第三章随机过程作业资料

合集下载

第三章 随机过程

第三章 随机过程

3-1、设X 是0, 1a σ==的高斯随机变量,试确定随机变量Y cX d =+的概率密度函数( f y ,其中, c d 均为常数。

解:由题得:2( 0, ( 1E x a D x σ====( ( ( E y E cx d cE x d c a d d=+=+=+=222( ( D y D cx d c c σ=+==22( ( ]2x d f y c -=-3-2、设随机过程( t ξ可表示成( 2cos(2 t t ξπθ=+,式中θ是一个离散随机变量,且11(0 , ( 222P P πθθ====, 试求(1E ε和(0,1R ε解:首先应理解(1E ε和(0,1R ε的含义,(1E ε是指当t=1时,所得随机变量的均值,(0,1R ε 是指当t=0和t=1时,所得的两个随机变量的自相关函数。

111[2cos(2][2cos(2]2(cos0cos 1222t E E E εππθπθ==+=+=+=22211(0,1[(0(1][2cos2cos(2]4[cos]4(cos 0cos 2222R E E E επξξθπθθ==⨯+==+=3-3、设1020( cos sin z t x t x t ωω=-是一随机过程,若1x 和2x 是彼此独立且具有均值为0,方差为2σ的正态随机变量,试求:(1)2[(],[(]E z t E z t(2)z(t的一维分布密度函数f(z;(3)12(, B t t 和12(, R t t解:(1)由已知条件12[][]0E X E X ==且1x 和2x 彼此相互独立。

所以1212[][][]0E X X E X E X == 212( ( D x D x σ==,而222[][]E x E x σ=- 所以222111[]( []E x D x E x σ=+=同理222[]E x σ=10200102[(][cos sin ]cos []sin []0E z t E x t x t tE x tE x ωωωω=-=-=22102022200[(][(cos sin ][cos sin 2cos sin ]cos 2[]sin []2cos sin [](cossin E z t E x t x t E x t x t x x t t tE x tE x t tE x x t t ωωωωωωωωωωωωσσ=-=+-=+-=+=(2)由于1x 和2x 是彼此独立的正态随机变量且( z t 是1x 和2x 的线性组合,所以z 也是均值为0,方差为2σ的正态随机变量,其一维概率密度为22( 2z f z σ=-(3)[coscos sin sin ][cos(]R t t E z t z t E x t x t x t x t t t t t t t ωωωωσωωωωσω==--=+=-令12t t γ-=,则21, 20( cos R t t σωγ==2121212120(, (, [(][(](, cos B t t R t t E z t E z t R t t σωγ=-==3-4、已知( x t 与( y t 是统计独立的平稳随机过程,且它们的均值分别为12(, a a τ,自相关函数分别为(, ( x y R R ττ。

第3章 随机过程及答案

第3章 随机过程及答案
若a(t1) = 0或a(t2)=0,则B(t1, t2) = R(t1, t2)

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12

数字特征:
E (t ) x1 f1 ( x1 )dx1 a

R( t1 , t 2 ) E[ ( t1 ) ( t1 )]



x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )

这与R()的实偶性相对应。
23
例题

[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )

n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。

在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。

样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t

T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )

随机过程第3章习题

随机过程第3章习题

ψ N ( Δt ) ( s ) − 1
Δt
Δt → 0
= λ ( s − 1) 或
∂ψ N ( t ) ( s ) ∂t
(在证明过程中运用泊松过程的四个假设) 解(1) :
ψ N ( t ) ( s) = ∑ P{N (t = n)} ⋅ s n
n=0 ∞

