云大附中2020年初中学业水平考试数学第一次模拟考试及答案

合集下载

2020-2021昆明市云大附中八年级数学上期中第一次模拟试卷(带答案)

2020-2021昆明市云大附中八年级数学上期中第一次模拟试卷(带答案)

2020-2021昆明市云大附中八年级数学上期中第一次模拟试卷(带答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°3.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个 4.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124° 5.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 6.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠ 7.如图,ABC 是等腰直角三角形,BC 是斜边,将ABP 绕点A 逆时针旋转后,能与ACP '重合,如果3AP =,那么PP '的长等于( )A .32B .23C .42D .33 8.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C9.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 10.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠ 11.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=- B .()ab ac d a b c d ++=++C .()2293x x -=- D .22()a b ab ab a b -=- 12.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.在代数式11,,52x x x +中,分式有_________________个. 16.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.17.当x =_____时,分式22x x -+的值为零. 18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.19.若11x y+=2,则22353x xy y x xy y -+++=_____ 20.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是_____.三、解答题21.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =-. 22.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 23.已知 a m =2,a n =4,a k =32(a≠0).(1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.24.先化简,再求值:21a a -+÷(a ﹣1﹣31a +),其中a =3﹣2. 25.尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a ,h .求作:△ABC ,使AB=AC ,且∠BAC=∠α,高AD=h .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】先根据BC的垂直平分线交BD于点E证明△BFE≌△CFE(SAS),根据全等三角形的性∠=∠=∠,再根据三角形内角和定理即可得到质和角平分线的性质得到ABE EBF ECF答案.【详解】解:如图:∵BC的垂直平分线交BD于点E,∴BF=CF,∠BFE=∠CFE=90°,在△BFE和△CFE中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.3.C解析:C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.解:要使分式13a +有意义, 则a +3≠0,解得:a ≠-3.故选:B .【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键. 7.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:'=PP A .8.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A 中∠A+∠B=∠C ,即2∠C=180°,∠C=90°,为直角三角形,同理,B ,C 均为直角三角形, D 选项中∠A=2∠B=3∠C ,即3∠C +32∠C +∠C =180°,∠C =036011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.9.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.10.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字 解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】 解:15x +是整式,1x 是分式,2x 是整式,即分式个数为1, 故答案为:1【点睛】 本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母.16.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.17.2【解析】由题意得:解得:x=2故答案为2 解析:2【解析】由题意得:20{20xx-=+≠,解得:x=2. 故答案为218.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3 解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.19.【解析】【分析】由=2得x+y=2xy整体代入所求的式子化简即可【详解】=2得x+y=2xy则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想解析:3 11【解析】【分析】由11x y+=2,得x+y=2xy,整体代入所求的式子化简即可.【详解】11x y+=2,得x+y=2xy则22353x xy yx xy y-+++=22325xy xyxy xy⋅-⋅+=331111xyxy=,故答案为311. 【点睛】 本题考查了分式的基本性质,解题关键是用到了整体代入的思想.20.1【解析】【分析】先把每个命题的逆命题写出来再判断逆命题是否成立数出逆命题成立的个数即可得到答案【详解】解:①对顶角相等的逆命题为:相等的角是对顶角不成立(例如:等边三角形中的三个角都相等但不是对顶 解析:1【解析】【分析】先把每个命题的逆命题写出来,再判断逆命题是否成立,数出逆命题成立的个数即可得到答案.【详解】解:①对顶角相等的逆命题为:相等的角是对顶角,不成立(例如:等边三角形中的三个角都相等,但不是对顶角);②全等三角形的对应边相等的逆命题为:对应边相等的三角形是全等三角形,成立(SSS ); ③如果两个实数是正数,它们的积是正数的逆命题为:乘积是正数的两个实数是都是正数,不成立,因为两个负数的乘积也是正数;因此, 只有②正确,故答案是1.【点睛】本题主要考查了命题的逆命题的定义(把一个命题的题设和结论互换可得到其逆命题),能正确写出逆命题是解题的关键.三、解答题21.11x +,2. 【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷- =2(1)(1)(1)(1)x x x x x x +-⋅-+ =11x +,当1x =时,原式=2. 考点:分式的化简求值.22.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.23.(1)4(2)0【解析】【分析】(1)根据已知条件可得a 3m =23,a 2n =24,a k =25,再逆用同底数幂的乘除法法则计算即可; (2)由已知条件计算出a k-3m-n 的值,继而求得k-3m-n 的值.【详解】(1)∵a 3m =23,a 2n =42=24,a k =32=25,∴a 3m+2n-k=a 3m •a 2n ÷a k=23•24÷25=23+4-5=22=4;(2)∵a k-3m-n =25÷23÷22=20=1=a 0, ∴k-3m-n=0,即k-3m-n 的值是0.【点睛】本题考查同底数幂的乘除法,幂的乘方的性质,熟练掌握性质并灵活运用是解题的关键.24.原式=12a +=33. 【解析】【分析】 先计算括号内的运算,再计算分式的乘除,将a 的值代入即可.【详解】解:原式=()()113211a a a a a +---÷++ =22a 411a a a --÷++ =()()2a+11a+2a-2a a -⨯+ =1a+2, 当a =3﹣2时,原式=3=33-2+2 【点睛】 本题考查了分式的混合运算,掌握分式的运算法则是解题的关键.25.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.。

2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)

2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC= AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
解析: ,且k≠0.
【解析】
【分析】
根据直线与圆相交确定k的取值,利用面积法求出相切时k的取值,再利用相切与相交之间的关系得到k的取值范围.
【详解】
∵ 交x轴于点A,交y轴于点B,
当 ,故B的坐标为(0,6k);
当 ,故A的坐标为(-6,0);
当直线y=kx+6k与⊙O相交时,设圆心到直线的距离为h,
2.C
解析:C
【解析】
试题解析:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
3.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.

