continuous spectrum4 is I R+.The rest of the spectrum can be proven empty[22].Moreover, Ω2commutes with the projections to H+εand H−4−ε.One can then see that the operator on any of these Hilbert spaces is positive with an absolutely continuous spectrum of unit degeneracy[22].Hence,on any superselection sector H±ε,one obtains a spectral decomposition of the identity of the form1±ǫ= ∞0dλ|e±ǫλ e±ǫλ|,(31) where|e±ǫλ is a generalized eigenstate of Ω2with eigenvalue equal toλ.Finally,let us comment that,expressing|e±ǫλ in theν-basis,the corresponding generalized eigenfunc-tions e±ǫλ(ν)can always be chosen real.8.PHYSICAL STATES Employing the above spectral decomposition associated with Ω2,elements of the poly-mer space H±εcan be identified with elements of the Hilbert space L2(I R+,dλ).It is now straightforward to solve the densitized constraint−6 Ω2+ˆP2φ=0.Starting from the kinematical Hilbert space H±ε⊗L2(I R,dφ),the solutions adopt the formψ(ν,φ)= ∞0dλe±ελ(ν) ψ+(λ)e i√6λφ .(32) Physical states can be identified with positive frequency solutions,and hence with wavefunctions in L2(I R+,dλ).A complete set of Dirac observables(acting on physicalstates)is given by ˆP φand,e.g.,|ˆν|φ0,the latter being defined by the action of |ˆν|whenφ=φ0.5In this way,the LQC approach succeeds in achieving a complete quantization of the flat FRW model with massless scalar field.Rather than in general physical states,one is usually interested in states which display a semiclassical behavior in the region of large spatial volumes and matter fields,so that they can be regarded as potential candidates to explain the properties of universes like the one which we observe.With this motivation,we can concentrate our considerationson positive frequency states which,for a fixed large value of the scalar field φ=φ0≫1,are peaked on certainvaluesPφ=P 0φand ν=ν0of the Dirac observables such that|ν0|≫1and |P 0φ|≫1[16].In more detail,one analyzes Gaussians of the form ψ+ λ=ω225Recalling expression (32),this suffices to determine the action of the operator on positive frequency solutions for all values of φ.satisfactory answers to fundamental problems that had remained open in Quantum Cos-mology.In particular,this explains why,while the standard quantization fails to solve the cosmological singularities,these are cured in LQC.Actually,the singularities are resolved already at the kinematical level.Nonetheless,the resolution is much stronger.For physi-cal states with good semiclassical behavior,numerical simulations show that the universe suffers a big bounce before reaching the big bang.This bounce occurs when the energy densityρ=P2φ/(2|p|3)approaches a critical density of the order of the Planck density. Away from the bounce,states are peaked on classical solutions.Quantum corrections are strong close to the bounce,but even there the state remains peaked on a certain,modified trajectory.AcknowledgmentsThe author wants to thank the organizers of the XVII IFWGP for the nice atmosphere they collaborated to create during the workshop.He is in debt with J.M.Velhinho for enlightening conversations and discussions about the fundamentals of loop quantum cosmology,as well as for explanations about technical aspects of the polymer quantization, without which this introduction would not have been possible.This work was supported by the Spanish MEC Grant FIS2005-05736-C03-02,its continuation FIS2008-06078-C03-03,and the Spanish Consolider-Ingenio2010Programme CPAN(CSD2007-00042).[1]S.Hawking,and G.F.R.Ellis,The Large Scale Structure of Space-Time,CambridgeUniversity Press,Cambridge(UK),1973.[2] A.Ashtekar,Lectures on Non-Perturbative Canonical Gravity,edited by L.Z.Fang,andR.Ruffini,World Scientific,Singapore,1991.[3] C.Rovelli,Quantum Gravity,Cambridge University Press,Cambridge(UK),2004.[4]T.Thiemann,Modern Canonical Quantum General Relativity,Cambridge University Press,Cambridge(UK),2007.[5]M.Bojowald,Living Rev.Relativity11,4(2008).[6]See,e.g.,R.M.Wald,General Relativity,University of Chicago Press,Chicago,1984.