高二数学归纳推理和类比推理
归纳推理与类比推理
THANKS FOR WATCHING
感谢您的观看
总结词
类比推理可以分为简单类比和复杂类比两种类型。
详细描述
简单类比是指基于两个对象之间的直接相似性进行推理,例如通过比较两个物体 的形状、大小、颜色等表面特征来推断它们的其他属性。复杂类比则涉及到更抽 象的概念和关系,需要更深入的分析和理解。
类比推理的优缺点
总结词
类比推理的优点在于能够通过相似性快速推断出其他属性,但也可能因为相似性不足而 导致推断不准确。
归纳推理与类比推理
目录
• 引言 • 归纳推理 • 类比推理 • 归纳推理与类比推理的应用场景 • 归纳推理与类比推理的案例分析 • 结论
01 引言
主题简介
归纳推理与类比推理是两种重要的推理方法,在 逻辑学、数学、科学和日常生活中广泛应用。
归纳推理是从个别到一般的推理过程,通过观察、 实验和经验归纳出一般性规律或结论。
未来研究可以进一步探讨归纳 推理和类比推理的内在机制和 认知过程,以及它们在人类思
维和人工智能领域的应用。
研究可以探索归纳推理和类比 推理在不同领域的应用,例如 心理学、教育学、商业管理和
人工智能等。
未来研究可以关注如何提高归 纳推理和类比推理的准确性和 效率,以及如何将它们应用于 实际问题解决和决策制定中。
类比推理的定义
总结词
类比推理是一种基于两个或多个对象之间的相似性来推断出其他属性的推理方 法。
详细描述
类比推理是通过比较两个或多个对象之间的相似性,推断出它们在其他属性上 的相似性。这种方法基于已有的经验和知识,通过比较不同对象之间的相似点 或共同特征,来推断出它们在其他方面的相似性。
高二数学选修2-2(B版)_总结归纳:推理与证明
推理与证明对于数学的学习,应具备“能力”,其中本章的“推理与证明”就是一种重要的“逻辑思维”能力形式.通过本章的复习,要有着扎实的推理、论证能力,以增强对问题的敏锐的观察,深刻的理解、领悟能力.一.推理部分1.知识结构:2.和情推理:归纳推理与类比推理统称为和情推理.①归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或有个别事实概括出一般结论的推理,称为归纳推理.②类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.③定义特点;归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.例如:已知2()53f n n n =-+-,可以(1)10f =>,(2)30,f =>(3)30,(4)10f f =>=>,于是推出:对入任何n N *∈,都有()0f n >;而这个结论是错误的,显然有当5n =时,(5)30f =-<.因此,归纳法得到的结论有待证明.例如:“在平面内与同一条直线垂直的两条直线平行”;类比线与线得到:“在空间与同一条直线垂直的两条直线平行“;显然此结论是错误的”.类比线与面得到:在空间与同一个平面垂直的两个平面平行;显然此结论是错误的.④推理过程:从具体问题出发 观察、分析、比较、联想 归纳、类比 猜想.3.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(逻辑推理).①定义特点:演绎推理是由一般到特殊的推理;②数学应用:演绎推理是数学中证明的基本推理形式;推理模式:“三段论”:ⅰ大前提:已知的一般原理(M 是P );ⅱ小前提:所研究的特殊情况(S 是M );ⅲ结论:由一般原理对特殊情况作出判断(S 是P );集合简述:ⅰ大前提:x ∈M 且x 具有性质P ;ⅱ小前提:y ∈S 且S ⊆M ;ⅲ结论: y 也具有性质P ;例题1.若定义在区间D 上的函数()f x 对于D 上的n 个值12,,n x x x ,总满足[]12121()()()()n n x x x f x f x f x f n n ++++++≤,称函数()f x 为D 上的凸函数;现已知()sin f x x =在(0,)π上是凸函数,则ABC ∆中,sin sin sin A B C ++的最大值是 .解答:由[]12121()()()()n n x x x f x f x f x f n n ++++++≤(大前提)因为()sin f x x =在(0,)π上是凸函数 (小前提)得()()()3()3A B C f A f B f C f ++++≤ (结论)即sin sin sin 3sin 3A B C π++≤=因此,sin sin sin A B C ++的最大值是2 注:此题是一典型的演绎推理“三段论”题型4.和情推理与演绎推理的关系:①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性;例2.设()2x x a a f x -+=,()2x xa a g x --=(其中0a >且1a ≠) (1)5=2+3请你推测(5)g 能否用(2),(3),(2),(3)f f g g 来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解答:(1)由(3)(2)(3)(2)f g g f +=332a a -+222a a --+332a a --222a a -+ =552a a -- 又(5)g =552a a -- 因此,(5)g =(3)(2)(3)(2)f g g f +(2)由(5)g =(3)(2)(3)(2)f g g f +即(23)g +=(3)(2)(3)(2)f g g f +于是推测()g x y +=()()()()f x g y g x f y + 证明:因为:()2x x a a f x -+=,()2x xa a g x --=(大前提) 所以()g x y +=2x y x ya a ++-, ()g y =2y y a a --,()f y =2y ya a -+,(小前提及结论) 所以()()()()f x g y g x f y +=2x x a a -+2y y a a --+2x x a a --2y ya a -+ =2x y x ya a ++-=()g x y + 解题评注:此题是一典型的由特殊到一般的推理,构造(23)g +=(3)(2)(3)(2)f g g f +是此题的一大难点,要经过观察、分析、比较、联想而得到;从而归纳推出一般结论()g x y +=()()()()f x g y g x f y +.二.证明部分1.知识结构2.综合法与分析法①综合法;利用已知条件和某些数学定义、公理、定理等出发,经过一系列推理论证,推导出所要证明的结论成立.②分析法:从要证明的结论出发逐步寻求使它成立的充分条件,直至把要证明的结论归结为判别一个明显成立的条件为止.③综合应用:在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.例3.