3.2 钢-混凝土组合梁桥
钢-混组合梁桥的应用及其关键技术综述
钢-混组合梁桥的应用及其关键技术综述随着我国桥梁工程事业的发展,钢-混凝土组合梁桥作为一种新型桥梁结构,目前正广泛应用于公路及城市立交桥中。
本文结合钢-混凝土组合梁桥的结构特点及其应用情况,分析阐述了钢-混组合梁桥的关键技术,为此类桥梁结构的设计与施工提供参考。
标签:钢-混组合梁;结构特点;应用;关键技术1 前言随着我国城市交通基础设施建设的飞速发展,上跨现有道路的公路及城市立交桥越来越多。
该类桥梁施工中受下穿道路通行的影响非常大。
为了减少对被交道路交通的影响,缩短工期,降低风险和管理难度,采用钢-混组合梁桥是比较适宜的。
钢-混组合结构是在钢筋混凝土结构和钢结构的基础上发展起来的一种新型结构。
它和混凝土箱梁相比极大地减轻了结构自重,提高了桥梁的跨越能力;和钢梁相比减少了钢材用量,提高了结构刚度。
所以,钢-混凝土组合梁在我国的公路及城市立交桥建设中得到了广泛应用。
2 钢-混组合梁桥的结构特点组合梁桥采用剪力键将钢梁与钢筋混凝土桥面板结合成整体,钢筋混凝土桥面板不仅直接承受车轮荷载起到桥面板的作用,而且作为主梁的上翼板与钢梁形成组合截面,参与主梁共同作用。
组合梁桥采用最多的是简支梁桥结构形式,因为简支梁最符合组合梁材料分布的合理原则,即梁上翼缘应是适宜受压的混凝土板,下缘是利于受拉的钢梁。
(1)与钢梁相比,钢-混组合梁具有以下特点:a)减少了钢材的用量,节约了造价;b)增大了梁的刚度,有利于整体稳定性;c)采用钢筋混凝土桥面板,有利于沥青面层的结合,提高桥面铺装的耐久性。
(2)与混凝土梁相比,钢-混组合梁具有以下特点:a)结构自重轻,减少了下部基础的工程量;b)已安装钢梁可作为模板使用,节省了模板工程量;c)施工工期短,且对桥下交通的影响小;d)降低了梁高,有利于桥下净空利用率。
3 钢-混组合梁桥应用情况综述钢-混凝土组合梁在我国起步较晚,改革开放以前,虽有少数工程用过组合梁,但未考虑组合效应,而仅仅作为强度储备和为方便施工而已。
基于有限元分析钢桁架混凝土组合梁桥的力学性能
安徽建筑中图分类号:U448.21+1文献标识码:A文章编号:1007-7359(2024)3-0162-03DOI:10.16330/ki.1007-7359.2024.3.059为了使传统钢桁架桥在结构体系上更趋合理、经济性能更具竞争力,钢-混凝土组合桁梁桥应运而生。
其主要通过剪力连接件将混凝土桥面板和钢桁架上弦杆组合在一起共同受力,目前国内外普遍采用有限元分析对钢桁架-混凝土组合结构的力学性能进行研究。
在模拟方法及模型建立方面,王军文等[1]采用了空间杆系梁单元来模拟钢桁架梁,矩形板壳单元模拟公路桥面板;朱海松[2]运用有限元程序SAP-5进行分析,对主桁架分别采用空间刚接梁单元和空间铰接杆单元两种形式进行建模,对混凝土桥面板则亦采用板壳单元建立;周惟德和陈辉求[3]将组合桁架划分为四个单元,混凝土面板采用板单元,钢桁架的上下弦杆采用钢架单元,腹杆则采用杆单元。
不同学者根据所建得的不同模型得出了有关钢桁架-混凝土组合结构的各种研究成果,为后人提供了坚实的基础和有益的参考。
本文基于有限元软件ABAQUS6.10,依托天津滨海新区西外环海河特大桥主桥(95+140+95)m ,建立有限元模型,比较分析钢桁架-混凝土组合梁桥和纯钢桁架梁桥的力学性能。
1研究对象依托工程为上承式钢桁架-混凝土组合梁桥。
立面简图见图1,节点间距及腹杆高度见表1。
图1组合桁架立面简图2计算模拟方法及模型的建立为了保证模型的收敛性,将桁架杆件均划分为梁单元,将桥面板离散为板壳单元。
混凝土桥面板被看成是各向同性的均质材料,且不考虑钢筋的作用,桥面板既可承受压力亦可承受拉力,且不会开裂而导致刚度降低。
所有构件均在弹性范围内工作,其应力-应变关系符合胡可定律,所有由于加工制造和安装原因导致的缺陷、偏心和残余应力影响均不考虑。
分别计算纯钢桁架结构和钢桁架混凝土组合结构在结构自重+活载(汽车荷载)下的位移和应力。
对结构自重(包括结构附加重力),可按结构构件的设计尺寸与材料的重力密度计算确定,桥梁结构的整体计算采用车道荷载,车道荷载由均布荷载和集中荷载组成。
第三章 简支板梁桥
具锚固在梁端或梁顶。