[7]G.Immirzi,Nucl.Phys.B(Proc.Suppl.)57,65–72(1997).[8]G.Immirzi,Class.Quantum Grav.14,L177–L181(1997).[9] A.Ashtekar,J.C.Baez,and K.Krasnov,Adv.Theor.Math.Phys.4,1–94(2001).[10]J.N.Goldberg,J.Lewandowski,and C.Stornaiolo,Commun.Math.Phys.148,377-402(1992).[11] A.Ashtekar and J.Lewandowski,Class.Quantum Grav.9,1433-1468(1992).[12] A.Ashtekar,and J.Lewandowski,Class.Quantum Grav.21,R53–R152(2004).[13]J.Lewandowski,A.Okolow,H.Sahlmann,and T.Thiemann,Comm.Math.Phys.267,703-733(2006).[14]J.M.Velhinho,Class.Quantum Grav.,24,3745-3758(2007).[15] A.Ashtekar,T.Pawlowski,and P.Singh,Phys.Rev.D73,124038/1–124038/33(2006).[16] A.Ashtekar,T.Pawlowski,and P.Singh,Phys.Rev.D74,084003/1–084003/23(2006).[17] B.Simon,Topics in Functional Analysis,edited by R.F.Streater,Academic Press,London,1972.[18]See,e.g.,A.Galindo,and P.Pascual,Quantum Mechanics I,Springer-Verlag,Berlin,1990.[19]See,e.g.,J.J.Halliwell,“Introductory Lectures on Quantum Cosmology”,in Proceedingsof the Seventh Jerusalem Winter School for Theoretical Physics:Quantum Cosmology and Baby Universes,edited by S.Coleman,J.B.Hartle,T.Piran,and S.Weinberg,World Scientific,Singapore,1991,pp.159–243.[20] A.Ashtekar,M.Bojowald,and J.Lewandowski,Adv.Theor.Math.Phys.7,233–268(2003).[21] A.Ashtekar,and J.Lewandowsky,Class.Quantum Grav.14,A55-A81(1997).[22]M.Mart´ın-Benito,G.A.Mena Marug´a n,and T.Pawlowski,Phys.Rev.D78,064008/1–064008/11(2008).[23]M.Mart´ın-Benito,G.A.Mena Marug´a n,and L.Garay,Phys.Rev.D78,083516/1–083516/5(2008).[24]M.Bojowald,Class.Quantum Grav.20,2595–2615(2003).[25]W.Kami´n ski,and J.Lewandowski,Class.Quantum Grav.25,035001/1–035001/11(2008).[26]T.Kato,Perturbation Theory for Linear Operators,Springer-Verlag,Berlin,1980.。
新教材 人教版高中英语选择性必修第一册全册各单元重点单词短语句式详解
人教版选择性必修第一册重点知识详解Unit 1People Of Achievement .............................................................................................. - 1 - Unit 2Looking Into The Future ........................................................................................... - 18 - Unit 3 Fascinating Parks ......................................................................................................... - 34 - Unit 4Body Language ...................................................................................................... - 50 - Unit 5Working The Land ..................................................................................................... - 70 -Unit 1People Of Achievement重点单词1 crucial adj.至关重要的;关键性的典型例句He wasn't there at the crucial moment(when he was needed most).紧要关头他却不在那里。
哈密顿 拉格朗日 多体系统动力学
哈密顿拉格朗日多体系统动力学(中英文实用版)Title: Hamilton and Lagrange Multibody System DynamicsHamilton"s mechanics and Lagrange"s equations are two essential frameworks in the field of multibody system dynamics.They provide a mathematical description of the motion of systems composed of multiple interacting particles or bodies.Hamilton"s mechanics, formulated by William Rowan Hamilton in the early 19th century, is based on the principle of least action.It provides a comprehensive framework for describing the dynamics of systems with a wide range of complexity, from simple mechanical systems to celestial mechanics and quantum mechanics.In Hamilton"s mechanics, the equations of motion are derived from the action principle, which states that the actual path of a system is the one that minimizes the action, a functional that depends on the configuration and time evolution of the system.In Chinese, Hamilton mechanics, formulated by William Rowan Hamilton in the early 19th century, is based on the principle of least action.It provides a comprehensive framework for describing the dynamics of systems with a wide range of complexity, from simple mechanical systems to celestial mechanics and quantum mechanics.In Hamilton"s mechanics, the equations of motion are derived from theaction principle, which states that the actual path of a system is the one that minimizes the action, a functional that depends on the configuration and time