云南省2020年中考数学模拟试卷(一)(含解析)

云南省2020年中考数学模拟试卷(一)(含解析)

2020年云南省中考数学模拟试卷(一)一.填空题(满分18分,每小题3分)1.|x﹣3|=3﹣x,则x的取值范围是.2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.4.在函数y=中,自变量x的取值范围是.5.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.6.已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2020个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°11.下列各命题是真命题的是()A.平行四边形对角线互相垂直B.矩形的四条边相等C.菱形的对角线相等D.正方形既是矩形,又是菱形12.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3 B.中位数为3 C.众数为3 D.中位数为x 13.已知|a+b﹣1|+=0,则(b﹣a)2019的值为()A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三、解答题(本大题共9小题,共70分)15.先化简,再求值:(﹣)÷,其中a满足a2+2a﹣24=0.16.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.17.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?18.列方程解应用题据了解,2019年世园会园区整体结构布局是“一心两轴三带多片区”.“一心”为核心景观区,包括中国馆、国际馆、演艺中心、中国展园和部分世界展园;“两轴”以冠帽山、海坨山为对景,形成正南北向的山水园艺轴和近东西向的世界园艺轴;“三带”包括妫河生态休闲带、园艺生活体验带和园艺产业发展带.为保障2019年世园会的顺利举办,各场馆建设与室内设计都在稳步推进.周末,小明约了几位好友到距离家10千米的场馆路边查看工程进度情况,一部分人骑自行车先走,过了小时,其余的人乘公交车出发,结果他们同时到达,已知汽车的速度是骑自行车人速度的2倍,求骑车学生每小时走多少千米?19.如图,在平面直角坐标系中,直线l经过原点,且与反比例函数图象交于点A(1,2),点B(m,﹣2).分别过A、B作AC⊥y轴于C,BD⊥y轴于D,再以AC、BD为半径作⊙A和⊙B.(1)求反比例函数的解析式及m的值;(2)求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,∠CAB=30°(1)求∠ADC的度数;(2)如果OE⊥AC,垂足为E,求OE的长.21.透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.22.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)求证:4DE2=CD•AC.23.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.2020年云南省中考数学模拟试卷(一)参考答案与试题解析一.填空题1.解:3﹣x≥0,∴x≤3;故答案为x≤3;2.解:多边形的边数是:360÷72=5.故答案为:5.3.解:12 000 000=1.2×107,故答案是:1.2×107,4.解:由题意,得2x+1≠0,解得x≠﹣.故答案为:x≠﹣.5.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.6.解:设第n个三角形的周长为∁n,∵C1=1,C2=C1=,C3=C2=,C4=C3=,…,∴∁n=()n﹣1,∴C2020=()2019.故答案为:()2019.二.选择题(共8小题,满分32分,每小题4分)7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.故选:B.8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.9.解:A、a6÷a3=a3,故本选项错误;B、=2,故本选项错误;C、1÷()﹣1=1÷=,故本选项正确;D、(a3b)2=a6b2,故本选项错误.故选:C.10.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.11.解:A、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;B、矩形的四边不一定相等,故错误,是假命题;C、菱形的对角线垂直但不一定相等,故错误,是假命题;D、正方形既是矩形,又是菱形,正确,是真命题;故选:D.12.解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从小到大的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.13.解:∵|a+b﹣1|+=0,∴,解得:,则原式=﹣1,故选:B.14.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.三、解答题(本大题共9小题,共70分)15.先化简,再求值:(﹣)÷,其中a满足a2+2a﹣24=0.【分析】先根据分式混合运算的法则把原式进行化简,再根据a是方程a2+2a﹣24=0的根求出a的值,把a的值代入进行计算即可.【解答】解:原式=×﹣×,=﹣,=,∵a满足a2+2a﹣24=0,∴a=4(舍)或a=﹣6,当a=﹣6时代入求值,原式=.16.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.【分析】求出BF=EC,证△ABF≌△DCE,推出∠AFB=∠DEC,即可得出答案.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=EC,在△ABF和△DCE中,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC,∴OE=OF.17.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).18.列方程解应用题据了解,2019年世园会园区整体结构布局是“一心两轴三带多片区”.“一心”为核心景观区,包括中国馆、国际馆、演艺中心、中国展园和部分世界展园;“两轴”以冠帽山、海坨山为对景,形成正南北向的山水园艺轴和近东西向的世界园艺轴;“三带”包括妫河生态休闲带、园艺生活体验带和园艺产业发展带.为保障2019年世园会的顺利举办,各场馆建设与室内设计都在稳步推进.周末,小明约了几位好友到距离家10千米的场馆路边查看工程进度情况,一部分人骑自行车先走,过了小时,其余的人乘公交车出发,结果他们同时到达,已知汽车的速度是骑自行车人速度的2倍,求骑车学生每小时走多少千米?【分析】设骑车学生每小时走x千米,则汽车的速度是每小时2x千米,根据时间=路程÷速度结合骑车比乘车多用小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设骑车学生每小时走x千米,则汽车的速度是每小时2x千米,根据题意得:﹣=,解得:x=15,经检验,x=15是原方程的解,且符合题意.答:骑车学生每小时走15千米.19.如图,在平面直角坐标系中,直线l经过原点,且与反比例函数图象交于点A(1,2),点B(m,﹣2).分别过A、B作AC⊥y轴于C,BD⊥y轴于D,再以AC、BD为半径作⊙A和⊙B.(1)求反比例函数的解析式及m的值;(2)求图中阴影部分的面积.【分析】(1)由A点坐标可确定y=,由此解析式可求出m值.(2)根据中心对称性可得阴影部分面积为一个圆的面积.【解答】解:(1)∵点A(1,2)在图象上,∴k=1×2=2∴(3分)∵﹣2m=2∴m=﹣1(2分)(2)∵AC=BD=1∴根据中心对称性S阴影=πR2=π(3分)20.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,∠CAB=30°(1)求∠ADC的度数;(2)如果OE⊥AC,垂足为E,求OE的长.【分析】(1)由AB是⊙O的直径,根据圆周角定理的推论得到∠ACB=90°,在Rt△ABC 中,理由∠B的余弦可求出∠B=60°,然后根据圆周角定理得到∠ADC=60°;(2)由于OE⊥AC,根据垂径定理得到AE=CE,则OE为△ABC的中位线,所以OE=BC=.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,BC=3,∴cos B ==,∴∠B=60°,∴∠ADC=60°;(2)∵OE⊥AC,∴AE=CE,∴OE为△ABC的中位线,∵AB=6,∠CAB=30°,∴BC=3∴OE =BC =.21.透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.【分析】(1)利用概率公式直接求出即可;(2)首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【解答】解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是:;(2)游戏规则对双方公平.列表如下:小明1 2 3小东1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)由表可知,P(小明获胜)=,P(小东获胜)=,∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.22.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)求证:4DE2=CD•AC.【分析】(1)如图,作辅助线;根据题意结合图形,证明∠ODE=90°,即可解决问题;(2)根据圆周角定理得到∠ADB=∠BDC=90°,根据直角三角形的性质得到BC=2DE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD、BD,∵AB为⊙O的直径,∴∠ADB=∠CDB=90°;又∵点E为BC的中点,∴BE=DE,∴∠BDE=∠EBD;∵OA=OD,∴∠OAD=∠ODA;又∵∠OAD+∠OBD=90°,∠EBD+∠OBD=90°,∴∠OAD=∠EBD,即∠ODA=∠BDE;∴∠ODE=∠BDE+∠ODB=∠ODA+∠ODB=90°,又∵点D在⊙O上,∴DE是圆⊙O的切线;(2)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE,∵∠ABC=90°,∴∠ABC=∠BDC,∵∠C=∠C,∴△ABC∽△BDC,∴,∴BC2=CD•AC,∴4DE2=CD•AC.23.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【分析】(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),可得l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,利用二次函数的性质即可解决问题;(3)由S△PAD=×PM×(x D﹣x A)=PM,推出PM的值最大时,△PAD的面积最大;(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).由△PAD是直角三角形,推出PK=AD,可得(t﹣)2+(﹣t2+2t+3﹣)2=×18,解方程即可解决问题;【解答】解:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,∴当t=时,l有最大值,l最大=;(3)∵S△PAD=×PM×(x D﹣x A)=PM,∴PM的值最大时,△PAD的面积中点,最大值=×=.∴t=时,△PAD的面积的最大值为.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD是直角三角形,∴PK=AD,∴(t﹣)2+(﹣t2+2t+3﹣)2=×18,整理得t(t﹣3)(t2﹣t﹣1)=0,解得t=0或3或,∵点P在第一象限,∴t=或3.。