已知:0a b >>,求证:22()()828a b a b a b ab a b-+-<-< 证明:因为0a b >> 所以22()()828a b a b a b ab a b-+-<< ⇔222()()()44a b a b a b a b--<< ⇔|22a b a b<< ⇔2a b a b a b<< ⇔121b a a b < ⇔1b a a b<又由已知0a b >>1b a a b<<成立. 由于以上分析步步等价,因此步步可逆.故结论成立.解题评注:(1)以上解答采用恒等变形,其实质从上往下属于分析法,反之属于综合法.(2)1b a a b<,(0a b >>)是结论成立的充要条件,当然找到了结论成立的充分条件就可以了.例4.求证抛物线22(0)y px p =>,以过焦点的弦为直径的圆必与2p x =-相切. 证明:(如图)作AA /、BB /垂直准线,取AB 的中点M ,作MM /垂直准线. 要证明以AB 为直径的圆与准线相切只需证|MM /|=12|AB | 由抛物线的定义:|AA /|=|AF |,|BB /|=|BF |所以|AB |=|AA /|+|BB /|因此只需证|MM /|=12(|AA /|+|BB /|) 根据梯形的中位线定理可知上式是成立的. 所以以过焦点的弦为直径的圆必与2p x =-相切. 以上解法同学们不难以综合法作出解答.解题评注:分析法是从结论出发寻找证题思路的一种重要的思维方法,特别是题设和结论相结合,即综合法与分析法相结合,可使很多较为复杂的问题得到解决.3.数学归纳法一般地,证明一个与正整数n有关的命题的步骤如下:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳递推)假设n=k (0(,)k n k n ≥∈*时命题成立,证明当1n k =+ 时命题也成立。
归纳推理、类比推理
归纳推理、类比推理第三周归纳推理、类比推理一、归纳推理(一)归纳推理:以个别或特殊性知识为前提,推出一般性结论的推理。
它包括完全归纳和不完全归纳,两者的区别在于前者考察了一类中的每一个对象,而后者只考察了一类中的部分对象。
其逻辑结构:S1是(不是)P S1是(或不是)PS2是(不是)P S2是(或不是)PS3是(不是)P S3是(或不是)P…………Sn是(不是)P Sn是(或不是)PS1、S2、S3……Sn是S类的全部对象S1、S2、S3……Sn是S类的部分对象所以,所有的S是(不是)P 所以,所有的S都是(或不是)P根据前提中是否考察了事物对象与其属性之间的内在联系,不完全归纳推理分为简单枚举法和科学归纳法。
1.简单枚举归纳推理又叫做简单枚举法,它是根据一类事物对象中部分对象具有(或不具有)某种属性,推出该类对象全体都具有(或不具有)这种属性的推理。
其逻辑形式是:S1是(不是)PS2是(不是)PS3是(不是)P……Sn是(不是)P(S1、S2、S3……Sn是S类的部分对象,并且没有出现反例)———————————————————————————所以,所有的S是(不是)P2.科学归纳法科学归纳推理又叫做科学归纳法,它是根据一类对象中的部分对象与其属性之间的联系具有必然性,推出该类对象的全部都具有这种属性的推理逻辑结构式S1是PS2是PS3是P……Sn是P(S1、S2、S3……Sn是S类的部分对象,并且S与p之间有必然联系)——————————————————所以,所有的S是P(二)因果联系:事物之间引起和被引起的关系。
因果联系的特征有:不能颠倒的先因后果、一个原因可以引起多个结果、一个结果也可以由不同原因引起。
求因果方法:五种基本方法。
1.求同法,即寻求被研究的事物现象出现在若干不同场合,是否具有某种共同原因的方法,其特点是异中求同。
形式结构:场合先行情况被研究现象(1) A、B、C a(2) A、D、E a(3) A、F、G a………………………————————————————所以,A与a有因果联系。
归纳推理及类比推理
目的和重要性
目的
理解和掌握归纳推理及类比推理的基 本概念、方法和应用,提高逻辑思维 能力。
重要性
在日常生活、科学研究和学术领域中, 归纳推理和类比推理都是非常重要的 思维方式,能够帮助我们更好地理解 世界、解决问题和创新思考。
02
归纳推理
归纳推理的定义
归纳推理是从个别到一般的推理方式 ,通过观察、实验和经验归纳出事物 的共性和普遍规律。
类比推理的实例
总结词
以人类和动物的运动为例,通过类比推理可以推断出动物的运动机制可能与人类存在相 似性。
详细描述
人类和动物的运动机制具有一定的相似性,例如人类和某些动物都具备行走、奔跑和跳 跃的能力。通过类比推理,我们可以推断出动物的运动机制可能在某些方面与人类存在 相似性,例如肌肉的工作方式、关节的结构等。这种推断可以通过生物学和运动学的研
它从具体事实出发,将特殊情况归纳 为一般原理或规律,从而得出普遍性 的结论。
归纳推理的类型
01
完全归纳推理
根据某一类事物中每一个对象的 情况来推出该类事物的一般性结 论。
02
简单枚举归纳推理
03
科学归纳推理
根据某一类事物中部分对象的情 况来推出该类事物的一般性结论。
根据对某一类事物中部分对象与 某种属性之间的因果关系的研究, 推出该类事物的一般性结论。
详细描述
类比推理是一种推理方法,它基于两个或多个对象或事件之间的相似性,推断出它们在其他方面也可 能存在相似性。这种方法通常用于科学、技术和工程领域,帮助人们理解复杂的概念和系统。
类比推理的类型
总结词
类比推理可以分为三种类型:简单类比、结构类比和功能类 比。
详细描述
简单类比是根据两个或多个对象或事件之间的表面相似性进 行推理。结构类比则是基于两个或多个对象或事件之间的结 构相似性进行推理。功能类比则是基于两个或多个对象或事 件之间的功能相似性进行推理。
归纳推理与类比推理
(3)因为三角形的内角和是180°×(3- 2),四边形的内角和是180°×(4-2),五 边形的内角和是180°×(5-2),……,所 以n边形的内角和是180°×(n-2)。 从上述事例中可以发现,其中的推理得 到的结论都是可能为真的判断,像这种前 提为真时,结论可能为真的推理,叫做合
情推理。
归纳推理 类比推理
2.1.2 合情推理(归纳推理)
歌德巴赫猜想: “任何一个不小于6的偶数都等于两个奇数 之和” 即:偶数=奇质数+奇质数
(一)归纳推理: 考察以下事例中的推理: (1)1856年,法国微生物学家巴斯德发 现乳酸杆菌是使啤酒变酸的原因,接着, 通过对蚕病飞研究,他发现细菌是引起蚕 病的原因,据此,巴斯德推断人身上的一 些传染病也是有细菌引起的; (2)我国地质学家李四光发现中国松辽 地区和中亚西亚的地质结构类似,而中亚 西亚有丰富的石油,由此,他推断松辽平 原也蕴藏着丰富的石油;
在学习等差数列时,我们是这样推导首 项为a1,公差为d的等差数列{an}的通项公 式的: a1=a1+0d; a2=a1+1×d; a3=a1+2×d; a4=a1+3×d; ………… 等差数列{an}的通项公式是an=a1+(n-1)d.