evolution of the system.Lagrange"s equations, on the other hand, were formulated by Joseph-Louis Lagrange in the mid-18th century.They provide an alternative approach to the study of dynamic systems, focusing on the conservation of grange"s equations are derived from the principle of virtual work, which states that the actual motion of a system is the one that minimizes the potential energy of the system.In Lagrange"s framework, the equations of motion are expressed in terms of generalized coordinates and their derivatives, which represent the configuration and time evolution of the system.In contrast to Hamilton"s mechanics, Lagrange"s equations focus on the conservation of energy.They were formulated by Joseph-Louis Lagrange in the mid-18th century.In Lagrange"s framework, the equations of motion are expressed in terms of generalized coordinates and their derivatives, which represent the configuration and time evolution of the system.The principle of virtual work underlies Lagrange"s equations, stating that the actual motion of a system is the one that minimizes the potential energy of the system.Both Hamilton"s and Lagrange"s frameworks are widely used in the study of multibody system dynamics.They provide powerful tools foranalyzing the motion of complex systems, such as robotic arms, vehicles, and biological organisms.By employing these frameworks, researchers and engineers can accurately predict the behavior of these systems under various conditions and design optimal control strategies for their operation.In summary, Hamilton"s and Lagrange"s mechanics are two complementary frameworks that play a crucial role in the analysis of multibody system dynamics.They provide a mathematical description of the motion of systems composed of multiple interacting particles or bodies, allowing for the study and optimization of complex dynamic systems.。
The Global Problem of Time
a rXiv:h ep-th/925112v129M a y1992The Global Problem of Time Arlen Anderson ∗Department of Physics McGill University Montr´e al PQ H3A 2T8Canada March 27,1992McGill 92-15hep-th/9205112Abstract Time does not obviously appear amongst the coordinates on the constrained phase space of general relativity in the Hamiltonian formulation.Recent work in finite-dimensional models claims that topological obstructions generically make the global definition of time impossible.It is shown here that a time coordinate can be globally defined on a constrained phase space by patching together local time coordinates,just as coordinates are defined on topologically non-trivial manifolds.PACS:04.60.+nIn the Hamiltonian formulation of general relativity,instead of dynamical equations, onefinds four initial value constraints,the super-Hamiltonian and super-momentum constraints.The coordinates on the phase space consist of the3-metric and the extrinsic curvature of a spacelike hypersurface,and the constraints restrict evolution to a subset of phase space.The obvious question is:where is time?Is there a coordinate on the constrained phase space which can be identified as time?Recent work claims that there are topological obstructions which make such an identification impossible[1,2]. We shall argue here that a global definition of time can be found by using canonical transformations to define local time coordinates and then to patch them together to cover the constrained phase space,much as coordinates are defined on topologically non-trivial manifolds.Few would doubt the existence of time,but as a question about the constrained phase space of general relativity,the answer is less self-evident.The problem is not academic.While the global definition of time on the constrained phase space is a purely classical question,the whole program of canonical quantization depends on its successful resolution.If time could not be defined globally,how could one speak about evolution, let alone define a Hilbert space with a conserved inner product?One might have hoped that a Schr¨o dinger-type super-HamiltonianH=p t+H(p k,q k,t)=0.