2-3平面几何不变体系的基本组成规律(结构力学第2章)

合集下载

结构力学(几何组成分析)详解

结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3

Pr



A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1

.O2
ⅡⅡ

ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回

清华大学结构力学第2章几何构造分析34

清华大学结构力学第2章几何构造分析34
II
17
5. 关于无穷远瞬铰的情况
1 C II
I A
2
a)
B
III
一个瞬铰C在无穷远处,铰A、B连线与形成 瞬铰的链杆1、2不平行,故三个铰不在同一直 线上,该体系几何不变且无多余约束(图a)。
18
A B
I II C
b)
III 瞬铰B、C在两个不同方向的无穷远处,它 们对应于无穷线上两个不同的点,铰A位于 有限点。由于有限点不在无穷线上,故三铰 不共线,体系为几何不变且无多余约束(见 图b)。
一、复杂链杆与复杂铰
1. 简单链杆与复杂链杆 简单链杆——仅连接两个结点的链杆称为简
单链杆,一根简单链杆相当于一个约束。
复杂链杆——连接三个或三个以上结点的链杆
称为复杂链杆。一根复杂链杆相当于(2n-3) 根简单链杆,其中n为一根链杆连接的结点数。
35
2. 简单铰与复杂铰 简单铰——只与两个刚片连接的铰称为简单铰。
19
A I II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
20
6. 装配格式和装配过程
基本装配(建造、施工)格式
把一个节点固定到一个刚片上;
把一个刚片固定到另一个刚片上;
把两个刚片固定到另一个刚片上。
9
3
I
解: 用混合公式计算。 m=1 j=5 g=2 b=10
W (3 1 2 5) (3 2 10)
13 16 3
41
例2-3-5 求图示体系的计算自由度。
1 2 4 A 3 B 5 6 E 7 C 8 D 10 11

结构力学第2章平面几何组成分析

结构力学第2章平面几何组成分析

几何组成作业题
2-3, 2-5 2-7, 2-8 2-10, 2-12 2-16, 2-21 交作业时间:周 3
§2. 几何组成分析
补充作业:(不做) 2-1 (b)试计算图示体系的计算自由度
解:
或:
W 8 3 11 2 3 1 W 1 3 5 2 2 2 10 1
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片.
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 方法3: 将只有两个铰与其它 部分相连的刚片看成链杆. 书上例题2-1、2-3同。
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
计算自由度大于零一定可变; 若等于零则一定不变吗? 五. 计算自由度 六. 多余约束 必要约束 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束
§2.1 基本概念
§2-1 基本概念 一. 几何不变体系 几何可变体系 二. 刚片 三. 自由度 四. 约束(联系) 链杆 单铰 复铰 虚铰 实铰 五. 计算自由度 六. 多余约束 必要约束
练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析
无多余约束的几何不变体系。
三杆不平行不变 平行且等长常变 平行不等长瞬变
§1. 几何组成分析

结构力学

结构力学

二、几何组成分析的目的
(1)判别体系是否几何不变; (2)按什么规律组成一个几何不变体系; (3)区分结构是静定的还是超静定的。
返回
§2-2 刚片、约束、体系自由度 和计算自由度
一、体系自由度的定义:
体系自由度:体系的独立运动方式数,或确定体系位置所需的独立坐标数。 例如:平面内一个点有2个自由度,一个刚片有3个自由度。
在某一瞬间可以产生微小运动的体系,称为瞬变体系,它是可变体系 的一种特殊情况。
FN
瞬变体系在工程中不能采用。
FP 2 Sin
如果一个几何可变体系可以发生大位移,则称为常变体系。
法则Ⅱ: 两刚片法则,两刚片用不完全 相交于一点且不完全平行的三 根连杆连接而成的体系,是几 何不变而无多余约束的。
两刚片以一铰及不通过该铰的一个链杆相联,构成几何不变体系。
法则Ⅲ:三刚片六连杆法则,三刚片之间用六连杆彼 此两两相连接,六连杆所组成的三个铰不在 同一条直线上,则所组成的体系是几何不变 而无多余约束的。
讨论
虚铰在无穷远的情形
二元体的概念
二元体的定义:从任意基础上用不共线的两根连杆形成一个 新结点的装置。
2.结论:给定体系为几何不变无多余约束体系。
返回
例六
试分析图示体系是否为几何不变系
解:1.几何组成分析 去除二元体 刚片Ⅰ、Ⅱ、Ⅲ符合三刚片法则。
2.结论:给定体系为几何不变无多余约束体系
返回
例七 试分析图示体系是否为几何不变体系
解:1.几何组成分析 ABEF与基础之间符合两刚片法则,组成新刚片Ⅲ 在刚片Ⅲ上增加一个二元体形成新节点G,由二元体的性质知 体系仍为几何不变,看作刚片Ⅳ CDHI看作刚片Ⅴ,刚片Ⅳ、Ⅴ之间三根连杆交于点D。 2.结论:该体系为几何瞬变体系。