2020-2021昆明市云大附中八年级数学下期末第一次模拟试卷(带答案)

2020-2021昆明市云大附中八年级数学下期末第一次模拟试卷(带答案)

径画弧;再以点 B 为圆心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC
一定是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
4.要使函数 y=(m﹣2)xn﹣1+n 是一次函数,应满足( )
A.m≠2,n≠2
B.m=2,n=2
C.m≠2,n=2
D.m=2,n=0
5.如图,在平行四边形 ABCD 中, ABC 和 BCD 的平分线交于 AD 边上一点 E ,且
∴AB= 1 BC=2.5. 2
故选 D. 【点睛】 此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证 得△ABE,△CDE 是等腰三角形,△BEC 是直角三角形是关键.
6.C
解析:C 【解析】 【分析】 根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得. 【详解】
7.D
解析:D 【解析】 【分析】
如图,根据三角形的中位线定理得到 EH∥FG,EH=FG,EF= 1 BD,则可得四边形 EFGH 2
是平行四边形,若平行四边形 EFGH 是菱形,则可有 EF=EH,由此即可得到答案.
【详解】
如图,∵E,F,G,H 分别是边 AD,DC,CB,AB 的中点,
∴EH= 1 AC,EH∥AC,FG= 1 AC,FG∥AC,EF= 1 BD,
BE 4, CE 3 ,则 AB 的长是( )
A.3
B.4
6.下列计算正确的是( )
C.5
D.2.5
A. (4)2 =2
B. 5 2= 3 C. 5 2 = 10 D. 6 2=3
7.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )

2020-2021昆明市云大附中九年级数学下期中第一次模拟试卷(带答案)

2020-2021昆明市云大附中九年级数学下期中第一次模拟试卷(带答案)

∵S△ODE=S 矩形 OCBA-S△AOD-S△OCE-S△BDE=ab- 1 • ab - 1 • ab - 1 • 3a •(b- k )=9,
24 2424
a
∴k= 24 , 5
故选:C 【点睛】
考核知识点:反比例函数系数 k 的几何意义. 结合图形,分析图形面积关系是关键.
11.A
解析:A 【解析】
D.变成等积式是:5x+5y=3x,即 2x+5y=0,故错误. 故选 C. 【点睛】
本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.
10.C
解析:C 【解析】
【分析】
设 B 点的坐标为(a,b),由 BD=3AD,得 D( a ,b),根据反比例函数定义求出关键 4
长线于点 E,若 AB=4,BM=2,则△DEF 的面积为( )
A.9
B.8
C.15
9.已知 2x=3y,则下列比例式成立的是( )
D.14.5
A.
B.
C.
D.
10.如图,在以 O 为原点的直角坐标系中,矩形 OABC 的两边 OC、OA 分别在 x 轴、y 轴
的正半轴上,反比例函数 y k (x>0)与 AB 相交于点 D,与 BC 相交于点 E,若 x
19.如图,等腰直角三角形 ABC 中, AB=4 cm.点 是 BC 边上的动点,以 AD 为直角边 作等腰直角三角形 ADE.在点 D 从点 B 移动至点 C 的过程中,点 E 移动的路线长为 ________cm.
20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果 保留 π)
点坐标,根据 S△ODE=S 矩形 OCBA-S△AOD-S△OCE-S△BDE= 9 求出 k. 【详解】

云南省2020年中考数学学业水平考试模拟试卷(一)(含解析)

云南省2020年中考数学学业水平考试模拟试卷(一)(含解析)