(1) would have followed from the Hamiltonian formulation of general relativity.Time then would have been easily identified as the variable conjugate to p t,and quantization would be straightforward.This not being the case,the natural question is:is there a canoni-2cal transformation from the Wheeler-DeWitt super-Hamiltonian to a Schr¨o dinger-type super-Hamiltonian such that the two are fully equivalent?This is the global problem of time,as formulated by Kuchaˇr[3].The infinite-dimensional nature of general relativity makes it as yet too difficult to handle directly,but considerable insight can be obtained fromfinite-dimensional models.There,the answer to Kuchaˇr’s question is simply:no,in general there is no canonical transformation from an arbitrary super-Hamiltonian to one of Schr¨o dinger-type such that the resulting system is fully equivalent to the original one.This result is not however surprising and,in fact,to insist by it that the global problem of time is insoluble misses the spirit of the question.Arguably the distinguishing characteristic of time is that it is a coordinate whose each and every value occurs exactly once along each of all possible classical trajectories.This property is familiar in Schr¨o dinger-type systems.The global problem of time may be restated:is there a coordinate on the constrained phase space of the Wheeler-DeWitt equation which,because it increases monotonically along every classical trajectory,can serve as time?In thefinite-dimensional case,the answer is now yes,but the time coordinate must be defined locally and then patched together to cover the full constrained phase space.The situation is completely analogous to defining coordinates on a manifold.One asks if there is a map between the manifold and Euclidean space.Generically there is no map such that Euclidean space is fully equivalent(isomorphic)to the original manifold–consider, for example,compact manifolds.Nevertheless,one can define coordinates globally by finding maps locally between the manifold and Euclidean space and patching these3maps together by giving transformations between them in regions where they overlap. The global problem of time concerns defining a coordinate on the constrained phase space of the super-Hamiltonian which can be identified as time.It should come as no surprise that the non-trivial topology of this constraint surface may require that the time coordinate be defined on patches.H´a j´ıˇc ek[1]has extensively studied the global problem of time in thefinite-dimensional context.He formulates the problem in terms of the existence of a hypersurface such that every classical trajectory intersects it exactly once.This corresponds to identifying a common unique instant of time amongst all classical trajectories.If no such hypersurface can be found,H´a j´ıˇc ek argues that time cannot be globally defined.For most super-Hamiltonian constraints on afinite-dimensional phase space,H´a j´ıˇc ek finds that there are topological obstructions to the existence of such a hypersurface and thus to a globally defined time.These obstructions take three forms.First,the super-Hamiltonian may havefixed points.These are classical trajectories which consist of a single point in phase space.As such,successive instants of time are indistinguishable and all lie on the same hypersurface.Second,the super-Hamiltonian may have(almost) periodic trajectories.In this case,trajectories repeatedly intersect a candidate hyper-surface.Finally,there may be non-Hausdorffpairs of trajectories.These are trajectories who always share a common neighboring trajectory,but are not themselves neighbors, so that if a hypersurface were to intersect them both once,it would have to intersect a neighboring trajectory more than once.Typically this happens at unstablefixed points.A Schr¨o dinger-type super-Hamiltonian has none of these obstructions.It is immedi-4ate then that if a given super-Hamiltonian has any of them,it cannot be fully equivalent to a Schr¨o dinger-type Hamiltonian.But,to repeat,this does not mean that time cannot be globally defined.Furthermore,these obstructions are not pathological.Flat space itself is afixed point of the Wheeler-DeWitt equation,the super-Hamiltonian of general relativity.In order to understand how time is globally defined in the presence of topological obstructions,it is instructive to consider a super-Hamiltonian constraint proposed by H´a j´ıˇc ekH=1p=1q0=−ln(p0+q0),reduces the super-Hamiltonian to Schr¨o dinger formH s=(p21−q21)=0.