工程结构力学 (3)

工程结构力学 (3)
若三铰共线,且全是有限远铰,则体系必为几何瞬变。



ⅡⅢ Ⅰ
a) 三实铰共线
b) 一虚铰与两实铰共线
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
ⅡⅢ Ⅰ
c) 两虚铰与一实铰共线
本节课结束
1、二元体规则(固定一点规则)—— 一个点与一个刚片的联结方式
用两根不共线的链杆联结(发展)一个新结点的构造,称为二元 体。于是,规则Ⅰ也可用二元体的组成表述为:
在一个刚片上,增加一个二元体,仍为几何不变,且无多余约
束的体系。
A
A
A






由二元体的性质可知:在一个体系上依次加上(或取消)若干个二元体 ,不影响原体系的几何可变性。这一结论常为几何组成分析带来方便。
一、平面几何不变体系的基本组成规则
2、 两刚片规则——平面内两个刚片的联结方式
A ② B
I
③ C
A II
B I
③ C
A II B ①②
I
③ C
规则Ⅱ(表述之一):两刚片用一铰和一链杆相连,且链杆及其 延线不通过铰,则组成内部几何不变且无多余约束的体系。
规则Ⅱ (表述之二):两个刚片用三个链杆相连,且三根链杆不 全交于一点也不全平行,则组成内部几何不变且无多余约束的体系。
一、平面几何不变体系的基本组成规则
3、 三刚片规则—— 平面内三个刚片的联结方式
A
II
III
B
C
I
规则Ⅲ:三个刚片用三个铰两两相连,且三个铰不在一直线上 ,则组成内部几何不变且无多余约束的体系。
二、几何可变体系
由于约束布置不当,可以持续发生大的刚体运动的体系,称 为几何常变体系。

结构力学第2章平面体系的几何组成分析

结构力学第2章平面体系的几何组成分析

精品课件
例2-4-3
精品课件
分析图:
(a)
精品课件
(b)
(c)
精品课件
(d)
(e)
精品课件
说明:
1、通过本题中的两例可知,当上 部体系和大地之间的联系符合两刚 片规则时,体系几何组成分析的结 论只与上部体系的几何组成有关。 因此,当符合此条件时,可仅分析 上部体系。
精品课件
2、(a)所示体系先去掉与大地的支 座约束后,对上部体系可依次去掉 二元体213、453、563后,体系简化 成一铰接三角形,所以原体系是无 多余约束的几何不变体系。
结构力学
结构力学教研组 青岛理工大学工管系
精品课件
第二章 平面体系的几何组成分析
精品课件
§2.1 概述
本章研究平面杆系结构的基本 组成规律和合理形式。
精品课件
其目的在于:
❖ 了解和掌握结构的基本组成规律和
合理组成形式。正确区分各类体系, 判定结构;选择合理的结构形式。 ❖ 根据各类结构的几何组成,选择 正确的计算方法和简捷的解题途径。
几何不变体系
精品课件
(2)内部几何不变体系
若作为几何组成分析的结论, 内部几何不变体系指仅除大地 外的体系的整体。
精品课件
(a)
(b)
精品课件
(c)
(3)刚片
在平面问题中,刚性体化为平面 内的一个不会有变形的面,则称 这个面为刚片.刚片在其平面内, 任意两点间的距离都保持不变。
精品课件
(4)几何瞬变体系
对体系加载时,体系在瞬时内发 生微小位移,然后便成为几何不 变体系。这种体系叫作几何瞬变 体系(瞬变体系)
精品课件
(a)
精品课件