福州大学《桥梁工程》-福建省精品课程
/BridgeCourse/
31
第三章 简支梁(板)桥结构与施工
预应力混凝土梁(后张法)锚固区构造
Ⅱ Ⅰ -Ⅰ Ⅰ 15× 10= 150 Ⅱ -Ⅱ
后浇封头混凝土 钢筋网 垫 板 d=2CM 间 距 10CM 直 径8MM
福州大学《桥梁工程》-福建省精品课程
/BridgeCourse/
27
第三章 简支梁(板)桥结构与施工
一般构造特点 :
截面形式:板式、 П 形、 T 形和箱形。 板桥的截面主要形式:装配式空心板;预应力 采用先张法施工;常用跨径范围为 8~16m , 板厚为0.4~0.7m。 T 梁的梁肋厚度一般不得小于 14cm ;并且当 腹板内有竖向预应力钢筋时,腹板厚度不小于 上、下翼缘梗腋之间腹板高度的 l / 20 ;当无 竖向预应力钢筋时,则不得小于 1 / 15 。
30
第三章 简支梁(板)桥结构与施工
预应力筋的锚固 锚具在梁端的布置应遵循“分散、均匀”的原则 在 先 张 法 预 应 力 混 凝 土 梁 ( pre - tensioned Prestressed concrete girder )中,预应力筋靠混
凝土的握裹力锚固在梁体内;
而 在 后 张 法 预 应 力 混 凝 土 梁 ( post-tensioned Prestressed concrete girder )中,则通过各类锚
福州大学《桥梁工程》-福建省精品课程
/BridgeCourse/
15
第三章 简支梁(板)桥结构与施工
3 、箱形梁桥
梁肋、翼缘板、底板——承受正负弯矩
箱形截面——抗弯惯矩大,抗扭刚度大
在桥梁工程中钢_混凝土组合结构的优势与劣势
在桥梁工程中钢_混凝土组合结构的优势与劣势交通土建2011级摘要:随着我国经济建设的加速发展,在近30年来建造了不少大型桥梁。
由于组合梁能充分发挥钢与混凝土两种材料的力学的性能,在国内外桥梁工程中获得了广泛的应用。
本文将阐述钢_混凝土组合梁结构在桥梁工程中的优势、劣势、应用及发展趋势,关键词:桥梁工程;钢-混凝土组合结构1、钢_混凝土组合结构发展现状自20世纪50年代以来,欧洲各国、美国和日本等国已在多类桥梁中较为广泛的应用了组合结构。
与之配套的各类抗剪连接件、施工架设技术和分析方法也不断发展,并编制了以欧洲规范四等为代表的组合结构桥梁设计规范。
20世纪80年代以来,国际桥梁及结构工程协会(IBASE)多次召开国际学术会议,对组合结构桥梁在研究、设计、施工等方面的发展进行交流和研讨,进一步促进组合结构桥梁的发展。
相对于发达国家,尽管在我国很多大中城市的高架立交桥、中小跨径的公路桥和铁路桥以及大跨度斜拉桥、悬索桥、拱桥中都应用了组合结构,我国组合结构桥梁的技术水平仍落后于国际先进水平。
桥梁施工技术发展极不平衡。
一方面,在寻求跨度突破的巨大技术需求推动下,大跨度桥梁快速发展并且屡次打破世界记录;另一方面,在中、小跨度桥梁中,混凝土及预应力混凝土桥梁占据绝对数量优势。
而我国混凝土及预应力混凝土桥梁存在质量问题较多,预应力后张梁工艺存在堵孔、张拉预应力控制不准、压浆不密实等技术瓶颈。
预应力混凝土连续梁桥砼箱梁腹板承受较大的主拉应力,砼材料易开裂,致使结构刚度降低,影响结构的耐久性。
而且混凝土箱梁自重较大,在自重、徐变等因素作用下,跨中挠度会持续增大,严重影响结构的承载力,降低结构的安全度,为桥梁带来很大安全隐患。
因此,工程界很多人正在呼吁采用高性能高强混凝土、采用钢_混凝土组合结构,以改变我国工程结构以混凝土为主的现状,与发达国家工程结构、桥梁结构发展趋势保持一致。
2、钢_混凝土组合结构梁桥的优势钢-混凝土组合梁桥是指将钢筋与混凝土桥面板通过抗剪连接件连接成整体,并考虑共同受力的桥梁结构形式。
钢-混凝土组合梁结构计算
