用留数定理计算实积分

合集下载

§5.2-利用留数定理计算实变函数的积分

§5.2-利用留数定理计算实变函数的积分

eiz z dz 0 C
由图可得:

Cr
2 iz dz e 1 dz 1 iz z z 2! Cr dz i2 i z dz z Cr 2! Cr iz
由图可得: lim
r 0
3、实轴上存在奇点的情形 例6、计算


0
sin xdx x

解:取r及R,使得R>r>0,我们有:

R
r
ix ix R e e sin xdx dx r x 2ix
ix r e 1 R eix dx dx r R x 2i x
如图所示构造辅助线,则:

R
R
f ( z )dz
R

f ( z )dz 2 i
Im

k
Res f ( z )
z k
0
用上述引理考察圆弧段积分:
am z m a0 P( z ) zf ( z ) z z Q( z ) bn z n b0
a0 a m z m 1 m z n b0 z bn n z 很显然,当nm+1有: R m 1 am lim zf ( z ) lim 0 R R R n bn
r 所以,若当z时f(z) 0,则: f ( z )eiz dz 0 CR
sin xdx 1 eiz eiz 最后有: lim 0 x 2i R C z dz lim C z dz r R r



2
定理4:设函数 f(z)满足:(1)在Im(z)>0内,存在有限个孤立奇 点;(2)在实数轴上存在有限个孤立一阶极点;(3)在上半空 间当z时,f(z)0,则:

应用留数定理计算实变函数定积分

应用留数定理计算实变函数定积分



0
F x cos mxdx i F z eimz 在上半平面所有奇点的留数之和
解:本例中 F z eimz
eimz 2 有两个单极点 ai, 2 z a
其中+ai在上半平面,而
F z eimz eimz 2 在单极点 ai的留数为 2 z a
eimz e am lim z ai z ai z ai z ai 2ai 应用 4.2.9
利用(4.2.6)得
1
dx 1 1 x 2 2i 2i

dx 1 x 2 darctgx
例4 计算


1 x
dx
2 n
n为正整数。
1
2 n
解:本例 f z
1 z

z i n z i n
zeimz
2
a
2 2

有两二阶极点 ai,
其中+ai在上半平面,而 Gz eimz
z
zeimz
2
a
2 2

在 ai的留数为
imz m ma 1 d ze 2 lim z ai 2 e 2 2 z ai 1 ! dz z a 4a
§4.2 应用留数定理计算实变函数定积分
柯西公式和留数定理解决的是沿着闭合回路积分的问题:
柯西公式
1 f f z d . 2i l z
f
n
n! z 2 i
z
l
f
n 1
d
留数定理
f z dz 2i Re sf b 4.1.5

6.2 用留数定理计算实积分

6.2 用留数定理计算实积分

sin x cos x x2 x dx, e dx, 1 x 2 dx,
或者即使可以求出原函数,但往往计算比较复杂,例如
1 (1 x 2 )2 dx.
利用留数方法计算这些实积分,只须算出有关函数的留数, 也就基本解决了.该方法不是普遍适用的方法,也不是解 决所有实积分的计算方法,而是考虑几类特殊类型的实积 分的计算,并且着重讨论实积分化为围线积分的方法.
×
二、形如



P( x) dx 的积分 Q( x )
SR
R
2
引理6.1 设f(z)沿圆弧
SR : z Rei (1 2 , R充分大)
1
x
0
上连续,且 lim zf ( z ) 于SR上
R
一致成立(即与1 2 中的 无关), 则
R
π
1 z 1 dz m 2 4 i | z | 1 z 5 z 2 z 2
2m


1 z 2m 1 dz m 4i |z|1 z 2 z 1 z 2
1 2 πi Res f ( z ) Res f ( z ) 1 z 0 4i z 2 ( m ) 1 1 m 2πi lim z f ( z ) lim z f ( z ) 1 z 0 4i 2 z 2
l 于是(6.10)式不超过 2 1 R
R R0 时,有不等式 | zf ( z) | , z S . R 2 1
(其中 l 为SR的
长度,即
l R(2 1 ) ).
P (z) 为有理分式,其中 定理6.7 设 f ( z ) Q( z )

