药剂学第四章微粒分散系理论课件
药剂学药物微粒分散系基础理论PPT课件
类作用中占支配地位。此三种相互作用全 系负值,即表现为吸引,其大小与分子间 距离的六次方成反比。
第14页/共32页
(一)微粒间的Vander Waals吸引能
• Hamaker假设:微粒间的相互作用等于组成它 们的各分子之间的相互作用的加和。
增加,表面自由能的增加△G:
•
△G=σ △A
• 当△A 时
△G
体系稳定性
为了降低△G
微粒聚结
•σ
△G
体系稳定性
选择适当的表面活性剂、稳定剂、增加介质粘度等
第10页/共32页
二、动力学稳定性
• 主要表现在两个方面:
1.布朗运动
提高微粒分散体系的物 理稳定性
2.重力产生的沉降 使微粒分散体系的物 理稳定性下降
这 就 是 Tyndall 现 象 。 丁 铎 尔 现 象 (Tyndall
phenomenon) 是微粒散射光的宏观表现。 同样条件下,粗分散体系由于反射光为主,
不能观察到丁铎尔现象;而低分子的真溶 液则是透射光为主,同样也观察不到乳光。 可见,微粒大小不同,光学性质相差很大。
第7页/共32页
五、微粒的电学性质
• 以ΦT对微粒间距离H作图,即得总源自能曲线。微粒的物理稳定性取
决于总势能曲线上势
+
垒的大小。
ΦT
h 第二级小
-
第一级小
第17页/共32页
(四)临界聚沉浓度
• 总势能曲线上的势垒的高度随溶液中电解质浓度的加大而降低,当电解质浓 度达到某一数值时,势能曲线的最高点恰好为零,势垒消失,体系由稳定转 为聚沉,这就是临界聚沉状态,这时的电解质浓度即为该微粒分散体系的聚 沉值。
微粒分散体系
I
I0
24 3V 2 ( n 2 n02 ) 2
n 2n 4
2
2
I
I0
24 3V 4
2
( n2 n02 n2 2n02
)2
0
I—散射光强度;I0_ —入射光强度;n —分散相的折射率; n0 — 分散介质的折射率;—入射光波长;V —单个粒子的 体积;ν —单位体积中粒子数目。
17
五、微粒的电学性质
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。
• 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
18
(二)微粒的双电层结构
•
微粒表面带同种电荷,通过静电引力,使反离
• 1980年已制得热力学稳定的氢氧化铝 溶胶,说明制备热力学稳定的微粒分散系 是可能的。
23
二、动力学稳定性
• 动力稳定性表现在: 布朗运动 沉降 • 粒子的沉降(上浮)速度符合Stokes方程:
V 2r 2 ( 1 2 ) g 9
防止沉降方法 1. 减少粒度(增加均匀性) 2. 增加粘度 3. 降低密度差 4. 防止晶型转变 5. 控制温度变化
力学、光学、电学性质) • 微粒分散系的物理稳定性(动力学、
热力学)进行较深入的讨论。
1
第一节 概述
• *分散体系:一种或几种物质高度分散在某 种介质中所形成的体系。
• 按分散相粒子大小分类: • 微粒分散体系:1nm~100µm • 微粒给药系统: • 微粒分散体系的特点:多相、热力学不稳定、
微粒分散体系-精品医学课件 (2)
药物微粒分散体系
粗 Suspension 分 Sol 散 Emulsion 体 Microcapsule 系 microsphere
粒径 100nm-100μm
nanoemulsion 胶
Liposome
体
nanoparticle 分
Nanocapsule
散 体
Nanomicell
系
粒径 <100nm
临界聚沉浓度
三、 空间稳定理论
(一) 实验规律
相对分子质量大小高分子对微粒保护作用的影响
(a)较小相对分子量高分子;(b)中等相对分子量高分子;(c)较高相对分子量高分子
敏化作用(sensitization) :高分子在粒子表面覆
盖度q =0.5时絮凝效果最好,微粒聚集下沉
(二) 理论基础 1、两种稳定理论
3
r3( 0)g
在高度为dh的体积内粒子所受的总扩散力:
F扩散 Ad ARTdC
粒子总数为: LCdV LCAdh
每一个粒子所受到的扩散力:F扩散
ARTdC LCAdh
RT LC
dC dh
(二)沉降与沉降平衡
达平衡时,重力与扩散力大小相等、方向相反:
F扩散
1)体积限制效应理论: 两微粒接近时,彼此的吸附层不能互相穿透 2)混合效应理论: 微粒表面上的高分子吸附层可以互相穿透。
四、空缺稳定理论
亦称自由聚合物稳定理论。
五、微粒聚结动力学
快聚结 慢聚结
架桥聚结 聚合物
有效覆盖 微粒表面
小部分覆盖 微粒表面