这种根据一类事物的部分对象具有某种 性质,推出这类事物的所有对象都具有这 种性质的推理,叫做归纳推理(简称归 纳)。归纳是从特殊到一般的过程。 下面,我们通过一个实例来得出归纳推理 的一般步骤。 例如,当你看到这样的几个关系式: 10=3+7,20=3+17;30=13+17,时,
等比数列
1.an = a1qn-1 (n∈N+) 2.an = amqn-m (m,n∈N+) 3.an-1· an+1 =an2 (n≥2,n∈N+)
归纳推理与类比推理异同点比较
归纳推理与类比推理异同点比较合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理一归纳推理和类比推理的联系:归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明二归纳推理和类比推理的区别:一归纳推理1归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.说明:归纳推理的思维过程大致如下:2归纳推理的特点:(1归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.2由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.3归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法3归纳推理的一般步骤:①通过观察个别情况发现某些相同本质;②从已知的相同性质中推出一个明确表达的一般性命题.说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.二类比推理(以下简称类比)1类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.2类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3说明:类比推理的思维过程大致如下图所示:类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物,同时,类比推理比归纳推理更富于想像,因而也就更具有创造性人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具例1如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n个图形中的花盆数a n=.【答案】a n=3n2-3n1【解析】仔细观察发现:图案①的花盆数为:1个,a1=1;图案②的花盆中间数为3,上下两行都是2个,a2=232;图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称,a3=34543;……;可以猜想:第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=nn1…2n-1…n1n=3n2-3n1【评析】上例是利用归纳推理解决问题的归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一例2如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,B1,C1分别是所作直线与侧面交点.求证:为定值.分析考虑平面上的类似命题:“过△ABC(底)边AB上任一点O分别作OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证为定值”.这一命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△LCV.得=。
数学推理的方法
数学推理的方法数学推理是数学科学中的一个重要分支,它是建立数学理论的基础。
以下是一些常用的数学推理方法:一、归纳推理归纳推理是从具体的实例中总结出一般规律的过程。
例如,观察一些特定的数学对象,通过比较、分析它们的性质和关系,可以归纳出它们的一般性质或规律。
二、演绎推理演绎推理则是从一般到特殊的推理过程。
它通常以公理、定理等为基础,通过逻辑推理得出新的结论。
演绎推理在数学中应用广泛,如几何、代数等领域。
三、类比推理类比推理是通过比较两个或多个事物的相似性,从一个事物的已知性质推导出另一个事物的性质的过程。
在数学中,类比推理常用于寻找新的数学对象或理论。
四、数学归纳法数学归纳法是一种特殊的归纳推理方法,主要用于证明与自然数有关的数学命题。
通过数学归纳法,可以从一个初始的基本命题出发,逐步推导出其他命题,从而全面证明某个数学命题。
五、反证法反证法是通过否定一个命题来证明该命题的方法。
首先假设某个命题是错误的,然后推导出一些矛盾的结论,从而证明原命题是正确的。
反证法在数学中经常被使用,如证明无解的方程等。
六、构造法构造法是通过实际构造来证明某个命题的方法。
在数学中,有时可以通过构造具体的实例来证明某个命题,如构造出一个满足某种性质的解或反例等。
七、代数法代数法是通过代数运算和变换来证明或求解数学问题的方法。
代数法广泛应用于方程求解、函数性质等领域。
八、数学模型法数学模型法是将现实问题转化为数学模型的过程。
通过建立数学模型,可以将现实问题转化为数学问题,从而应用数学方法和工具进行求解。
这种方法在科学计算、工程等领域有广泛应用。
九、数理逻辑数理逻辑是数学推理的基础,它研究推理的形式和规律。
数理逻辑通过符号和公式来表示推理过程,从而精确地表达数学中的概念和命题。