(5)25The Schr¨o dinger super-Hamiltonian has nofixed points and no non-Hausdorffpairs of trajectories,so it is not fully equivalent to the original super-Hamiltonian.The diffi-culties of the original super-Hamiltonian have been transformed away by the canonical transformation:thefixed point has been sent to infinity,along with one half of the pair of non-Hausdorfftrajectories.All of the remaining trajectories share a common time asp0 share this property,and none havefixed points or non-Hausdorffpairs of orbits.A second canonical transformation can be made which reaches the trajectory missed by thefirst one.This is the transformation(−p20+q20),(6)2+1p′q′=p0.(8)Thus,time is defined globally by patching together these two locally defined coordinates6with this transition function.Since thefixed point does not change with time,both coordinates are valid to describe its evolution.Having seen howfixed points and non-Hausdorffpairs of trajectories are affected by canonical transformation,there remains only the obstruction of(almost)periodic trajectories.Changing the sign of q20and q21in the super-Hamiltonian(2)introduces periodic trajectories.The canonical transformations(4)and(6)with q0replaced by iq0again give the reduction to the Schr¨o dinger form.It is clear what has happened. The periodic trajectories are“unwound”by the canonical transformation because of the many-sheeted nature of the logarithm.Effectively,a transformation has been made to a covering space of the original space.Time is again defined globally by the two local coordinates q′0.In this simple example,we have seen how the topological obstructions of Hajicek are handled by canonical transformations.These obstructions deny the full equiva-lence of a generic super-Hamiltonian and one of Schr¨o dinger-type,but this does not mean that time cannot be globally defined on the constrained phase space of the super-Hamiltonian.Rather wefind that time may be defined locally by canonical transfor-mation to a Schr¨o dinger-type super-Hamiltonian and the different local times patched together by canonical transformations in regions where they overlap,much as coordi-nates are defined on a topologically non-trivial manifold.The nature of the obstructions in afinite-dimensional phase space are such that this can always be done.Every indi-cation is that this extends to the infinite-dimensional case,resolving the global problem of time.7Acknowledgements:I would like to thank P.H´a j´ıˇc ek,K.Kuchaˇr,and R.Myers for stimulating discussions.This work was supported in part by grants from the Natural Sciences and Engineering Research Council and les Fonds FCAR du Qu´e bec.References[1]P.Hajicek,Phys.Rev.D34,1040(1986);J.Math.Phys.30,2488(1989);Class.Quantum Grav.7,871(1990);M.Sch¨o n and P.Hajicek,Class.Quantum Grav.7, 861(1990).[2]C.Torre,Utah State Univ.preprint FTG-110-USU/hep-th-9204014(1992).[3]K.Kuchaˇr,“Time and Interpretations of Quantum Gravity,”Proceedings of the4thCanadian Conference on General Relativity and Relativistic Astrophysics,eds.G.Kunstatter,D.Vincent and J.Williams(World Scientific,Singapore,1992).8。
汉密尔顿雅可比方程 程函方程
汉密尔顿雅可比方程程函方程
汉密尔顿雅可比方程与程函方程
在物理学和数学领域,汉密尔顿雅可比方程和程函方程是两个重要的概念。
它们在动力学和偏微分方程的研究中起着至关重要的作用。
本文将介绍这两个方程的基本概念和应用。
汉密尔顿雅可比方程,也称为哈密尔顿-雅可比方程,是由物理学家威廉·汉密尔顿和数学家卡尔·雅可比发现的。
它是拉格朗日力学和哈密尔顿力学之间的桥梁,描述了系统的动力学演化。
该方程是一个偏微分方程,通常用来求解系统的运动方程。
程函方程,也称为哈密尔顿-雅可比-贝尔特拉米方程,是由数学家阿费尔·贝尔特拉米在研究椭圆函数和椭圆曲线时提出的。
它是一个非线性偏微分方程,描述了系统的稳定性和振荡性质。
程函方程在动力学系统的研究中起着关键作用,能够帮助我们理解系统的行为。