空间保护作用 架桥聚结
★
Tyndall现象的本质 是粒子对光的散射
药剂学:药物微粒分散体系的基础理论
三、微粒分散系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸
(二)沉降——Stokes’定律
• 粒径 较 大 的 微 粒 受 重力作 用 ,静 置 时 会 自 然 沉降 , 其沉降速度服从 Stokes ’ 定律: (4-11)
r愈大,微粒和分散介 质的密度差愈大,分散 介质的粘度愈小,粒子 的沉降速度愈大。
2r 2 ( 1 2 ) g V 9
– 小分子真溶液(<10-9m;<1nm) – 胶体分散体系(10-7~10-9m;1~100nm) – 粗分散体系(>10-7m;>100nm) • 微粒:直径在10-9~10-4m的微粒,其构成的分散体系统称为 微粒分散体系。如微米与纳米级大小的各种给药载体/系统。
微粒分散体系的特殊性能:
①多相体系:
微球表面形态
Scanning electron micrography of ADM-GMS(阿霉素明胶微球)
微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法——动态光散射法
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶质 分子量、分子尺寸及分子形态、入射光的波长等有关,对 于直径很小的微粒,雷利(瑞利)散射公式:
微粒大小与体内分布
< 50nm 的微粒能够穿透肝脏内皮, 通过毛细血管末梢或
淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒能很快被单核吞噬 细胞系统吞噬,浓集于巨噬细胞丰富的肝脏和脾脏等部位。 人肺毛细血管直径为2m,>2m的粒子被肺毛细血管滞 留下来,<2m的微粒则通过肺而到达肝、脾等部位。 。 注射> 50m 的微粒,可使微粒分别被 截留在肠、肾等相 应部位。
第一篇 药物制剂的基本理论 第四章 微粒分散体系
高分子未吸附于微粒表面时,在表面 的浓度低于体系溶液中的浓度,形成负吸 附,使微粒表面形成一种空缺表面层,在 这种体系中使胶体分散体系稳定的理论称 空缺稳定理论。
第三节 微粒分散体系物理稳定性相关理论
五、微粒聚结动力学 微粒>1μm不稳定(聚沉速度相对快) (一)快聚结 ΦT=0时势垒为0 ,一经碰撞就聚结,聚结速 度由碰撞速率决定,碰撞速率由布朗运动决定即 由扩散速度决定。 快聚结速度与微粒大小无关,受温度和介质 黏度影响。
分散体系,在侧面可观察到明显的乳光(散射光的 宏观表现)。本质是粒子对光的散射。低分子溶液 则是以透射光为主,无乳光。
第二节 微粒分散体系的物理化学性质
三、微粒分散体系的电学性质 1.电泳:如将电极插入微粒体系溶液中,通以电 流,则微粒可向阴极或阳极移动,这种在电场作 用下微粒的定向一定成为电泳。微粒大小与移动 速度成反比。
第二节 微粒分散体系的物理化学性质
一、微粒分散体系的动力学性质
1. Brown运动 1827年Brown在显微镜下发现,微粒
( < 100nm以下)在不停地不规则的运 动,将此现象命名为Brown 运动。
爱因斯坦根据分子运动论导出Brown运
动与粒子的半径、介质的黏度、温度有关。
第二节 微粒分散体系的物理化学性质
第三节 微粒分散体系物理稳定性相关理论
三、空间稳定理论 空间稳定效应的存在总势能: ΦT= ΦA +ΦR+ Φs Φs:空间稳定效应产生的排斥能,微粒
很近时趋于无穷大,故第一极小处不可能发 生聚沉,聚结多表现为较远距离上的絮凝。 空间稳定作用受电解质影响小。
第三节 微粒分散体系物理稳定性相关理论
第三节 微粒分散体系物理稳定性相关理论 三、空间稳定理论
11-药剂学-药物微粒分散系的基础理论
2.高分子聚合物在固体微粒表面上的吸附构型 高分子在溶液中具有一定的挠曲性和一定数量 的活性基团,这些活性基团能吸附在固体微粒 表面上而使吸附的高分子具有一定形状。 其吸附的高分子构型取决于固体微粒和高分子 聚合物的性质以及它们之间的相互作用。如固 体微粒表面吸附点的数目、高分子聚合物的链 长与活性基团的数目和位置、高分子聚合物在 溶剂中的溶解度等都是影响其吸附构型的重要 因素。 这样可将吸附高分子聚合物的构型分成六种形 式。
当微粒的半径大于1μm后,微粒的平均 位移只有0.656μm/s,已不显著,在分散 介质中受重力场作用而匀速运动,此时 应按Stoke′s定律,其沉降或上浮的速 度u以下式表示:
2a (ρ − ρ ) g u= 9η
2 0