数理逻辑在计算机科学、人工智能等领域也有广泛应用。
归纳推理与类比推理
求异法可用以下形式表示: 先行情况 被研究现象 正面场合 A、B、C —— a 反面场合 — B、C —— — 所以,A是a的原因(或结果)。 特点为“同中求异”,注意正反面场合差异的唯一性。
归纳推理与类比推理
3、求同求异并用法(略) 4、共变法
共变法可用以下形式表示: 场合 先行情况 被研究现象 ⑴ A1、B、C —— a1、b、c ⑵ A2、B、C —— a2、b、c ⑶ A3、B,C —— a3、b、c 所以,A是a的原因(或结果)。 特点:“果随因变”,注意除因果共变,其它情况不变。
归纳推理与类比推理
2、不完全归纳推理
定义与性质:不完全归纳推理是根据一类中的部分对象 具有某属性,推出该类全部都具有该属性的推理。不完 全归纳推理的结论不必然为真。(错误“以偏概全”) 结构式: S1是(或不是)P; S2是(或不是)P; S3是(或不是)P; „„ Sn是(或不是)P; S1、S2、S3 „„Sn是S类的部分对象; 所以,所有S都是(或不是)P。
第5章 归纳推理
5、剩余法
剩余法可用公式表示为: 复合先行情况 复合被研究现象 A、B、C —— a、b、c B —— b C —— c 所以,剩余部分a的原因(或结果)是A。 特点:“从余果推余因”,注意A和a必须是唯一剩余因素。
归纳推理与类比推理
三、溯因推理
定义:溯因推理是根据已知事实结果和有关规律性认识, 推断出产生这一结果的原因的推理。 推理公式: 如果A,那么B B 所以,A可能真 特点:由于推理使用了充分条件假言推理的肯定后件式 (无效式),所以当溯因推理前提为真时,其结论不必 然为真。溯因推理主要用于假说的提出和论证,也用于 日常事物可能原因的推测。
高二数学选修2-2:第二章 推理与证明
【例 3】 一直线与△ABC 的边 AB,AC 分别相交于 E,F,则SS△△AABECF =AABE··AACF.将平面上的三角形与空间中的三棱锥进行类比,试 推理三棱锥的性质,并给出证明. 解 在三棱锥 S-ABC 中,平面 α 与侧棱 SA,SB,SC 分别相 交于 D,E,F. 则VVSS--DABECF=SSDA··SSBE··SSCF. 证明如下:
则当 n=k+1 时,2+2 1·4+4 1·…·2k2+k 1·22kk++31
> k+1·22kk++31=22kk++31.
要证当 n=k+1 时结论成立,
只需证 2
2k+k+3 1>
k+2成立,
只需证:4k2+12k+9>4k2+12k+8 成立,显然成立,
∴当 n=k+1 时,2+2 1·4+4 1·…·2k2+k 1·22kk++31> k+1+1成立, 综合①②可知不等式b1b+1 1·b2b+2 1·…·bnb+n 1> n+1成立.
从而只需证 2
a2+a12≥ 2 a+1a,
只要证 4a2+a12≥2a2+2+a12,
即 a2+a12≥2,而上述不等式显然成立,故原不等式成立.
【例5】 如图,在四面体B-ACD中,CB=CD,AD⊥BD,且E,F 分别是AB,BD的中点,求证: (1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.
∴AB∥EN. 又AB∥CD∥EF, ∴EN∥EF, 这与EN∩EF=E矛盾,故假设不成立. ∴ME与BN不共面,即它们是异面直线.
专题四 数学归纳法 1.数学归纳法事实上是一种完全归纳的证明方法,它适用于与自
然数有关的问题.两个步骤、一个结论缺一不可,否则结论不 成立;在证明递推步骤时,必须使用归纳假设,必须进行恒等 变换. 2.探索性命题是近几年高考试题中经常出现的一种题型,此类问 题未给出问题的结论,需要由特殊情况入手,猜想、证明一般 结论,它的解题思路是:从给出条件出发,通过观察、试验、 归纳、猜想、探索出结论,然后再对归纳,猜想的结论进行证 明.
归纳推理和类比推理
练习1
电视纪录片不只是表现了那些来自遥远的东非的人们对保护野 生动物的虔诚,而且还向我们展示了在一个缺少食品的国 度,大象是一种有害的动物,而且是一种聪明的有害动物。 目前好像还没有办法保护非洲东部的农田免受晚上出来寻 找事物的狼吞虎咽的象群的破坏。显然,这个例子表明: 以下哪项最合逻辑地完成上文的论述? A.保护野生动物可能会危害人类的安康。 B. 现在应将大象从濒临灭绝的动物名单中除去。 C.电视纪录片除了重复那些被接受的虔诚外不应再纪录 别的事。 D.农民和农业官员在采取任何控制象群的措施前应当与 野生动物保护者密切合作。
II.近三年来,湖州地区日均 耗电量逐年明显增加。
III.今年湖州地区任一用电超 标单位的日均耗电量都高于 全地区的日均耗电量。
A.只有I C.只有III
B.只有II D.只有II和III
练习7
某社会机构公布了一项长期社 会调查的结果,调查显示:在 婚后的13年里,妇女们平均 增长了13公斤,男人们平均 增长了20公斤。这一机构得 出结论:婚姻能使人变胖。
师大附中与学生家长订了协议,如果孩子的 学习成绩的名次没有排在前二十名,双方共 同禁止学生玩滚轴溜冰。
玩滚轴溜冰的同学受到了学校有效的指导, 其中一部分同学才不至于因此荒废学业。
练习4
在一项实验中,实验对象的一半作为实验组,食用 了大量的味精。而作为对照组的另一半没有吃这 种味精。结果,实验组的认知能力比对照组差得多。 这一不利的结果是由于这种味精的一种重要成 分——谷氨酸造成的。
以下哪项如果为真,则最有助于证明味精中某 些成分造成认知能力低下这一结论?( )
大多数味精消费者不像试验中的人那样使用 大量的味精
上述结论中提到的谷氨酸在所有蛋白质中都 有,为了保证营养必须摄入一定量