2020年云南省初中数学学业水平考试中考数学模拟试卷(一) 一、填空题(本大题共6个小题,每小题3分,共18分)1.(3分)函数的自变量x的取值范围是.2.(3分)分解因式:3a3﹣12a=.3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.(4分)下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a9.(4分)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.10.(4分)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限11.(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米12.(4分)为落实“两免一补”政策,某区2018年投入教育经费2500万元,2019年和2020年投入教育经费共 3 600万元.设这两年投入的教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x%)2=3600B.2500(1+x)+2500(1+x)2=3600C.2500(1+x)2=3600D.2500x2=360013.(4分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是()A.25°B.60°C.65°D.75°14.(4分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2﹣4ac<0;④4a+2b+c>0.其中正确的是()A.①③B.②C.②④D.③④三、解答题(本大题共9个小题,共70分)15.(8分)先化简,再求值:÷(1﹣),其中a=﹣2.16.(7分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是.(2)添加条件后,请说明△ABC≌△ADE的理由.17.(8分)为迎接2020年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是度;(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?18.(8分)有红、黄两个盒子,红盒子中装有编号分别为1、2、3、5的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,试改动红盒子中的一个小球的编号,使游戏规则公平.19.(8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2017年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2020年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?20.(9分)在如图所示的直角坐标系中,解答下列问题:(1)分别写出A、B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(3)求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.21.(8分)如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB 的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD 的长度及矿业大厦AB的高度.(结果保留根号)22.(8分)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A、B两点,与y轴交于点C,其中A(﹣3,0)、C(0.﹣2).求这条抛物线的函数表达式.23.(6分)如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n∁n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、∁n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、∁n D n依次等距离平行排放(最后一个矩形状框的边∁n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n∁n (1)求d的值;(2)问:∁n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?参考答案一、填空题(本大题共6个小题,每小题3分,共18分)1.(3分)函数的自变量x的取值范围是x≤.【分析】根据二次根式的性质,被开方数大于或等于0,可知:1﹣2x≥0,解得x的范围.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.2.(3分)分解因式:3a3﹣12a=3a(a+2)(a﹣2).【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=±6 .【分析】先根据关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根可得出△=0,据此求出k的值即可.【解答】解:∵关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,∴△=k2﹣4×9=k2﹣36=0,解得k=±6.故答案为:±6.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 3 .【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:点A为反比例函数y=的图象在第二象限上的任一点,则矩形ABOC的面积S=|k|=3.故答案为:3.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE= 5 .【分析】由折叠的性质得DE=BE,在Rt△ABE中,利用勾股定理计算出AE的长,进而得到DE的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,由折叠的性质得:DE=BE,设AE=x,则DE=BE=8﹣x,在Rt△ABE中,由勾股定理得:AE2+AB2=BE2,则x2+42=(8﹣x)2,解得:x=3,则DE=8﹣3=5,故答案为:5.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.8.(4分)下列运算中,正确的是()A.a2+a3=a5B.a3•a4=a12C.a6÷a3=a2D.4a﹣a=3a【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、应为a3•a4=a3+4=a7,故本选项错误;C、应为a6÷a3=a6﹣3=a3,故本选项错误;D、4a﹣a=(4﹣1)a=3a,正确.故选:D.9.(4分)如图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.故选:D.10.(4分)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.11.(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:数据26出现了3次最多,这组数据的众数是26,共10个数据,从小到大排列此数据处在第5、6位的数都为26,故中位数是26.故选:D.12.(4分)为落实“两免一补”政策,某区2018年投入教育经费2500万元,2019年和2020年投入教育经费共 3 600万元.设这两年投入的教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x%)2=3600B.2500(1+x)+2500(1+x)2=3600C.2500(1+x)2=3600D.2500x2=3600【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年投入教育经费的年平均增长百分率为x,然后用x表示2019年的投入,再根据“2019年和2020年投入教育经费共 3 600万元”可得出方程.【解答】解:依题意得2019年的投入为2500(1+x)、2020年投入是2500(1+x)2,则2500(1+x)+2500(1+x)2=3600.故选:B.13.(4分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是()A.25°B.60°C.65°D.75°【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD =90°,又由圆周角定理,可得∠D=∠ABC=25°,继而求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.14.(4分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>0;②2a+b=0;③b2﹣4ac<0;④4a+2b+c>0.其中正确的是()A.①③B.②C.②④D.③④【分析】①根据抛物线的开口方向、抛物线对称轴位置、抛物线与y轴交点位置判定a、b、c的符号;②根据对称轴的x=1来判断对错;③由抛物线与x轴交点的个数判断对错;④根据对称轴x=1来判断对错.【解答】解:①抛物线开口方向向上,则a>0,b=﹣2a<0.抛物线与y轴交于正半轴,则c>0,所以abc<0,故①错误;②如图所示,对称轴x=﹣=1,则b=﹣2a,则2a+b=0,故②正确;③如图所示,抛物线与x轴有2个交点,则b2﹣4ac>0,故③错误;④对称轴x=1,当x=0与x=2时的点是关于直线x=1的对应点,所以x=2与x=0时的函数值相等,所以4a+2b+c>0,故④正确;综上所述,正确的结论为②④.故选:C.三、解答题(本大题共9个小题,共70分)15.(8分)先化简,再求值:÷(1﹣),其中a=﹣2.【分析】先通分,然后进行四则运算,最后将a=﹣2代入计算即可.【解答】解:原式=×=,当a=﹣2时,原式===.【点评】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.16.(7分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是∠C=∠E.(2)添加条件后,请说明△ABC≌△ADE的理由.【分析】(1)可以根据全等三角形的不同的判定方法选择添加不同的条件;(2)根据全等三角形的判定方法证明即可.【解答】解:(1)∵AB=AD,∠A=∠A,∴若利用“AAS”,可以添加∠C=∠E,若利用“ASA”,可以添加∠ABC=∠ADE,或∠EBC=∠CDE,若利用“SAS”,可以添加AC=AE,或BE=DC,综上所述,可以添加的条件为∠C=∠E(或∠ABC=∠ADE或∠EBC=∠CDE或AC=AE或BE=DC);故答案为:∠C=∠E;(2)选∠C=∠E为条件.理由如下:在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.17.(8分)为迎接2020年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是72 度;(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?【分析】(1)结合条形统计图和扇形统计图,先用成绩类别为“差”的人数÷16%,得被抽取的学生总数,再用被抽取的学生总数×成绩类别为“中”的人数所占的百分比求得成绩类别为“中”的人数,从而补全条形统计图.(2)成绩类别为“优”的扇形所占的百分比=成绩类别为“优”的人数÷被抽取的学生总数,它所对应的圆心角的度数=360°×成绩类别为“优”的扇形所占的百分比.(3)该校九年级学生的数学成绩达到优秀的人数=1000×成绩类别为“优”的学生所占的百分比.【解答】解:(1)如上图.(2)成绩类别为“优”的扇形所占的百分比=10÷50=20%,所以表示成绩类别为“优”的扇形所对应的圆心角是:360°×20%=72°;(3)1000×20%=200(人),答:该校九年级共有200名学生的数学成绩可以达到优秀.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(8分)有红、黄两个盒子,红盒子中装有编号分别为1、2、3、5的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树状图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,试改动红盒子中的一个小球的编号,使游戏规则公平.【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【解答】解:(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有5种情况,∴P(甲胜)=;(2)不公平.∵P(乙胜)=,∴P(甲胜)≠P(乙胜),∴这个游戏规则对甲、乙双方不公平;将红盒子中装有编号分别为1、2、3、5的四个红球,改为1、2、3、4的四个红球即可.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.(8分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2017年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2020年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4,解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×3+2(54+a)≥360,解得:a≥45.答:则至少每年平均增加45万平方米.【点评】本题考查了分式方程的应用,一元一次不等式的应用.解分式方程时,一定要记得验根.20.(9分)在如图所示的直角坐标系中,解答下列问题:(1)分别写出A、B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(3)求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.【分析】(1)从直角坐标系中读出点的坐标.(2)让三角形的各顶点都绕点A顺时针旋转90°后得到对应点,顺次连接即可.(3)先设出一般的一次函数的解析式,再把点的坐标代入求解析式即可.【解答】解:(1)从图中可得出:A(2,0),B(﹣1,﹣4)(2分)(2)画图正确;(4分)(3)设线段B1A所在直线l的解析式为:y=kx+b(k≠0),∵B1(﹣2,3),A(2,0),∴,(5分),(6分)∴线段B1A所在直线l的解析式为:,(7分)线段B1A的自变量x的取值范围是:﹣2≤x≤2.(8分)【点评】本题主要考查了平面直角坐标系和旋转变换图形的性质.21.(8分)如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB 的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD 的长度及矿业大厦AB的高度.(结果保留根号)【分析】利用所给角的三角函数用CD表示出BD、AE;根据AB=AE+CD,即可得解.【解答】解:在直角△BCD中,CD=40m,∠CBD=30°,则BD===40(m).在等腰直角△ACE中,CE=BD=40m,∠ACE=45°,则AE=CE•tan45°=40m.所以AB=AE+BE=AE+CD=40+40(m).答:公寓楼与矿业大厦间的水平距离BD的长度是40m,矿业大厦AB的高度是(40+40)m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,能够造出直角三角形是解题的关键.22.(8分)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A、B两点,与y轴交于点C,其中A(﹣3,0)、C(0.﹣2).求这条抛物线的函数表达式.【分析】根据抛物线对称轴得到关于a、b的一个方程,再把点A、B的坐标代入抛物线解析式,然后解方程组求出a、b、c的值,即可得解.【解答】解:根据题意得,,解得,,∴这条抛物线的函数表达式:.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.23.(6分)如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n∁n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、∁n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、∁n D n依次等距离平行排放(最后一个矩形状框的边∁n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n∁n (1)求d的值;(2)问:∁n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设∁n D n与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在Rt△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH2=r,FH2=r﹣r,∴d=(r﹣r)=r,(2)假设∁n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴直角三角形△C2ED2最多分成5份,∴n=6,此时∁n D n与点E间的距离=r﹣4×r=r.【点评】本题考查垂径定理、等腰直角三角形的性质,理解题意是解决问题的关键,学会利用方程去思考,发现n=6是解题的关键.。