式中,a——微粒的半径;g——重力加 速度;η——分散介质的粘度;ρ和 ρ0——微粒和分散介质的密度。
吸附高分子的构型
(二)高分子化合物的稳定作用 高分子化合物对微粒分散系的稳定作用主要体 现在以下几方面:高分子吸附层存在,产生一 种 新 的 斥 力 势 能 ─ 空 间 斥 力 势 能 (Steric Repulsive Energy);高分子的存在减小微粒 间的Hamaker常数,因而也就减少了范德华引 力势能;带电高分子被吸附会增加微粒间的静 电斥力势能。 总的势能VT: VT= VA + VR + VS 中, VA—— 吸 引 势 能 , VR—— 静 电 斥 力 势 能 , VS——空间斥力势能。
当微粒半径a>1μm后,则微粒就要沉降 或上浮,动力稳定性较差。因此为了减 小微粒沉降或上浮的速度,则通过增加 分散介质的粘度,加入增稠剂,调节微 粒与分散介质的密度差,使ρ≈ρ0。这 样可提高此微粒分散制剂的稳定性。 但最主要的是减小微粒的半径,当微粒 半径a从 10μm减小为 1μm时,其沉降 速度从4.36×102μm/s降低为 4.36μm/s,相差100倍。
(完整版)药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
药物微粒分散系的基础理论
1.电子显微镜法
• 测定原理:电子束射到样品上,如果能量足够 大就能穿过样品而无相互作用,形成透射电子, 用于透射电镜(TEM)的成像和衍射;
• 当入射电子穿透到离核很近的地方被反射,而 没有能量损失,则在任何方向都有散射,即形
成背景散射;
• 如果入射电子撞击样品表面原子外层电子,把
它激发出来,就形成低能量的二次电子,在电
二、微粒分散系的动力学性质
➢微粒分散体系的动力学稳定性主要表现 在两个方面。
当微粒较小时,主要是分子热运动产
生的布朗运动;提高微粒分散体系的
物理稳定性
当微粒较大时,主要是重力作用产生
的沉降。降低微粒分散体系的物理稳
定性
(一)Brown运动
• 布朗运动是液体分子热运动撞击微粒的结果。 • 布朗运动是微粒扩散的微观基础,而扩散现象
微粒分散系在药剂学的重要意义
①生物利用度:难溶性药物减小粒径,有助于 提高药物的溶解速度及溶解度,有利于提高 生物利用度;
②靶向性:大小不同的微粒在体内分布上具有 一定的选择性;
③缓释性:微囊、微球等微粒具有明显的缓释 作用,可延长药物体内的作用时间,减少剂 量,降低毒副作用;
④稳定性:有利于提高药物微粒在分散介质中 的分散性与稳定性;还可以改善药物在体内 外的稳定性。
布朗运动是粒子在每一瞬间受介质分子碰撞的 合力方向不断改变的结果。由于胶粒不停运动, 从其周围分子不断获得动能,从而可抗衡重力 作用而不发生聚沉。
(二)Stoke’s定律
• 粒径较大的微粒受重力作用,静置时会自 然沉降,其沉降速度服从Stoke’s定律:
V 2r2(1 2)g 9
(11-4)
V-微粒沉降速度;r-微粒半径;ρ1、ρ2-分别为微粒和分 散介质密度;-分散介质粘度;g-重力加速度常数。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动与重力产生的沉降,两者降低微粒分散体系的稳定性。
( )7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂就是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂就是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
药剂学第四章药物微粒分散体系
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确得填A,错误得填B)1.药物微粒分散系就是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系就是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系就是热力学不稳定体系,动力学不稳定体系。
( )4.微粒得大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系得物理稳定性,而重力产生得沉降降低微粒分散体系得稳定性。