高二北师大数学选修22第一节归纳与类比1.2类比推理教学设计
第一章推理与证明1.2类比推理教学目标1.理解类比推理的意义;了解类比推理的特点;2.掌握运用类比推理的一般步骤。
会进行简单的类比推理。
3.了解归纳推理与类比推理的异同;4.理解合情推理的含义,了解所得结果不一定正确;5.了解合情推理在科学实验和创造中的价值,增强在数学学习中自觉运用合情推理的意识。
提高归纳、类比联想的能力。
重难点剖析重点:掌握类比推理的特点与步骤;难点:在类比推理的运用中发现两类对象间相似性质潜在的关联性;教学过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手. 我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.例题分析我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c;(1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。
(3) a>b⇒a2>b2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆球弦←→截面圆直径←→大圆周长←→表面积面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想。
即例3如图,已知点O 是ABC ∆内任意一点,连结,,,CO BO AO 并延长交对边于111,,C B A ,则1111111=++CC OC BB OB AA OA (Ⅰ)类比猜想,对于空间四面体BCD V -,存在什么类似的结论 (Ⅱ)?并用证明(Ⅰ)时类似的方法给出证明。
归纳推理及类比推理
三、求同求异并用法(契合差异并用 求同求异并用法( 法)
1、含义:如果被研究现象出现的若干场合(正事例组)中, 、含义:如果被研究现象出现的若干场合(正事例组) 只有一个共同的情况,而在被研究现象不出现的若干场合 只有一个共同的情况, 负事例组) 却没有这个情况, (负事例组)中,却没有这个情况,那么这个情况就与被研 究现象之间有因果联系。 究现象之间有因果联系。 2、用公式表示为: 、用公式表示为: 场合 相关情况 被研究现象 a (1) A,B,C,F ) , , , a (2) A,D,E,Q ) , , , a (3) A,F,Q,C ) , , , …… …… …… (11) ﹁ A,B,C,F ﹁ a ) , , , (22) ﹁ A,D,E,Q ﹁ a ) , , , (33) ﹁ A,F,Q,D ﹁ a ) , , , 所以, 与 所以,A与a 之间有因果关系
假说
一、假说的特征 1、含义:就是人们根据已有的事实材料和科学 、含义: 原理, 原理,对未知的事物或规律性所提出的一个假 定性的、系列的解释。 定性的、系列的解释。 2、特征 、 1)假说是以事实材料和科学原理为依据的,不 )假说是以事实材料和科学原理为依据的, 同于神话,不同于妄说。 同于神话,不同于妄说。 2)假说有推测的性质,还不是可靠的认识,需 )假说有推测的性质,还不是可靠的认识, 要实践的检验。 要实践的检验。 3)假说是人的认识接近客观真理的方式。 )假说是人的认识接近客观真理的方式。
二、如何提高类比推理结论的可靠性 1、如果前提所提供的类比对象越多(相似)的属 、如果前提所提供的类比对象越多(相似) 那么,结论的可靠性就越高。 性,那么,结论的可靠性就越高。 2、前提中所提供的相同属性与推移属性之间的联 、 系越密切,则结论的可靠程度就越高。 系越密切,则结论的可靠程度就越高。 三、类比推理的作用 1、类比推理可以启发人的思路,在创造性思维中, 、类比推理可以启发人的思路,在创造性思维中, 常常用到类比推理。 常常用到类比推理。 2、科学史上许多科学事实的发现和科学假说的提 、 都是借助于类比推理。 出,都是借助于类比推理。
人教版高二数学选修1
You made my day!
我们,还在路上……
推理.
▪ 2 从推理的结论来看:
合情推理的结论不一定正确,有待证明; 演绎推理得到的结论一定正确.
合情推理与演绎推理的相关说明:
1 演绎推理是证明数学结论、建立数 学体系的重要思维过程. 2 数学结论、证明思路的发现,主要 靠合情推理.
▪1、书籍是朋友,虽然没有热情,但是非常忠实。2022年2月28日星期一2022/2/282022/2/282022/2/28 ▪2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年2月2022/2/282022/2/282022/2/282/28/2022 ▪3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/2/282022/2/28February 28, 2022 ▪4、享受阅读快乐,提高生活质量。2022/2/282022/2/282022/2/282022/2/28
三段论的基本格式
M—P(M是P) S—M(S是M) S—P(S是P)
(大前提) (小前提)
(结论)
演绎推理
例1、把“函y数 x2 x1的图象是一条抛物线”
恢复成完全三段论。
解:二次函数的图象是一条抛物线
(大前提)
函数 yx2 x1是二次函数
(小前提
所以,函 y数 x2x1的图象是一条抛 结物 论线 )
3.三角函数都是周期函数, tan 三角函数, 所以,tan 周期函数
演绎推理
从一般性的原理出发,推出某个特殊情况 下的结论,这种推理称为演绎推理.
