3.6反比例函数与图形的面积(2015年)
浙教版八年级下专题九 反比例函数与图形的面积
专题九反比例函数与图形的面积(教材P147作业题第3题)已知反比例函数y=kx(k≠0)的图象上一点的坐标为(-1,-4),求这个反比例函数的表达式,并画出它的图象.解:y=4x,图略.【思想方法】反比例函数k的几何意义:反比例函数图象上的点(x,y)的横,纵坐标之积(xy=k)为常数这一特点,即过双曲线上任意一点,向两坐标轴分别作垂线,两条垂线与两坐标轴所围成的矩形的面积为常数,即S=|k|.一反比例函数与矩形的面积[2011·漳州]如图1,点P(x,y)是反比例函数y=3x的图象在第一象限分支上的一个动点,P A⊥x轴于点A,PB⊥y轴于点B,随着自变量x的增大,矩形OAPB的面积(A)图1A.不变B.增大C.减小D.无法确定[2012·丹东]如图2,点A是双曲线y=kx在第二象限分支上的任意一点,点B,C,D分别是点A关于x轴,坐标原点,y轴的对称点.若四边形ABCD的面积是8,则k的值为(D)图2A.-1B.1C.2D.-2【解析】先判定出四边形ABCD是矩形,再根据反比例函数的系数的几何意义,用k表示出四边形ABCD的面积.∵四边形ABCD的面积是8,∴4×|-k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k<0,∴k=-2.[2012·黔东南州]如图3,点A是反比例函数y=-6x(x<0)的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为(C)图3A.1 B.3 C.6 D.12【解析】过点A作AE⊥OB于点E.变形3答图因为矩形ADOE的面积等于AD·AE,平行四边形ABCD的面积等于AD·AE,所以▱ABCD的面积等于矩形ADOE的面积,根据反比例函数k的几何意义可得:矩形ADOE的面积为6,即可得平行四边形ABCD的面积为6.故选C.如图4,A、B是双曲线y=kx上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k值为(C)图4A.1 B.2 C.3 D.4如图5,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为9,则k的值为(C)图5A .1B .2C .3D .4【解析】 由题意,得点E 、M 、D 位于反比例函数图象上,则S △OCE =|k |2,S△OAD =|k |2.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵点M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S 矩形ONMG =4|k |.∵函数图象在第一象限,∴k >0,则k 2+k2+9=4k ,解得k =3.故选C.[2013·泸州]如图6,点P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )在函数y =1x (x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n -1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n -1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是__(3+2,3-2)__;点P n 的坐标是__(n +n -1,n -n -1)__(用含n 的式子表示).图6二 反比例函数与三角形的面积[2012·毕节]如图7,双曲线y =kx (k ≠0)上有一点A ,过点A 作AB ⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为__y=-4x__.图7如图8,点A,B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)图8A.S=2B.S=4C.2<S<4 D.S>4【解析】设点A的坐标为(x,y),则B为(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积为2x·2y÷2=2xy=2×2=4.[2012·岳阳]如图9,一次函数y1=x+1的图象与反比例函数y2=2x的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连结AO,BO.下列说法正确的是(C)图9 A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1,y2都随x的增大而增大正比例函数y=x与反比例函数y=1x的图象相交于A、C两点.AB⊥x轴于点B,CD⊥x轴于点D(如图10),则四边形ABCD的面积为(C)图10A.1 B.5 2C.2 D.2 5三反比例函数与其他几何图形如图11,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2),若反比例函数y=kx(x>0)的图象经过点A,则k的值为(D)图11 A.-6B.-3C.3D.6[2012·荆门]如图12,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-3x的图象于点B,以AB为边作▱ABCD,其中点C,D在x轴上,则S▱ABCD为(D)图12A.2 B.3 C.4 D.5【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=2x ,得b=2x,则x=2b,即A的横坐标是2b;同理可得B的横坐标是-3b.则AB=2b -(-3b)=5b.则S▱ABCD=5b·b=5.如图13,已知函数y=2x和函数y=kx的图象交于A、B两点,过点A作AE⊥x轴于点E.若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是__P1(0,-4),P2(-4,-4),P3(4,4)__.图13[2012·丽水]如图14,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D,已知等边△OAB的边长为4.图14(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.解:(1)过点C作CG⊥OA于点G.∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=3,∴点C的坐标是(1,3).由3=k1,得k=3,∴该双曲线所表示的函数解析式为y=3x.(2)过点D作DH⊥AF于点H,设AH=a,则DH=3a,∴点D的坐标为(4+a,3a).上的点,由xy=3,得∵点D是双曲线y=3x3a(4+a)=3,即a2+4a-1=0,解得a1=5-2,a2=-5-2(舍去),∴AD=2AH=25-4.∴等边△AEF的边长是(45-8).。
反比例函数与几何图形变换PPT
目录
• 反比例函数的基本概念 • 反比例函数与几何图形的关系 • 反比例函数在几何图形变换中的
应用 • 反比例函数在解决几何问题中的
应用 • 反比例函数在实际生活中的应用
01
反比例函数的基本概念
反比例函数的定义
01
反比例函数:形如$f(x)
=
frac{k}{x}$(其中$k neq 0$)的
总结词
总结词
在圆中,面积与半径之间也存在反比例关系。当圆的 半径增加时,其面积会减小;反之亦然。反比例函数
同样可以用来描述这种关系。
详细描述
反比例函数可以用于描述圆面积与半径之间的关系。
03
反比例函数在几何图形变 换中的应用
平移变换
平移变换
将图形在平面内沿某一方向移动一定的距离,而不改变其形状和大小。
函数被称为反比例函数。
02
反比例函数的定义域为$x neq 0$, 值域为全体实数。
反比例函数的图像
反比例函数的图像是双曲线,位于第 一和第三象限或第二和第四象限。
当$k > 0$时,图像位于第一和第三象 限;当$k < 0$时,图像位于第二和第 四象限。
反比例函数的性质
01
02
03
奇函数
由于$f(-x) = frac{k}{-x} = -frac{k}{x} = -f(x)$, 反比例函数是奇函数。
在经济学中的应用
供需关系
在经济学中,供给与需求之间存在反比关系。当一种商品的需求增加时,供给会 相应减少,反之亦然。这种关系决定了市场价格的形成和变化。
投资回报率
投资回报率与投资风险之间也存在反比关系。高回报往往伴随着高风险,而低风 险则可能带来较低的回报。这一关系在个人理财和投资决策中具有指导意义。
反比例函数关系式中k与图形面积的关系
作EB、FC、GD垂直于x轴,垂足分别为B、C、D,且 OB=BC=CD,△OBE的面积记为S1,△BCF的面积记为S2, △CDG的面积记为S3,若S1+S3=2,则S2= .