钢-混凝土组合梁结构计算书编制单位:计算:复核:审查:2009年3月目录1. 设计资料 (1)2. 计算方法 (2)2.1 规范标准 (2)2.2 换算原理 (2)2.3 计算方法 (3)3. 不设临时支撑_计算结果 (3)3.1 组合梁法向应力及剪应力结果 (4)3.2 施工阶段钢梁竖向挠度结果 (6)3.3 结论 (7)3.4 计算过程(附件) (7)4.设置临时支撑_有限元分析计算 (7)4.1 有限于建模 (7)4.2 施工及使用阶段结构内力 (9)4.2.1 施工阶段结构内力 (10)4.2.2 使用阶段结构内力 (11)4.3 组合梁截面应力 (13)4.3.1 截面应力汇总 (13)4.3.2 截面应力组合 (15)4.4 恒载作用竖向挠度 (16)4.4.1 施工阶段竖向挠度 (16)4.4.2 使用阶段恒载作用竖向挠度 (16)4.5 结论 (16)钢-混凝土组合梁结构计算1. 设计资料钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。
图 1 横向布置(cm)图 2 桥梁立面 (cm)钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸图 3 钢梁标准构造(mm)2. 计算方法2.1 规范标准现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。
《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。
尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。
钢-混凝土组合梁.详解
29
§ 3.3 组合梁试验结果分析
3.3.1 组合梁正截面受力性能
由试验结果知;从加荷到破坏,组合梁 正截面经历弹性、弹塑性和塑性三个受力阶 段,见图3.3.1
塑性 弹塑性 A 弹性
B
30
31
简支组合梁破坏形态
32
连续组合梁破坏形态
33
3.3.1
1、弹性阶段
组合梁正截面受力性能
在荷载作用初期,组合梁整体工作性能良好,荷载-变形曲 线基本上呈线性增长,当荷载达极限荷载的50%左右时,钢梁的 下翼缘开始屈服,而钢梁其它部分还有还处于弹性工作状态 2、弹塑性阶段 加荷至混凝土翼缘板板底开裂后,钢梁的应变速率加快,组 合梁的变形增长速度大于荷载的增长速度,荷载-变形曲线开始 偏离原来的直线。当钢梁下翼缘达到曲服后,组合梁的挠度变形
y0
Ay A
i i
i
(3.4.3)
Ai ——第个单元的截面面积,对混凝土单元 需将其换算成钢材单元进行计算 ; yi ——第个单元重心轴距截面顶边得距离。
当考虑混凝土得徐变影响时,应将公式3.4.2 代入公式3.4.3进行计算,即可求得考虑混凝土徐 变影响的组合截面的重心轴距组合截面顶边的距 c y 离,并用 0 表示。
22
3.1.4
组合梁的施工方法
2. 施工阶段组合梁下设临时支撑
施工阶段在组合梁下设置临时支撑,临时支撑的数量根据组合梁的跨度大小
来确定,当跨度L大于7m时,支撑不应少于3个,当跨度L小于7m时,可设置 1~2个支撑。支撑设置的精确数量应根据施工阶段的变形来确定。这时,组合梁 不必进行施工阶段的计算,按使用阶段进行计算,全部荷载均由组合梁承受。设 置临时支撑可以减少组合梁在使用阶段的挠度,但需要较多的连接件来抵抗钢梁 与混凝土板之间的相对滑移。
钢-砼组合梁
1.钢-砼组合梁(1)钢一混凝土组合梁的构成在城市桥梁工程中,钢-混凝土组合梁一般用于大跨径或较大跨径的桥梁结构,目的是减轻结构自重,尽量减少施工对现况交通与周边环境的影响。
①钢-砼组合梁一般由钢梁和钢筋混凝土桥面板两部分组成。
钢梁由工字型截面或槽型截面构成,钢梁之间设横梁(横隔梁),有时在横梁之间还设小纵梁。
钢梁上浇筑预应力钢筋混凝土。
在钢梁与钢筋混凝土板之间设剪力连接件,二者共同工作。
对于连续梁,可在负弯距区施加预应力或通过“强迫位移法”调整负弯距区内力。
②钢-混凝土组合梁施工流程一般为:钢梁预制并焊接剪力连接件→架设钢梁→安装梁(横隔梁)及小纵梁(有时不设小纵梁)→安装预制混凝土板并浇筑接缝混凝土或支搭现浇混凝土桥面板的模板并铺设钢筋→现浇砼→养护→张拉预应力束→拆除临时支架或设施。
③钢梁的架设方法一般在设计时已考虑好,因此钢梁安装应按施工图进行。
(2)安装方法钢梁工地安装,根据跨径大小、河流情况、交通情况和起吊能力选择安装方法。
城区内常用架设方法有以下几种:白行式吊机整孔架设法、门架吊机整孔架设法、支架架设法、缆索吊机拼装架设法、悬臂拼装架设法、拖拉架设法等。
(3)安装前检查①钢梁安装前应对临时支架、支承、吊机等临时结构和钢梁结构本身在不同受力状态下的强度、刚度及稳定性进行验算。