=∑
(λt ) n − λt n e s n! n=0 (λts) n n! n =0
⎛1⎞ 1 =⎜ ⎟ = ⎝ 3⎠ 9
解ቤተ መጻሕፍቲ ባይዱ2) :
P = 1 − P{N (20) = 0 / N (60) = 2} ⎛ 20 ⎞ = 1− ⎜ ⎟ ⎝ 60 ⎠
2 0
⎛ 20 ⎞ ⎜1 − ⎟ ⎝ 60 ⎠
2
⎛2⎞ 5 = 1− ⎜ ⎟ = ⎝3⎠ 9
1
第3题 设 {N (t ), t ≥ 0} 为泊松过程,其参数为 λ 。设ψ N ( t ) ( s ) 是随机变量 N(t)的母函数,证明 (1)ψ N ( t + Δt ) ( s ) = ψ N ( t ) ( s )ψ N ( Δt ) ( s )
无法写成泊松过程特征函数的形式
exp{λ t (e jv − 1)}
5
由于特征函数与概率有相同的特性
∴ N 0 (t ) = N1 (t ) − N 2 (t )不符合泊松过程的分布规律.
第8题 有复合泊松过程 { X (t ) =
N (t ) n =1
∑Y , t ≥ 0} ,其中 Y , n = 1,2,3,L 是彼此统计独立、同分布的随
0
φN (v) = E{exp{ jvN0 (t )}
0
= E{exp{ jv( N1 (t ) − N 2 (t )} = E{exp{ jvN1 (t ) ⋅ exp{− jvN 2 (t )} = E{exp{ jvN1 (t )}E{exp{− jvN 2 (t )} = φN1 (v)φN2 (−v) = exp{λ1t (e jv − 1)}exp{λ2t (e− jv − 1)} = exp{λ1te jv + λ2te− jv + (λ1 + λ2 )t}

(解答)《随机过程》第三章习题

(解答)《随机过程》第三章习题

第三章 Poisson 过程(Poisson 信号流)习题解答1、 设}0),({≥t t N 是一强度为λ的齐次泊松过程,而12/)()(-=t N t X ,0≥t 。

对0>s ,试求:(1) 计算)}()({s t N t N E +及})()({s N t s N E +的分布律;(2) 证明过程)(t X ,0≥t 是马氏过程并写出转移概率),;,(j t i s p ,其中t s ≤。

解:(1)由泊松过程状态空间可知)(t X 的状态空间为:},2,1,0:2/)2{(},2,2/3,1,2/1,0,2/1,1{ =-=--=k k St s t t s t t s t t s t N t N E λλλλ++=+++=+)(},min{)()}()({22由于tn e m t n m e n k t k n k t N kP n s N P n s N k t s N P k n s N k t s N kP n s N t s N E m tm n k t n k n k n k nk λλλλλ+=+=-=-=====+===+==+∑∑∑∑∑∞+=-∞+=--∞+=∞+=+∞=0!)()()!()(})({})({})(,)({})()({})()({因此t s N s N t s N E λ+=+)(})()({其分布列为:sn e n s n s N P t n s N t s N E P λλλ-===+=+!)(})({}})()({{(2)由泊松过程的独立增量性可知过程)(t X 也是独立增量的,又因为1)0(-=X ,因此可知过程)(t X 是一马氏过程,其转移概率为:),(;)]!(2[)]([)}1(2)({)}(2)({)}1(2)({)}1(2)({)}1(2)(),1(2)({})({})(,)({),;,()()(2s t i j e i j s t i s N P i j s t N P i s N P i s N P j t N i s N P i s X P j t X i s X P j t i s p s t i j ≥≥--=+=-=-+==+=+=+======---λλ),(;0),;,(s t i j j t i s p ≥<=附:泊松过程相关函数的计算: 设210t t ≤<,我们有:∑∑+∞=+∞=+==+=002121})(,)({)()}()({m n n m t N m t N P n m m t N t N E由于当210t t ≤<时,,2,1,0,,!!)(})(,)({212121=-=+==-+n m e n m t t t n m t N m t N P t nm n m λλ因此,我们有:1212)(1212)(1)(2121112111111212121111101222122121112110121201211112110121001210012120012100212112121212121222222222222)()!1()(!)1()(!)(!)1(!)(!)2(!)1(!)1()(!!)1()(!!)2()(!)1(!)1()(!!)1()(!!)(!!)(!!)()(})(,)({)()}()({t t t e e e t t t e e e t e e e t n t t m t et t t n t t m t et n t t m t et e n m t t t e n m t t t en m t t t en m t t t e n m t t t m en m t t t n m e n m t t t m e n m t t t n m m n m t N m t N P n m m t N t N E t t t t t t t t t t t t n n n m m m t n nn m m m t n nn m m m t m n t n m n m m n t nm n m m n t nm n m m n t n m n m m n t n m n m m n t n m n m m n t n m n m m n t nm n m m n λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ+=-++=----+--+--=---++--+--=---+--=-+-=-+=+==+=------∞+=--∞+=---∞+=∞+=---∞+=∞+=---∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-+∞+=∞+=-++∞=+∞=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑同理我们有:当120t t ≤<时221221)}()({t t t t N t N E λλ+=因此,有:},min{)}()({),(212122121t t t t t N t N E t t R N λλ+==2、 设}0);({≥t t X 与}0);({≥t t Y 是相互独立,参数分别为1λ与2λ的Poisson 过程。