云南省2020年初三学业水平考试数学模拟试卷一(含答案)

云南省2020年初三学业水平考试数学模拟试卷一(含答案)

2020年云南省初中学业水平考试数学模拟试卷(考试时间120分钟,满分120分)一、填空题(每小题3分,满分18分)1. 1月某天5时的温度为-2℃,9时温度上升了5℃,则9时的气温为 ℃2. “壮丽70年,奋斗新时代”.70年来,云南城镇居民收入连续翻番,1950年,云南城镇居民人均可支配收入仅为117.6元,2018年达到33488元,累计增长283.7倍.数据33488用科学记数法表示为 .3. 有意义的条件是 .4. 某市2017年房价均价为2/a m 元,如果2018年和2019年每年平均增长率为10%,则2019年房价为 .2/m 元5. 如图, OAB V 的三个顶点的坐标分别()0,0O ,点()()1,2,1A B ,以点O 为位似中心,相似比为2,将OAB V 放大为11OA B V ,则1A 的坐标为 .6. 已知O e 的半径为6,弦AB 与半径相等,则用扇形OAB 围成的圆锥的底面半径为 . 二、选择题(每小题4分,满分32分.在每小题给出的四个选项中,只有一项是正确的)7. 下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .8. 1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间9. 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:某同学分析上表后得出如下结论①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150≥个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是( )A .①②B .②③C .①③D .①②③10. 不等式组()211202x x x +⎧⎪--≥⎪⎨⎩<的解集在数轴上表示正确的是( )A .B .C .D .11. 下列运算中,正确的是( )A .1=-B .201232-⎛⎫--=⎪⎝⎭C .2211111a a a a -=--+ D .()22525a a -=-12. 如图,五边形ABCDE 是正五边形.若12l l P ,247∠=︒,则1∠的度数是( )A .119︒B .123︒C .139︒D .143︒13. 如图,工匠师傅在板材边角处作直角时,往往使用“三弧法”,作法如下:(1)作线段AB ,分别以,A B 为圆心,以AB 长为半径作弧,两弧的交点为C ;(2)以C 为圆心,仍以AB 长为半径作弧交AC 的延长线于点D(3)连接,BD BC 下列说法中,不正确的是( )A .ABC V 是正三角形B .点C 是ABD V 的外心C .22BDC S AB =V D .22sin sin 1A D += 14. 如图,矩形ABCD 的两边,AD AB 的长分别为3和8, E 是DC 的中点,反比例函数的图象经过点E ,与AB 交于点F ,若2,AF AE -=则反比例函数的解析式为( )A .6y x =B .6y x=- C .8y x = D .8y x =- 三、解答题(共9题,满分70分)15. (6分)如图,点,,,A B D E 在同一直线上, ,,AB ED AC EF C F =∠=∠P求证: BC DF =16.(7分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛.为了了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调査结果绘制成的统计图(部分)如图大赛结束后一个月,再次抽查这部分学生的 周诗词诵背数量”,绘制成如下统计表:请根据调查的信息分析(1)学校团委一共抽取了多少名学生进行调查 (2)大赛前诵背4首人数所在扇形的圆心角为 并补充完条形统计图(3)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数17. (6分)观察下列等式的规律11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯ 请用上述等式反映出的规律解决下列问题:(1)请直接写出111111223344520192020++++⋅⋅⋅+⨯⨯⨯⨯+的值为 .(2)化简:()11111122334451n n ++++⋅⋅⋅+⨯⨯⨯⨯⨯+ 18. (7分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等且分别标有数字1,2,3(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 .(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)19. (7分)新农村建设让我们的家园更加美丽.某新农村广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与水池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式(2)求出水柱的最大高度是多少?20.(7分)为积极响应政府提出的“绿色发展,低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元。