( )6.分子热运动产生得布朗运动与重力产生得沉降,两者降低微粒分散体系得稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层得厚度越大,则相互排斥得作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层得厚度越小,则相互排斥得作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面得ζ升高,静电排斥力阻碍了微粒之间得碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降。
( )12.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ上升。
( )13.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒表面得ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中与微粒表面得电荷,降低双电层得厚度,使微粒间得斥力下降,出现絮凝状态。
加入得电解质叫絮凝剂。
( )15.絮凝剂就是使微粒表面得ζ降低到引力稍大于排斥力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )16.絮凝剂就是使微粒表面得ζ升高,使排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
( )17.反絮凝剂就是使微粒表面得ζ升高,使到排斥力大于吸引力,引起微粒分散体系中得微粒形成絮凝状态得电解质。
药剂学--药物微粒分散系的基础理论
邻的扩散层共同构成微粒的双电层结构。
三、微粒的电学性质
(二)DLVO理论---- 微粒稳定性的理论。 1 双电层的排斥作用能( ΦR) 2 微粒间的Vander Waals吸引能(ΦA) 3 微粒间总相互作用能( ΦT) 4 临界聚沉浓度
1.布朗运动
提高微粒分散体系的物理稳定性
布朗运动是微粒扩散的微观基础,而扩散现象
又是布朗运动的宏观表现。 布朗运动使很小的微粒具有了动力学稳定性。
二、动力学稳定性
2.重力产生的沉降
使微粒分散体系的物理稳定性下降。
V = 2 r2( 1- 2)g / 9
三、微粒的电学性质
从吸附层表面至反离
①由于粒径小,有助于提高药物的溶解速度及溶解 度,有利于提高难溶性药物的生物利用度;
②有利于提高药物微粒在分散介质中的分散性与稳 定性;
③具有不同大小的微粒分散体系在体内分布上具有 一定的选择性,如一定大小的微粒给药后容易被 单核吞噬细胞系统吞噬;
④微囊、微球等微粒分散体系一般具有明显的缓释 作用,可以延长药物在体内的作用时间,减少剂 量,降低毒副作用;
>10-7m)。 胶体分散体系的微粒给药系统包 将微粒直径在括1纳0米-9微~乳1、0-脂4m质范体围、纳的米分粒散、 相统称
为 粒分微散粒体,系由。微纳径粒米全囊都构、小成纳于的米100胶分0n束m散等。体。它系们则的统粒 称为微
微粒分散体系的特殊性能:
①微粒分散体系首先是多相体系,分散相与
药物微粒分散系的基础理论
第一节 概述
分散体系(disperse system)是一种或几种物质 高度分散在某种介质中所形成的体系。被分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ostwald Freundlich方程:
lnS2 2M(1-1) S1 RTr2 r1
S1和S2分别为半径为 r1、r2的药物的溶解度, R 为气体常数,T为绝对温度。
难溶性药物制成混悬剂时,微粒的大小往往不 一致,当大小微粒共存时,微粒的溶解度与其 微粒的直径有关,在体系中微粒的半径相差愈 多,溶解度相差愈大,混悬剂中的小微粒逐渐 溶解变得愈小,大微粒变变得愈来愈大,沉降 速度加快,致使混悬剂的稳定性降低。故制备 混悬剂时,除考虑粒径大小外,还应考虑其大
药剂学第四章微粒分散系理论
第一节 概述
• 概念
• 分散体系
• 分散相、分散介质 • 小分子真溶液 <10 –9 m nm • 胶体分散体系 10 –7 ~10 –9 m 1-100nm • 粗分散体系 > 10 –7 m 100nm • 微粒分散体系 10 –9 ~10 –4 m 1nm-100μm
药剂学第四章微粒分散系理论
混悬剂的微粒间有静电斥力,同时也存在着引力,即 范德华力。 V:为位能
VT=VR+VA
VT:微粒之间总位能。 VR:排斥力位能。 VA:吸引力位能。 当VR>VA时,不易聚集。 当VA很小时,可形成疏松的聚集体,振摇易分散。 当VA>VR时,很快聚集在一起,不易再分散。
药剂学第四章微粒分散系理论
药剂学第四章微粒分散系理论
第一节 概述