变式:如图,直线 和双曲线 交于A、B亮点,P是线段AB上的
点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足 分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、 △BOD面积是S2、△POE面积是S3、则S1,S2,S3的大小 关系是( )
双曲线在第一象限内的图象如图所示作一条平行于y轴的直线分别交双曲线于ab两点连接oaob则aob的面积为12yyxx??和1saof2在一次函数反比例函数的图象组合图形的面积计算要注意选择恰当的分解方法
专题习题课
反比例函数关系式中k与 图形面积的关系
k 点P为反比例函数 y 上任意一点,求 x S矩形OAPB
当堂检测:
1.如图,A是反比例函数图象上一点,过点A作 轴于点B,点P在x 轴上,△ABP面积为2,则这个反比例函数的解析式为 。
当堂检测:
2.双曲线 在第一象限内的图象如图所示,作一条平 行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则 △AOB的面积为( ) 3.如图,在直角坐标系中, A点 是 轴正半轴上的一个定点, 3 点 B是双曲线 y 上的一个动点,当点B 的横坐标逐渐增大时, x △OAB的面积将会( ) A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小
5、根据面积求k值要注意图象的象限、K值的符号.;
x
2.如图,A、B两点在双曲线y= 4 上,分别经过A、B两点向轴作 )
热身运动
3.如图,点A、B在反比例函数 (k>0,x>0)的图象上,过点 A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C, 若OM= MN= NC,△AOC的面积为6,则k的值为
最新初中数学思维技巧专项训练(一) 反比例函数中有关图形面积问题的解法
反比例函数中有关图形面积问题的解法类型一 利用反比例函数k 的几何意义解决有关图形的面积问题如图1-Y -1,过反比例函数y =kx (k ≠0)的图象上任意一点P (x ,y ),作x 轴、y 轴的垂线P A ,PB ,则有:(1)矩形P AOB 的面积S =P A ·PB =|y |·|x |=||xy =||k (当k >0时,S =k ;当k <0时,S =-k );(2)S △PBO =S △P AO =|k |2(当k >0时,S △PBO =S △P AO =k 2;当k <0时,S △PBO =S △P AO=-k2).图1-Y -11.位于第一象限的点E 在反比例函数y =kx 的图象上,点F 在x 轴的正半轴上,O 是坐标原点.若EO =EF ,△EOF 的面积等于2,则k 的值为( )A .4B .2C .1D .-22.如图1-Y -2,直线l 和双曲线y =kx (k >0)交于A ,B 两点,P 是线段AB 上的点(不与点A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 的面积是S 1,△BOD 的面积是S 2,△POE 的面积是S 3,则( )图1-Y -2A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 33.如图1-Y -3,矩形ABCD 的对角线BD 经过坐标原点,矩形的边都平行于坐标轴,点C 在反比例函数y =k 2+2k +1x的图象上.若点A 的坐标为(-2,-2),则k 的值为( )图1-Y -3A .1B .-3C .4D .1或-34.如图1-Y -4,A ,B 是双曲线y =6x 上的点,分别过点A ,B 作x 轴和y 轴的垂线段.若图中阴影部分的面积为2,则两个空白矩形面积的和为________.图1-Y -45.如图1-Y -5,直线l ⊥x 轴于点P ,且与反比例函数y 1=k 1x (x >0)及y 2=k 2x (x >0)的图象分别交于点A ,B ,连接OA ,OB .已知△ABO 的面积为2,则k 1-k 2=__________.图1-Y -56.过反比例函数y =kx (k ≠0)图象上一点A 作x 轴、y 轴的垂线,垂足分别为B ,C ,若△ABC的面积为3,则k 的值为________.7.如图1-Y -6,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx(x <0)的图象上,则k 的值为________.图1-Y -68.如图1-Y -7,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k =________.图1-Y -79.如图1-Y -8,点A (x 1,y 1),B (x 2,y 2)都在双曲线y =kx (x >0)上,且x 2-x 1=4,y 1-y 2=2.分别过点A ,B 向x 轴、y 轴作垂线段,垂足分别为C ,E 和D ,F ,AC 与BF 相交于点G ,四边形FOCG 的面积为2,五边形AEODB 的面积为14,则双曲线的解析式为____________.图1-Y -8类型二 利用反比例函数k 的代数意义解决有关图形的面积问题(1)已知反比例函数y =kx(k ≠0)图象上一点的坐标为(x ,y ),则有k =xy ;(2)如图1-Y -9,已知反比例函数y =kx (k ≠0)图象上的两点A (x ,y ),D (m ,n ),则有xy=mn .图1-Y -910.如图1-Y -10,在平面直角坐标系中,一条直线与反比例函数y =8x (x >0)的图象交于点A ,B ,与x 轴交于点C ,且B 是AC 的中点,分别过点A ,B 作x 轴的平行线,与反比例函数y =2x(x >0)的图象交于点D ,E ,连接DE ,则四边形ABED 的面积为________.图1-Y -1011.如图1-Y -11,点A ,B 在反比例函数y =kx (k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD =k .已知AB =2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是________.图1-Y -1112.如图1-Y -12,已知双曲线y =kx 与直线y =-x +6相交于A ,B 两点,过点A 作x 轴的垂线与过点B 作y 轴的垂线相交于点C ,若△ABC 的面积为8,则k 的值为________.图1-Y -1213.如图1-Y -13,已知反比例函数y =kx 的图象与直线y =-x +b 都经过点A (1,4),且该直线与x 轴的交点为B .(1)求反比例函数和直线的解析式; (2)求△AOB 的面积.图1-Y -1314.如图1-Y -14,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D .(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.图1-Y -14类型三 利用正比例函数与反比例函数图象的中心对称性解决有关图形的面积问题 如图1-Y -15所示.图1-Y -15(1)(2)S △BOC =S △ODB =S △AOC =||k 2,S △ABC =||k .15.直线y =mx (m >0)与双曲线y =kx (k >0)交于点A ,B .过点A 作AM ⊥x 轴,垂足为M ,连接BM .若S △ABM =1,则k 的值是( )A .1B .m -1C .2D .m16.如图1-Y -16,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,C 两点.AB⊥x 轴于点B ,CD ⊥x 轴于点D ,则四边形ABCD 的面积为( )图1-Y -16A .1 B.32 C .2 D.5217.如图1-Y -17,某正比例函数与反比例函数y =2x 的图象相交于A ,C 两点,过点A 作x 轴的垂线,垂足为B ,连接BC ,则△BOC 的面积为________.图1-Y -1718.如图1-Y -18所示,已知直线y =12x 与双曲线y =kx (k >0)交于A ,B 两点,且点A的横坐标为4.(1)求k 的值;(2)若双曲线y =kx(k >0)上一点C 的纵坐标为8,求△AOC 的面积;(3)过原点O 的另一条直线l 交y =kx (k >0)于P ,Q 两点(点P 在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形的面积为24,求点P 的坐标.图1-Y -18详解1.B [解析] 如图,过点E 作EM ⊥x 轴于点M ,因为EO =EF ,所以OM =MF , 所以S △MEO =S △MEF =12S △EOF =1,所以k2=1,所以k =2.2.D [解析] 结合题意可得点A ,B 都在双曲线y =kx 上,则有S 1=S 2.直线AB 上点A与点B 之间的部分在双曲线上方,故有S 1=S 2<S 3.故选D.3.D [解析] 设C (x ,y ).∵四边形ABCD 是矩形,对角线BD 经过坐标原点,∴S △BCD=S △BAD ,S △BEO =S △BFO ,S △DHO =S △DGO ,∴S 矩形CEOH =S 矩形AFOG , ∴k 2+2k +1=||-2×||-2=4, ∴k =1或k =-3.故选D.4.8 [解析] 如图,∵A ,B 是双曲线y =6x上的点,∴S 矩形ACOG =S 矩形BEOF =6. ∵S 阴影=2,∴S 矩形ACED +S 矩形BDGF =6+6-2-2=8. 故答案为8.5.4 [解析] ∵反比例函数y 1=k 1x (x >0)及y 2=k 2x (x >0)的图象均在第一象限内,∴k 1>0,k 2>0.