云南省2020年中考数学模拟试卷(一)(含解析)

云南省2020年中考数学模拟试卷(一)(含解析)

2020年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.(3分)函数的自变量x的取值范围是.2.(3分)分解因式:3a3﹣12a=.3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE=.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.2370008.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=09.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.510.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)11.下面空心圆柱形物体的左视图是()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.(3分)函数的自变量x的取值范围是x≤.【分析】根据二次根式的性质,被开方数大于或等于0,可知:1﹣2x≥0,解得x的范围.【解答】解:根据题意得:1﹣2x≥0,解得:x≤.2.(3分)分解因式:3a3﹣12a=3a(a+2)(a﹣2).【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).3.(3分)如果关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,则k=±6 .【分析】先根据关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根可得出△=0,据此求出k的值即可.【解答】解:∵关于x的方程x2+kx+9=0(k为常数)有两个相等的实数根,∴△=k2﹣4×9=k2﹣36=0,解得k=±6.故答案为:±6.4.(3分)如图,点A为反比例函数y=的图象在第二象限上的任一点,AB⊥x轴于B,AC⊥y轴于C,则矩形ABOC的面积是 3 .【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【解答】解:点A为反比例函数y=的图象在第二象限上的任一点,则矩形ABOC的面积S=|k|=3.故答案为:3.5.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.6.(3分)如图,在矩形ABCD中,AB=4,AD=8,将矩形ABCD折叠使点D和点B重合,折痕为EF,则DE= 5 .【分析】由折叠的性质得DE=BE,在Rt△ABE中,利用勾股定理计算出AE的长,进而得到DE的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,由折叠的性质得:DE=BE,设AE=x,则DE=BE=8﹣x,在Rt△ABE中,由勾股定理得:AE2+AB2=BE2,则x2+42=(8﹣x)2,解得:x=3,则DE=8﹣3=5,故答案为:5.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2 C.3 D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC 于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.21。

云南省2020年中考数学模拟试卷(一)(含解析)

云南省2020年中考数学模拟试卷(一)(含解析)