• 一、药物微粒分散体系的定义 • 分散体系:是一种或几种物质高度分散在某种介质
中所形成的体系。 • 分散相 • 分散介质 • 真溶液 直径<10-9m
• 胶体分散体系 直径 10-7-10-9m 纳米乳、纳米脂质 体、纳米粒、纳米囊、纳米胶束
• 粗分散体系 直径>10-7m 微囊、微球、混悬剂、 乳剂
• 电子显微镜法 –透射电镜(TEM)、扫描电镜(SEM) • 激光散射法
药剂学第四章微粒分散系理论
第二节微粒分散系的性质与特点
• 一、分散体系热力学性质 • 表面自由能 ΔG = σΔA
• 表面积增加 ΔA ,热力学不稳定 • σ降低;表面活性剂
药剂学第四章微粒分散系理论
二、分散体系、微粒的动力学性质
药剂学第四章微粒分散系理论
三、微粒分散体系的光学性质
• Tyndall现象
• 散射与反射
药剂学第四章微粒分散系理论
• 1。散射光强和入射光波长的四次方成反比 • 2。分散相与分散介质的折射率相差越大,散射光
越强 • 3.散射光强和分散体系的浓度成正比 • 4.散射光强和质点的体积成正比
药剂学第四章微粒分散系理论
药剂学第四章微粒分散系理论
一、絮凝与反絮凝
• 絮凝与反絮凝 微粒分散度大,有聚集趋势,微粒荷电,阻碍聚 集, ζ电位在20—25mV,效果最好。
• 絮凝剂,反絮凝剂
药剂学第四章微粒分散系理论
絮凝(flocculation)
系混悬微粒形成絮状聚集体的过程,加入的电 解质称絮凝剂。
反絮凝
系向絮凝状态的混悬剂中加入电解质,使絮凝 状态变为非絮凝状态的过程,加入的电解质称 反絮凝剂。 絮凝剂和反絮凝剂。量的多少
常用的有枸橼酸盐、枸橼酸氢盐、洒石酸盐、 洒石酸氢盐、磷酸盐及氯化物等。
药剂学第四章微粒分散系理论
第三节 二、DLVO理论
(一) 微粒间的Vander Waals吸引能
(二) 双电层的排斥作用能 (三) 微粒间总相互作用能 (四) 临界聚沉浓度
势垒随溶液中电解质浓度的增加而降低,当电 解质浓度达到某一值时,势能曲线为零,体系由稳定转为 聚沉。
第四章 药物微粒分散系的基础理论
• 概述 • 主要性质与特点 • 物理稳定性
药剂学第四章微粒分散系理论
本章重点
• 掌握微粒分散系的相关概念及范围,微粒分散系的特性 • 熟悉微粒分散系的重要性质与特点 • 掌握微粒分散体系的热力学稳定性、动力学稳定性、Stokes定律。 • 熟悉絮凝与反絮凝的概念及DLVO理论 • 了解空间稳定理论、空缺稳定理论、微粒聚结动力学
药剂学第四章微粒分散系理论
• 二、微粒分散体系特性
• 1. 多相性,相界面 • 2. 粒径小,表面积大,表面自由能高,热力学不
稳定 • 3. 聚结不稳定性
• 微粒分散系的性能与作用
• 1. 溶解速度与溶解度高
• 2. 分散度高、稳定性 • 3. 体内分布选择性 • 4. 某些微粒可起缓释作用 • 5. 改善药物体内稳定性
四、微粒分散体系的电学性质
• (一) 电泳
• 电泳速度与粒径大小成反比
• (二) 微粒的双电层结构
• 反离子、吸附层、扩散层 • 动电位 ζ • 微粒越小,动电位ζ越高
药剂学第四章微粒分散系理论
药剂学第四章微粒分散系理论
吸附层:由吸附的带电离子和反离子构 成。 扩散层:由少数扩散到溶液中的反离构 成。
• (一)Brown运动 布朗运动
(二)Stok’s 定律
• 重力沉降
• 沉降速度符合斯托克斯(Stokes)定律: 2 r 2(ρ1 –ρ2 ) g
V= ----------------------------------9η
药剂学第四章微粒分散系理论
(1)微粒的沉淀 微粒沉降速度可按Stockes定律计算: V为沉降速度,r为微粒半径, ρ1和ρ2分别为微 粒和介质的密度,g为重力加速度,η 为分 散介质粘度。 Stockes公式的运用条件: ①混悬微粒子均匀的球体; ②粒子间无静电干 拢;③沉降时不发生湍流,各不干拢;④不受 器壁影响。
小的一致性。
药剂学第四章微粒分散系理论
三、微粒大小与体内分布
• 粒径不同,分布部位不同 • 骨髓、肝、脾、肺、肾、肠等 • 靶向制剂
药剂学第四章微粒分散系理论
四、微粒大小与测定方法
• 单分散体系 微粒大小完全均一的体系 • 多分散体系 微粒大小不均一的体系
• 几何学粒径、比表面积径、有效粒径等 • 测定方法
双电层(electric double layer)亦称扩 散双电层,即带相反电荷的吸附层和扩 散层。 ξ-电势(zeta-potential)即双电层之间 的电位差。
药剂学第四章微粒分散系理论
第三节、微粒分散体系稳定性
• 。 分散体系的物理稳定性主要表现为粒径的变化, 微粒的