归纳推理与类比推理的差异
学法指津数学X U X F A Z H I J I N一、归纳推理1.归纳推理的定义由一系列有限的特殊事例得出一般结论的推理方法叫归纳推理.它是由部分到整体,由个别到一般的推理;包括不完全归纳法和完全归纳法.归纳推理基于观察和实验,是人们根据长期的实践经验进行归纳的结果.2.归纳推理的一般步骤①观察个别情况,发现规律;②提出猜想;③检验猜想.3.归纳推理的思维过程实验、观察概括、推广猜测一般性结论例1已知数列{}a n的首项a1=1且a n+1=a n1+a n()n=1,2,3,⋅⋅⋅.(1)写出数列{}a n的前5项;(2)试归纳出该数列的通项公式.分析分别令n=1,2,3,4,利用a n+1与a n之间的递推关系,进而求出a2,a3,a4,a5,再观察、分析、归纳,推测出a n的表达式.解(1)∵a n+1=a n1+a n()n=1,2,3,⋅⋅⋅,∴令n=1时,a2=a11+a1,又∵a1=1,∴a2=1 2.同理,可求得:a3=13,a4=14,a5=15.(2)依据(1)中数列前5项,归纳猜想:a n=1n.验证:由猜想知:a n+1=1n+1,又∵a n1+a n=1n1+1n=1n+1,∴a n+1=a n1+a n.所以猜想结论正确,即a n=1n.点拨在数列中常用归纳推理猜测数列的通项公式或前n项和的公式.常规思路:对前几项结果的观察、归纳和提出猜想,再探究和发现问题,最后证明猜想结论的正确性.注意:在得出前几项的结果后,要统一它们的表达式的结构形式,以便寻找规律.例2凸n()n≥4边形有多少条对角线?分析先从几个特殊的数值入手,再根据给出的数值进行归纳猜想.解设:凸n()n≥4边形的对角线有f()n条(1)n=4时,凸四边形有2条对角线,即:f()4=2;n=5时,凸五边形有5条对角线,比凸四边形多3条,即:f()5=5=2+3;n=6时,凸六边形有9条对角线,比凸五边形多4条,即:f()6=9=2+3+4;n=7时,凸七边形有14条对角线,比凸六边形多5条,即:f()7=14=2+3+4+5;与类比推理的水能载舟,亦能覆舟。
高二数学复习讲五
高二数学复习讲义(5)——《推理与证明》<知识点>一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。
二.证明⒈直接证明⑴综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫顺推法或由因导果法。
⑵分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。
分析法又叫逆推证法或执果索因法。
2.间接证明------反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
<练习题>一.选择题1.数列0,1,1,2,4,7,13,x …中的x 等于( ) A.22 B.23 C.24 D.252.已知13a =,26a =,且21n n n a a a ++=-,则33a =( ) A.3B.3- C.6D.6-3 )A.22< B.22<C.22< D.22(<4.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.13n n a -= B.3n n a = C.33n n a n =-D.1323n n a n -=+-5.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解 B.有两个解 C.至少有三个解 D.至少有两个解 6.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理( )A.小前提错 B.结论错 C.正确 D.大前提错7.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a > ,类比上述性质,在等比数列{}n b 中若0n b >,1q >,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+8.若ABC △能剖分为两个与自身相似的三角形,那么这个三角形的形状为( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定9.下列推理正确的是( )A.如果不买彩票,那么就不能中奖;因为你买了彩票,所以你一定中奖 B.因为a b a c >>,,所以a b a c ->-C.若a b +∈R ,,则lg lg a b +≥D.若a +∈R ,0ab <,则2a b a b b a b a --⎛⎫+=-+-=- ⎪⎝⎭≤10.正整数按右表的规律排列,则上起第2005行,左起第2006列的数应为( )A.22005 B.22006 C.2005+2006D.2005×200611.已知()()()f x y f x f y +=+且(1)2f =,则(1)(2)()f f f n +++…不能等于( )A.(1)2(1)(1)f f nf +++… B.(1)2n n f +⎡⎤⎢⎥⎣⎦C.(1)n n + D.(1)(1)n n f +12.已知1c >,a =b = ) A.a b >B.a b < C.a b =D.a ,b 大小不定二.填空题13.用三段论证明3()sin ()f x x x x =+∈R 为奇函数的步骤是 .14.写出命题“三角形中最多只有一个内角是直角”的否定 . 15.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如16.观察2sin105sin100sin10sin 20sin 30sin 200sin10++++=…;2sin102sin 96sin12sin 24sin 36sin192sin12++++=…,写出与以上两个等式规律相同的通式为 .三.解答题17.在一容器内装有浓度为r %的溶液a 升,注入浓度为p %的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为nb (每次注入的溶液浓度都是p%),计算123b b b ,,,并归纳出n b 的计算公式.18.已知a 与b 均为有理数,(用反证法证)19.用分析法证明:若0a >12a a+-.20.已知命题:“若数列{}n a 是等比数列,且0n a >,则数列{}n b 也是等比数列,其中N )n b n *=∈”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.21.自然状态下的鱼类是一种可再生的资源.为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用n x 表示某鱼群在第()n n *∈N 年年初的总量,且10x >.不考虑其他因素,设在第n 年内鱼群的繁殖量及被捕捞量都与n x 成正比,死亡量与2n x 成正比,这些比例系数依次为正常数a ,b ,c .(1)求1n x +与n x 的关系式;(2)猜想:当且仅当1x ,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)参考答案一.选择题1-5.CACAC 6-10.CABDD 11-12.DB二.填空题13.