结构力学第2章平面体系的几何组成分析

结构力学第2章平面体系的几何组成分析

➢ 在任意体系上依次增加,或依 次拆除二元体,原体系的自由度 数不变。
(a)
(b)
3、基本组成规则中约束方式 的影响
利用这两个规则的要点是规则中 的三个要素:
❖ 刚片及刚片数 ❖ 约束、约束数及约束的方式 ❖ 结论
两个刚片用三个链杆相连 的情况:
❖ 当三个链杆平行并且长度相等时, 是几何可变体系
两平行链杆构成一交点在无穷远的虚铰其作用相当于无穷远处的一个实铰的作用一个铰接三角形是无多余约束的几何不变体系或是刚片或是内部几何不变体系基本三角形规则基本三角形规则可用以下12两个简单组成规则等效
结构力学第2章平面体系的几何 组成分析
第二章 平面体系的几何组成分析
§2.1 概述
本章研究平面杆系结构的基本 组成规律和合理形式。
(b)
(c)
虚铰的典型运动特征为:瞬心
从瞬时运动角度来看,刚片1与刚 片2的相对运动,相当于绕两链杆 的交点处的一个实铰的转动。
(a)
(b)
➢ 两平行链杆构成一交点在 无穷远的虚铰,其作用相当于
无穷远处的一个实铰的作用 。
§2.3 平面几何不变体系的基 本组成规律
1.基本组成规律的产生 (a)
例2-4-6(多余约束)
分析图: (a)
说明:
对于有多余约束的几何不变体系, 可以用去掉约束的方法,使体系成 为无多余约束的几何不变体系,所 去掉的约束数就是原体系所具有的
多余约束数,这种方法叫拆除约束 法。
例2-4-7
分析图:
说明:
把四周用连续杆、刚结点及固定端 构成的体系叫封闭框。一个封闭框 是有3个多余约束的几何不变体系。
❖ 当三个链杆平行但长度不全相 等时,是几何瞬变体系

结构力学第2章

结构力学第2章
烟台大学
第2章 平面体系的几何构造分析 五、体系的计算自由度与自由度
返回
1. 计算自由度与自由度的关系
自测
S(自由度) W(计算自由度)= n(多余约束) 2. 自由度与几何体系的关系 几何不变体系的自由度为零,凡是自由度大于零的 体系都是几何可变体系。 3. 几何性质与静定、超静定的关系 静定、超静定结构都必须是几何不变体系,其中无多 余约束的几何不变体系是静定结构,有多余约束的几何不 变体系是超静定结构。
A B C A D O1 B C
帮助 开篇
退出
上一页
下一页
II
O1 D E
I
F O2
I II
E F III
III (a)
O2
(b)
烟台大学
第2章 平面体系的几何构造分析 四、应注意的问题
返回
自测
(1) 刚片必须是内部几何不变的部分。 例如,不能把图a中的 EFGD取作刚片(图b), 因为它是几何可变的。
烟台大学
A B (a) C C (b) B D A B (c) A C
注意:去掉二元体是体系的拆除过程,应从体系的外 边缘开始进行,而增加二元体是体系的组装过程,应从一 个基本刚片开始。
烟台大学
第2章 平面体系的几何构造分析
二、几个容易混淆的概念
返回
自测
E C A D B
1. 二元体
帮助 开篇
退出
上一页
下一页
烟台大学
第2章 平面体系的几何构造分析
返回
自测
例如, 在分析图a 所示体系的几何组成时,可去掉二 元体,体系变为图b。将基础视为刚片,AB杆(刚片Ⅰ)、 BC杆(刚片Ⅱ)与基础(刚片Ⅲ)符合三刚片规律,体 系为无多余约束的几何不变体系。

结构力学第2章体系的几何组成分析(f)

结构力学第2章体系的几何组成分析(f)