高等数学课件-复变函数与积分变换 第五章 留数 §5.2 用留数定理计算实积分

高等数学课件-复变函数与积分变换 第五章 留数 §5.2  用留数定理计算实积分
§5.2 用留数定理计算实积分
引言
在实际问题中,往往会遇到求一些实 积分的值,计算比较复杂。但是,如果把 它们化为复变函数的积分,运用留数定理 计算可能要简捷的多。
首先,被积函数必须要与某个解析函 数密切相关。
其次,定积分的积分域是区间,而用 留数来计算要牵涉到把问题化为沿闭曲线 的积分。
一、形如
积分限化为从 到 ,又显然 lim f z 0 z
于是积分属于上述类型,可由(2.4)式计算
f z 可写成
f z
1 z2 a2
2
z
ia
1
2
z
ia
2
易见,f z 在上半平面只有一个二级极点
z ia,计算 f zeipz在 z ia 点的留数
Re s f
z eipz ,ia
Re s
f
z eiz , 2i
lim z
z2i
2i
f
z eiz
zeiz
1
lim
z2i z 2i
z2 1
6e2
Re
s
f
z eiz ,i
lim z
zi
i
f
z eiz
lim
zeiz
1
zi z2 4 z i 6e
将所得留数代入(2.5)式得:
I
xsin x dx
(x2 4)(x2 1)
奇点?在实轴上是否无奇点?
c.等式 lim zf z 0 是否成立? z
(2)计算 f z在上半平面奇点处的留数,
然后代入上述公式就得结果。显然结果必然
是实数,如果是复数,说明计算有误。
例2.3计算积分
x2
I
x2 1 2 dx

第2节--用留数计算实积分

第2节--用留数计算实积分

于是就有 g(z) , z R
g(z)eimzdz g(Rei )eimRei Rei id
R
0
R emRsin d , (6.13) 0
由于 g(Rei ) , Rei i R,以及
e e e . imRei
mRsin imR cos
mR sin
于是由Jordan不等式 2 sin (0 ),
形如 2π 0
R(cos
,
sin
)d
的积分
令 z ei
dz iei d d dz ,
iz
sin 1 (ei ei ) z2 1,
2i
2iz
3
cos 1 (ei ei ) z2 1,
2
2z
当 经历变程 [0,2π ] 时,
z 沿单位圆周 z 1的正方向绕行一周.
n

0
R(cos ,sin )d
f
z 1
(z)dz
2 i
k 1
Re s
z ak
f
( z ).
z的有理函数 , 且在单位圆周上分 包围在单位圆周 母不为零 , 满足留数定理的条 内的诸孤立奇点. 注件:关.键是引进代换z ei , R(sin,cos )在[0, 2 ]上连续可
不必检验,只要看变换后被积函数在 z 1是否有奇点.
为互质函数,且合条件(1)n m 2, (2)在实轴上Q(z) 0, 于是有
f (x)dx 2πi Re s f (z). (6.11)
Im ak 0 zak
17
证明 由条件(1),(2)及数学分析的结论,知
f (x)dx存在,且等于它的主值
lim R f (x)dx. 记为P.V . f (x)dx.

《复变函数与积分变换》 用留数定理计算实积分

《复变函数与积分变换》 用留数定理计算实积分

在上半平面的所有奇点 .
Re s [ f ( z ) , ai ] = lim ( z − ai ) R ( z ) =
z → ai

R
−R
R( x ) dx + ∫ R( z ) dz = 2π i
CR

Res R( z ) , z k
Re s [ f ( z ) , bi ] = lim ( z − bi ) R ( z ) =
Im zk > 0

iaz Res R( z ) e , zk
解:首先计算 I 1 = ∫−∞
=∫
x ei x dx x2 + a2
+∞ x cos x x sin x dx + i ∫ dx −∞ x2 + a2 x2 + a2
其中 R ( x ) = 注:
x + a1 x + L + a n , m−n≥1, x m + b1 x m −1 + L + bm R ( x ) e i a x dx
×
O a
z1
× znbx Nhomakorabea故 I =Ñ ∫ z =1
1+ z4 dθ 2iz 2 ( z − p )(1 − pz )
奇点为 0 , p , ,
1 p
若要计算
f (z)

b
a
f ( x ) dx , 在复平面上增加若干条辅助线 Γ ,
使得 C = [a, b] + Γ 是一条简单闭曲线 , 设其内部为 D , 在 D 内只有有限个孤立奇点 , 则
z → ai
两边对 R 取极限:

4.2应用留数定理计算实变函数积分

4.2应用留数定理计算实变函数积分

Im zk 0
数学物理方法
特别地,若对应的实函数 f (x) 为偶函数时,有
f (x) cos ax d x πi
0
Res[F (z), zk ] (4.2.4)
Im zk 0
若对应的实函数 f (x) 为奇函数时,有
f (x)sin ax d x π
0
Res[F(z), zk ] (4.2.5)
z 1的正向绕一周,所以有