∵AP ⊥x 轴,∴S △OAP =12k 1,S △OBP =12k 2,∴S △ABO =S △OAP -S △OBP =12(k 1-k 2)=2,∴k 1-k 2=4. 6.6或-67.-6 [解析] 如图,连接AC ,交y 轴于点D ,∵四边形OABC 为菱形,∴AC ⊥OB ,且CD =AD ,BD =OD . ∵菱形OABC 的面积为12, ∴△CDO 的面积为3, ∴│k │=6.∵反比例函数图象的一个分支位于第二象限, ∴k <0,则k =-6.故答案为-6.8.6 [解析] 由点P (6,3),得点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y =kx,得点A 的纵坐标为k 6,点B 的横坐标为k3,即AM =k 6,NB =k3.∵S 四边形OAPB =12,∴S 矩形OMPN -S △OAM -S △NBO =12,即6×3-12×6×k 6-12×3×k3=12,解得k =6. 故答案为6.9.y =6x [解析] ∵x 2-x 1=4,y 1-y 2=2,∴AG =2,BG =4,∴S △ABG =12AG ·BG =4.∵S长方形AEOC =S 长方形BFOD =||k =k ,∴k +k-2+4=14,∴k =6,即y =6x.10.92 [解析] ∵点A ,B 在反比例函数y =8x (x >0)的图象上, ∴设点B 的坐标为(8m,m ).∵B 为线段AC 的中点,且点C 在x 轴上, ∴点A 的坐标为(4m,2m ).∵AD ∥x 轴,BE ∥x 轴,且点D ,E 都在反比例函数y =2x (x >0)的图象上,∴点D 的坐标为(1m ,2m ),点E 的坐标为(2m ,m ),∴S 四边形ABED =12×(4m -1m +8m -2m )×(2m -m )=92.故答案为92.11.3 72 [解析] ∵E 是AB 的中点,∴S △ABD =2S △ADE ,S △BAC =2S △BCE .又∵△BCE 的面积是△ADE 的面积的2倍, ∴2S △ABD =S △BAC .设点A 的坐标为(m ,k m ),点B 的坐标为(n ,kn),则有⎩⎪⎨⎪⎧m -n =k ,k m =-2×k n,(m -n )2+(k m -k n )2=2km,解得⎩⎪⎨⎪⎧k =3 72,m =72,n =-7或⎩⎪⎨⎪⎧k =-3 72,m =-72,(舍去).n =7 故答案为3 72. 12.5 [解析] 由A ,B 两点在直线y =-x +6上,可设点A ,B 的坐标分别为(m ,-m+6),(n ,-n +6),所以AC =n -m ,BC =n -m ,所以S △ABC =12AC ·BC =12(n -m )2=8,所以n -m =4,即m =n -4,所以点A 的坐标为(n -4,10-n ).又A ,B 两点在双曲线y =k x上,所以(n -4)(10-n )=n (-n +6),解得n =5,所以点B 的坐标为(5,1),故k =5.13.解:(1)把A (1,4)代入y =k x,得k =1×4=4, 所以反比例函数的解析式为y =4x. 把A (1,4)代入y =-x +b ,得-1+b =4,解得b =5,所以直线的解析式为y =-x +5.(2)在y =-x +5中,令y =0,即-x +5=0,解得x =5,则B (5,0), 所以△AOB 的面积=12×5×4=10. 14.解:(1)∵在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),∴点D 的坐标是(1,2). ∵双曲线y =k x(k ≠0,x >0)过点D , ∴2=k 1,得k =2, 即双曲线的解析式是y =2x.(2)S △CDE =S △EDA +S △ADC =(2-0)×12+(2-0)×(3-1)2=1+2=3. 15.A [解析] 由直线y =mx 与双曲线y =k x均关于原点对称,可得S △ABM =||k ,所以||k =1.又因为k >0,所以k =1.故选A.16.C [解析] 由直线y =x 与双曲线y =1x均关于原点对称,可得S △ADC =S △ABC =||k =1,∴四边形ABCD 的面积为2.故选C.17.118.解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上,∴当x =4时,y =2, ∴点A 的坐标为(4,2).又∵点A 在双曲线y =k x(k >0)上, ∴k =4×2=8.(2)如图,分别过点C ,A 作x 轴的垂线,垂足为E ,F .∵点C 在双曲线y =8x上,当y =8时,x =1,∴点C 的坐标为(1,8).∵点C ,A 都在双曲线y =8x上, ∴S △COE =S △AOF =4,∴S △COE +S 梯形CEF A =S △AOC +S △AOF ,∴S △AOC =S 梯形CEF A .∵S 梯形CEF A =12×(2+8)×3=15,∴S △AOC =15.(3)∵反比例函数的图象是关于原点O 的中心对称图形, ∴OP =OQ ,OA =OB ,∴四边形APBQ 是平行四边形,∴S △POA =14S 平行四边形APBQ =14×24=6. 设点P 的横坐标为m (m >0且m ≠4),则点P 的坐标是⎝⎛⎭⎫m ,8m . 分别过点P ,A 作x 轴的垂线,垂足为E ,F .∵点P ,A 在双曲线上,∴S △POE =S △AOF =4.若0<m <4,如图①,∵S △POE +S 梯形PEF A =S △POA +S △AOF ,∴S 梯形PEF A =S △POA =6,即12·⎝⎛⎭⎫2+8m ·(4-m )=6, 解得m =2或m =-8(舍去),∴P (2,4).若m >4,如图②,∵S △AOF +S 梯形PEF A =S △POA +S △POE ,∴S 梯形PEF A =S △POA =6,即12·⎝⎛⎭⎫2+8m ·(m -4)=6, 解得m =8或m =-2(舍去),∴P (8,1). 综上,点P 的坐标是(2,4)或(8,1).。
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)(原卷版-初中数学北师大版9年级上册
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。
2.理解反比例函数的性质,并能运用其性质解决相关的问题。
3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。
反比例函数中的面积问题(共26张PPT)
课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”
考点05 反比例函数的图像和性质(解析版)
考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。
反比例函数中的面积问题
解得 k=2 评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。 第②小题首先应用三角形面积的计算方法分析得出四个三角形面积相 等,列出含k的方程求k值。
例2(2008贵州省黔南州)如图,矩形ABOD的顶点A是函数 与函数 在第二象限的交点, 轴于B, 轴于D,且矩形ABOD的பைடு நூலகம்积为3. (1)求两函数的解析式. (2)求两函数的交点A、C的坐标.
图象上,∴
解得x=1从而所求面积为π 评注:对于较复杂的图形面积计算问题,先应观察图形的特征,若具有 对称特征,则应用对称关系可以简化解题过程。
四、 讨论与面积有关的综合问题 例8.(2008山东省)(1)探究新知:
如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由. (2)结论应用:
与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC的面积.
.解:(1)∵点A(-2,4)在反比例函数图象上 ∴k=-8 ∴反比例函数解析式为y=
(2)∵B点的横坐标为-4, ∴纵坐标为y=2 ∴B(-4,2) ∵点A(-2,4)、 点B(-4,2)在直线y=kx+b上 ∴ 4=-2k+b 且2=-4k+b 解得 k=1 b=6 ∴直线AB为y=x+6 与x轴的交点坐标C(-6,0)
(3)若点P是y轴上一动点,且 , 求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得 -k=3 ∴
∴反比例函数的解析式为 ,一次函数的解析式为 (2)由 ,解得 ,
∴点A、C的坐标分别为(
,3),(3, ) (3)设点P的坐标为(0,m) 直线 与y轴的交点坐标为M(0,2) ∵
人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)
(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3
26.1.2 反比例函数的图象和性质 课件 2024-2025学年人教版(2012)九年级下册数学
综合应用创新
解题秘方:紧扣反比例函数的系数k的几何意义,利用轴 对称、勾股定理、正方形的性质解决最小值问题,正确构 造“两点一线”型最小值的基本图形是解题的关键. 解:由题知k>0,∵正方形OABC的边长是6, ∴点M的横坐标和点N的纵坐标都为6,∠B=90°. ∴ M(6,6k),N(6k,6). ∴ BN=6-6k,BM=6-6k.
感悟新知
反比例函数 k的符号
k>0
y=kx(k ≠ 0)
k<0
知2-讲
图象
图象位置 增减性
第一、第三象限
在每一个象限内,y 随x的增大而减小
第二、第四象限
在每一个象限内,y 随x的增大而增大
感悟新知
知2-练
例2
已知反比例函数y=
m2 x
(m
≠
0)的图象过点(-3,-12),
且反比例函数y=mx 的图象位于第二、第四象限.