§2-3 几何不变体系的基本组成规则
三铰拱,左右两半拱视为刚片1,2,地基视为 刚片3,该体系由三个刚片用不在同一直线上 的三个单铰A、B、C两两相连,为几何不变 体系,而且没有多余联系。
§2-3 几何不变体系的基本组成规则
2.二元体规则
二元体:两根不在一直线上的链杆连接成一个新结点的构
造称为二元体。
§2-2 平面体系的计算自由度
W<0:表明体系在联系数目上还有多余,体系具有多余联系。 但体系是否几何不变要看联系布置是否得当。
体系计算自由度W≤0,是体系几何不变的必要条件,还 不是充分条件。一个体系尽管联系数目足够甚至还有多 余,不一定就是几何不变的。 为了判别体系是否几何不变,必须进一步研究体系几何 不变的充分条件,即几何不变体系的组成规则。
§2-3 几何不变体系的基本组成规则
两刚片用三根链杆相联
如图所示,刚片I和刚片II可 以绕O点转动;O点成为刚片I和 II的相对转动瞬心。
虚铰:连接两个刚片的两根连杆的作用相当于其交点 处的一个单铰,而这个铰的位置随着链杆的转 动而改变,称其为虚铰。
§2-3 几何不变体系的基本组成规则
分析图示体系: 把链杆AB、CD看作是其交点O 处的一个铰,刚片I和II相当于用 铰O和链杆EF相连,故为几何不 变体系,没有多余联系。
或:从结点10开始拆除二元体,依次拆除结点9,8, 7…,最后剩下铰结三角形123,它是几何不变的,故原体 系为几何不变体系,没有多余联系。
§2-3 几何不变体系的基本组成规则
3.两刚片规则 两个刚片用一个铰和一根不通过此铰的链杆相连,组成
的体系是几何不变的,且没有多余联系。如图。
图示体系也是按三刚 片规则组成的。将链杆看 作一个刚片,组成的体系 是几何不变的,且没有多 余联系。

结构力学第二章

结构力学第二章
第2章 平面体系的几何组成分析
1
本章导读
学习内容: 1.掌握几何不变体系、几何可变体系、瞬变体系的概念, 2.掌握刚片、自由度、约束、实铰与虚铰的概念; 3.了解平面体系的计算自由度及其计算方法; 4.掌握平面几何不变体系的基本组成规则及其运用; 5.了解体系的几何组成与静力特性之间的关系。
学习目的:体系的 几何组成分析是判定体系能否作为建筑结构 使用的依据,可以确定静定结构计算途径,可以确定超静定结 构的多余约束的数目等。
固定一点
固定两刚片
固定一刚片
36
(2)从内部刚片出发构造 从刚片出发,由内及外,内外联合形成整体体系。
若上部体系与基础由不交于一点的三 杆相连,可去掉基础只分析上部体系
37
(3)从规律出发,由内及外,内外联合形成整体体系。
利用虚铰
铰杆代替
例如三铰拱
大无地多、余A几C何、不BC变为刚片;A、B、C为单铰
II
A II
I
I
A(∞) II I
表述二:平面上的两个刚片通过三根链杆相连,如果这些链杆不全平
行且所在直线不全交于一点,则组成内部几何不变且无多余约束的体
系。
31
3. 三刚片规则
三个刚片用三个不共线的绞两两相连,所得的体系为无多余约束几何不 变体系。
II
II
I
I
32
规律1. 规律2. 规律3. 规律4.
3
c.几何瞬变体系:不考虑材料的变形,在任何荷载作用下, 几何形状和位置可能产生微小的改变,随之即变成几何不 变体系的体系。
FP
FP
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
4
d.几何常变体系:体系缺少约束或约束布置不恰当,没有确定的几 何形状与空间位置的体系(可发生持续大量的刚体位移)。

2.2平面几何不变体系的组成规律 结构力学

2.2平面几何不变体系的组成规律  结构力学

(瞬铰)
二、三刚片规则
三个刚片相连
用不在一条直线上的三个铰两两相连。
将支链杆 看成刚片
三、二元体规则
在一个刚片上增加一个二元体仍为几何不变体系。
二元体
由两根不共线的链杆连接一个 新结点的装置。
(简单装配格式)
▲推广:在一个已知体系上,依次增加或去掉 二元体,不影响原体系的几何组成性 质。(分析复杂体系很有用)
学习情境二 结构的几何组成分析
学习单元 二 平面几何不变体系的组成规律
学习情境二 结构的几何组成分析
2.2.1 两刚片规则