R(cos ,sin ) d
z z1 z z1 1
R(
,
) dz
0
C
2
2i iz
当有理函数 f (z) R( z z1 , z z1 ) 1 在圆周 C : z 1 的
2
2i iz
内部有 n 个孤立奇点 zk (k 1, 2,, n) 时,则由留数定理有
f (z)eiaz d z 2πi C
Res[ f (z)eiaz , zk ]
Im zk 0

R f (x)eiax d x R
CR
f (z)eiaz d z 2πi Res[ f (z)eiaz , zk ]
Im zk 0
数学物理方法
因为 f (x) 的分母多项式次数至少比分子多项式次数高一次,所以, lim f (z) 0 ,由约当引理知
则 d z Riei d ,于是
f (z)dz π f (Rei )Riei d
CR
0
又因为 Q(z) 的次数比 P(z) 的次数高两次,所以
lim zf (z) lim zP(z) 0
z
z Q(z)
因此,对于任给的 0 ,当 z R 充分大时,有
zf (z) f (Rei )Riei

4-2用留数定理计算实变积分

4-2用留数定理计算实变积分

e
2 3
i
I
1 3
e
2 3
i
2
i
1
e
2 3
i
2
3 9
3. 同时包含有理式和三角函数的积分
约当引理:m 为正数,CR 是一个以原点为圆心而位于上半平面的半圆,且当 z 在上半平面及实轴上 趋于无穷大时, F (z) 一致的趋于零,则有
证明,略
lim F (z)eimzdz 0
R CR
考 虑 形 如 F (x) cos pxdx 或 F (x) sin pxdx 的 积 分 , 一 般 情 况 下 ,
2 22n
(2n)! n!n!
练习:习题 1 中的(1),(5),(7)
2. 无穷积分
引子:
1 1
1 x2
dx
1 x
1 1
2
,对吗?
定义:
f (x)dx lim R2 f (x)dx
R1 R1
R2
有时这种极限不存在,但 lim R f (x)dx 存在,称为积分主值, R R 记为
下是成立的。而积分
数学物理方法
4.2 用留数定理计算实变积分
丁成祥
f (z)dz 2 i Resf (z)
C
上半面
所以,在 c 为 f (x) 单极点的情况下,有
f
( x)dx
2 i(
Re sf
上半平面
(z)
1 2
Re sf
(c))
更一般的情况,实轴上有若干个孤立奇点 Ci ,则有
备注:所谓 zf(z)一致的趋于零,即 max | zf (z) | 0 .
例 1:计算积分 I
dx (1 x2 )3

第二节(应用留数定理计算实变函数定积分)

第二节(应用留数定理计算实变函数定积分)

点的一条正向简单闭曲线, 则
n
包括无限远点和
f (z) d z 2 π i Res f (bj ). 有限远的奇点
l f (z)dz 2l if z在所有j有 1 限远点的留数之和
0 2if z在所有各点的留数之和
lim ( z
zz0

z0 )
f
(z) =
2
2z
4
例1 计算
2
I
dx ••(0 1)
0 1 cosx
解 由公式得
I
dz / iz
|z|1
1
z2
1

2 i
dz
|z|1 z2 2z
2z
dx dz iz
cos x 1 eix eix 2 z2 1 2z
而由上节例题可知
z2
|z|1
dz 2z


2i Re sf
(z0 )

2i
2
1
1 2

i 1 2
故可得结果为
2 i
2
I

i 12 12
5
例2
计算
I

2 0
1
2
dx c os x


2
••(0


1)
解 由公式得
dz / iz
i
I

|z|11 (z z 1) 2
1
1 z2 (z i)( z i)
具有单极点士i,其中+i在
上半平面,并且有
Re sf (i) limz i f z lim 1 1

4.2留用留数定理计算实变函数定积分

4.2留用留数定理计算实变函数定积分

解析延拓246224611...(||1)1()1...(||1)||1()b z z z z zf z z z z z z f z -+-+=<+=-+-+<<↓是幂级数,在单位圆内部收敛,其和是解析函数,但在单位圆外级数发散而没有意义。