汉密尔顿雅可比方程和程函方程在不同领域有着广泛的应用。
在天体力学中,它们用于描述行星和卫星的运动轨迹;在量子力学中,它们用于求解薛定谔方程;在控制理论中,它们用于设计稳定的控制系统。
除了物理学和数学领域,汉密尔顿雅可比方程和程函方程还在其他领域有着重要的应用。
在经济学中,它们用于描述市场的供需关系和价格的变动;在生物学中,它们用于研究生物系统的演化和稳定
性。
汉密尔顿雅可比方程和程函方程是动力学和偏微分方程研究中的基本概念。
它们在物理学、数学以及其他领域的应用广泛,并且对于我们理解和解决实际问题具有重要意义。
通过深入研究和应用这些方程,我们可以更好地理解自然界的规律,并为科学和技术的发展做出贡献。
《2024年无穷维Hamilton算子的拟谱》范文
《无穷维Hamilton算子的拟谱》篇一摘要:本文旨在探讨无穷维Hamilton算子的拟谱问题。
首先,我们将介绍Hamilton算子的基本概念及其在物理和数学领域的重要性。
随后,我们将阐述拟谱方法的基本原理和在处理无穷维系统中的优势。
最后,我们将详细描述我们的研究方法和结果,以及这些结果对无穷维系统理论和相关领域研究的潜在贡献。
一、引言Hamilton算子是一种广泛应用于量子力学、光学、电磁学等领域的数学工具。
在处理具有无穷维度的系统时,Hamilton算子的谱问题变得尤为重要。
然而,由于无穷维系统的复杂性,直接求解其谱往往面临巨大挑战。
因此,寻求有效的拟谱方法成为研究的关键。
二、Hamilton算子的基本概念Hamilton算子是一种描述系统动力学的算子,具有特定的形式和性质。
在量子力学中,它描述了粒子的能量和动量关系。
在光学和电磁学中,它用于描述光场或电磁场的演化。
由于系统的复杂性,Hamilton算子往往具有无穷维度,使得其谱的求解变得困难。
三、拟谱方法的基本原理及优势拟谱方法是一种用于处理无穷维系统的数学方法。
它通过将系统在一定的近似空间中进行展开,将原本复杂的无穷维问题转化为有限维问题进行处理。
这种方法在处理具有复杂相互作用的系统时具有显著优势,能够有效地降低问题的复杂度。
四、无穷维Hamilton算子的拟谱研究针对无穷维Hamilton算子的拟谱问题,我们采用了一种基于拟谱方法的解决方案。
首先,我们选择了一个合适的近似空间,将Hamilton算子在这个空间中进行展开。
然后,我们利用数值方法求解展开后的有限维问题,得到Hamilton算子的近似谱。
最后,我们通过分析近似谱的性质,了解原系统的动力学特性。
五、研究方法与结果我们采用了一种基于多项式展开的拟谱方法。
首先,我们选择了一组合适的多项式基函数作为近似空间的基底。
然后,我们将Hamilton算子在这组基底上进行展开,得到一个有限维的矩阵表示。
哈密顿函数的表达式
哈密顿函数的表达式The Hamiltonian function, also known as the Hamiltonian, is a fundamental concept in classical mechanics and quantum mechanics. It plays a crucial role in describing the dynamics of a physical system. The Hamiltonian function is named after the Irish mathematician and physicist William Rowan Hamilton, who developed the formalism of classical mechanics.In classical mechanics, the Hamiltonian function is defined as the sum of the kinetic and potential energies of a system. It is denoted by H and is a function of the generalized coordinates and momenta of the system. The Hamiltonian function allows us to express the equations of motion of the system in terms of these generalized coordinates and momenta, rather than in terms of forces and accelerations.The Hamiltonian function provides a concise and elegant formulation of classical mechanics. It encapsulates thetotal energy of the system and allows us to study the evolution of the system over time. By taking the appropriate derivatives of the Hamiltonian with respect to the generalized coordinates and momenta, we can obtain the equations of motion, which describe how the system's coordinates and momenta change with time.In quantum mechanics, the Hamiltonian function plays a similar role, but with some important differences. In this context, the Hamiltonian is an operator that acts on wavefunctions to yield the energy of a quantum system. The Hamiltonian operator is defined in terms of the system's observables, such as position and momentum operators, and the potential energy function.The Hamiltonian function in quantum mechanics allows us to calculate the energy spectrum and eigenstates of a quantum system. It is a key ingredient in solving theSchrödinger equation, which describes the time evolution of wavefunctions. By finding the eigenvalues and eigenvectors of the Hamiltonian operator, we can determine the possible energy levels and corresponding wavefunctionsof the system.The Hamiltonian function has wide-ranging applications in various branches of physics, including classical mechanics, quantum mechanics, and statistical mechanics. It provides a powerful framework for understanding and predicting the behavior of physical systems. The Hamiltonian formalism has been successfully applied to a wide range of problems, from celestial mechanics to the behavior of subatomic particles.In conclusion, the Hamiltonian function is a fundamental concept in classical and quantum mechanics. It allows us to describe the dynamics of physical systems and study their evolution over time. The Hamiltonian function encapsulates the total energy of a system and provides a concise and elegant formulation of its behavior. It is a key tool in solving the equations of motion in classical mechanics and the Schrödinger equation in quantum mechanics. The Hamiltonian function has broad applications and is a cornerstone of modern physics.。