对定义域内的每一个x ,满足()()f x f x -=-的函数是奇函数 大前提3()sin ()f x x x f x -=--=- 小前提 所以3()sin f x x x =+是奇函数 结论 14. 三角形中至少有两个内角是直角 15. 140,851612sinsin 22sin sin 2sin3sin sin n nx x x x x nx x+++++=… 三.解答题17.解:11411004100100554r a p a b r p a a +⎛⎫==+ ⎪⎝⎭+, 2122141441*********a pab b r p p a a +⎡⎤⎛⎫==++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+ , 32232314144410010055554a pa b b r o p p a +⎡⎤⎛⎫==+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+ ,所以归纳得12141441005555nn n nb r p p p -⎡⎤⎛⎫=++++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦…. 18.a b =-. 由00a b >>,0>.=.因为a b ,=+,即19.12a a +-12a a++≥因为0a >,所以上式两边均大于零.因此只需证221a a ⎛+- ⎝≥,即222211144a a a a a ⎫+++++++⎪⎭.12a a ⎫+⎪⎝⎭, 只需证222211122a a a a ⎛⎫+++ ⎪⎝⎭≥, 即证2212a a +≥,它显然是成立的,所以原不等式成立. 20. 解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列{}n a 是等差数列,则数列{}n b 也是等差数列,其中12()nn a a a b n n*+++=∈N ….证明如下:设等差数列{}n a 的公差为d ,则1121(1)2(1)2na n n na da a a db a n nn -++++===+-,所以数列{}n b 是以1a 为首项,2d为公差的等差数列. 21. 解:(1)从第n 年初到第1n +年初,鱼群的繁殖量为n ax ,被捕捞量为n bx ,死亡量为2n cx , 因此21n n n n n x x ax bx cx +-=--,n *∈N ,即1(1)n n n x x c b cx +=-+-,n *∈N ;(2)若每年年初鱼群总量保持不变,则a x 恒等于1x ,n *∈N .10a b cx ∴--=,即1a bx c-=. 10x > ,a b ∴>.猜想:当且仅当a b >且1a bx c-=时,每年年初鱼群的总量保持不变.。
类比推理和归纳推理的相同点
类比推理和归纳推理的相同点
类比推理和归纳推理是两种常用于根据观察和证据得出结论或做出预测的推理。
虽然它们有一些相似之处,但它们也有一些重要的区别。
类比推理和归纳推理之间的一个相似之处在于,两者都涉及使用观察和证据来得出结论或做出预测。
在类比推理中,这是通过比较两个或多个相似的情况或对象并使用相似性得出关于其中一个的结论来完成的。
在归纳推理中,这是通过观察一组观察中的模式或趋势并使用模式或趋势对未来观察进行概括或预测来完成的。
类比推理和归纳推理之间的另一个相似之处是两者都涉及逻辑和批判性思维的使用。
在这两种类型的推理中,结论或预测都是基于考虑所有相关观察和证据的逻辑论证。
尽管有这些相似之处,类比推理和归纳推理之间也有一些重要的区别。
主要区别之一是结论或预测的范围。
在类比推理中,结论仅限于所考虑的特定情况或对象,而在归纳推理中,结论或预测旨在更普遍,适用于更广泛的情况或对象。
类比推理和归纳推理之间的另一个区别是对结论或预测的置信度。
在类比推理中,结论通常基于少量观察或示例,并且可能不如通过归纳推理得出的结论可靠或确定,归纳推理基于大量观察或示例。
总之,类比推理和归纳推理是两种类型的推理,用于根据观察和证据得出结论或做出预测。
两者都涉及逻辑和批判性思维的使用,并涉及使用观察和证据来支持结论或预测。
但是,两者之间也有一些重要的区别,包括结论或预测的范围以及对结论或预测的置信度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n1 Sn n 2
复习
1.什么是归纳推理? 部分 整体
特殊
一般
2.归纳推理的一般步骤: (1)通过观察个别情况发现某些相同性质; (2)从已知的相同性质中推出一个明确表达的 一般性命题(猜想).
1.工匠鲁班类比带齿的草叶和蝗虫的牙齿,发明 了锯 2.仿照鱼类的外型和它们在水中沉浮的原理,发 明了潜水艇. 3.科学家对火星进行研究,发现火星与地球有许 多类似的特征: 1)火星也绕太阳运行、饶轴自转的行星; 2)有大气层,在一年中也有季节变更; 3)火星上大部分时间的温度适合地球上某些 已知生物的生存,等等. 科学家猜想;火星上也可能有生命存在. 4.利用平面向量的基本定理类比得到空间向量 的基本定理.
利用平面向量的性质类比得空间向量的性质
平面向量
若 a (a1 , a2 ) , b (b1 , b2 )则
① a b (a1 b1 , a2 b2 )
空间向量
若a (a1 , a2 , a3 ) , (b1 , b2 , b3 ) b
则
① a b (a1 b1 , a2 b2 , a3 b3 ) ② a b (a1 b1 , a2 b2 ) ② a b (a1 b1 , a2 b2 , a3 b3 ) ③ a (a1 , a2 )( R) ③ a (a1 , a2 , a3 )( R)
an an1 d(n 2)
an : an1 q n 2) (
an a1 (n 1)d
通项公式
an a1q n1
an am (n m)d
an am q
n m
n(a1 an ) (q 1) na1 Sn 2 Sn a1 (1 q n ) 前n项和 n( n 1) 1 q (q 1) na1 d 2
利用圆的性质类比得出球的性质 圆的概念和性质
圆的周长 S = 2πR 圆的面积 S =πR 2 圆心与弦(非直径)中点的连线 垂直于弦
球的概念和性质
球的表面积 S = 4πR 2 球的体积 V = πR 3 球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
4 3
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等 与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积 等,距圆心较近的弦较长 不相等,距球心较近的面积较大 以点(x0,y0)为圆心, r为半径 的圆的方程为(x-x0)2+(yy0 )2 = r2 以点(x0,y0,z0)为球心, r为半 径的球的方程为(x-x0)2+(yy0)2+(z-z0)2 = r2
例1.已知数列{an}的第1项a1=1,且 an 1
an 1 an
(n=1 , 2 , …),试归纳出这个数列的通项公式.
an 分别把n=1,2,3,4代入 an 1 得: 1 an 1 1 1 1 a2 , a3 , a4 , a5 2 3 4 5
1 归纳: a n n
设圆的方程为①(x-a)2+(y-b)2=r2与
②(x-c)2+(y-d)2=r2(a≠c或b≠d),
则由①式减去②式可得上述两圆的对称轴 方程.