在一较小的区域上为解析函数21()1b B F z z i =+±↓在除去z=的全平面上是解析函数。

在含区域的一个较大的区域上是解析函数22|z|<1b 1F(z)f(z)1z +...(|z|<1)1z两者在较小的区域()上等同称=是=-的+解析延拓b ()F(z)Bb ().f z f z ⇒解析延拓:已给某个区域上的解析函数找出另一函数,在含有区域b 的一个较大区域上为解析函数,且在区域上等同于即解析函数定义域的扩大bB4.2 利用留数定理计算实变函数定积分留数定理的一个重要应用是计算某些实变函数的定积分。

实变函数的定义域在实轴上,而运用留数定理时需要寻找一个回路,显然在计算此类积分时需要构造一些回路。

教学重点:介绍三类实变函数定积分的计算().baf x dx a b l →⎰1积分区间[,],可看作复平面上的实轴上的一段xyo l 2121212(1)(2)B ()B (z)()()()ll l l l l l l l l f x f f z dz f x dx f z dz→−−−−→=+⎰⎰⎰ 解析延拓构造回路方法:利用自变数变换将复平面上某个新的回路补一段曲线,使+=回路,包围区域,则上的闭上的↓↓↓利用留数待求积分较易算出的积分定理计算 一般为0或用待求 积分表示bal 1B20(co i ,s ,s n )R x x dx ππ⎰类型一:特点:被积函数为三角函数的有理式积分区间[0,2],:0~2,11()ix ix ixixz e x z e z z dz dz d e ie dx dx izπ===−−−−−→===∴=绕原点一周回到方法:作变数代换:令则从xyo2πl 11111||11111cos (),sin ()2222I=(,)2Re (),221()(,)22ix ix ix ixk z e e e e x z z x z z i iz z z z dzR i sf z i iz z z z z f z R iz iπ------=--+-==+==-→+-=+-=⎰ 则实变函数定积分复变函数回路积分则原积分2012||1||1I=(01)1cos ,/()2212ixz z dx x dz z e dx iz dz iz dzI z z i z z πεεεεε-==<<+==∴==++++⎰⎰⎰ 例1:解:令则1122122221,21121122||122(1)()()244111112()111Res '()2222212222Re ()21z z z z z z z z z z z z z z z z f z z z z dz I i sf z i z z i εεεεεεεεεεεεϕψεεεππεεε===++++=---±--±-==-±-=∴===++-∴===++-⎰ 令=在|z|=1内只有一个奇点,且为单极点()=2212221111|1(1)(1)111111|1z z εεεεεεεεεεεε-+---==---<=---+-==>>且||2022022222002I=(0)cos 2(01)1cos 11122()cos (1cos )1dxa a x dx x dx dx a x a a a x a aππππεεπεεεππεεεε>>+=<<+-∴===+-+-⎰⎰⎰⎰例:解:由可作为公式来用20220222023322222222233220022222I=(1)cos (01)1cos 2cos 1222(cos )2()()221(cos )1cos ()(1)dxa a x dx x dx a a x a dx aa a x a a dxadxa a x x a ππππππεεπεεππεεεππεεεε>+<<+=+--=-=-+--===++--⎰⎰⎰⎰⎰⎰例:例:()解:在基础上两端对求微分再令,()2201122||1||1||12||1||11I=(01)12cos 1,,cos ()22/()()122,()(1)()(1),ix ixixz z z z z dxx dz e e z e dx x z z iz dz iz idz idzI z z z z z z z z idz idzz z z z z πεεεεεεεεεεεεεεεε---=====<<-++====+--∴===+--+----+-==----∴=⎰⎰⎰⎰⎰⎰ 例:计算解:令则211212||11||1Res ()lim()()(1)12I=2Res ()()(1)1z z z z z i if z z z z idz i f z z z εεεεεεεεππεεε→====∴==----==---⎰ 是被积函数的两个单极点,但在内只有一个极点。

留数的应用—用留数定理计算实积分

留数的应用—用留数定理计算实积分
2 0

cos x dx a b sin x
2 2
2
a b sin x a b dx 2 2 0 b b 2 2 2 a b 2 a I 2 b b
2

2
0
1 dx a b sin x
I
2
0
1 dx a b sin x

1
| z| 1
2 dz 2 | z| 1 bz 2iaz b
例5 计算积分I 0

dx . 2 2 (1 x )
1 . 解 作辅助复函数f ( z ) 2 2 (1 z )
它在上半平面仅有一个二阶极点z i, 且
1 Re s( f , i) 2 ( i z )
Cr : {z reit ;0 t }.
包围在单位圆周 内的诸孤立奇点.
思想与方法: 把定积分化为一个复变函数沿 某条封闭路线的积分 .
两个重要工作: 1) 积分区域的转化 2) 被积函数的转化
例1 计算积分 I 0
ix
2
2
dx 3 cos x