2.2.2 三刚片规则
单 元
2.2.3 二元体规则


2.2.4 瞬变体系
2.2.5 常变体系
一、两刚片规则
1. 两个刚片相连
两个刚片用一个铰和一个不通过铰的链杆相连。 (或不全交于一点也不全平行的三链杆)
1. 三铰共线
三、 瞬变体系
(约束数量够,但位置不对。)
本来是几何可变体系,经微小位移后又成为几何不变的体系。
P α
N=P/2sinα α→0 N→∞
虽然经过微小位移以后变成几何不变体系,但体系会产生很大的内 力,不能作为实用的结构。
2. 三杆平行
三、 瞬变体系
(约束数量够,但位置不对。)
2. 三杆平行且不等长
Δ Δ Δ
3. 三杆共点
三、 瞬变体系
(约束数量够,但位置不对。)
三杆延长线交于一点
三、 常变体系
1. 三杆平行
如果一个几何可变体系,可以发生大位移,则这 样的体系,称为常变体系。
三链杆平行且等长
三、 常变体系
2. 三杆共点

结构力学 第二章 结构的几何构造分析.

结构力学 第二章 结构的几何构造分析.
2019/9/6
A
B
C

如图示,三刚片用三个不共线的 铰相连,故:该体系为无多余约 束的几何不变体系。
结构力学
36
(Ⅰ,Ⅱ)
Ⅰ (Ⅰ,Ⅲ) Ⅱ

Ⅰ Ⅱ

(Ⅰ,Ⅲ)
三刚片以三个无穷远处虚铰相连 组成瞬变体系
(Ⅱ,Ⅲ)
(Ⅰ,Ⅱ)
(Ⅱ,Ⅲ)
如图示,三刚片以共线三铰相连几何瞬变体系
2019/9/6
结构力学
② 在结构计算时,可根据其几何组成情况,选择适 当的计算方法;分析其组成顺序,寻找简便的解 题途径。
由若干杆件用各种结点连接而成的杆件体系,当 能承受一定范围内任意荷载时,称为杆件结构。不能 承受任意荷载的体系称为机构。
2019/9/6
结构力学
5
2-1-2 体系的分类
在忽略变形的前提下,体系可分为两类:
静定结构 — 几何特征为无多余约束几何不变。
2019/9/6
结构力学
21
2-2-1 静定结构组成规则
规则1 一刚片规则(二元体规则)
一个刚片与一个 点用两根链杆相连, 且三个铰不在一直线 上,则组成几何不变 的整体,并且没有多 余约束。
2019/9/6
图2-8
结构力学
A C
1 A2
22
在体系上用两个不共线杆件或刚片连接一个新
掌握: 体系的计算自由度的概念及计算,无多余 约束的几何不变体系的几何组成规则,及 常见体系的几何组成分析。
了解: 结构的几何特性与静力特性的关系。
2019/9/6
结构力学
4
§2-1 几何构造分析的几个概念
2-1-1 几何构造分析的目的
① 研究结构正确的连接方式,确保所设计的结构能 承受荷载,维持平衡,不至于发生刚体运动。

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析
A
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I
C 联合装配格式
A
II
III
固定两个刚片的装配格式
B
I C 复合装配格式
29/73
2-2 平面几何不变体系的组成规律 四、体系的装配 多次应用上述基本组成规律或基本装配格式,可以组成各 种各样的几何不变且无多余约束的体系。 装配的过程通常有两种: 1 从基础出发进行装配
x
一个链杆相当于1个约束
若用数学表达式,则应满足以下条件: xB xA 2 yB yA 2 l2
4个坐标参数必须受到上述条件的限制,故只有3个独立运动 几何参数。
14/73
2-1 几何构造分析的几个概念 五、多余约束
如果在一个体系中增加一个约束,而体系的自由度并不因此 而减少,这种约束称为多余约束。
二、刚片
在几何组成分析中,可能遇到各种各样的平面物体,不论其具 体形状如何,凡本身为几何不变者,则均可把它看作为刚片。
6
4 2
5 3
1
5/73
2-1 几何构造分析的几个概念 三、自由度
y A'
A Dx
O
x
平面内一点有两种独立运动方式 (两个坐标x, y可以独立地改变)
一点在平面内有两个自由度
Dy Dy
A
II B
3
I
C
II
B 12
A
3
I
C
几何不变 无多余约束
几何不变 无多余约束
规律3 两个刚片用三个链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,并且没有多余约束。