知1-练
1-1. (1)在同一平面直角坐标系中画出反比例函数y=6x与y= -6x的图象.
感悟新知
解:①列表:
知1-练
x … -6 -5 -4 -3 -2 -1 …
y=6x … -1 -1.2 -1.5 -2 -3 -6 … y=-6x … 1 1.2 1.5 2 3 6 …
感悟新知
知1-练
x …1 2 3 4
感悟新知
知2-练
2-2.
在反比例函数y=
4-k x
的图象上有两点A(x1,y1),B(x2,
y2),当x1<0<x2时,有y1<y2,则k的取值范围是( C )
A. k<0
B. k>0
C. k<4
D. k>4
感悟新知
知3-讲
人教版反比例函数图象中的面积问题
思考
图中的这些矩形面积相等吗?
结论:
y
过双曲线上任意一点作x轴、 y轴的垂线,所得矩形的面 积S为定值,即S=|k|.
y k x
O
x
如图,已知点P(m,n)在函数y= k (k>0)
x
的图像上,PB⊥y轴,垂足为B,O’A在x轴
反比例函数图象中的面积问题
y
y
0
x
0
x
探究1 反比例函数与矩形的面积
k 已的象足知图(上 分2点像)点过 的 别上PPP 一是((分 m,点点m,那n,A,过)、么别 在n点x)Bm函轴 P,是分n,数作 则y反=别轴 yS比y向2矩=形例xO的 轴函kAxP、B数.,=垂 y_垂 轴y_|_作k_kx|_足 垂(线 _k_≠线_0.),分 垂图A,B,别
B P(m,n)
(或y轴)的垂线,所得直 O’ O
x
角三角形的面积S为定值,
即S=
1 2
|k|
.
探究3
任意正比例函数与反比例函数 图象交于A、B两点,那么
y k (k 0) x
△ABC的面积为多少呢?
y
A
C
D
图7
x
B
反比例函数与正比例函数围成的图形面积
变式:任意正比例函数与反比例函数 y= k 图像相交,
则a-b的值是多少?(中考题)
⊿AOB的面积。
图中面积相等的图形有哪些?
y
y k x
O
x
学会寻找图像中的基本构图、寻找单位面积 矩形或三角形、寻找变化中的不变量
拓展.如图,已知点A,C在反比例函数 y 的图象上,点B,D在反比例函数 y b(b
2015反比例函数与圆的切线
下载试卷文档前说明文档:1.试题左侧二维码为该题目对应解析;2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查看解析,杜绝抄袭;3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。
学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。
4.自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏->我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。
5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优网的支持。
2015反比例及圆的切线试题(扫描二维码可查看试题解析)一.填空题(共11小题)1.(2014•丹徒区二模)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为6,则k的值为.2.(2014•武汉模拟)如图:两个等腰直角三角形的两个直角顶点A、C都在y=上,若D(﹣8,0),则k=.3.(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=,S n=.(用含n的代数式表示)4.(2013•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为.5.(2013•泸州)如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P3的坐标是;点P n的坐标是(用含n的式子表示).6.(2013•桂林)函数y=x的图象与函数y=的图象在第一象限内交于点B,点C是函数y=在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是.7.(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.8.(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为.9.(2013•芦淞区模拟)已知双曲线,的部分图象如图所示,P是y轴正半轴上一点,过点P作AB∥x轴,分别交两个图象于点A,B.若PB=2PA,则k=.10.(2013•阜宁县二模)如图,D是反比例函数的图象上一点,过D 作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为.11.(2013•邓州市校级一模)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是.二.解答题(共19小题)12.(2013•巴中)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=.(1)求反比例函数的解析式;(2)求△AOB的面积.13.(2013•广元)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.14.(2001•吉林)如图,已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.15.(2015•茂名模拟)如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.16.(2015•潍坊模拟)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.17.(2014•涪城区校级自主招生)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.18.(2014•天心区校级模拟)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.(1)根据你的判断:BD是⊙O的切线吗?为什么?.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为10,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.19.(2014•梁子湖区校级模拟)如图,AD的圆O的切线,切点为A,AB是圆O的弦.过点B作BC∥AD,交圆O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC于圆O的位置关系,并说明理由.(2)若AB=9,BC=6,求圆O的半径.20.(2014•碑林区二模)如图,已知AB=2,AB、CD是⊙O的两条直径,M为弧AB的中点,C在弧MB上运动,点P在AB的延长上,且PC=AC,作CE⊥AP于E,连接DP交⊙O于F.(1)求证:当AC=时,PC与⊙O相切;(2)在PC与⊙O相切的条件下,求sin∠APD的值?21.(2014•润州区二模)如图,以线段AB为直径作⊙O,⊙O的切线切圆于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.(1)求证:AC是⊙O的切线.(2)若已知BD=2,sinD=,求线段OC的长.22.(2014•武汉模拟)如图,Rt△ABE中,AB⊥AE以AB为直径作⊙O,交BE于C,弦CD⊥AB,F为AE上一点,连FC,则FC=FE(1)求证:CF是⊙O的切线;(2)已知点P为⊙O上一点,且tan∠APD=,连CP,求sin∠CPD的值.23.(2014•黄陂区模拟)如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;(2)连结AD并延长交BE于点F,若△ABF的面积为,sin∠ABC=,求⊙O的半径.24.(2014•射阳县三模)如图,PA为⊙O的切线,A为切点,直线PO平分弦AB交AB于点D,交⊙O于点E、F,(1)试判断直线PB与⊙O的位置关系,并说明理由;(2)如PA=6,tan∠APB=,求⊙O的半径长.25.(2013秋•东西湖区校级期末)已知,如图:△ABC中,CH是高,∠ACH=2∠ABC,点O是AB上一点,以点O为圆心,OB为半径的⊙O经过点C,(1)求证:AC是⊙O的切线;(2)连接CO并延长交⊙0于点D,连接BD并延长与∠DCH的平分线CE相交于点E,若⊙O的半径为5cm,CH=4cm,求线段CE的长.26.(2013•潍坊模拟)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.27.(2013•镇江二模)如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=4,tan∠ABD=,求BE的长.28.(2013•陕西模拟)如图,AB是⊙O的直径,延长AB至点C,过点C作⊙O的切线CD,切点为D,连接AD、BD,过圆心O作AD的垂线交CD于点P.(1)求证:直线PA是⊙O的切线;(2)若AB=4BC,求的值.29.(2013•莆田模拟)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:①点F是BD中点;②CG是⊙O的切线;(2)若FB=FE=2,求⊙O的半径.30.(2013•江岸区模拟)如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)若BC=6,tan∠F=,求线段PE的长.2015反比例及圆的切线试题参考答案与试题解析一.填空题(共11小题)1.(2014•丹徒区二模)如图,点A在反比例函数y=(x>0)的图象上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为6,则k的值为.bBD=OD=(b=×b+8+×b,,.故答案为:2.(2014•武汉模拟)如图:两个等腰直角三角形的两个直角顶点A、C都在y=上,若D (﹣8,0),则k=﹣8.代入双曲线的解析式中得:3.(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)的纵坐标为的纵坐标为:﹣)×=2[﹣](×=2[﹣]﹣];.4.