2
解 : z 沿正向圆周 z 1 绕行一周, 当 x 从0 到 2 时, 因此,
z z
z
z3
2
1
2
1 lim 0 z z
计算 f z 在上半平面奇点处的留数
z 2 Re s 2 2 f z ,i z i z i z i
2

z i
2z 2z2 2 3 z i z i
2
i
1 i z 1 i cos e e 2 2z

5-3用留数定理计算实积分

5-3用留数定理计算实积分

C
e
R
e
ay
ds 20 e aR sin d
π
哈 尔 滨 工 程 大 学
aR sin d 4 e 4 e aR sin d 4 e
π 2 0
π 2 0
y
2 y π
y sin
π 2 0
aR (
2 ) π
d ,
2 (1 e aR ). aR
2π i Res[ R( z )e aiz , zk ].


哈 尔 滨 工 程 大 学
例5 计算积分

0

x sin mx dx , 2 2 2 (x a )
m 0, a 0.
0

x sin mx 1 x sin mx dx dx 2 2 2 2 2 2 ( x a ) (x a )
lim Q( z )e ipz dz 0
R C R
复 变 函 数 与 积 分 变 换
其中, p 0, C R是以z 0为圆心,半径等于 R的半圆,位于上半平面.
哈 尔 滨 工 程 大 学
2 对于充分大的 z , 且 m n 1时, 有 R( z ) z
C
R
R( z )e dz
2
dz 2 z 1 iz a 2z 2 2 ( z 1) 1 2iz 2 ( z 2 2az 1) dz z
( z 1) 1 4 z 2 z
2 2
1
哈 尔 滨 工 程 大 学

z 1
2iz
2
z (a
哈 尔 滨 工 程 大 学
例2 计算

5.4利用留数计算实积分

5.4利用留数计算实积分
封闭路线的积分 . 两个重要工作: 1) 被积函数的转化
2) 积分路径的转化
2

0 R(cos ,sin )d
令 z ei
dz iei d
sin 1 (ei ei ) z2 1 ,
2i
2iz
d dz ,
iz
cos 1 (ei ei ) z2 1,
2
2z
当 历经变程 [0,2π ] 时,
e ix
( x2 1)( x2 9) dx
2 i{Res[ f (z)eiz ,i] Res[ f (z)eiz ,3i]}
14
2
)( z 2
9)
lim
z3i
(z2
e iz 1)( z
3i)
2 i
e 1 16i
e 3 48i
24e 3
3e2 1 .
z 1 3z2
2 10iz
dz 3
2 3
z 1 ( z
i
1 )( z
3i)
dz
3
5
I
2 3
z 1
(z
i
1 )( z
3i)
dz
3

f (z)
(z
1 i )(z 3i)
,则
3
I
2 3
2πiRes
f
( z ),
i 3
2 2i( 3i )
3
82
6
R(x)dx
其中R(x)是有理函数,其分母至少比分子高两次,
a2 b2
. ab
11
R( x) eaixdx (a 0)
积分存在要求: R(x) 是 x 的有理函数,且分母的

6.2用留数定理计算实积分

6.2用留数定理计算实积分

因令此r rl im , 就r (1得d到zz2)2(10,dxx2)2
.
2
从而
I12 (1dx2x)2
.
4
注解:
注解1、我们计算所得的值这个广义积分的柯西
主值,但由于此积分收敛,所以积分值等于主
值。
注解2、应用同样得方法,我们可以计算一般形
注解2、f(z)及g(z)选择的原则是,f(z)在内的零点 个数好计算。
例1:
例1、 求方程 z85z52z 10 ,
在|z|<1内根的个数。
解:令 f(z ) 5 z 5 1 ,g (z ) z 8 2 z ,
由于当|z|=1时,我们有
|f(z)| | 5z5| 14 ,
2 z2 2iaz1
在|z|<1内极点处的留数,就可求出I。 上面的被积函数有两个极点:
z1iai a21 z2iai a21 显然 |z1|1,|z2|1
例1、
因此被积函数在|z|<1内只有一个极点z1,而它在
这点的留数是:
R(e f,zs1)2z1 22ia i
1. a21

|g(z)| |z8||2z|3 ,
已给方程在|z|<1内根的个数与-z5+1在|z|<1内根 的个数相同,即5个。
例2: 例2、 如果a>e,求证方程 ez azn
单位圆内有n个根。
证明:令 g(z) ez,f(z)an,z 由于当 |z||ei|1时,
|g ( z ) | | e z | e co e , s |f( z ) | |a n | a z e ,
第六章 留数理论及应用
第6.2节 用留数定计算实积分