《结构力学》第二章 平面体系的机动分析

《结构力学》第二章 平面体系的机动分析
常变体系
§2-5 机动分析示例
加、减二元体
无多几何不变
瞬变体系 去支座后再分析
加、减 二元体
无多几何不变
找找虚虚铰铰 无无多多几几何何不不变变
§2-5 几何构造与静定性的关系
F FAx
FAy
如何求支 座反力?
静定结构
FB
无多余 联系几何 不变。
F FAx
FAy
FC
FB
能否求全 部反力?
超静定结构
有多余 联系几何 不变。
小结
几何不变体系 可作为结构
体系
几何可变体系 不可作结构
无多余联系
静定结构
有多余联系
超静定结构
常变
瞬变
s=3
3.体系的计算自由度:
计算自由度等于刚片总自由度数减总约束数
W = 3m-(3g+2h+b)
m---刚片数(不包括地基) g---单刚结点数 h---单铰数 b---单链杆数(含支杆)
铰结链杆体系---完全由两端铰结的杆 件所组成的体系
铰结链杆体系 的计算自由度:
W=2j-b
j--结点数 b--链杆数,含
在一个体系上增加 或拆除二元体,不 改变原体系的几何 构造性质。
加二元体组成结构
如何减二元体?
二刚片规则:
两个刚片用一个铰 和一根不通过此铰 的链杆相联,组成 无多余联系的几何不变 体系。
二刚片规则:
两个刚片用三根 不全平行也不交 于同一点的链杆 相联,组成无多 余联系的几何不 变体系。在其交点处的一个单铰,这种铰称为 虚铰(瞬铰)。
三边在两边之和大于第三边时,能唯一地组成 一个三角形——基本出发点.
三刚片规则:
三个刚片用不在同 一直线上的三 个单 铰两两相连,组成 无多余联系的几何 不变体系。

结构力学 第2章 平面体系的几何组成分析

结构力学 第2章 平面体系的几何组成分析

2.1 几何不变体系和几何可变体系
一、几何不变体系和几何可变体系
1、几何不变体系——受到任意荷载作用后,若不考虑 材料的应变,其几何形状和位置均能保持不变的体系。
D
FP A A1 弹性变形 EI FP A
几何不变体系:刚体.swf
EI1=∞
B
B
一、几何不变体系和几何可变体系
2、几何可变体系——受到任意荷载作用后,若不考虑材料 的应变,其几何形状和位置仍可以发生改变的体系。
三、体系的几何组成性质与计算自由度之间的关系
a) W=1>0 由此可知:
b) W=0
c) W=-1<0
(1) 若W>0,体系一定是几何可变的。 (2) 若W≤0,只表明具有几何不变的必要条件,但不 是充分条件。因为体系是否几何不变还取决于约束的 布置是否合理。
2.4 平面几何不变体系的基本组成规则
(4)刚片与地基之间的固定支座和铰支座不计入g和h, 而应等效代换为三根支杆或两根支杆计入r。
【例2-1】试求图示体系的计算自由度W。
m1 m4 m7 (3)h m2 m5 (1)h m6 (3)g
(1)h m3 (3)h
m8
(3)r
m9 (3)r
m=9,g=3,h=8, r=6
W = 3m-(3g+2h+r) = 3×9-(3×3+2×8+6) = -4
图a是内部没有多余约束的 刚片,而图b、c、d则是内 部分别有1、2、3个多余约 a) 束的刚片,它们可以看作 在图a的刚片内部分别附加 了一根链杆或一个铰结或 c) 一个刚结。
b)
d)
在应用公式时,应注意以下几点:
(3)刚片与刚片之间的刚结或铰结数目(复刚结或复 铰结应折算为单刚结或单铰结数目)计入g和h。