②应对桥台、墩顶顶面高程、中线及各孔跨径进行复测,误差在允许偏差范围内方可安装。
③应按照构件明细表,核对进场的构件、零件,查验产品出厂合格证及材料的质量证明书。
(4)安装要点①钢梁安装过程中,每完成一节段应测量其位置、标高和预拱度,不符合要求应及时调整。
②钢梁杆件工地焊缝连接,应按设计的顺序进行。
无规定时,焊接顺序宜为纵向从跨中向两端、横向从中线向两侧对称进行。
③钢梁采用高强螺栓连接前,应复验摩擦面的抗滑移系数。
高强螺栓连接前,应按出厂批号,每批抽验不小于8套扭矩系数。
穿人孔内应顺畅,不得强行敲人。
穿人方向应全桥一致。
钢—混组合梁桥面板临时支撑施工工法
钢—混组合梁桥面板临时支撑施工工法一、前言钢—混组合梁桥广泛应用于桥梁工程中,其特点为重量轻、强度高,构造简单,施工方便,但在施工过程中,桥面板却需要临时支撑。
传统的桥面板临时支撑主要采用钢管撑和木质支架,但存在安全隐患和操作复杂等问题。
因此,提出了一种新型的桥面板临时支撑施工工法——钢—混组合梁桥面板临时支撑施工工法。
二、工法特点该工法使用主梁与剪力墙组合的结构,解决了传统的临时支撑不稳定、不安全的问题。
同时,该工法使用的主要材料为钢和混凝土,具有重量轻、强度高、抗震性好等特点。
且施工过程中操作简单,可大大提高施工效率。
三、适用范围该工法适用于新建或旧桥改造中,特别是对于长跨度、宽槽、大流量且要求使用寿命长的桥梁工程,更具有优势。
四、工艺原理该工法的实际应用与工程中采取的技术措施有直接关系。
首先,施工前需要进行桥梁的具体规划,包括设计、材料采购、机具设备准备和人员配置等。
其次,在施工过程中,需要按照规划进行施工,主要包括基础施工、悬臂支撑、主梁安装、剪力墙安装、桥面板安装和拆除支撑六个阶段。
五、施工工艺(1)基础施工首先,进行桥墩的清理和准备工作。
钢筋加固、混凝土浇筑并封闭孔洞等。
在基础施工完成后,即可开始主梁的安装。
(2)悬臂支撑将主梁通过临空作业设备起吊至悬臂式攀爬机上,进行悬臂支撑。
悬臂式攀爬机未锁定后,利用射钉或钻孔固定。
(3)主梁安装通过龙门架或吊车将主梁移动到预定位置,使用螺栓固定在桥墩上。
主梁安装完成后,即可开始剪力墙的安装。
(4)剪力墙安装剪力墙采用吊车或龙门架起吊至主梁端部,与主梁插接固定,再用螺栓进行连接和固定。
(5)桥面板安装在主梁和剪力墙连接完成后,开始安装桥面板。
将桥面板吊到主梁顶部并搭设在横梁上,再进行对齐和固定。
(6)拆除支撑在所有结构部件完成安装后,即可拆除临时支撑,施工结束。
六、劳动组织劳动组织主要包括施工队伍和施工任务分配,以确保施工过程的合理和高效。
七、机具设备该工法所需的设备主要包括吊车、龙门架、临空作业设备、悬臂式攀爬机、电焊机等。
浅谈钢-混组合梁结构在大跨度连续梁桥中的应用
浅谈钢-混组合梁结构在大跨度连续梁桥中的应用摘要:钢-混凝土组合梁是指将钢梁与混凝土桥面板通过抗剪连接件连接成整体并考虑共同受力的桥梁结构形式。
组合结构桥梁将抗拉性能强的钢材、抗压性能强的混凝土分别合理地用在构件的受拉区及受压区,极大限度地追求高性能和经济性;由于钢、混凝土两种材料的合理组合,组合结构桥梁的力学性能和经济性均好过钢结构桥梁或者混凝土桥梁。
目前国内钢-混凝土组合连续梁桥多应用在25-60m,更大跨度组合梁桥多采用斜拉桥。
在大跨度连续梁桥中由于负弯矩区桥面板受拉的受力特点,目前还未得到大面积应用。
本文将通过南京市绿都大道跨秦淮新河大桥的工程实例,对钢-混凝土组合梁在大跨度连续梁桥中的应用进行研究和探讨,同时对其施工过程中的质量控制进行描述。
关键词:钢-混凝土组合梁、大跨度连续梁、粗骨料活性粉末混凝土1钢-混凝土组合梁桥结构特点组合结构桥梁将抗拉性能强的钢材、抗压性能强的混凝土分别合理地用在构件的受拉区及受压区,钢梁和混凝土板通过抗剪连接件组合成一个整体而共同工作的梁,在荷载作用下,混凝土板主要承受压力,钢梁主要承受拉力,更好地发挥钢和混凝土各自的材质特点,极大限度地追求高性能和经济性。
2钢-混凝土组合梁桥在国内的应用国内桥梁过去多采用钢筋混凝土和预应力混凝土桥以及圬工拱桥等结构形式,对于等级较高、跨度较大的桥梁则选用钢桁桥,近20年为建设大跨度跨线桥及高架桥,可以降低结构高度的钢混组合结构得到了快速发展。