第二节(应用留数定理计算实变函数定积分)

第二节(应用留数定理计算实变函数定积分)


同理有

0
1 ∞ F ( x) cos mxdx = ∫ F ( x ) e imx dx 2 −∞


0
1 ∞ G ( x) sin mxdx = ∫ G ( x)e imx dx 2i −∞
由此我们把类型三化为类型二来处理! 由此我们把类型三化为类型二来处理! 类型三化为类型二 在类型二中,要求z 在类型二中,要求z在上半平面或实轴上→ ∞ 时,zF(z)eimz 和 imz一致地 → 0 , 但我们希望条件可以放宽一些,由此 但我们希望条件可以放宽一些, zG(z)e 我们引入约当引理 约当引理, 我们引入约当引理,此时我们可以把条件放宽为 F(z)和G(z)一致地 F(z)和G(z)一致地 → 0
∫ f ( z ) dz = 2π i{ f (z )在所有有限远点的留数
l j= 1
l
∫ f (z)dz = 2πi∑Res f (b ).
j
n
包括无限远点和 有限远的奇点
之和 }
0 = 2πi{ f ( z )在所有各点的留数之和}
z → z0
z→z0
lim ( z − z 0 ) f ( z ) = 非零有限值
b a
dz ix 作变换 z = e , Q dz = e idx, ∴ dx = iz 1 ix −ix z − z −1 z 2 − 1 sin x = e −e = = 2i 2i 2iz 1 ix − ix z2 + 1 z + z −1 cos x = ( e + e ) = = 2 2z 2
10
然后应用公式可求得结果
∫ (
−∞

例5
解 这里积分区间为 [0,+∞ ) 不符合条件,不能直接应用公式! 不符合条件,不能直接应用公式!

复变函数第11讲用留数计算实积分

复变函数第11讲用留数计算实积分

z −1
+
p2

dz iz
2
1+ z4
∫ ∫ =
| z|=1
2iz2
(1 −
pz )( z

p)
d
z
=
f
| z|=1
(z)
d
z
4
在被积函数的三个极点z=0,p,1/p中只有前两 个在圆周|z|=1内, 其中z=0为二级极点, z=p为 一级极点.
Res[
f
(z),0] =
lim
z→0
d dz
⎡ ⎢
=
λ
,
r→∞
∫ 则 lim r →∞
Cr R( z)dz = i(θ 2 − θ1 )λ
14
+∞
∫ 3. 形如 R( x)eaixd x(a > 0) 的积分 −∞
当R(x)是x的有理函数而分母的次数至少比 分子的次数高一次, 且R(x)在实数轴上没有 奇点时, 积分是存在的象2中处理的一样, 由 于m−n≥1, 故对充分大的|z|有
Cr
Cr
r2
2π = r ⎯r⎯⎯→∞→ 0
+∞
因此 ∫−∞ R( x)d x = 2 π i∑ Res[R(z), zk ].
如果R( x)为偶函数,
+∞
∫0R( x)d x = π i∑ Res[R(z), zk ]
10
例 计算
的值.
解 这里 m=4,n=2,m−n=2,并且实轴上 R(z)没有 孤立奇点, 因此积分是存在的. 函数
有理函数, 而分母的次数至少比分子的次数高
+ 二次, 并且 R(x)在实轴上没有孤立奇点时, 积

大学物理-利用留数定理计算实积分

大学物理-利用留数定理计算实积分
上没有奇点; 2. 当 z 在上半平面及实轴上趋于 时,f (z) 一致地趋于零。
闭合回路 L 的构成:原积分路线上增加半圆 CR (R→ )

其中 bk 为 F (z) 在上半平面的孤立奇点。
在以上推导中,还需

(实际上是求在引入曲线 CR 上的积分) 约当引理:
若 z 在上半平面及实轴上趋于 时,f (z) 一致地趋于 零,则
其中 m > 0,CR 是以 z = 0 为圆心、R 为半径的位于上半 平面的半圆。
证明:1. 令
,因为在
所以
设 则

