第二章 等式与不等式 高一数学B版必修第一册
新教材人教版高中数学B版必修 第一册1 2.2.3 一元二次不等式的解法课件
第二章 等式与不等式
若集合 A={x|-1≤2x+1≤3},B=x|x-x 2≤0,则 A∩B =( ) A.{x|-1≤x<0} B.{x|0<x≤1} C.{x|0≤x≤2} D.{x|0≤x≤1} 解析:选 B.因为 A={x|-1≤x≤1},B={x|0<x≤2},所以 A∩B ={x|0<x≤1}.
第二章 等式与不等式
2.2.3 一元二次不等式的解法
第二章 等式与不等式
考点
学习目标
一元二次不等式 会借助因式分解或配方法
的解法
求解一元二次不等式
分式不等式 会将简单的分式不等式转
的解法
化为一元二次不等式求解
核心素养 数学运算 数学运算
第二章 等式与不等式
问题导学 预习教材 P68-P71 的内容,思考以下问题: 1.一元二次不等式的定义是什么? 2.如何用因式分解法解一元二次不等式? 3.如何用配方法解一元二次不等式?
第二章 等式与不等式
法三:因为Δ=72-4×2×3=25>0,
所以方程 2x2+7x+3=0 有两个不相等的实数根 x1=-3,x2= -12. 又二次函数 y=2x2+7x+3 的图像开口向上, 所以原不等式的解集为(-∞,-3)∪-12,+∞.
栏目 导引
第二章 等式与不等式
(2)原不等式可化为2x-922≤0, 所以原不等式的解集为xx=94. (3)原不等式可化为 2x2-3x+2>0, 因为 Δ=9-4×2×2=-7<0, 所以方程 2x2-3x+2=0 无实根, 又二次函数 y=2x2-3x+2 的图像开口向上, 所以原不等式的解集为 R.
栏目 导引
第二章 等式与不等式
新教材高中数学第二章等式与不等式2.2不等式2.2.2不等式的解集学案新人教B版必修第一册
2.2.2 不等式的解集(教师独具内容)课程标准:1.了解不等式的解集和不等式组的解集的概念,会求一元一次不等式组的解集.2.理解绝对值的几何意义,掌握去掉绝对值的方法.3.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.教学重点:1.求一元一次不等式组的解集.2.绝对值不等式的解法.教学难点:绝对值不等式的几何解法.【知识导学】知识点一不等式的解、不等式的解集及不等式组的解集的概念(1)能够使不等式成立的□01未知数的值称为不等式的解.02所有解组成的集合称为不等式的解集.(2)一般地,不等式的□(3)对于由若干个不等式联立得到的不等式组来说,这些不等式的□03解集的交集称为不等式组的解集.知识点二绝对值不等式一般地,含有□01绝对值的不等式称为绝对值不等式.知识点三数轴上两点之间的距离公式及中点坐标公式一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为□01|a-b|,记作□02AB=|a-b|,这就是数轴上两点之间的距离公式.如果线段AB的中点M对应的数为x,则x=□03a+b2,这就是数轴上的中点坐标公式.【新知拓展】1.解绝对值不等式的主要依据解绝对值不等式的主要依据是绝对值的定义、绝对值的几何意义及不等式的性质.2.绝对值不等式|x|≤a和|x|≥a的解法1.判一判(正确的打“√”,错误的打“×”)(1)不等式2x-3≤1的解集为{x|x≤2}.( )(2)若|x|≥a的解集为R,则a<0.( )(3)|x-1|>1的解集为{x|x>2或x<-2}.( )(4)|x -a |<|x -b |⇔(x -a )2<(x -b )2.( ) 答案 (1)√ (2)× (3)× (4)√ 2.做一做(1)不等式|x |>x 的解集是( ) A .{x |x ≤0} B .{x |x <0或x >0} C .{x |x <0}D .{x |x >0}(2)不等式|3x -2|<1的解集为( ) A .(-∞,1)B.⎝ ⎛⎭⎪⎫13,1C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫-13,13 (3)不等式|x +2|≥|x |的解集是________.(4)已知数轴上,A (-2),B (x ),C (5),若A 与C 关于点B 对称,则x =________;若线段AB 的中点到C 的距离小于3,则x 的取值范围是________.答案 (1)C (2)B (3)[-1,+∞) (4)32 (6,18)题型一 一元一次不等式组的解法 例1 解下列不等式组:(1)⎩⎪⎨⎪⎧2x -1>x +1, ①x +8<4x -1; ②(2)⎩⎪⎨⎪⎧2x +3≥x +11, ①2x +53-1<2-x . ②[解] (1)将①式移项、合并同类项,得x >2.将②式移项、合并同类项,得3x >9.系数化为1,得x >3. 所以不等式组的解集为(3,+∞). (2)将①式移项、合并同类项,得x ≥8. 将②式去分母,得2x +5-3<6-3x .移项、合并同类项,得5x <4.系数化为1,得x <45.所以不等式组的解集为∅. 金版点睛解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,最后写出不等式组的解集.[跟踪训练1] x 取哪些整数值时,不等式5x +2>3(x -1)与12x -1≤7-32x 都成立?解 解不等式组⎩⎪⎨⎪⎧5x +2>3x -1,①12x -1≤7-32x .②将①式去括号,得5x +2>3x -3.移项、合并同类项,得2x >-5.系数化为1,得x >-52.将②式移项,合并同类项,得2x ≤8.