1991年,上海市南浦大桥建造了首座钢混组合梁斜拉桥;1993年北京市国贸桥是首座采用钢-混凝土叠合板组合梁的桥梁;2000年,芜湖长江大桥是国内首座钢桁混凝土组合结构;2000年,深圳北站大桥是国内首座组合梁悬吊桥面系的钢管混凝土拱桥;2004年,云南祥临澜沧江大桥是国内首座钢混组合梁悬索桥;2005年,河南省泼河大桥是国内第一座波形钢腹板连续箱梁桥。
3绿都大道跨秦淮新河大桥概况3.1大桥概况绿都大道跨秦淮新河大桥位于南京市江宁区,跨越秦淮新河,整幅断面宽38m,采用施工便捷、结构轻盈的预制拼装钢混组合梁桥,跨径组合为83.5m+135m+98.5m=317m,单跨跨度达135m,是国内单跨跨度最大钢混叠合连续梁,是钢混组合梁结构在大跨度连续梁桥施工的一次重大突破。
钢-混凝土组合桥梁的受力性能分析
安徽建筑中图分类号:TU398+.9文献标识码:A文章编号:1007-7359(2023)11-0163-03DOI:10.16330/ki.1007-7359.2023.11.0590引言近年来,钢-混组合梁在目前桥梁建设中的应用逐渐增加,其结构形式主要是通过抗剪构建将混凝土桥面板和下部的钢主梁连接起来,使混凝土和钢共同受力的结构形式[1]。
这种组合结构梁的形式,充分发挥了各种材料自身的优良性能,在结构抗拉和抗压方面具有更优良的性能。
在《钢-混组合桥梁设计规范》(GB 50917-2013)[2]应用之后,对于钢混组合梁桥结构形式的研究逐渐变多,不少学者对钢-混组合梁桥的受力性能以及施工形式进行了研究。
陈朝慰[3]针对钢-混组合桥梁结构的新型连接构件进行了受力分析,采用有限元分析了新型连接构建在施工和运营阶段的受力和变形情况;王建超等[4]开展了钢-混凝土组合梁桥的受力可靠度分析,主要采用最大熵函数构造的凝聚函数对抗弯、纵向抗剪和竖向抗剪承载力进行了可靠度分析;常英飞[5]对钢-混组合梁桥的新技术进行了阐述和总结,并提出未来组合桥梁发展的新思路;陈宝春等[6]对我国钢-混凝土组合梁桥的研究进展和工程应用进行了系统归纳总结,介绍了传统的组合梁桥以及近年提出的新型组合梁桥结构形式,并对其工程应用进行了总结;王岭军[7]采用有限元分析法,首先建立钢-混组合梁斜拉桥模型,再次分析了不同施工阶段下桥梁结构的受力特性,获得桥梁整体失稳状态,最后根据分析得出相应的结论;李德等[8]对新型钢-混组合桁架梁铁路桥的力学特征进行了研究分析,研究结果表明,桥梁的自振特性分析结果满足规范要求;王元清等[9]采用ANSYS 有限元分析了曲线钢-混组合梁桥的跨度与整体刚度及跨高比之间的关系;蒋丽忠等[10]针对钢-混组合梁桥的动力响应和安全指标进行了试验研究,研究结果显示各项指标均满足规范要求。
由上述可知,对于钢-混组合梁结构的研究已经较为成熟,本文在上述研究的基础上,以主河槽桥为依托,开展了平原区钢-混凝土组合梁桥的受力性能分析,主要研究静载和汽车荷载作用下组合梁的位移和变形情况,为平原区钢-混组合梁桥的设计提供参考。
钢-混组合梁桥跨中下挠原因与解决方案探究
钢-混组合梁桥跨中下挠原因与解决方案探究摘要:钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。
它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。
钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一,但大量实例证明,钢-混组合梁普遍存在主梁下挠以及涂层劣化、钢箱梁腐蚀、疲劳开裂、构件变形、构件连接缺陷等病害。
因此,本文通过工程实例剖析钢-混组合梁跨中下挠的成因,并提出了有效的下挠主动控制方法,对钢-混组合梁桥今后的应用与发展提供一些参考。
关键词:钢-混组合梁桥;下挠;成因分析;控制方法;解决办法1、引言钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。
同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。