随机过程作业和答案第三章

随机过程作业和答案第三章

第三章 马尔科夫过程1、将一颗筛子扔多次。

记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。

故X(n)是马尔科夫链。

E={1,2,3,4,5,6} ,其一步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。

即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。

其一步转移概率为其中2、一个质点在直线上做随机游动,一步向右的概率为p , (0<p<1),一步向左的概率为 q , q =1-p 。

在x = 0 和x = a 出放置吸收壁。

记X(n)为第n 步质点的位置,它的可能值是0,1,2,···,a 。

试写出一步转移概率矩阵。

解:由已知可得, 其一步转移概率如下:故一步转移概率为3、做一系列独立的贝努里试验,其中每一次出现“成功”的概率为p ( 0<p<1 ) ,出现“失败”的概率为q , q = 1-p 。

如果第n 次试验出现“失败”认为 X(n) 取得数值为零;如果第n 次试验出现“成功”,且接连着前面k 次试验都出现“成功”,而第 n-k 次试验出现“失败”,认为X(n)取值k ,问{X(n) , n =1,2,···}是马尔科夫链吗?试写出其一步转移概率。

解:由已知得:故为马尔科夫链,其一步转移概率为616161616161616161616161616161616161P ={6,,2,1,6/1,,8,7,,0)1,(+++=<++==+i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1,+++=++=n n n j n n n n i {}α,,2,1,0 =E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1,ααααα≠==≠==+-≠===-=-+j P P j P P i i j P q P P P x j j ij i i i i 而时,当 10000000000000001Pp q p q p q ={}{}m m m m m m i n X l n X i n X i n X i n X l n X P ==+=====+)(0)()(,,)(,)(0)(2211 {}{}mm m m m m in X k l n X i n X i n X i n X k l n X P ==+=====+)()()(,,)(,)()(22114、在一个罐子中放入50个红球和50个蓝球。

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业

(ii) 分解 对于参数为λ 对于参数为λ的Poisson过程, 过程,假设发生的每一个事件 独立的以概率做了记录, 独立的以概率做了记录,未做记录的概率为1-p。令 N1(t)是到t为止做了记录的事件数, 为止做了记录的事件数,而N2(t)是未做记录 的事件数, 的事件数,则{N1(t);t ≥0}和 {N2(t);t ≥0}分别是具 有参数pλ 和(1-p)λ的独立Poisson过程。 过程。
相互独立。 相互独立。而且
P ( N (t ) = k ) = ∑ P ( N 1 (t ) = j, N 2 (t ) = k − j ) = ∑ P ( N 1 (t ) = j )P ( N 2 (t ) = k − j )
j=0 j=0 j k− j k k
(λ t ) (λ t ) = ∑ 1 e − λ1 t 2 e −λ2t j! ( k − j )! j=0
[
]
( )
( )
(
)
ρ=
(
)(
)
一维概率密度函数
一维特征函数 二维概率函数 f (s , t , x , y ) = −
[X − m (t )]2 t ∈ T 1 exp − 2 D (t ) 2 λ D (t ) x∈ R t∈T ϕ (t , u ) = exp im (t )u − 1 D (t )u 2 2 x∈ R f (t , x ) =
i i i =1
n
X (t )为正态分布 m X (t ) = E [X (t )] = E [ξ t + W (t )] = E (t )E (ξ ) + E [W (t )] = 0
(t > s ) E [X 2 (t )] = E [ξ 2 t 2 + W (t )W (s ) + W (t )ξ s + W (s )ξ t ] = ts + s σ 2 D (t ) = t 2 + t 2σ 2 D (s ) = s 2 + s 2 σ 2 C (s , t ) = C (t , s ) = R (t , s ) = ts + s σ 2