《2024年无穷维Hamilton算子的拟谱》范文
《无穷维Hamilton算子的拟谱》篇一一、引言在物理学和数学中,Hamilton算子是一个重要的概念,尤其在量子力学和经典力学中扮演着核心角色。
随着研究的深入,无穷维Hamilton算子成为了研究的热点。
然而,由于无穷维空间的复杂性,其谱问题的研究变得十分困难。
为了解决这一问题,拟谱方法被引入到无穷维Hamilton算子的研究中。
本文旨在探讨无穷维Hamilton算子的拟谱问题,分析其性质和特点,为相关领域的研究提供理论支持。
二、无穷维Hamilton算子的基本概念无穷维Hamilton算子是一种描述量子系统动力学的算子,其具有无穷多个本征值和本征函数。
在经典力学中,Hamilton算子被用来描述系统的能量,其表达式包含系统的动能和势能。
在量子力学中,Hamilton算子则是描述波函数随时间演化的算符。
由于实际物理系统的复杂性,我们通常需要考虑无穷维空间中的Hamilton算子。
三、拟谱方法的基本原理拟谱方法是一种用于处理无穷维问题的数值方法。
其基本思想是将无穷维空间进行离散化处理,将无穷维问题转化为有限维问题。
通过选取适当的基函数,将原问题表示为一系列线性方程的组合,从而实现对原问题的近似求解。
拟谱方法在处理无穷维Hamilton算子问题时,可以有效地降低问题的复杂度,提高求解的精度。
四、无穷维Hamilton算子的拟谱分析针对无穷维Hamilton算子的拟谱问题,我们采用拟谱方法进行分析。
首先,我们将Hamilton算子在一定的基函数下进行展开,得到一系列的系数。
然后,利用这些系数构建一个有限维的矩阵问题。
通过求解这个矩阵问题,我们可以得到原问题的近似解。
在实际操作中,我们需要根据具体的问题选择合适的基函数和离散化方法,以获得更好的求解效果。
五、结果与讨论通过拟谱方法,我们得到了无穷维Hamilton算子的近似解。
结果表明,拟谱方法可以有效地降低问题的复杂度,提高求解的精度。
同时,我们还发现拟谱方法的求解效果与基函数的选择和离散化方法的选取密切相关。
《2024年上三角型无穷维Hamilton算子的谱及其应用》范文
《上三角型无穷维Hamilton算子的谱及其应用》篇一一、引言在现代物理学和数学领域,Hamilton算子作为一种重要的数学工具,在描述量子力学系统、研究偏微分方程以及在无穷维动力系统理论中具有广泛应用。
特别地,上三角型无穷维Hamilton 算子的研究,对于理解复杂系统的动态行为和稳定性问题具有重要意义。
本文将探讨上三角型无穷维Hamilton算子的谱结构及其在相关领域的应用。
二、上三角型无穷维Hamilton算子的基本概念上三角型无穷维Hamilton算子是一类特殊的线性算子,其矩阵表示具有上三角形式。
这种算子在描述某些物理系统和偏微分方程时具有独特的优势。
其定义、性质和谱结构是研究的核心内容。
三、上三角型无穷维Hamilton算子的谱分析(一)谱的定义与性质算子的谱是指算子本征值的集合,它对于理解算子的动态行为具有重要意义。
上三角型无穷维Hamilton算子的谱具有特殊的结构,其本征值和本征函数的性质对于理解系统的动态行为和稳定性至关重要。
(二)谱的求解方法求解上三角型无穷维Hamilton算子的谱是一个具有挑战性的问题。
本文将介绍几种常用的求解方法,包括数值方法和解析方法,并分析各种方法的优缺点。
四、上三角型无穷维Hamilton算子的应用(一)在量子力学系统中的应用上三角型无穷维Hamilton算子在描述量子力学系统时具有独特的优势。
通过研究其谱结构,可以更好地理解量子系统的动态行为和稳定性。
此外,还可以利用该算子解决一些量子力学中的实际问题,如量子谐振子、量子场论等。
(二)在偏微分方程中的应用上三角型无穷维Hamilton算子也广泛应用于偏微分方程的研究。
通过将其与偏微分方程相结合,可以更好地理解偏微分方程的解的性质和结构。
此外,还可以利用该算子解决一些实际问题,如波动方程、热传导方程等。
(三)在无穷维动力系统中的应用无穷维动力系统是一种描述复杂系统动态行为的数学模型。
上三角型无穷维Hamilton算子在描述这类系统的动态行为时具有重要作用。
Energy and Angular Momentum Densities in a Godel-Type Universe in the Teleparallel Geometry
汉米尔顿方案
汉米尔顿方案1. 简介汉米尔顿方案是一种数学问题的求解方法,主要用于寻找某个系统的最优解。
它起初被应用于优化问题和组合问题中,但现在已被广泛应用于多个领域,如物理学、计算机科学、经济学等等。
这种方案的独特之处在于,它通过构建一个有向图来表示问题,并在图上进行搜索,以找到最佳路径或解决方案。
2. 汉米尔顿方程汉米尔顿方程是汉米尔顿方案的核心。
它由基于拉格朗日力学的哈密顿原理推导而来,用于描述一个系统的动力学行为。
该方程是一个偏微分方程,可以用来求解系统状态在时间上的演化。
汉米尔顿方程的一般形式如下:H(q, p) = T(p) + V(q)其中,H表示系统的汉米尔顿量,q和p分别表示系统的广义坐标和广义动量。
T(p)和V(q)分别表示系统的动能和势能。
3. 汉米尔顿图在汉米尔顿方案中,问题首先被转化为一个有向图,该图被称为汉米尔顿图。
汉米尔顿图中的节点表示问题的状态,边表示从一个状态到另一个状态的转移。
每个状态都可以通过一个唯一的标识符来表示,并与其他状态之间有所区分。
汉米尔顿图的构建通常需要根据具体问题的特点进行。
在图的构建过程中,需要考虑如何表示问题的状态,以及如何定义合适的转移条件。
4. 汉米尔顿回路和汉米尔顿路径在汉米尔顿图中,汉米尔顿回路是指一个遍历图中所有节点恰好一次的闭合路径。
汉米尔顿路径是指一个遍历图中所有节点恰好一次的路径,但不需要闭合。
汉米尔顿回路和汉米尔顿路径的存在性是汉米尔顿方案求解的关键。
通过在汉米尔顿图上进行搜索,可以找到满足条件的汉米尔顿回路或路径,从而得到问题的最优解。
5. 汉米尔顿方案的应用汉米尔顿方案广泛应用于多个领域,包括优化问题、组合问题、路径规划等等。
在优化问题中,汉米尔顿方案可以用于找到一条路径或序列,使得某个目标函数取得最大或最小值。
例如,旅行商问题就是一个典型的优化问题,它要求找到一条最短路径,使得旅行商可以遍历所有城市并回到起点。
在组合问题中,汉米尔顿方案可以用于找到一组对象的最优排列方式。
《2024年无穷维Hamilton算子的谱与特征函数系的完备性》范文
《无穷维Hamilton算子的谱与特征函数系的完备性》篇一一、引言无穷维Hamilton算子在量子力学、物理、数学等多个领域具有广泛的应用。
本文旨在探讨无穷维Hamilton算子的谱及其特征函数系的完备性。
首先,我们将简要介绍Hamilton算子的基本概念和性质,然后详细阐述其谱的特性和特征函数系的完备性。
二、Hamilton算子的基本概念与性质Hamilton算子是一种在量子力学和物理中广泛应用的算子,具有无穷维的特性。
它描述了系统的能量和动量等物理量,是研究量子系统的重要工具。
Hamilton算子具有自伴性、厄米性和正定性等基本性质,这些性质使得它在描述物理系统时具有很高的精确性和可靠性。
三、无穷维Hamilton算子的谱无穷维Hamilton算子的谱是指其本征值组成的集合。
由于Hamilton算子具有无穷维的特性,其谱通常也是无穷的。
谱的性质对于理解Hamilton算子的物理意义和数学结构具有重要意义。
在无穷维空间中,Hamilton算子的谱具有连续性和离散性。
连续谱表示系统的能量可以取任意实数值,而离散谱则表示系统的能量只能取某些特定的离散值。
这两种谱共同描述了系统的能量分布和动力学行为。
四、特征函数系的完备性特征函数系是指由Hamilton算子的本征函数组成的函数系。
特征函数系的完备性是指该函数系能否在某种意义上完整地描述系统的状态和演化。
对于无穷维Hamilton算子,其特征函数系通常具有完备性。
特征函数系的完备性意味着,任何系统的状态都可以用其本征函数进行展开和描述。
这使得我们可以通过求解Hamilton算子的本征值和本征函数来了解系统的性质和演化规律。
此外,特征函数系的完备性还保证了我们在进行量子计算和模拟时,可以使用该函数系来近似任意状态,从而提高计算的精度和效率。
五、结论本文详细探讨了无穷维Hamilton算子的谱与特征函数系的完备性。
通过分析Hamilton算子的基本概念、性质、谱的特性和特征函数系的完备性,我们深入理解了其在量子力学、物理、数学等领域的应用。
《2024年无穷维Hamilton算子的拟谱》范文
《无穷维Hamilton算子的拟谱》篇一一、引言在数学物理的诸多领域中,Hamilton算子因其描述了系统的能量和动量而备受关注。
尤其在量子力学和经典力学中,Hamilton算子扮演着至关重要的角色。
随着研究的深入,无穷维Hamilton算子逐渐成为研究的热点,其拟谱问题更是引起了广泛的关注。
本文旨在探讨无穷维Hamilton算子的拟谱问题,并为其提供一个高质量的范文。
二、背景与预备知识无穷维Hamilton算子通常出现在量子场论、量子力学、统计物理等领域。
它描述了具有无穷多自由度的系统的动力学特性。