钢-混凝土组合梁桥在现实中应用非常广泛,在大量的实践中,工程师们获取了许多的经验。
但在钢-混凝土组合梁桥的使用过程中,随着跨度增加,主梁的下挠问题日益突出,已具有广泛的普遍性,严重影响到这一桥型的继续发展。
2、钢-混组合梁桥跨中下挠成因分析钢-混组合梁下挠的影响因素较多,成因也较为复杂。
在成因分析过程中,不能将主梁下挠进行孤立的研究,而是需要将其他病害联系起来,作为一个系统,全面的进行剖析。
由于钢材刚度弱加之混凝土收缩徐变导致钢混组合梁变形不可避免。
另外在梁体变形下挠后引起的内力重分布会使得箱体局部区域存在受拉情况。
在拉应力反复作用下,容易导致主梁最薄弱的地方容易出现疲劳开裂,经过整个服役过程中疲劳损伤的不断累积,导致裂纹持续扩展而引发构件失效。
钢-混组合梁主梁下挠是一个长期困挠工程师的难题,严重制约了这种桥型的发展,经过大量的计算与实验分析,总结出以下5大成因:(1)钢混组合结构的计算模型与实际的情况,存在差异。
钢-混凝土组合梁桥
组合梁构造
钢梁:工字形和箱形 混凝土桥面板 剪力键(亦称为连接件)
工字形钢梁与钢板梁组合梁
钢箱梁
组合箱梁截面形式
2. 混凝土桥面板 (1)现浇混凝土板
现浇混凝土板组合
3. 剪力键
剪力键又称为连接键,设在钢梁上翼缘的顶面,其主要 作用是承受钢梁和混凝土翼缘板之间界面上的纵向剪力, 抵抗两者之间的相对滑移,保证混凝土桥面板与钢梁共 同作用。 桥梁工程中常用的有栓钉剪力键、弯筋剪力键和槽钢剪 力键
例题4-4 图示为一桥面净空为净—7附2×0.75m 人行道的钢筋混凝土T梁桥,共设五根主梁。试求 荷载位于支点处时1号梁和2号梁影响线。
钢-混凝土组合梁桥 一、概述 钢-混组合梁桥是指由外露的钢梁或钢 桁梁通过连接件(剪力键, shear connector )与钢筋混凝土桥面板组合 而成的梁式桥,简称组合梁桥。
重合梁与组合梁的受力原理
组合连续梁桥的在设计中需要 认真考虑以下几个因素:
中支点负弯矩区段,混凝土翼板受拉;
中支点截面弯矩、剪力都最大,受力复杂;
钢—混凝土组合梁的施工案例
润扬大桥南接线工程丹徒互通主线桥大跨径钢--混凝土组合梁的设计与施工摘要:钢—混凝土组合梁具有良好的受力性能和较好的综合经济效益,应用前景广泛。
纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装,为较新颖的桥型。
文中通过润扬大桥南接线工程丹徒互通主线桥钢—混凝土组合梁对设计与施工作一些简要介绍。
关键词:钢-混凝土组合梁设计施工近年来,随着对组合结构的深入研究,组合梁或组合结构良好的受力性能和较好的综合经济效益以及作为一种环保型桥梁,将展示其美好的应用前景,在跨越地物的施工条件受到严格限制的桥梁中更有其独特的生命力。
纵向主要受力构件为钢箱梁,采用工厂预制现场拼接的施工工艺可以缩短工期,简化工地现场的施工工程量;横向由预应力混凝土构成桥面板及悬臂,有利于桥面沥青混凝土的铺装。
1 设计概述1.1润扬大桥南接线工程丹徒互通主线桥跨越沪宁高速公路,设计桥下净空按八车道高速公路预留,采用钢—混凝土组合梁一跨跨越,跨沪宁路一联的跨径布置为左半幅26+56+34m,右半幅30+56+30m,一联全长116m,与沪宁路成103°交角。
每幅桥采用两个宽3m的开口钢箱,并通过横向联系形成整体,中跨跨中梁高 1.5m,墩顶梁高2.7m,箱梁底按二次抛物线布置,桥面板悬臂长 2.5m,板内设置纵向预应力钢束,混凝土桥面板与钢箱梁间设置剪力钉抗剪。
施工工艺采用工厂化预制,现场搭设临时墩进行拼接组装,成桥后在38#和39#墩对上部结构向下施加10cm强迫位移。
总体布置见图1。
图11.2技术标准(1)设计荷载:汽车-超20级,挂车-120;(2)地震基本烈度:7度,按8度设防;(3) 桥面净宽:2×(0.5+12.0+1.0)=13.5。
1.3主要材料(1)混凝土桥面板采用50号钢纤维混凝土,墩身采用40号混凝土,承台采用30号混凝土,桩基采用25号混凝土,桥面调平层采用40号聚丙烯纤维网混凝土。
钢-混凝土组合梁
钢-混凝土组合梁的设计和施工需要 综合考虑多种因素,包括材料特性、 结构形式、施工工艺等,以确保其性 能和安全。
钢-混凝土组合梁在桥梁工程中得到 了广泛应用,特别是在大跨度桥梁和 复杂结构形式中,其优势更加明显。