第三章通信原理 随机过程

第三章通信原理 随机过程
或随机过程的一次实现。 全部样本函数构成的总
体 x1t, x2 ,t,就,是xn 一t个
随机过程,记作 。
t
因此从这个角度得到随机过程的这种定义: 随机过程是所有样本函数的集合。
角度2:现在,我们在某一特定时刻如 时t1刻观察
各台接收机的噪声,可以发现在同一时刻,每个接 收机的输出噪声值是不同的,它在随机变化。
(1)随机过程的协方差函数:B(t1,t2) 描述了随机过程§(t)在任意两个时刻t1和t2,相对
均值的起伏量之间的相关程度。
B(t1, t2 ) E (t1) a(t1) (t2 ) a(t2 )

B(t1, t2 ) x1 a(t1 ) x2 a(t2 ) f2( x1, x2;t1, t2 )dx1dx2
f1x,t
F1x, t
x
F1x, t
x
f1 y, tdy
F1和x, t f即1x是, t 的函数,x 又是时间 的函数。t很显然,
一维分布函数及一维概率密度函数仅仅表示了随机过程 在任一瞬间的统计特性,它对随机过程的描述很不充分, 通常需要在足够多的时间上考察随机过程的多维分布。
测试结果表明,得到的 n张记录图形并不因为有 相同的条件而输出相同 的波形。恰恰相反,即 使n足够大,也找不到两 个完全相同的波形。这 就是说,通信机输出的 噪声电压随时间的变化 是不可预知的,因而它 是一个随机过程。
N部通信机的噪声输出记录
测试结果的每一个记录, 都是一个确定的时间函
数 ,xi 称t 之为样本函数
式中 是一个离散随机变量,且
P

、0
1 2
P 2, 试12求 和E 1。 R 0,1

《概率论与随机过程》第3章习题答案

《概率论与随机过程》第3章习题答案

《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。

解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。

∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。

随机过程第三章

随机过程第三章

2
定义3.2: 称计数过程{X(t),t≥0}为具有参数λ >0的泊松过程,若它满足下列条件: 1. X(0)=0; 2. X(t)是独立增量过程; 3. 在任一长度为t的区间中,事件A发生的次数服从参数λ>0的泊松分 布,即对任意s,t≥0,有 n t ( t )
P{ X (t s ) X ( s ) n} e n! , n 0,1,
16
复合泊松过程
定义: 设{N(t),t≥0}是强度为λ 的泊松过程,{Yk,k=1,2,…}是一列独立同分布 随机变量,且与{N(t),t≥0}独立,令
N (t )
X (t )
Y ,
k k 1
t0
则称{X(t),t≥0}为复合泊松过程。 N(t) Yk X(t) 在时间段(0,t]内来到商店的顾客数 第k个顾客在商店所花的钱数 该商店在(0,t]时间段内的营业额
P{ X (t h) X (t ) 1} h o(h) P{ X (t h) X (t ) 2} o(h)
例如: •电话交换机在一段时间内接到的呼叫次数; •火车站某段时间内购买车票的旅客数; •机器在一段时间内发生故障的次数;
4
定理 3.1: 定义3.2和定义3.3是等价的。 证明
13
非齐次泊松过程
允许时刻t的来到强度是t的函数 定义: 称计数过程{X(t),t≥0}为具有跳跃强度函数λ (t)的非齐次泊松过程,若 它满足下列条件: 1. X(0)=0; 2. X(t)是独立增量过程; 3. P{ X (t h) X (t ) 1} (t )h o(h)
P{W1 s | X (t ) 1 ? }
分布函数
0, s FW1| X (t ) 1 (s) , t 1,