2020年云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)的倒数是.2.(3分)如图,a∥b,若∠1=40°,则∠2=度.3.(3分)函数y=中,自变量x的取值范围是.4.(3分)已知x2+x﹣1=0,则3x2+3x﹣5=.5.(3分)已知一个圆锥底面直径为6,母线长为12,则其侧面展开图的圆心角为度.6.(3分)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)某市文化活动中心在正月十五矩形元宵节灯谜大会中,共有13200人参加,数据13200用科学记数法表示正确的是()A.0.132×105B.1.32×104C.13.2×103D.1.32×1058.(4分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x59.(4分)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转90°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(0,2)D.(2,0)10.(4分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1),若平移点A 到点C,使得以点O,A,B,C为顶点的四边形为菱形,正确的是()A.向左平移1个单位,再向下平移1个单位.B.向右平移1个单位,再向上平移1个单位.C.向左平移个单位,再向下平移1个单位.D.向右平移个单位,再向上平移1个单位.11.(4分)一物体及其主视图如图,则它的左视图与俯视图分别是右侧图形中的()A.①②B.③②C.①④D.③④12.(4分)不等式组的解集在数轴上表示为()A.B.C.D.13.(4分)下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是()A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,914.(4分)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A.B.C.D.三、解答题(本大题共9小题,共70分)15.先化简,再求值:(﹣)÷,其中a满足a2+2a﹣24=0.16.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.17.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?18.列方程解应用题据了解,2019年世园会园区整体结构布局是“一心两轴三带多片区”.“一心”为核心景观区,包括中国馆、国际馆、演艺中心、中国展园和部分世界展园;“两轴”以冠帽山、海坨山为对景,形成正南北向的山水园艺轴和近东西向的世界园艺轴;“三带”包括妫河生态休闲带、园艺生活体验带和园艺产业发展带.为保障2019年世园会的顺利举办,各场馆建设与室内设计都在稳步推进.周末,小明约了几位好友到距离家10千米的场馆路边查看工程进度情况,一部分人骑自行车先走,过了小时,其余的人乘公交车出发,结果他们同时到达,已知汽车的速度是骑自行车人速度的2倍,求骑车学生每小时走多少千米?19.如图,在平面直角坐标系中,直线l经过原点,且与反比例函数图象交于点A(1,2),点B(m,﹣2).分别过A、B作AC⊥y轴于C,BD⊥y轴于D,再以AC、BD为半径作⊙A和⊙B.(1)求反比例函数的解析式及m的值;(2)求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,∠CAB=30°(1)求∠ADC的度数;(2)如果OE⊥AC,垂足为E,求OE的长.21.透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.22.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)求证:4DE2=CD•AC.23.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.2020年云南省中考数学模拟试卷(一)参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)的倒数是﹣4 .【分析】根据互为倒数的两数之积为1,可得出答案.【解答】解:﹣的倒数为﹣4.故答案为:﹣4.【点评】此题考查了倒数的定义,属于基础题,解答本题的关键是掌握互为倒数的两数之积为1.2.(3分)如图,a∥b,若∠1=40°,则∠2=40 度.【分析】直接利用平行线的性质结合邻补角的性质分析得出答案.【解答】解:∵a∥b,∠1=40°,∴∠1=∠3=∠2=40°.故答案为:40.【点评】此题主要考查了平行线的性质、邻补角的性质,正确得出∠3=∠2是解题关键.3.(3分)函数y=中,自变量x的取值范围是x>﹣1 .【分析】根据二次根式的性质和分式的意义,可得x+1>0,解不等式即可.【解答】解:根据题意得到:x+1>0,解得x>﹣1.故答案为x>﹣1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.(3分)已知x2+x﹣1=0,则3x2+3x﹣5=﹣2 .【分析】此题应把x2+x﹣1看成一个整体,代入求值即可.【解答】解:∵x2+x﹣1=0,则3x2+3x﹣5=3(x2+x﹣1)﹣2=0﹣2=﹣2.【点评】解题关键是会用整体代入法求值.5.(3分)已知一个圆锥底面直径为6,母线长为12,则其侧面展开图的圆心角为90 度.【分析】设圆锥侧面展开图的圆心角为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到6π=,然后解方程即可.【解答】解:设圆锥侧面展开图的圆心角为n°,所以6π=,解得n=90.故答案为90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(3分)观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为n2﹣n+1 .【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:根据题意分析可得:第n个图中,从中心点分出n个分支,每个分支上有(n﹣1)个点,不含中心点;则第n个图中有n×(n﹣1)+1=n2﹣n+1个点.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)某市文化活动中心在正月十五矩形元宵节灯谜大会中,共有13200人参加,数据13200用科学记数法表示正确的是()A.0.132×105B.1.32×104C.13.2×103D.1.32×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将13200用科学记数法表示为1.32×104.故选:B.8.(4分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法的性质,同底数幂的除法,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同类项不能合并,故D错误;故选:B.9.(4分)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转90°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(0,2)D.(2,0)【分析】在平面直角坐标系中,画出图形,通过“双垂线”法构造全等三角形,利用全等三角形性质求出对应线段长度,进而求出点B的坐标.【解答】解:如图,过A做AC⊥x轴,BE⊥x轴,∵∠AOB=90°,∴∠BOE+∠AOC=90°,∵∠A+∠AOC=90°,∴∠A=∠BOE,在△OCA和△BEO中,,△OCA≌△BEO中,∴OE=AC=1,BE=OC=,∴点B坐标为(﹣1,).故选:B.10.(4分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1),若平移点A 到点C,使得以点O,A,B,C为顶点的四边形为菱形,正确的是()A.向左平移1个单位,再向下平移1个单位.B.向右平移1个单位,再向上平移1个单位.C.向左平移个单位,再向下平移1个单位.D.向右平移个单位,再向上平移1个单位.【分析】利用平移的性质一一判断即可;【解答】解:选项B是正确的,理由如下:∵B(1,1),∴OB=,∵OA=,∴OB=OA,∵点A向右平移1个单位,再向上平移1个单位得到C,∴OB∥OC,OB=OC,∴四边形OBCA是平行四边形,∵OA=OB,∴四边形OBCA是菱形.故选:B.11.(4分)一物体及其主视图如图,则它的左视图与俯视图分别是右侧图形中的()A.①②B.③②C.①④D.③④【分析】找到从正、上和左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看有2个长方形,即③;从上面看是一个长方形,长方形里还有1个小长方形,即②;.故选:B.12.(4分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x>1;由②得,x≥2,故此不等式组的解集为:x≥2,在数轴上表示为:故选:A.13.(4分)下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是()A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9【分析】根据平均数、众数与方差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.极差就是这组数中最大值与最小值的差.【解答】解:平均数为(6+9+8+4+0+3)÷6=5,排列为9,8,6,4,3,0中位数为(6+4)÷2=5,极差为9﹣0=9.故选:D.(4分)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 14.运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A.B.C.D.