钢-混凝土组合梁在长期使用过程中 可能会面临一些问题,如疲劳、腐蚀 等,因此需要采取相应的维护和加固 措施。
对未来研究的展望
随着科技的不断进步,钢-混凝 土组合梁在未来仍将是一个重 要的研究方向,需要进一步探
索其性能和优化设计方法。
对于钢-混凝土组合梁的耐久性 问题,需要加强研究,提出更 加有效的防腐、防锈和加固措
相关规范。
05 钢-混凝土组合梁的优势 与挑战
钢-混凝土组合梁的优势
高承载能力
结构自重轻
钢-混凝土组合梁能够承受较大的集中荷载 和均布荷载,具有较高的承载能力。
由于钢材料具有轻质高强的特点,因此钢混凝土组合梁的结构自重相对较轻,有利 于减轻整体结构的重量。
施工速度快
节能环保
钢-混凝土组合梁的构件可以预先在工厂制 作,现场安装方便快捷,能够缩短施工周 期。
总结词
施工方便,工期短
详细描述
钢-混凝土组合梁的施工方便,能够缩短工期,降低施 工成本。该大桥的施工过程采用了预制拼装的施工方法 ,大大提高了施工效率。
工程案例二
总结词
抗震性能好
详细描述
某高层建筑采用钢-混凝土组合梁作为主要承重结构,具 有良好的抗性能,能够有效地抵抗地震作用。
总结词
承载能力高
详细描述
钢-混凝土组合梁的承载能力较高,能够满足高层建筑对 承重结构的要求。同时,该组合梁还具有良好的塑性和韧 性,能够吸收地震能量,减少结构损伤。
钢-混凝土组合梁结构计算
钢-混凝土组合梁结构计算书编制单位:计算:复核:审查:2009年3月目录1. 设计资料 (1)2. 计算方法 (2)2.1 规范标准 (2)2.2 换算原理 (2)2.3 计算方法 (3)3. 不设临时支撑_计算结果 (3)3.1 组合梁法向应力及剪应力结果 (4)3.2 施工阶段钢梁竖向挠度结果 (6)3.3 结论 (7)3.4 计算过程(附件) (7)4.设置临时支撑_有限元分析计算 (7)4.1 有限于建模 (7)4.2 施工及使用阶段结构内力 (9)4.2.1 施工阶段结构内力 (10)4.2.2 使用阶段结构内力 (11)4.3 组合梁截面应力 (13)4.3.1 截面应力汇总 (13)4.3.2 截面应力组合 (15)4.4 恒载作用竖向挠度 (16)4.4.1 施工阶段竖向挠度 (16)4.4.2 使用阶段恒载作用竖向挠度 (16)4.5 结论 (16)钢-混凝土组合梁结构计算1. 设计资料钢-混凝土组合梁桥,桥长40.84m ,桥面宽19.0m ;钢主梁高1.6m(梁端高0.7m),桥面板厚0.35m ;钢材采用Q345D 级,桥面板采用C50混凝土;车辆荷载采用公路-I 级车道荷载计算。
图 1 横向布置(cm)图 2 桥梁立面 (cm)钢主梁沿纵向分3个制作段加工,节段长度为13.6+13.64+13.6m ,边段与中段主要结构尺寸(图 3)见下表,其余尺寸详见设计图纸图 3 钢梁标准构造 (mm)2. 计算方法2.1 规范标准现行《钢结构设计规范》(GB 50017-2003)第11章《钢与混凝土组合梁》针对不直接承受动力荷载的一般简支组合梁及连续组合梁而确定,对于直接承受动力荷载的组合梁,则应采用弹性分析法计算。
《铁路桥梁钢结构设计规范》(TB 10002.2-2005)第4.1.1条也规定:结构构件的内力应按弹性受力阶段确定。
尽管弹性分析法(容许应力法)不能充分组合梁的承载能力极限状态,但对于承受动力荷载的桥梁钢结构的强度计算是基本符合结构的实际受力状况的。
《钢与混凝土组合梁》课件
研究将组合梁应用于轨道交通中,提高轨道结构的耐久性和稳定性。
轨道交通
03
循环经济
建立循环经济的生产模式,实现资源的有效利用和废弃物的减量化、资源化。
01
环保材料的应用
优先选择可再生、可回收的环保材料,降低生产过程中的环境污染。
02
节能减排技术
推广应用节能减排技术,降低组合梁生产过程中的能耗和排放。
混凝土的抗压性能
钢和混凝土通过组合,可以充分发挥各自的优点,提高梁的整体承载能力和稳定性。
组合效应
根据梁的跨度、荷载等条件,选择合适的截面形式和尺寸,以实现最佳的承载能力和稳定性。
优化截面
在设计中应考虑环境因素对组合梁的影响,如温度变化、腐蚀等。
考虑环境因素
组合梁的施工应满足相关规范和要求,确保施工质量。