结构力学第2章 平面体系机动分析

结构力学第2章 平面体系机动分析

D
A
C
B
依次去掉二元体A、B、C、D后,只剩基础。故该体系为 无多余约束的几何不变体系。
2 如上部体系与基础的联结符合两刚片原则,可去掉基础, 只分析上部。
抛开基础,分析上部,去掉二元体后,剩下两刚片用两平行 杆相连,几何可变。
3 当杆件数较多时,将刚片选得分散些,刚片与刚片间用链杆 形成的虚铰相连,而不用单铰相连。
几何组成分析小结
机动分析先化简 依次拆除二元体 确认刚片是关键 等效代换灵活用
撤去基础三支杆 再为组成找条件 增加两元再扩展 按照规则连成片
§2-6 几何构造与静定性的关系
F FAx
FAy
如何求支 座反力?
静定结构
FB
无多余 联系几何
不变
F FAx
FAy
FC
FB
能否求全 部反力?
超静定结构
有多余 联系几何 不变。
刚片:不计材料变形,将杆件或已知是几何不变的部 分看作刚片,注意:不是“钢片”。
可表示为:
刚片(rigid plate)——平面刚体。
内部是稳定的,几何形状和位置不发生任何改变。(梁、柱、杆、 几何不变体、基础)
形状可任意替换
§2-2 平面体系的计算自由度
1.自由度--确定物体位置所需的独立坐标数目
虽然 W=0, 但其上部有多余联系, 而下部又缺少联系,仍为几何可变。
小结
W>0, 缺少足够约束,体系几何可变。
W=0, 具备成为几何不变体系所需的最少约束 的数目。必要非充分条件
W<0, 体系具有多余联系
W> 0 W< 0
体系几何可变
体系几何不变 ?
§2-3 几何不变体系的组成规则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实铰相联:
虚铰相联:
当三个铰在一直线上时:
瞬变体系
两刚片和三刚片组成规则都是基于同一简单的事实,即边长 给定的三角形的几何形状是惟一确定的。因此,平面几何不变体 系的基本组成规则可称为三角形规则。
三刚片相联的几种特殊情况:
2-3-3 基本组成规则的应用技巧 一元体:一个刚片与一个体系之间只用三根不相交于一点也不相 平行的链杆联结,则该刚片称为一元体。
§2-3 平面几何不变体系的组成规则 2-3-1 两刚片组成规则 两刚片间用不相交于一点也不相平行的三根链杆相联,其内 部是几何不变的,并且没有多余的约束。
两刚片间用不相交于一个铰(实铰或虚铰)和一根不通过该 铰的链杆相联,其内部是几何不变的,并且没有多余的约束。
常变体系
瞬变体系
片组成规则 三刚片用不在一直线上的三个铰两两相联,其内部是几何不 变的,并且没有多余的约束。
减少或增加一元体不改 变体系的几何构造特征。
可去除基础只分析上 部体系的几何构造。
等效代换:即链杆与刚片之间的代换。 ⑴ 任何链杆(包括支座链杆)都可以看作刚片。 ⑵ 刚片看作链杆则是有条件的:若一个刚片仅通过两个铰(包括 虚铰)对外联系,则该刚片可看作通过这两个铰的链杆;若一 个刚片是通过3个或3个以上的铰与外部联结,则该刚片看作联 结这些铰的内部几何不变,并且无多余约束的链杆体系。 注意:若一个刚片内部具有多余约束,则在对体系的几何可变性 进行分析时可以看作一般刚片,但在求体系的计算自由度 或是多余约束数量时应计入上述多余约束。如:
减少或增加一元体不改 变体系的几何构造特征。
可去除基础只分析上 部体系的几何构造。
二元体:两个刚片与一个体系之间只用三个不在一直线上的铰两 两相联,则两个刚片称为二元体。 二元体
减少或增加二元体不改 变体系的几何构造特征。 2-3-3 基本组成规则的应用技巧 一元体:一个刚片与一个体系之间只用三根不相交于一点也不相 平行的链杆联结,则该刚片称为一元体。
封闭刚结框架体系是具有3个内部多余约束的几何不变体系。
相关文档
最新文档