随机过程作业

随机过程作业

第三章随机过程作业1.设A、B是独立同分布的随机变量,求随机过程的均值函数、自相关函数和协方差函数。

2.设是独立增量过程,且,方差函数为。

记随机过程,、为常数,。

(1)证明是独立增量随机过程;(2)求的方差函数和协方差函数。

3.设随机过程,其中是相互独立的随机变量且均值为0、方差为1,求的协方差函数。

4.设U是随机变量,随机过程.(1) 是严平稳过程吗为什么(2) 如果,证明:的自相关函数是常数。

5.设随机过程,其中U与V独立同分布。

(1) 是平稳过程吗为什么(2) 是严平稳过程吗为什么6.设随机变量的分布密度为, 令,试求的一维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令试求:的一维分布函数8.设随机过程, 其中是相互独立的随机变量 , 且, 试求的均值与协方差函数 .9.设其中为常数 , 随机变量, 令 , 试求 :和。

10.设有随机过程,并设x是一实数,定义另一个随机过程试证的均值和自相关函数分别为随机过程的一维和二维分布函数。

11.设有随机过程,,其中为均匀分布于间的随机变量,即试证:(1)自相关函数(2)协相关函数12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作一个单位距离的随机游动。

若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即,且各次游动是相互统计独立的。

经过n 次游动,质点所处的位置为。

(1)的均值;(2)求的相关函数和自协方差函数和。

13.设,其中服从上的均匀分布。

试证 :是宽平稳序列。

14.设其中服从上的均匀分布. 试证 :既不是宽平稳也不是严平稳过程 .15.设随机过程和都不是平稳的,且其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证是平稳过程。

16.设是均值为零的平稳随机过程。

试证 :仍是一平稳随机过程 , 其中为复常数,为整数。

17.若平稳过程满足条件,则称是周期为的平稳过程。

试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。

随机过程作业(全部)

随机过程作业(全部)

作业1(随机过程的基本概念)1、对于给定的随机过程{(),}X t t T ∈及实数x ,定义随机过程1,()()0,()X t xY t X t x≤⎧=⎨>⎩,t T ∈ 请将{(),}Y t t T ∈的均值函数和相关函数用{(),}X t t T ∈的一维和二维分布函数表示。

2、设(),Z t X Yt t R =+∀∈,其中随机变量X ,Y 相互独立且都服从2(0,)N σ,证明{(),}Z t t R ∀∈是正态过程,并求其相关函数。

3、设{(),0}W t t ≥是参数为2σ的Wiener 过程,求下列过程的协方差函数: (1){(),0}W t At t +≥,其中A 为常数;(2){(),0}W t Xt t +≥,其中(0,1)X N ,且与{(),0}W t t ≥相互独立;(3)2{(),0}taW t a ≥,其中a 为正常数; (4)1{(),0}tW t t≥作业2(泊松过程)1、设{(),0}N t t ≥是强度为λ的Poisson 过程,令()()()Y t N t L N t =+-,其中L>0为常数,求{(),0}Y t t ≥的一维分布,均值函数和相关函数。

2、设{(),0}N t t ≥是强度为λ的Poisson 过程,证明对于任意的0s t ≤<,(()|())()(1),0,1,,k kn k n s s P N s k N t n C k n t t-===-=作业3 (更新过程)1 设{(t),0}N t ≥是更新过程,更新间距,1,2,i X i = 服从参数为λ的指数分布,则(t),0N t ≥是服从参数为λ的Poisson 分布。

2 某收音机使用一节电池供电,当电池失效时,立即换一节同型号新电池。

如果电池的寿命服从30小时到60小时的均匀分布,问长时间工作情况下该收音机更换电池的速率是多少? 若没有备用电池,当收音机失效时,立即在市场上采购同型号电池,获得新电池的时间服从0小时到1小时的均匀分布,求在长时间工作的情况下,更换电池的速率。