小结
1.什么是归纳推理(简称归纳)? 部分 整体
个别
一般
2.归纳推理的一般步骤: (1)通过观察个别情况发现某些相同性质; (2)从已知的相同性质中推出一个明确表达的 一般性命题(猜想).
世界近代三大数学难题之一
四色猜想
1852年,弗南西斯· 格思里搞地图着色工作时, 发现了一种有趣的现象:“看来,每幅地图都可 以用四种颜色着色,使得有共同边界的国家着上 不同的颜色。” 1976年,美国数学家阿佩尔与哈肯在美国伊利 诺斯大学的两台不同的电子计算机上,用了1200 个小时,作了100亿判断,终于完成了四色定理的 证明。 不少数学家并不满足于计算机取得的成就,他 们还在寻找一种简捷明快的书面证明方法。
并猜想Sn的表达式.
2 1.已知数列{an}的前n项和Sn , a1 , 且 3 1 Sn 2 an (n 2). 计算S1 , S2 , S3 , S4 , Sn
练习
2 3 4 5 计算得: S1 , S 2 , S 3 , S4 3 4 5 6
有人对33×108以内且大过6之偶数一一进行验 算,哥德巴赫猜想(a)都成立。
200年过去了,没有人证明它。哥德巴赫猜想 由此成为数学皇冠上一颗可望不可及的“明珠”。 到了20世纪20年代,才有人开始向它靠近。 1920年,挪威的布朗证明了“9+9”。
1924年,德国的拉特马赫证明了“7 + 7”。
(2)猜想:圆内两两相交的n(n≥2)条线段,彼此最多分 割成 n
2
1 2 条线段?同时将圆分割成 2 ( n n 2) 部分?
f (2) f (1) 2
f (3) f (2) 3 f (4) f (3) 4
………
f (n) f (n 1) n 累加得: f ( n) f (1) 2 3 4 n
2
(1)
(2)
(3)
(4)
(5)
(2005年广东)设平面内有n条直线(n≥3),其中有且仅 有两条直线互相平行,任意三条直线不过同一点.若 用f(n)表示这n条直线交点的个数,则f(4)=
n>4时,f(n)=
f (3) f (2) 2 f (4) f (3) 3 f (5) f (4) 4
归纳推理
这种由某类事物的部分对象具有某些特征,推 出该类事物的全部对象都具有这些特征的推理,
或者由个别事实概括出一般结论的推理,称为归
纳推理(简称归纳). 部分 个别
整体 一般
归纳法又分为不完全归纳法和完全归纳法.
不完全归纳推理得到的结论是否正确还有待严 格的证明,但它可以为我们的研究提供一种方向.
⑥ a b a b a b 0 ⑥a b a b a b a b 0 1 1 2 2 1 1 2 2 3 3
⑦ | a | a12 a22
⑦ | a | a12 a22 a32
利用等差数列性质类比等比数列性质
等差数列 定义 等比数列
例3.有三根针和套在一根针上的若干金属片.按下 列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?
2
1
3
n=1时,
f (1) 1
2
1
3
f (1) 1 n=2时, f (2) 3
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
n=1时,
2
1
3
f (1) 1 n=2时, f (2) 3 n=3时, f (3) 3 1 3 f (2) 1 f (2)
n=1时,
2
1
3
f (1) 1 f (2) 3 f (3) 7 f (2) 1 f (2) n=4时, f (4) f (3) 1 f (3) 15
费马猜想
1637年,法国数学家费马提出: “将一个立 方数分为两个立方数的和,一个四次幂分为两个 四次幂的和,或者一般地将一个高于二次的幂分 为两个同次的幂的和,这是不可能的.” 300多年来,这个问题吸引了很多优秀数学家, 法国科学院曾于1816年和1850年两次悬赏征解, 德国也于1908年悬赏十万马克征解。 经过三百多年来历代数学家的不断努力,剑桥大 学怀尔斯终于1995年正式彻底解决这一大难题.
1932年,英国的埃斯特曼证明了“6 + 6”。
………
………
目前最佳的结果是中国数学家陈景润于1966 年证明的,称为陈氏定理(Chen„s Theorem).“任何 充份大的偶数都是一个质数与一个自然数之和, 而后者仅仅是两个质数的乘积”,通常都简称这个 结果为大偶数可表示为 “1+2”的形式。
数论中最著名的世界难题之一
类比推理 由两类对象具有某些类似特征和其中一类对 象的某些已知特征,推出另一类对象也具有 这些特征的推理称为类比推理.(简称:类比) 类比推理的几个特点
1.类比是从人们已经掌握了的事物的属性,推测 正在研究的事物的属性,是以旧有的认识为基础, 类比出新的结果. 2.类比是从一种事物的特殊属性推测另一种事物 的特殊属性. 3.类比的结果是猜测性的不一定可靠,但它却有 发现的功能.
1 ( n 2)( n 1) .(用n表示) 2
5 ,当
f (n) f (n 1) n 1 累加得: f (n) f (2) 2 3 4 ( n 1)
(2001年上海)已知两个圆①x2+y2=1:与②x2+(y3)2=1,则由①式减去②式可得上述两圆的对称轴方 程.将上述命题在曲线仍然为圆的情况下加以推广, 即要求得到一个更一般的命题,而已知命题应成为 所推广命题的一个特例,推广的命题为:
归纳推理
世界近代三大数学难题之一
哥德巴赫猜想
1742年,哥德巴赫在教学中发现,每个不小 于6的偶数都是两个素数(只能被1和它本身整除 的数)之和。如6=3+3,12=5+7等等。猜想 (a) 任何一个≥6之偶数,都可以表示成两个奇 质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇 质数之和。更多资源
成等比数列
2 n m 2
Sm , S2m Sm , S3m S2m Sm , S2m Sm , S3m S2m