(2013•遵义)如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为(2,4).,)上,=,)××)×﹣=COF=5.(2013•泸州)如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P3的坐标是(+,﹣);点P n的坐标是(+,﹣)(用含n的式子表示).E=OA,可得y=﹣的坐标为(,﹣,,,可得c=﹣的坐标为(+﹣,+)+﹣+,)+,)6.(2013•桂林)函数y=x的图象与函数y=的图象在第一象限内交于点B,点C是函数y=在第一象限图象上的一个动点,当△OBC的面积为3时,点C的横坐标是1或4.,))在第一象限交于•+2•+27.(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.)BC=2AB=2,,),),y==,BC=2AB=2﹣)AD=2BC=2AB=28.(2013•宁波)如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2,反比例函数y=(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为(,).,),,反比例函数(,)22y=x+2﹣b=﹣=b+2﹣a=),9.(2013•芦淞区模拟)已知双曲线,的部分图象如图所示,P是y轴正半轴上一点,过点P作AB∥x轴,分别交两个图象于点A,B.若PB=2PA,则k=﹣4.=10.(2013•阜宁县二模)如图,D是反比例函数的图象上一点,过D作DE⊥x 轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为﹣2.×11.(2013•邓州市校级一模)如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值是.AB=y OE=OA=((yy(ya=3.故答案为:.二.解答题(共19小题)12.(2013•巴中)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=.(1)求反比例函数的解析式;(2)求△AOB的面积.AOE==y=中,)得y=×13.(2013•广元)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.经过点=1=,y=)x+1﹣,都等于﹣14.(2001•吉林)如图,已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.)由题意得)由,,(,,(﹣15.(2015•茂名模拟)如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.)(16.(2015•潍坊模拟)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.cosC=17.(2014•涪城区校级自主招生)已知:如图,在△ABC中,AB=BC,D是AC中点,BE 平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB 于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.求出,根据==,即可求出半径.,sinA=sinC===r=,的半径是.18.(2014•天心区校级模拟)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.(1)根据你的判断:BD是⊙O的切线吗?为什么?.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为10,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.BFA=,那么,于是BFA=19.(2014•梁子湖区校级模拟)如图,AD的圆O的切线,切点为A,AB是圆O的弦.过点B作BC∥AD,交圆O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO 并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC于圆O的位置关系,并说明理由.(2)若AB=9,BC=6,求圆O的半径.BC=3AM=6,设⊙﹣BC=3AM==66.20.(2014•碑林区二模)如图,已知AB=2,AB、CD是⊙O的两条直径,M为弧AB的中点,C在弧MB上运动,点P在AB的延长上,且PC=AC,作CE⊥AP于E,连接DP交⊙O 于F.(1)求证:当AC=时,PC与⊙O相切;(2)在PC与⊙O相切的条件下,求sin∠APD的值?CP=APD=求解.cosA==,DP==APD==21.(2014•润州区二模)如图,以线段AB为直径作⊙O,⊙O的切线切圆于点E,交AB 的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.(1)求证:AC是⊙O的切线.(2)若已知BD=2,sinD=,求线段OC的长.,=22.(2014•武汉模拟)如图,Rt△ABE中,AB⊥AE以AB为直径作⊙O,交BE于C,弦CD⊥AB,F为AE上一点,连FC,则FC=FE(1)求证:CF是⊙O的切线;(2)已知点P为⊙O上一点,且tan∠APD=,连CP,求sin∠CPD的值.B==R===,R==..23.(2014•黄陂区模拟)如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;(2)连结AD并延长交BE于点F,若△ABF的面积为,sin∠ABC=,求⊙O的半径.ODG=,ABC=r rDG=r==,即,AB24.(2014•射阳县三模)如图,PA为⊙O的切线,A为切点,直线PO平分弦AB交AB于点D,交⊙O于点E、F,(1)试判断直线PB与⊙O的位置关系,并说明理由;(2)如PA=6,tan∠APB=,求⊙O的半径长.APB== =,25.(2013秋•东西湖区校级期末)已知,如图:△ABC中,CH是高,∠ACH=2∠ABC,点O是AB上一点,以点O为圆心,OB为半径的⊙O经过点C,(1)求证:AC是⊙O的切线;(2)连接CO并延长交⊙0于点D,连接BD并延长与∠DCH的平分线CE相交于点E,若⊙O的半径为5cm,CH=4cm,求线段CE的长.FCH=∠ACH=∠ECB=CE=∠ACH=∠ECB==4cmCE=BC==4cm26.(2013•潍坊模拟)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求∠P的度数;(3)点M是弧AB的中点,CM交AB于点N,AB=4,求线段BM、CM及弧BC所围成的图形面积.AB=2CD=BD=DM=CM=BCM=所围成的图形面积为27.(2013•镇江二模)如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,若BC=4,tan∠ABD=,求BE的长.=,易证,得到===CDA=,OEB=,==,•28.(2013•陕西模拟)如图,AB是⊙O的直径,延长AB至点C,过点C作⊙O的切线CD,切点为D,连接AD、BD,过圆心O作AD的垂线交CD于点P.(1)求证:直线PA是⊙O的切线;(2)若AB=4BC,求的值.===29.(2013•莆田模拟)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:①点F是BD中点;②CG是⊙O的切线;(2)若FB=FE=2,求⊙O的半径.。
八下 反比例函数与图形面积(平行四边形、三角形 分类全面)
__反比例函数与图形的面积__一反比例函数与四边形的面积(教材P156目标与评定第7题)若正方形AOBC的边OA,OB在坐标轴上,顶点C在第一象限,且在反比例函数y=1x的图象上,则点C的坐标是__(1,1)__.【解析】设点C的坐标为(x,y).∵四边形AOBC是正方形,∴OB=OA,即x=y.∵点C在第一象限且在反比例函数y=1x的图象上,∴x2=1,∴x1=1,x2=-1(不合题意,舍去),∴点C的坐标是(1,1).【思想方法】反比例函数中k的几何意义:反比例函数图象上的点(x,y)的横、纵坐标之积(xy=k)为常数,即过反比例函数图象上任意一点,向两坐标轴分别作垂线,两条垂线与两坐标轴所围成的矩形的面积为常数|k|.以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图1所示的平面直角坐标系,反比例函数y =3x 经过点D ,则正方形ABCD 的面积是( D ) A.32 B .5 C .6D .12【解析】 由反比例函数中k 的几何意义可知, S 正方形ABCD =4×3=12.故选D.图1图2[2019·杭州期末]如图2所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( A ) A .2 B .2 2 C.32D .25【解析】 过D 作DE ⊥OA 于E , 设D ⎝ ⎛⎭⎪⎫a ,k a ,∴OE =a ,DE =k a ,∵点D 是矩形OABC 的对角线AC 的中点, ∴OA =2a ,OC =2k a , ∵矩形OABC 的面积为8, ∴OA ·OC =2a ·2ka =8,∴k =2.[2019·永康模拟]如图3,A ,C 分别是x 轴、y 轴上的点,反比例函数y =2x (x >0)的图象与矩形OABC 的边BC ,AB 分别交于E ,F ,若AF ∶BF =1∶2,则△OEF 的面积为( B ) A .2B.83 C .3D.103图3【解析】 设F 点的坐标为⎝ ⎛⎭⎪⎫t ,2t ,∵AF ∶BF =1∶2,∴AB =3AF ,∴B 点坐标为⎝ ⎛⎭⎪⎫t ,6t ,把y =6t 代入y =2x 得x =t 3,∴E 点坐标为⎝ ⎛⎭⎪⎫t 3,6t ,∴S △OEF =S 矩形ABCO -S △OEC -S △OAF -S △BEF =t ·6t -12×2-12×2-12⎝ ⎛⎭⎪⎫6t -2t ·⎝ ⎛⎭⎪⎫t -t 3=83.[2018·盐城]如图4,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =__4__. 