随机过程第三章作业答案

随机过程第三章作业答案
k =0 ∞ ∞
Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1
2 2 ]-E[X k-1 ] ∴ E[Yk2 ]=E[X k n n
X k-1 ]] X k-1 ]]=E[X 2 k-1 ]
2 2 于是∑ Var(Yk ) = ∑ (E[X k ]-E[X 2 k-1 ]) = E[X n ]=Var(X n ) k =1 k =1
q X n ]]=E[( ) Xn+1 |X n ] p
6证明: k=1时,E[(X k -X k-1 )(Yk -Yk-1 )]=E[(X1 -X 0 )(Y1 -Y0 )]=E[X1Y1 ] k>1时,E[(X k -X k-1 )(Yk -Yk-1 )]=E[(X k Yk -X k-1Yk -X k Yk-1 +X k-1Yk-1 )] 又E[X k Yk-1 ]=E[E[X k Yk-1|Z0 ,Z1 E[X k-1Yk ]=E[E[X k-1Yk |Z0 ,Z1
= Zn ⋅ (0.5 ⋅ log 3 3+0.5 ⋅ log 3 1) = Zn ∴{Zn,n ≥ 1}关于{X n,n ≥ 1}的鞅。 事件{T=n}仅取决于σ (X1 ,X 2 X n),∴ T是停时,但不能用停时定理。 验证性说明:假设停时定理成立,则E[ZT ]=E[Zk ]=E[log 3 (1 + X k )]=1; 但由T=min{n:Zn =0}知ZT =0,即E[ZT ]=0,推出矛盾。 证明:验证停时定理1的三个条件; 条件1:P(T=∞)= lim ( 1 ) n = 0;即P(T<∞)=1,成立。 2 n →∞ 条件2:E[|ZT |]=E[|∏ log 3 (1 + X k )|]; ∵ log 3 (1+X k )=1或0, ∴ E[|ZT |]<∞,成立。

应用随机过程第3章习题简答

应用随机过程第3章习题简答

第 3 章补充作业
1. 设 {N (t ), t 0} 是速率为 的泊松过程,请计算其均值函数、自相关函数与
协方差函数。
N (t ) E ( N (t )) t ,
RN (s, t ) E ( N (s) N (t )) E{N (s)(( N (t ) N (s)) N (s)]} ,(s t )
F( X1 , X 2 , X 3 ) (t1 , t2 , t3 ) P{ X1 t1 , X 2 t2 , X 3 t3} i 1(1 e ti )
3
( X1 , X 2 , X 3 ) 的联合密度为:
f ( X1 , X 2 , X 3 ) (t1 , t2 , t3 ) 3e (t1 t2 t3 )
et?0t??rfs1tdt??ss?wfs1tdtw?r?1?e?r?1?det??s2?w?r?1??edsdet当w1r时?0平均到家时间是s的增函数所以1的ds期望时间在s0时最小
随机过程_第 3 章泊松过程习题简答
教材 P16 习题 2,4,5,10,11,13,15,17,21
4. 计算泊松过程前三个事件到达时刻 S1,S2,S3 的联合分布。 解:设事件到达的时间间隔为 { X n , n 0} ,则有 X n 独立同分布于参数为λ的 指数分布,进而, ( X1 , X 2 , X 3 ) 的联合分布函数为:
(1) P{ X (3) 5} e 3
(3 )5 ; 5!
P{ X (2) 5, X (3) X (2) 0} P{ X (3) 5} e2 (2 )5 e 2 5! ( )5 ; 5 (3 ) 3 e3 5!
( 3 ) P{ X (2) 5 | X (3) 5}