【分析】根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.【解答】解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个图象.故选:A.三、解答题(本大题共9小题,共70分)15.先化简,再求值:(﹣)÷,其中a满足a2+2a﹣24=0.【分析】先根据分式混合运算的法则把原式进行化简,再根据a是方程a2+2a﹣24=0的根求出a的值,把a的值代入进行计算即可.【解答】解:原式=×﹣×,=﹣,=,∵a满足a2+2a﹣24=0,∴a=4(舍)或a=﹣6,当a=﹣6时代入求值,原式=.16.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.【分析】求出BF=EC,证△ABF≌△DCE,推出∠AFB=∠DEC,即可得出答案.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=EC,在△ABF和△DCE中,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC,∴OE=OF.17.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).18.列方程解应用题据了解,2019年世园会园区整体结构布局是“一心两轴三带多片区”.“一心”为核心景观区,包括中国馆、国际馆、演艺中心、中国展园和部分世界展园;“两轴”以冠帽山、海坨山为对景,形成正南北向的山水园艺轴和近东西向的世界园艺轴;“三带”包括妫河生态休闲带、园艺生活体验带和园艺产业发展带.为保障2019年世园会的顺利举办,各场馆建设与室内设计都在稳步推进.周末,小明约了几位好友到距离家10千米的场馆路边查看工程进度情况,一部分人骑自行车先走,过了小时,其余的人乘公交车出发,结果他们同时到达,已知汽车的速度是骑自行车人速度的2倍,求骑车学生每小时走多少千米?【分析】设骑车学生每小时走x千米,则汽车的速度是每小时2x千米,根据时间=路程÷速度结合骑车比乘车多用小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设骑车学生每小时走x千米,则汽车的速度是每小时2x千米,根据题意得:﹣=,解得:x=15,经检验,x=15是原方程的解,且符合题意.答:骑车学生每小时走15千米.19.如图,在平面直角坐标系中,直线l经过原点,且与反比例函数图象交于点A(1,2),点B(m,﹣2).分别过A、B作AC⊥y轴于C,BD⊥y轴于D,再以AC、BD为半径作⊙A和⊙B.(1)求反比例函数的解析式及m的值;(2)求图中阴影部分的面积.【分析】(1)由A点坐标可确定y=,由此解析式可求出m值.(2)根据中心对称性可得阴影部分面积为一个圆的面积.【解答】解:(1)∵点A(1,2)在图象上,∴k=1×2=2∴(3分)∵﹣2m=2∴m=﹣1(2分)(2)∵AC=BD=1∴根据中心对称性S阴影=πR2=π(3分)20.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,∠CAB=30°(1)求∠ADC的度数;(2)如果OE⊥AC,垂足为E,求OE的长.【分析】(1)由AB是⊙O的直径,根据圆周角定理的推论得到∠ACB=90°,在Rt△ABC 中,理由∠B的余弦可求出∠B=60°,然后根据圆周角定理得到∠ADC=60°;(2)由于OE⊥AC,根据垂径定理得到AE=CE,则OE为△ABC的中位线,所以OE=BC=.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵AB=6,BC=3,∴cos B ==,∴∠B=60°,∴∠ADC=60°;(2)∵OE⊥AC,∴AE=CE,∴OE为△ABC的中位线,∵AB=6,∠CAB=30°,∴BC=3∴OE =BC =.21.透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.【分析】(1)利用概率公式直接求出即可;(2)首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【解答】解:(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是:;(2)游戏规则对双方公平.列表如下:小明1 2 3小东1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)由表可知,P(小明获胜)=,P(小东获胜)=,∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.22.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)求证:4DE2=CD•AC.【分析】(1)如图,作辅助线;根据题意结合图形,证明∠ODE=90°,即可解决问题;(2)根据圆周角定理得到∠ADB=∠BDC=90°,根据直角三角形的性质得到BC=2DE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD、BD,∵AB为⊙O的直径,∴∠ADB=∠CDB=90°;又∵点E为BC的中点,∴BE=DE,∴∠BDE=∠EBD;∵OA=OD,∴∠OAD=∠ODA;又∵∠OAD+∠OBD=90°,∠EBD+∠OBD=90°,∴∠OAD=∠EBD,即∠ODA=∠BDE;∴∠ODE=∠BDE+∠ODB=∠ODA+∠ODB=90°,又∵点D在⊙O上,∴DE是圆⊙O的切线;(2)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE,∵∠ABC=90°,∴∠ABC=∠BDC,∵∠C=∠C,∴△ABC∽△BDC,∴,∴BC2=CD•AC,∴4DE2=CD•AC.23.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【分析】(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),可得l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,利用二次函数的性质即可解决问题;(3)由S△PAD=×PM×(x D﹣x A)=PM,推出PM的值最大时,△PAD的面积最大;(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).由△PAD是直角三角形,推出PK=AD,可得(t﹣)2+(﹣t2+2t+3﹣)2=×18,解方程即可解决问题;【解答】解:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,∴当t=时,l有最大值,l最大=;(3)∵S△PAD=×PM×(x D﹣x A)=PM,∴PM的值最大时,△PAD的面积中点,最大值=×=.∴t=时,△PAD的面积的最大值为.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD是直角三角形,∴PK=AD,∴(t﹣)2+(﹣t2+2t+3﹣)2=×18,整理得t(t﹣3)(t2﹣t﹣1)=0,解得t=0或3或,∵点P在第一象限,∴t=或3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云大附中2020 年初中学业水平考试第一次模拟考试
九年级数学试卷姓名:
一.填空题(每小题3 分,满分18 分)
1.2020 的绝对值是.
2.已知∠A O B=25°42′,则∠A O B的补角为.
3.在函数y=中,自变量的取值范围.
4.已知A(2,),(3,)是反比列函数y=(k<0)的两点,则
5.如图,一张扇形纸片O A B中,半径O A为2,点C是的中点,现将这张扇形纸片沿着弦A B折叠,点C恰好与圆心O重合,则图中阴影部分的面积为.
6.如图,在△A B C中,∠C=90°,A C=B C=1,P为△A B C内一个动点,∠P A B=∠P B C,则C P的最小值为.
二.选择题(每小题4 分,满分32 分)
7.如图是由六个棱长为1 的小正方体搭成的几何体,其俯视图的面积为()A.3 B.4 C.5 D.6
8.近期,新型冠状病毒感染肺炎的疫情在全国蔓延,全国人民团结一致,全力抗击新型冠状病毒感染肺炎.多国政府官员及机构高度赞赏并支持中国政府抗击疫情的有力措施,表示对中国早日战胜疫情充满信心,社会各界人士积极捐款.截止2 月5 日中午12 点,武汉市慈善总会接收捐赠款约3230000000 元.14 亿中国人民众志成城、行动起来、战斗起来,一定能打赢这场疫情防控阻击战,将3230000000 用科学记数法表示应为()A.323×107B.32.3×108C.3.23×109D.3.23×1010
9. 估算+2 的值是在()
A.5 和6 之间
B.6 和7 之间
C.7 和8 之间
D.8 和9 之间
10.A,B两地相距180k m,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x k m/h,则根据题意可列方程为()
A.﹣=1 B.﹣=1
C.﹣=1 D.﹣=1

11.关于x的一元二次方程a x22x+1=0 有两个不相等的实数根,则a的取值范围是()A.a≤1 B.a<1 C.a≤1 且a≠0 D.a<1 且a≠0 12.下列运算正确的是()
A.(x m)2=x m+2 B.(﹣2x2y)3=﹣8x5y3 C.x6÷x3=x2D.x3•x2=x5 13.如图,若干全等正五边形排成环状.图中所示的是前3 个五边形,要完成这一圆环还需()个五边形.
A.6 B.7 C.8 D.9
14.如图,R t△A B C中,∠B C A=90°,A C=B C,点D是B C的中点,点F在线段A D上,
D F=C D,B F交C A于E点,过点A作D A的垂线交C F的延长线于点G,下列结论:
①C F2=E F•B F;②A G=2D C;③A E=E F;④A F• E C=E F• E B.其中正确的结论有
()
A.①②③B.①②④ C.①③④ D.②③④。

相关文档
最新文档