【解析】 设点D 的坐标为(x ,y ),∵点D 为AB 的中点,且点D ,E 均在y =kx 上, ∴点E 的坐标为⎝ ⎛⎭⎪⎫2x ,12y .∵S △BDE =12BD ·BE =12·x ·12y =1, ∴k =xy =4.图4[2018·烟台]如图5,反比例函数y =kx 的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k =__-3__.图5【解析】 (法一)如答图①,连结OP , ∵C ,D 在坐标轴上,BD ⊥DC , ∴BD ∥y 轴,∴S △OPD =S △APD .∵▱ABCD 对角线的交点P ,▱ABCD 的面积为6, ∴S △APD =64=32.又∵S △OPD =S △APD =32=|k |2,∴|k |=3.又∵反比例函数的图象在第二象限, ∴k <0,∴k =-3.变形5答图①变形5答图②(法二)如答图②,过P点作PH⊥y轴于H,∵BD⊥DC,∴∠PDO=∠DOH=∠OHP=90°,∴四边形PDOH是矩形,又AB∥CD,=6,∴S▱ABCD=S矩形ABDO∵BP=DP,∴S=3=|k|,矩形PDOH又∵k<0,∴k=-3.如图6,在平面直角坐标系中,一次函数y =mx +n (m ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于第一、三象限内的A ,B 两点,与y 轴交于点C ,过点B 作BM ⊥x 轴,垂足为M ,BM =OM ,OB =22,点A 的纵坐标为4. (1)求该反比例函数和一次函数的表达式;图6(2)连结MC ,求四边形MBOC 的面积. 解:(1)在Rt △OMB 中,BM =OM ,OB =22, ∴BM 2+OM 2=()222,解得OM =BM =2, ∴B 点的坐标为(-2,-2).∵反比例函数y =kx (k ≠0)的图象经过点B (-2,-2), ∴k =(-2)×(-2)=4, ∴该反比例函数表达式为y =4x ,∵反比例函数y =4x 经过A 点,而A 点的纵坐标为4, ∴4=4x ,解得x =1,∴A 点坐标为(1,4). 将点A (1,4)和B (-2,-2)代入一次函数,得⎩⎨⎧m +n =4,-2m +n =-2,解得⎩⎨⎧m =2,n =2, ∴一次函数的表达式为y =2x +2; (2)一次函数y =2x +2与y 轴交于点C , 当x =0时,y =2,∴C 点坐标为(0,2), ∴OC =2,∵BM =2,∴OC =BM , 又∵BM ⊥x 轴,∴OC ∥BM , ∴四边形MBOC 为平行四边形, ∴S 四边形MBOC =2×2=4.二反比例函数与三角形的面积(教材P156目标与评定第8题)如图7,点A在反比例函数y=kx(k>0)的图象上,AM⊥x轴于点M.若△AMO的面积为3,则k=__6__.图7【解析】∵△AMO的面积为3,∴|k|=2×3=6.又∵k>0,∴k=6.【思想方法】反比例函数图象上任意一点与原点所连的线段、坐标轴以及过该点向坐标轴作的垂线所围成的直角三角形的面积S是个定值,且S=1 2|k|.[2018·宁波]如图8,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1-k2的值为(A)A.8 B.-8C.4 D.-4图8变形1答图【解析】 设点A 的坐标为(x A ,y ),点B 的坐标为(x B ,y ),点C 的坐标为(x C ,0), 如答图,过点C 作CD ⊥AB 交AB 的延长线于点D , ∵AB =x A -x B ,CD =y , ∴S △ABC =12AB ·CD =12(x A -x B )y =12(x A y -x B y )=12(k 1-k 2), 即4=12(k 1-k 2),∴k 1-k 2=8.[2018·郴州]如图9,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( B )图9A .4B .3C .2D .1【解析】 ∵A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A (2,2), 当x =4时,y =1,即B (4,1).过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,答图略, 则S △AOC =S △BOD =12×4=2.∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD +AC )·CD =12×(1+2)×2=3,∴S △AOB =3.[2018·龙东地区]如图10,平面直角坐标系中,点A 是x 轴上任意一点,BC ∥x 轴,分别交y =3x (x >0),y =kx (x <0)的图象于B ,C 两点,若△ABC 的面积为2,则k 的值为( A ) A .-1 B .1 C .-12D.12图10变形3答图【解析】 如答图,连结OB ,OC ,设BC 与y 轴交于点D , ∵BC ∥x 轴,∴S △OBC =S △ABC =2, ∵点B 在反比例函数y =3x 的图象上, ∴S △OBD =32,∴S △OCD =2-32=12, 又∵点C 在反比例函数y =kx 的图象上, ∴|k |=1,k =±1.∵反比例函数y =kx 的图象经过第二象限, ∴k <0,∴k =-1.故选A.如图11,直线y =2x 与反比例函数y =kx (k ≠0,x >0)的图象交于点A (1,a ),B 是此反比例函数的图象上任意一点(不与点A 重合),BC ⊥x 轴于点C . (1)求k 的值; (2)求△OBC 的面积.图11解:(1)将点A (1,a )的坐标代入y =2x ,得a =2×1,解得a =2,将点A (1,2)的坐标代入y =kx ,得2=k1,解得k =2;(2)由(1)可知,反比例函数的表达式为y =2x , ∴S △OBC =|k |2=22=1.三 反比例函数与几何图形的综合(教材P156目标与评定第9题)如图12,在反比例函数y =2x (x >0)的图象上有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4,分别过这些点作x 轴与y 轴的垂线.图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=__32__.图12【解析】 由题意,可知点P 1,P 2,P 3,P 4的坐标分别为(1,2),(2,1),⎝ ⎛⎭⎪⎫3,23,⎝ ⎛⎭⎪⎫4,12. 解法一:∵S 1=1×(2-1)=1, S 2=1×⎝ ⎛⎭⎪⎫1-23=13,S 3=1×⎝ ⎛⎭⎪⎫23-12=16,∴S 1+S 2+S 3=1+13+16=32;解法二:∵图中所构成的阴影部分的总面积正好是从点P 1向x 轴,y 轴引垂线构成的长方形面积减去最下方的长方形的面积,即1×2-12×1=32.【思想方法】 (1)反比例函数y =kx 中k 的几何意义:过函数图象上任意一点引x 轴、y 轴的垂线,所得矩形面积为|k |;(2)注意运用数形结合的思想,解答此类题一定要正确理解k 的几何意义.如图13,A ,B 两点在反比例函数y =4x 上,分别经过A ,B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2的值为( D )图13A .2B .3C .4D .6【解析】 ∵A ,B 是反比例函数y =4x 上的点,分别经过A ,B 两点向x 轴,y 轴作垂线段,则根据反比例函数中k 的几何意义,得两个矩形的面积都等于|k |=4,∴S 1+S 2=4+4-1×2=6.故选D.[2018·温州]如图14,点A ,B 在反比例函数y =1x (x >0)的图象上,点C ,D 在反比例函数y =kx (k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( B )图14A .4B .3C .2D.32【解析】 ∵点A ,B 在反比例函数y =1x (x >0)的图象上,点A ,B 的横坐标分别为1,2,∴点A 的坐标为(1,1),点B 的坐标为⎝ ⎛⎭⎪⎫2,12,∵AC ∥BD ∥y 轴,∴点C ,D 的横坐标分别为1,2,∵点C ,D 在反比例函数y =kx (k >0)的图象上, ∴点C 的坐标为(1,k ),点D 的坐标为⎝ ⎛⎭⎪⎫2,k 2,∴AC =k -1,BD =k 2-12=k -12,∴S △OAC =12(k -1)×1=k -12,S △ABD =12·k -12×(2-1)=k -14, ∵△OAC 与△ABD 的面积之和为32, ∴k -12+k -14=32,解得k =3.[2018·广东改编]如图15,已知等边三角形OA 1B 1,顶点A 1在双曲线y=3x (x >0)上.过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边三角形B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边三角形B 2A 3B 3…以此类推,则点B 6的坐标为__(26,0)__.图15变形3答图【解析】 如答图,过点A 1作A 1E ⊥x 轴,设OE =m ,则A 1E =3m ,由点A 1(m ,3m )在y =3x 图象上,得m ·3m =3,解得m =1(负值舍去),∴B 1(2,0),过A 2作A 2F ⊥x 轴于点F ,设B 1F =a ,则F (2+a ,0),∵△B 1A 2B 2是等边三角形,∴A 2(2+a ,3a ),将A 2点代入y =3x ,解得a =2-1(负值舍去),∴B 2(22,0),类似求得B 3(23,0),故B6(26,0).第2课时 反比例函数的性质1.[2018·衡阳]对于反比例函数y =-2x ,下列说法不正确的是( D ) A .图象分布在第二、四象限 B .当x >0时,y 随x 的增大而增大 C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2【解析】 A .∵k =-2<0,∴它的图象在第二、四象限,故本选项正确; B .k =-2<0,当x >0时,y 随x 的增大而增大,故本选项正确;C .把x =1代入y =-2x 中,得y =-21=-2,∴点(1,-2)在它的图象上,故本选项正确;D .点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =-2x 的图象上,若x 1<0<x 2,则y 1>y 2,故本选项错误.2.