《信息与通信工程中的随机过程》习题解答 第3章

《信息与通信工程中的随机过程》习题解答 第3章

相关系数为: ρ = E {UV } = E { X 2 − Y 2 } = E { X 2 } − E { X 2 } = 0 由此得到,U 和V 的联合概率密度为:
1 − e fU ,V (u, v ) = 4π
u 2 +v 2 4
② 有①的结论,容易得到:
fU (u ) =
fV (v ) =
1 4π
2⎪ ⎫
⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
第 5 页 共 10 页
《随机过程》作业标准答案·第 1 章
所以: 又:
dX (t ) = A。 dt
2⎪ ⎧ ⎫ ⎪ A A 2 ⎪ ⎪ 2 ⎪ ⎪ (t + τ ) + B(t + τ ) − t − Bt ⎪ ⎪ ⎪ 2 ⎪ 2 lim E ⎨ − (At + B ) ⎬ ⎪ τ →∞ ⎪ τ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2⎪ ⎧ ⎫ ⎪ A ⎪ ⎪ 2 ⎪ ⎪ τ + At τ + B τ − (At + B )τ ⎪ ⎪ 2 ⎪ ⎪ = lim E ⎨ ⎬ ⎪ τ →∞ ⎪ τ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2 ⎧ ⎫ τ 1 ⎪ ⎪ 2 2 E { A2 } = 0 = lim E ⎪ ⎨ Aτ ⎪ ⎬ = lim ⎪ τ →∞ ⎪ ⎪4 ⎪ τ →∞ 4 ⎩ ⎭
所以:
⎧ X1 = Y1 ⎪ ⎪ ⎪ ⎪ X2 = − Y1 + Y2 ⎪ ⎪ ⎨ ⎪ " ⎪ ⎪ ⎪ X =− Yn −1 + Yn ⎪ ⎪ ⎩ n
系数矩阵为下三角矩阵,容易求得 Jocobi 行列式为: J = 1 。所以: fY Y "Y (y1, y2 , ", yn ) = J fX X "X (y1, y2 − y1, ", yn − yn −1 ) 1 2 n 1 2 n = fX (y1 )fX (y2 − y1 )" fX (yn − yn −1 )

第三章 随机过程

第三章  随机过程

第三章随机过程本章主要内容:(1)随机过程(2)平稳随机过程(3)高斯随机过程(4)平稳随机过程通过线性系统(5)窄带随机过程(6)正弦波加窄带随机过程(7)高斯白噪声和带限高斯白噪声本章重点:1.随机过程的基本概念,统计特性和数字特征2.平稳随机过程的定义、自相关函数和功率谱密度的性质3.高斯过程的特性4.窄带随机过程的特性5.高斯白噪声的特性本章练习题:3-1.设是的高斯随机变量,试确定随机变量的概率密度函数,其中均为常数。

查看参考答案3-2.设一个随机过程可表示成式中,是一个离散随机变量,且试求及。

查看参考答案3-3.设随机过程,若与是彼此独立且均值为0、方差为的高斯随机变量,试求:(1)、(2)的一维分布密度函数;(3)和。

查看参考答案3-4.已知和是统计独立的平稳随机过程,且它们的均值分别为和,自相关函数分别为和。

(1)试求乘积的自相关函数。

(2)试求之和的自相关函数。

查看参考答案3-5.已知随机过程,其中,是广义平稳过程,且其自相关函数为=随机变量在(0,2)上服从均匀分布,它与彼此统计独立。

(1)证明是广义平稳的;(2)试画出自相关函数的波形;(3)试求功率谱密度及功率。

查看参考答案3-6.已知噪声的自相关函数为=(为常数)(1)试求其功率谱密度及功率;(2)试画出及的图形。

查看参考答案3-7.一个均值为,自相关函数为的平稳随机过程通过一个线性系统后的输出过程为(1)试画出该线性系统的框图;查看参考答案3-8. 一个中心频率为、带宽为的理想带通滤波器如图3-4所示。

假设输入是均值为零、功率谱密度为的高斯白噪声,试求:图3-4(2)滤波器输出噪声的平均功率;(3)输出噪声的一维概率密度函数。

查看参考答案3-9. 一个RC低通滤波器如图3-5所示,假设输入是均值为零、功率谱密度为的高斯白噪声,试求:(1)输出噪声的功率谱密度和自相关函数;(2)输出噪声的一维概率密度函数。

查看参考答案3-10. 一个LR低通滤波器如图3-6所示,假设输入是均值为零、功率谱密度为的高斯白噪声,试求:(1)输出噪声的自相关函数;(2)输出噪声的方差。

通原第三章随机过程课后题答案

通原第三章随机过程课后题答案

第三章 随机过程错误!未定义书签。

.设()()()cos 2c Y t X t f t πθ=+,其中()X t 与θ统计独立,()X t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为()X R τ,()X P f 。