这说明 – tan 单调递减,且由于 G(0) = 0,故
从而
所以 g ( ) 在 (0, / 2] 是递减函数,则
因此 即
函数
与函数
的曲线图
2. 令 z = Re i ,则 dz = Re i i (半圆上),于是 而 |d|=d , :实数,且 d > 0 (逆时针) ,对于积分
式中已经变换了求和指标,并利用了
ln 2 (1)k 1 1 1 1 1
k 1
k
234
三、
型积分 (常见于傅里叶变换中)
因为
故求上式中等号右边的两个积分归结于求左边的积分。
注:
理解为它的积分主值。
对 f (z) 有以下假设: 1. f (z) 在上半平面中除了有限个孤立奇点外解析,在实轴
1 , 2 0 c1
x c 1,2 0 c1
它一般不为零。但由于右边的被积函数是奇函数,如果
1 = 2,则在 1= 2 = 趋于零之前,积分就已经是零。
因此,当 c 为 f (x) 的一阶极点时,有
c
lim f (x)dx 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:
f ( p) ( z) p!c p ( p 1) p 2c p1 ( z a)
n(n 1) (n p 1)cn ( z a)
n p

(p=1,2,…) (3)
f ( p ) (a ) cp p!
(4.6) (4.7)
推论4.11 若幂级数(4.3)在某点z2(≠a)发散,则它在 以a为圆心并且通过点z2的圆周外部发散.
定理4.12 如果幂级数(4.3)的系数cn合于
cn 1 lim l , 或 lim n | cn | l , 或 n c n n
lim n cn l ,
n
则幂级数
¥
1 于是 f ( z ) n 0 2 πi
N 1
f ( )d n ( z a ) n1 ( a ) K
¥ 1 轾 f ( ) n 犏 + ( z a ) d . ò å n+1 2πi K 犏 n = N ( - a ) 臌
由高阶导数公式, 上式又可写成
z a

n
(0 R, n 0,1, 2, ).
n c ( z a ) 定理4.16 如果幂级数 n n 0

的收敛半径R>0, 且
f ( z ) c n ( z a ) n , ( z K :| z a | R )
n0
则f(z)在收敛圆周C:|z-a|=R上至少有一奇点,
证明:设 f ( z ) 在 z0 已被展开成幂级数:
f ( z ) a0 a1 ( z z0 ) a2 ( z z0 )2 a n ( z z 0 ) ,
n
那末 即
f ( z0 ) a0 , f ( z0 ) a1 ,
1 ( n) a n f ( z 0 ) , n!
其中系数
f ( z ) cn ( z a)
n 0

n
(4.8) (4.9)
1 f ( ) f (n) (a) cn d n 1 2 i p ( a ) n!
( :| z | ,0 R; n 0,1, 2, )
且展式是唯一的.
而它的收敛半径不会小于R+ρ,这与假设矛盾.
注 (1)纵使幂级数在其收敛圆周上处处收敛, 其和函数在收敛圆周上仍然至少有一个奇点.
z z2 f ( z ) 1 2 3
z z2 z3 f ( z) 2 2 2 1 2 3
z n 1 n
zn 2 n
(2)这个定理,一方面建立了幂级数的收敛半径与此 幂级数所代表的函数的性质之间的密切关系;同 时还表明幂级数的理论只有在复数域内才弄的 完全明白.
(4.8)称为f(z)在点a的泰勒展式, (4.9)称为其泰勒系数, (4.8)中的级数称为泰勒级数。
其中:
1 f ( ) 1 (n) cn d f (a), n 0,1,2, n 1 2 i C ( a) n!
C为该邻域内任意一条包围a的正向简单闭曲线。
证明: 设函数 f ( z ) 在区域 D 内解析,
z1
a
K :|z-a|<R+ρ内是解析 / 的.于是F(z)在K 可开为 泰勒级数 . 但因在 |z-a|<R 中 F(z) 恒 等 于 f(z), 故 在 z=a处它们以及各阶导数 有相同的值。因此级数
n 0
/
z2
z3
z2
z5 z2
z1 z10
a
z8
z6
z9
n c ( z a ) n 也是F(z)的泰勒级数
N
lim q N 0
lim RN ( z ) 0 在 K 内成立, N
¥
从而在K内 f ( z ) = å
n =0
f ( n ) (a ) ( z - a )n n!
f ( z )在收敛圆内的泰勒级数.
函数 f ( z ) 在收敛圆内的泰勒展开式
说明:
1. 圆周K的半径可以任意增大,只要K在D内成立。
1 2 4 6 1 x x x 2 1 x
二、将函数展开成泰勒级数
常用方法: 直接法和间接法. 1. 直接法: 由泰勒展开定理计算系数
1 ( n) c n f ( z 0 ) , n 0 , 1 , 2 , n!
将函数 f ( z ) 在 z0 展开成幂级数.
例如,求 e z 在 z 0 的泰勒展开式 .
f (z) = å
N-1 n =0
f ( n ) (a ) ( z - a )n + RN ( z ) n!
¥ 轾 1 f ( ) n 其中 RN ( z ) = 犏 ( z a ) d ò å n+1 2πi K 犏 n= N ( - a ) 臌
若 lim RN ( z ) 0,
N
为 D 内以 a 为中心的任一圆周,
a r
它与它的内部全包含于 D, 记为 K ,
如图: .z
K 内任意点
区域D
a. r
D
.
K
圆周 a r
由柯西积分公式 , 有
1 f ( ) f (z) d , 其中 K 取正方向. 2π i K z
因为积分变量 取在圆周 K 上, 点 z 在 K 的内部,
在 K 上 f ( ) M .
即存在一个正常数M,
1 RN ( z ) ? ò 2π K
¥
f ( ) n ( z a ) ds å n+1 n = N ( - a )
n
轾 ¥ f ( ) z - a 1 犏 £ ò å 2π K 犏 n= N - a - a 犏 臌
ds
Mq N 1 M n . q 2 r 1 q 2 n N r
例如,
利用间接展开法求sin z 在 z 0 的泰勒展开式 .
1 iz iz sin z (e e ) 2i
1 ( iz )n ( iz )n 2i n0 n! n0 n!
2 n 1 z ( 1)n ( 2n 1)! n 0
因为(e z )( n) e z ,
(e z )( n )
z 0
1 , ( n 0 , 1 , 2 ,)2 n n Nhomakorabea故有
z z z e 1 z 2! n! n 0 n!
z
因为 e z 在复平面内处处解析 ,
所以级数的收敛半径 R .
. 仿照上例 , 可得 sinz 与 cosz 在 z 0 的泰勒展开式
7) (1 z ) 1 z