[2018·湖州]如图6-2-10,已知直线y =k 1x (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( A )图6-2-10A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)【解析】 ∵点M ,N 都在反比例函数的图象上,且两点的连线经过原点,∴M ,N 关于原点对称.∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A.3.[2018·天津]若点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数y =12x 的图象上,则x 1,x 2,x 3的大小关系是( B ) A .x 1<x 2<x 3 B .x 2<x 1<x 3 C .x 2<x 3<x 1D .x 3<x 2<x 1【解析】 把点A (x 1,-6),B (x 2,-2),C (x 3,2)分别代入y =12x 可得x 1=-2,x 2=-6,x 3=6,即可得x 2<x 1<x 3,故选B.4.[2018·临沂]如图6-2-11,正比例函数y 1=k 1x 与反比例函y 2=k 2x 的图象相交于A ,B 两点,其中点A 的横坐标为1,当y 1<y 2时,x 的取值范围是( D )图6-2-11A .x <-1或x >1B .-1<x <0或x >1C .-1<x <0或0<x <1D .x <-1或0<x <1【解析】 由反比例函数图象的中心对称性,正比例函数y 1=k 1x 与反比例函y 2=k 2x 的图象交点A 的横坐标为1,得另一个交点B 的横坐标为-1,结合图象知,当y 1<y 2时,x 的取值范围是x <-1或0<x <1,故选D.5.[2018·无锡]已知点P (a ,m ),点Q (b ,n )都在反比例函数y =-2x 的图象上,且a <0<b ,则下列结论一定正确的是( D ) A .m +n <0 B .m +n >0 C .m <nD .m >n【解析】 ∵k =-2<0,∴反比例函数y =-2x 的图象位于第二、四象限,∵a <0<b ,∴点P (a ,m )位于第二象限,点Q (b ,n )位于第四象限, ∴m >0,n <0,∴m >n .6.已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( B ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【解析】 ∵当x 1<x 2<0时,y 1>y 2,∴k >0,∵一次函数y =kx -k 的图象经过点(1,0)和点(0,-k ),-k <0, ∴一次函数的图象不经过第二象限.故选B.7.已知反比例函数y =6x ,当x >3时,y 的取值范围是__0<y <2__.【解析】 在坐标系内作出反比例函数y =6x 的函数图象,找到x >3对应的图象部分,确定其函数取值范围为0<y <2.8.[2018·台州]如图6-2-12,函数y =x 的图象与函数y =kx (x >0)的图象相交于点P (2,m ).图6-2-12(1)求m ,k 的值;(2)直线y =4与函数y =x 的图象相交于点A ,与函数y =kx (x >0)的图象相交于点B ,求线段AB 的长.解:(1)把点P (2,m )代入y =x ,得m =2, ∴P (2,2),把点P (2,2)代入y =kx ,得k =4;(2)当y =4时,代入y =x 得x =4,∴A (4,4),代入y =4x 得x =1,∴B (1,4),∴AB =4-1=3;9.[2019·拱墅区模拟]已知直线l :y =kx +b (k ,b 为常数,k ≠0)与函数y =2x 的图象交于点A (-1,m ). (1)求m 的值;(2)当k =__1__时,直线l 经过第一、三、四象限(任写一个符合题意的值即可); (3)求(2)中的直线l 的表达式和它与两坐标轴围成的三角形面积. 解:(1)把A (-1,m )代入y =2x 中,得m =-2;(2)由(1)知m =-2,∴A (-1,-2),把A (-1,-2)代入y =kx +b 中,得-2=-k +b , ∴b =k -2,∵直线l 经过第一、三、四象限, ∴⎩⎨⎧k >0,b <0,即⎩⎨⎧k >0,k -2<0, 解得0<k <2,∴k 可以取1; (3)由(2)知k =1,b =k -2=-1, ∴直线l 的表达式为y =x -1,∴直线l 与坐标轴的交点坐标为B (0,-1),C (1,0), ∴OB =1,OC =1, ∴S △OBC =12×1×1=12.10.[2018·绵阳]如图6-2-13,一次函数y =-12x +52的图象与反比例函数y =kx (k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的表达式;(2)在y 轴上求一点P ,使P A +PB 的值最小,并求出其最小值和P 点坐标.图6-2-13第10题答图解:(1)∵反比例函数y =k x (k >0)的图象过点A ,且△AOM 面积为1,∴12|k |=1, ∵k >0,∴k =2,故反比例函数的表达式为y =2x ;(2)如答图,作点A 关于y 轴的对称点A ′,连结A ′B ,交y 轴于点P ,则P A +PB 最小.由⎩⎪⎨⎪⎧y =-12x +52,y =2x,解得⎩⎨⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =12,∴A (1,2),B ⎝ ⎛⎭⎪⎫4,12,∴A ′(-1,2),最小值A ′B =(4+1)2+⎝ ⎛⎭⎪⎫12-22=1092. 设直线A ′B 的表达式为y =mx +n , 则⎩⎪⎨⎪⎧-m +n =2,4m +n =12,解得⎩⎪⎨⎪⎧m =-310,n =1710, ∴直线A ′B 的表达式为y =-310x +1710, ∴x =0时,y =1710,∴P 点坐标为⎝ ⎛⎭⎪⎫0,1710.11.如图6-2-14,一次函数y =k 1x +b (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于点A (-1,2),B (m ,-1).图6-2-14(1)求这两个函数的表达式;(2)在x 正半轴上是否存在点P (n ,0),使△ABP 为等腰三角形?若存在,求n 的值;若不存在,请说明理由.解:(1)把A (-1,2)代入y =k 2x ,得k 2=-2, ∴反比例函数的表达式为y =-2x .∵B (m ,-1)在反比例函数的图象上,∴m =2. 由题意得⎩⎨⎧-k 1+b =2,2k 1+b =-1,解得⎩⎨⎧k 1=-1,b =1,∴一次函数的表达式为y =-x +1; (2)存在.易求得AB =32,①当P A =PB 时,(n +1)2+4=(n -2)2+1,解得n=0,∵n>0,n=0不符合题意,舍去;②当P A=AB时,(n+1)2+4=(32)2,解得n=-1+14(负值舍去);③当BP=BA时,1+(n-2)2=(32)2,解得n=2+17(负值舍去).∴当n=-1+14或2+17 时△ABP为等腰三角形.。
万能解题模型(一) 反比例函数中的面积问题
万能解题模型(一) 反比例函数中的面积问题万能解题模型(一):反比例函数中的面积问题类型1:单支双曲线上一点一垂直形成的三角形的面积设单支双曲线方程为 $y=\frac{k}{x}$,点$A(x_1,y_1)$ 为单支双曲线上的一点,点 $P(x_1,0)$ 为$A$ 点向 $x$ 轴作垂线段的底部交点,则 $\triangle AOP$ 的面积为 $S=\frac{1}{2}x_1y_1$,同时 $\triangle ABC$ 的面积为 $S=\frac{1}{2}x_1\cdot\frac{k}{x_1}=\frac{1}{2}k$,因此$\triangle AOP$ 和 $\triangle ABC$ 面积的比值为$\frac{S_{\triangle AOP}}{S_{\triangleABC}}=\frac{\frac{1}{2}x_1y_1}{\frac{1}{2}k}=\frac{y_1}{k} $,即 $S_{\triangle AOP}=|k|\cdot S_{\triangle ABC}$。
类型2:单支双曲线上一点两垂直形成的矩形面积设单支双曲线方程为 $y=\frac{k}{x}$,点$P(x_1,y_1)$ 为单支双曲线上的一点,$AC$ 和 $DE$ 分别为$P$ 点向 $x$ 轴和 $y$ 轴作垂线段的线段,$B$ 点为 $AC$ 和$DE$ 的交点,则四边形 $PMON$ 的面积为 $S=|x_1y_1|$,同时四边形 $ACDE$ 的面积为$S=\frac{1}{2}|x_1|\cdot|y_1|=\frac{1}{2}S_{\square PMON}$,因此四边形 $PMON$ 和四边形 $ACDE$ 面积的比值为$\frac{S_{\square PMON}}{S_{\squareACDE}}=\frac{2S}{|x_1|\cdot|y_1|}=2|k|$,即 $S_{\square PMON}=|k|\cdot S_{\square ACDE}$。
反比例函数的图象与性质-ppt课件
法
技 合问题
巧
解决这类问题,一般先设出几何图形中未知边的长,然
点
拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质
例
如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质
考
点
清
单
解
读
■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质
考
点
清
单
解
读
2. 反比例函数图象的特点
反比例函数 y=
(k
为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限
解
读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (2015 湖北省咸宁市) 如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端
点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.