(1)若θ在()0,2π均匀分布,求()Y t 的均值、自相关函数和功率谱密度(2)若θ为常数,求()Y t 的均值、自相关函数和功率谱密度 解:无论是(1)还是(2),都有()()()cos 20c E Y t E X t E f t πθ=+=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()()()()()()()()()()()()()cos 2cos 22cos 2cos 221cos 2cos 422211cos 2cos 42222Y c c c c c c X c c c X c X c c R E Y t Y t E X t f t X t f t f E X t X t E f t f t f R E f f t f R f R E f t f ττπθτπθπττπθπθπττπτπθπττπττπθπτ=+⎡⎤⎣⎦=++++⎡⎤⎣⎦=++++⎡⎤⎡⎤⎣⎦⎣⎦=+++⎡⎤⎣⎦=+++⎡⎤⎣⎦在(1)的条件下,θ的概率密度函数为[)10,2()2 0 else p θπθπ⎧∈⎪=⎨⎪⎩于是()()201cos 422cos 42202c c c c E f t f f t f d ππθπτπθπτθπ++=++=⎡⎤⎣⎦⎰因此()()1cos 22Y X c R R f ττπτ=()()()()()22cos 224X c j f j f Y Y X c X c R f P f R e d e d P f f P f f πτπττπττττ∞∞---∞-∞==-++=⎰⎰在(2)的条件下()()()()11cos 2cos 42222Y X c X c c R R f R f t f ττπττπθπτ=+++表明()Y t 是循环平稳过程。

第三章随机过程作业

第三章随机过程作业

第三章随机过程作业第三章随机过程A 简答题:3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。

3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。

3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系3-4 高斯过程主要有哪些性质3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。

3-7 窄带高斯过程的同相分量和正交分量的统计特性如何3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。

3-10 写出带限高斯白噪声功率的计算式。

B 计算题:一、补充习题3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。

①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。

②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。

3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0()2N P ω=双,通过下图()a 所示的相干解调器。

图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。

②给出0()n t 的噪声自相关函数及其噪声功率值。

3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()yt ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章随机过程作业
第三章随机过程作业
1.设A 、B 是独立同分布的随机变量,求随机过程的均
值函数、自相关函数和协方差函数。

2.设是独立增量过程,且,方差函数为。

记随机过程
,、为常数,。

(1)证明是独立增量随机过程;
(2)求的方差函数和协方差函数。

3.设随机过程,其中是相互独立的随机变量且均值为
0、方差为1,求的协方差函数。

4.设U是随机变量,随机过程.
(1) 是严平稳过程吗?为什么?
(2) 如果,证明:的自相关函数是常数。

5.设随机过程,其中U与V独立同分布。

(1) 是平稳过程吗?为什么?
(2) 是严平稳过程吗?为什么?
6.设随机变量的分布密度为, 令, 试求的一
维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令
收集于网络,如有侵权请联系管理员删除
试求:的一维分布函数
8.设随机过程, 其中是相互独立的随机变量 , 且
, 试求的均值与协方差函数 .
9.设其中为常数 , 随机变量 , 令
, 试求 :和。

10.设有随机过程,并设x 是一实数,定义另一个随机过程
试证的均值和自相关函数分别为随机过程的一维和二维分布函数。

11.设有随机过程,,其中为均匀分布于间的
随机变量,即试证:
(1)自相关函数
(2)协相关函数
12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作一
个单位距离的随机游动。

若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即,且各次游动是相互统计独立的。

经过n 次游动,质点所处的位置为。

(1)的均值;
(2)求的相关函数和自协方差函数和。

收集于网络,如有侵权请联系管理员删除
13.设,其中服从上的均匀分布。

试证 :
是宽平稳序列。

14.设其中服从上的均匀分布. 试证 :既不是宽
平稳也不是严平稳过程 .
15.设随机过程和都不是平稳的,且其
中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证
是平稳过程。

16.设是均值为零的平稳随机过程。

试证 :
仍是一平稳随机过程 , 其中为复常数,为整数。

17.若平稳过程满足条件,则称是周期为的平稳
过程。

试证是周期为的平稳过程的充分必要条件是其自相关函数
必为周期等于的周期函数。

收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档