环境适应性测试的结果可用于评估组合梁在不同环境下的耐久性和适应性,为工程应用提供依据。
CHAPTER
钢与混凝土组合梁的应用实例
06
钢与混凝土组合梁在桥梁工程中应用广泛,如高速公路、铁路和城市交通中的高架桥、立交桥等。
钢与混凝土组合梁具有较高的承载力和稳定性,能够满足桥梁跨度大、荷载重的要求。
钢与混凝土组合梁的施工周期短,对环境影响小,具有较好的经济效益和社会效益。
对钢梁进行防腐处理,以提高其耐久性。
连接件制造
使用合适的材料和工艺,制造出符合设计要求的连接件。
连接件设计
根据组合梁的结构特点和设计要求,设计合理的连接件。
连接件安装
将连接件安装在钢梁和混凝土之间,确保组合梁的结构稳定性和承载能力。
CHAPTER
钢与混凝土组合梁的性能测试与评估
05
测试方法通常采用循环加载试验,对试件施加一定幅值的荷载,循环一定次数后观察其损伤和疲劳寿命。
钢-混组合连续箱梁桥的设计要点
2020年第12期北方交通—1 —文章编号:1673 - 6052(2020)12 - 0001 -04DOI :10.15996/j. cnki. bfjt. 2020.12.001钢-混组合连续箱梁桥的设计要点徐亮(辽宁省交通规划设计院有限责任公司沈阳市H0166)摘要:以沈阳市长青街快速路工程为背景,通过桥梁博士对40m + 48m +40m 跨钢-混组合连续箱梁桥进行 计算分析,针对组合梁采用单梁计算模型设计过程中存在的问题和难点,提出了相应的解决方法,总结了钢混组合 箱梁桥的设计要点。
关键词:钢混组合箱梁;开裂截面;施工阶段;腹板剪力分配比;纵向抗剪界面中图分类号:U44& 21 + 6文献标识码:B1概述钢-混组合梁是由钢梁和混凝土桥面板连成整体并且在横截面内能够共同受力的桥梁。
其结构主 要由钢梁、混凝土桥面板及剪力连接件组成。
近年来,沈阳市积极响应国家去产能号召及交通部相关指导意见,积极推进和鼓励钢结构相关桥梁工程的建设工作。
由于钢-混组合梁结构在经济 指标、施工工期、施工方案、安全耐久等方面有较大 优势,已成为主要的新建桥梁结构形式。
通过对沈阳市长青街快速路工程中40m + 48m+ 40m 跨钢-混组合连续箱梁桥的设计及计算,总结了组合梁结构在设计过程中的部分要点和设计经 验,与大家一起分享,抛砖引玉,供大家参考与借鉴。
2桥梁结构设计该组合连续箱梁跨径布置为40m + 48m + 40m,桥梁宽度为23.5m,桥梁中心处梁高为2. 2m ,桥面设置双向1.5%横坡。
组合梁主要板件的尺寸及构造设置情况为:(1) 桥面板为钢筋混凝土结构,标准厚度为250mm ,钢梁上翼缘板处厚度为400mm 。
(2) 钢梁为顶开口箱形断面,底面完全封闭,翼缘板厚度为20 ~40mm,腹板厚度为12 ~ 24mm,底 板厚度为12 ~40mm 。
(3) 钢梁箱内横隔板标准间距4m,悬臂处横隔板标准间距2m,其间设置腹板竖向加劲肋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波纹钢腹板预应力组合箱梁
混凝土顶底板
波纹钢腹板
2. 混凝土桥面板
现浇混凝土 工字形钢 剪力键
现浇混凝土
横撑
斜撑
现浇混凝土板
3. 剪力键
剪力键又称为连接键,设在钢梁上翼缘的顶面,其主要作用是承受
钢梁和混凝土翼缘板之间界面上的纵向剪力,抵抗两者之间的相对
滑移,保证混凝土桥面板与钢梁共同作用。
剪力方向
(a) 栓钉剪力键
(b) 弯筋剪力键
(c) 槽钢剪力键
h h
2h
错动
b
错动
бc бc
б б
粘结剂, 无错动
b
бc
б
l/2
l/2
(a)重迭梁
(b)组合梁
c ,t
PL h 3 PL 4 3 bh 2 4 bh2 2 12
c ,t
PL 3 PL 4 3 h b( 2h) 8 bh2 12
1. 钢梁ຫໍສະໝຸດ 工字形钢梁与钢板梁组合梁组合箱梁截面形式
第二节
钢-混凝土组合梁桥
一、概述
钢-混凝土组合梁桥是指由外露的钢梁或钢桁梁通过连接件
(剪力键, shear connector )与钢筋混凝土桥面板组合而成 的梁式桥,简称组合梁桥。其跨度大、重量轻、能预制安装。
二、组合梁构造
钢梁:工字形和箱形 混凝土桥面板
剪力键(亦称为连接件)
重合梁与组合梁的受力原理