在处理这类问题时,我们需要借助泛函分析、算子理论等数学工具。
此外,为了更好地理解无穷维Hamilton算子的性质,我们需要了解一些预备知识,如希尔伯特空间、自伴算子等。
三、无穷维Hamilton算子的定义与基本性质无穷维Hamilton算子可以定义为在适当的功能空间上的自伴算子。
它具有一些基本性质,如对称性、保谱性等。
这些性质使得我们能够更好地理解其动力学特性和物理意义。
此外,我们还需要探讨无穷维Hamilton算子的谱的性质,如离散谱、连续谱等。
四、拟谱的概念与性质拟谱是描述算子谱的一种方法,它能够帮助我们更好地理解算子的性质和动力学特性。
在无穷维Hamilton算子的情况下,我们可以通过拟谱来研究其谱的性质,包括离散谱的分布、连续谱的取值范围等。
此外,我们还需要探讨拟谱与系统动力学行为之间的关系。
五、无穷维Hamilton算子的拟谱方法针对无穷维Hamilton算子的拟谱问题,我们可以采用一些具体的方法进行研究。
例如,我们可以利用傅里叶变换将无穷维系统转化为有限维系统,从而简化问题的求解过程。
此外,我们还可以采用其他数值方法或近似方法进行研究,如变分法、迭代法等。
六、应用实例与实验结果分析为了验证我们的方法的有效性,我们可以选择一些具体的物理系统进行实验研究。
例如,我们可以考虑量子场论中的某些模型,如无质量场、谐振子场等。
汉密顿算符
汉密顿算符简介汉密顿算符(Hamiltonian operator)是量子力学中的一个重要概念,用于描述系统的能量和动力学性质。
它是由物理学家威廉·汉密顿(William Hamilton)在19世纪提出的,被广泛应用于各个领域,如原子物理、固体物理、量子化学等。
在量子力学中,汉密顿算符是描述量子系统能量演化的算符。
它的本征值(eigenvalue)对应着系统的能量,而本征函数(eigenfunction)则描述了系统的量子态。
通过求解汉密顿算符的本征值问题,我们可以得到系统的能级结构和能量谱。
定义在一个一维空间中,汉密顿算符可以表示为:Ĥ=−ℏ22md2dx2+V(x)其中,Ĥ是汉密顿算符,ℏ是约化普朗克常数,m是粒子的质量,x是位置坐标,V(x)是势能函数。
汉密顿算符的第一项−ℏ22md2dx2表示了粒子的动能,第二项V(x)则表示了粒子的势能。
通过求解薛定谔方程(Schrödinger equation)ĤΨ=EΨ,我们可以得到系统的波函数Ψ和能量本征值E。
特性1. 厄米性汉密顿算符是一个厄米算符(Hermitian operator),即满足Ĥ†=Ĥ。
这意味着它的本征值是实数,且对应的本征函数是正交归一的。
2. 量子态演化汉密顿算符描述了量子系统的时间演化。
根据薛定谔方程,系统的波函数随时间的演化可以通过汉密顿算符进行描述。
如果我们知道系统的初始态,通过求解薛定谔方程,我们可以预测系统在任意时刻的量子态。
3. 能级结构汉密顿算符的本征值对应着系统的能量。
通过求解本征值问题,我们可以得到系统的能级结构和能量谱。
这对于理解和研究原子、分子、固体等系统的性质非常重要。
4. 量子力学中的运算汉密顿算符在量子力学中扮演着非常重要的角色。
它可以用于定义其他一些重要的算符,如动量算符、角动量算符等。
这些算符与汉密顿算符的对易关系可以帮助我们推导出各种物理量的测量结果。
应用1. 原子物理在原子物理中,汉密顿算符被用于描述电子在原子核周围的运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Introduction
• Several alternative formulations of GR exist. Hamiltonian formulation is just one of them.
• Even for the Hamiltonian formulation, there are more than one ways. • First attempts towards such a formulation was by Pirani et. al. after
• Hamilton’s equations of motion:
Review of Hamiltonian Mechanics: Classical Fields*
• qi →Φ(xµ) • The lagrangian is related to the Lagrangian density:
Review of Hamiltonian Mechanics: Point Particles (contd…)
Hamiltonian Formulation • System defined by 2n generalized coordinates {qi,pi}, where
• Construct the Hamiltonian from the Lagrangian by means of a Legendre transformation as:
Dirac proposed his idea of constrained dynamics in 1949-Not complete. • Next Dirac himself visited this problem later. • Shortly thereafter Arnowitt, Deser, and Misner came up with a
Review of Hamiltonian Mechanics: Point Particles*
Lagrangian formulation • Describe the system with n independent degrees of freedom by a set of
n generalized coordinates {qi}. • Construct the Lalton’s equations become:
*same as before
Constrained Hamiltonian Formulation for Dynamical Systems*
• Constrained systems are very common in nature. E.g., a simple pendulum.
Hamiltonian Formulation of General Relativity
Hridis Kumar Pal
UFID: 4951-8464
Project Presentation for PHZ 6607, Special and General Relativity I
Fall, 2008 Department of Physics
• Define the Action as :
• Use Hamilton’s principle to find the extremum of this action resulting in the Euler-Lagrange equations:
*H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Pearson Education Asia (2002)
• Euler-Lagrange equations of motion, which are covariant in nature:
• Similarly define the Hamiltonian density as:
where
is the conjugate momentum density
Hamiltonian formulation of GR which was satisfactory and later came to be called as the ADM formalism*.
We will discuss the ADM formalism of GR.
*Arnowitt, Deser and Misner, "Gravitation: An Introduction to Current Research" (1962) 227.
University of Florida
Outline
Introduction Review of Hamiltonian Mechanics
Hamiltonian Mechanics for Point Particles Hamiltonian Mechanics for Classical Fields Constrained Hamiltonian Formulation for Dynamical Systems Formulating GR from a Hamiltonian Viewpoint: The ADM Formalism The Lagrangian in GR The Hamiltonian in GR The Equations in GR Applications and Misconceptions Questions, Comments and Acknowledgements
• Any field theory with gauge freedom will have in-built constraints. • The formal theory to tackle constrained system within the Hamiltonian