答案:解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;
②函数图象的对称轴为直线x=﹣3;
由题意得A点坐标为(﹣3,0).分两种情况:
①x≥﹣3时,显然y=x+3;
②当x<﹣3时,设其解析式为y=kx+b.
在直线y=x+3中,当x=﹣4时,y=﹣1,
则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).
把(﹣4,1),(﹣3,0)代入y=kx+b,
得,解得,
∴y=﹣x﹣3.
综上所述,新函数的解析式为y=;
(2)如图2,①∵点C(1,a)在直线y=x+3上,
∴a=1+3=4.
∵点C(1,4)在双曲线y=上,
∴k=1×4=4,y=.
∵点D是线段AC上一动点(不包括端点),
∴可设点D的坐标为(m,m+3),且﹣3<m<1.
∵DP∥x轴,且点P在双曲线上,
∴P(,m+3),
∴PD=﹣m,
∴△PAD的面积为
S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,
∵a=﹣<0,
∴当m=﹣时,S有最大值,为,
又∵﹣3<﹣<1,
∴△PAD的面积的最大值为;
②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:
当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),
∵DP=3,DE=4,
∴EP与AC不能互相平分,
∴四边形PAEC不能为平行四边形.
2. (2015 辽宁省锦州市) 如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是.
答案:
分析:根据反比例函数的系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可得|k|=S△AOB=2,据
此求出k的值是多少即可.
解答:解:∵△AOB的面积是2,
∴|k|=2,
∴|k|=4,
解得k=±4,
又∵双曲线y=的图象经过第二、四象限,
∴k=﹣4,
即k的值是﹣4.
故答案为:﹣4.
点评:此题主要考查了反比例函数的系数k的几何意义,要熟练掌握,解答此题的关键是要明确:比例系数k的几何意义在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上
任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
3. (2015 贵州省黔西南州) 如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x 轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k= .
答案:
分析:由于点A是反比例函数y=上一点,矩形ABOC的面积S=|k|=4,则k的值即可求出.
解答:解:由题意得:S矩形ABOC=|k|=4,又双曲线位于第二、四象限,则k=﹣4,
故答案为:﹣4.
点评:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
4. (2015 浙江省湖州市) 如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y= (x<0)图象上一点,AO的延长线交函数y= (x>0,k是不等于0的常
数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,连接CC′,交x轴于点B,连结AB,AA′,A′C′,若△ABC的面积等于6,则由线段AC,
CC′,C′A′,A′A 所围成的图形的面积等于( )
A. 8
B. 10
C. 3
D. 4
答案:
答案B.
解析
试题分析:如图,连接O A′,由点A和点A′关于y轴的对称可得∠AOM=∠A′OM,又因∠AOM+∠BOC=90°, ∠A′OM +∠A′OB=90°,根据等角的余角相等
可得∠BOC= A′OB;又因点C与点C′关于x轴的对称,所以点A、A′、
C′三点在同一直线上.设点A的坐标为(m,
),直线AC经过点A,可求的直线AC的表达式为.直线AC 与函数y=一个交点为点C,则可求得点C的坐标当k<0时为(mk,),当k>0时为(-mk,),根据△ABC
的面积等于6可得,解得.或
,解得,所以y=.根据反比例函
数比例系数k的几何意义和轴对称的性质可得△AO A′的面积为1,△CO C′的面积为9,所以线段AC,CC′,C′A′,A′A所围成的图形的面积等于△AO A′的面积+△CO C′的面积,即线段AC,CC′,C′A′,A′A所围成的图形的面积等于10,故答案选B.
5. (2015 四川省资阳市) 如图7,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直
线l∥y轴,且直线l分别与反比例函数
8
y
x
=(x>0)和
k
y
x
=(x>0)的图象交于P、Q两点,
若S△POQ=14,则k的值为__________.
答案:
分析:由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k的值.
解答:解:∵S△POQ=S△OMQ+S△OMP,
∴|k|+×|8|=14,
∴|k|=20,
而k<0,
∴k=﹣20.
故答案为﹣20.
点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.
6. (2015 四川省凉山州) 以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()
A.10 B.11 C.12 D.13
答案:
分析:根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.
解答:解:∵双曲线y=经过点D,
∴第一象限的小正方形的面积是3,
∴正方形ABCD的面积是3×4=12.
故选:C.
点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
7. (2015 甘肃省兰州市) 如图,点P ,Q 是反比例函数x
k
y
图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作
PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连结PB ,QM ,记△ABP 的面积为S 1,△QMN 的面积为S 2,则S 1_____S 2
(填“>”或“<”或“=”)
答案:答案=
解析
试题分析:有反比例函数的几何性质可知四边形APMO 的面积=四边形OBQN 的面积 ∴四边形APEB 的面积=四边形MEQN 的面积 又有题意可知S 1=21倍四边形APEB 的面积,S 2=2
1
倍四边形OBQN 的面积 所以S 1=S 2
8. (2015 甘肃省南州市) 如图,点A 在双曲线
上,点B 在双曲线y=上,且AB ∥x 轴,C 、
D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .
答案:分析: 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的
矩形的面积S 的关系S=|k|即可判断.
解答: 解:过A 点作AE ⊥y 轴,垂足为E , ∵点A 在双曲线
上,
∴四边形AEOD 的面积为1,
∵点B 在双曲线y=上,且AB ∥x 轴, ∴四边形BEOC 的面积为3,
∴四边形ABCD 为矩形,则它的面积为3﹣1=2. 故答案为:2.
点评: 本题主要考查了反比例函数
中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴
垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.
9. (2015 广东省深圳市) 如图
,已知点A 在反比例函数
)0(<=
x x
k
y 上,作
RT ⊿ABC ,点D 为斜边AC 的
中点,连DB
并延长交y 轴于点E ,若⊿BCE 的面积为8,则k=。
答案:答案16
解析由题意,
1
2
BCE
S BC OE
=8。