2
3
n 1
( 1)
2! 3! ( 1)( n 1) n z , n!
z
可知在K内
f (z) = å
¥
n =0
f ( n ) ( z0 ) ( z - a )n n!
即 f ( z ) 在 K 内可以用幂级数来表示,

z- a z- a = =q -a r
f ( z ) 在 D ( K D) 内解析, 则在K上连续, 因此 f ( ) 在 K 上也连续, f ( ) 在 K 上有界,
如果
a
到 D 的边界上各点的最短距离为 d ,
那么 f ( z ) 在
a
的泰勒展开式在 z - a < d 内成立.
但 f ( z ) 在 a 的泰勒级数 的收敛半径 R 至少等于 d , 因为凡满足 z - a < d 的 z 必能使
f (z) = å
¥
n =0
f ( n ) (a ) ( z - a )n 成立, 即 R d . n!
n c ( z a ) 的收敛半径为: n n 0

R=
1/l 0 +∞
(l≠0,l≠+∞); (l=+∞); (l=0).
定理4.13 (1) 幂级数 f ( z ) cn ( z a) n (4.5)
n 0

的和函数f(z)在其收敛圆K:|z-a|<R(0<R≤+∞) 内解析. (2)在K内,幂级数(4.5)可以逐项求导至任意阶,
za 所以 1. a

1 1 1 = - z - a 1- z - a -a
1 é z- a z- a 2 ê = 1+ ( ) +( ) + - aê -a ë -a
z- a n +( ) + -a
ù ú ú û
1 n =å ( z a ) . n+1 n =0 ( - a )
2.复变函数展为泰勒级数的实用范围要比实变函数
广阔的多;
因为f(z)解析,可以保证无限次各阶导数的连续性;
3. 如果 f(z) 在D内有奇点,则d 等于 a 到最近一个 奇点 z0之间的距离,即 d=|z0-a| ;
4. 当a=0时,级数称为麦克劳林级数; 5.任何解析函数在一点的泰勒级数是唯一的.
因此, 任何解析函数展开成幂级数的结果 就是泰勒级数, 因而是唯一的.
定理4.15 f(z)在区域D内解析的充要条件为:f(z)在D内
任一点a的邻域内可展成z-a的幂级数,即泰勒级数.
由柯西不等式知若f(z)在|z-a|<R内解析,
则其泰勒系数cn满足柯西不等式
| cn |
max f ( z )
即不可能有这样的函数F(z)存在, 它在|z-a|<R内与f(z)恒等,而在C上处处解析.
证 假若这样的F(z)存在,这时C上的每一点就都 是某圆O的中心,而在圆O内F(z)是解析的.
相关文档
最新文档