系数化为1,得x ≤4.所以不等式组的解集为⎝ ⎛⎦⎥⎤-52,4, 所以x 可取的整数值是-2,-1,0,1,2,3,4.题型二 |ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 例2 解下列不等式:(1)|5x -2|≥8;(2)2≤|x -2|≤4.[解] (1)|5x -2|≥8可化为5x -2≥8或5x -2≤-8,解得x ≥2或x ≤-65,故原不等式的解集为⎝⎛⎦⎥⎤-∞,-65∪[2,+∞).(2)原不等式等价于不等式组⎩⎪⎨⎪⎧|x -2|≥2,|x -2|≤4.由|x -2|≥2,得x -2≤-2或x -2≥2, 所以x ≤0或x ≥4.由|x -2|≤4,得-4≤x -2≤4,所以一2≤x ≤6.故原不等式的解集为{x |-2≤x ≤0或4≤x ≤6},即[-2,0]∪[4,6]. 金版点睛形如|ax +b |≤c c >0和|ax +b |≥c c >0型的不等式,均可采用等价转化法进行求解,即|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≤-c 或ax +b ≥c .[跟踪训练2] 解下列不等式: (1)|2x -3|≤1;(2)|4-3x |>5.解 (1)由|2x -3|≤1可得-1≤2x -3≤1, 所以1≤x ≤2.故原不等式的解集为[1,2].(2)由|4-3x |>5可得4-3x >5或4-3x <-5,所以x <-13或x >3,即原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-13∪(3,+∞). 题型三 |x -a |±|x -b |≤c 和|x -a |±|x -b |≥c 型不等式的解法 例3 解下列不等式:(1)|x +1|+|x -1|≥3;(2)|x -3|-|x +1|<1.[解] (1)解法一:如图,设数轴上与-1,1对应的点分别为A ,B ,那么点A ,B 之间的点到A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在点A 左侧有一点A 1到A ,B 两点的距离之和为3,A 1对应数轴上的x .由-1-x +1-x =3,得x =-32.同理设点B 右侧有一点B 1到A ,B 两点的距离之和为3,B 1对应数轴上的x , 由x -1+x -(-1)=3,得x =32,从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左侧或点B 1的右侧的任何点到A ,B 的距离之和都大于3.所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 解法二:当x ≤-1时,原不等式可以化为-(x +1)-(x -1)≥3, 解得x ≤-32.当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解. 当x ≥1时,原不等式可以化为x +1+x -1≥3, 解得x ≥32.综上所述,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 解法三:将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图像,如图.函数图像与x 轴交点的横坐标是-32和32.从图像可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.(2)解法一:如图所示,在数轴上-1,3,x 对应的点分别为A ,C ,P ,而点B 对应的实数为12,点B 到点C 的距离与到点A 的距离之差为1.由绝对值的几何意义知,当点P 在射线Bx 上(不含点B )时,不等式成立,故不等式的解集为⎝ ⎛⎭⎪⎫12,+∞. 解法二:原不等式⇔①⎩⎪⎨⎪⎧x ≤-1,-x -3+x +1<1或②⎩⎪⎨⎪⎧-1<x <3,-x -3-x +1<1或③⎩⎪⎨⎪⎧x ≥3,x -3-x +1<1,解得①的解集为∅,②的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,③的解集为{x |x ≥3}. 综上可知,原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法三:将原不等式转化为|x -3|-|x +1|-1<0,构造函数y =|x -3|-|x +1|-1, 则y =⎩⎪⎨⎪⎧3,x ≤-1,-2x +1,-1<x <3,-5,x ≥3.作出函数的图像,如图.函数图像与x 轴的交点是⎝ ⎛⎭⎪⎫12,0.由图像可知,当x >12时,有y <0,即|x -3|-|x +1|-1<0,所以原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞. 金版点睛形如|x -a |±|x -b |≤c 和|x -a |±|x -b |≥c型不等式的解法这种类型的不等式在求解时有三种方法:(1)利用绝对值的几何意义求解,这种方法体现了数形结合的思想,是解绝对值不等式最简单的方法,给绝对值不等式以准确的几何解释是解题的关键.(2)令每个绝对值符号里的一次式为0,求出相应的根,把这些根由小到大排序,它们把数轴分为若干个区间,然后利用区间分段讨论法去绝对值符号求解,这种方法体现了分类讨论的思想,是解绝对值不等式最常用的方法.(3)构造函数,利用函数图像求解,这种方法体现了函数与方程的思想,准确画出函数图像并求解函数图像与x 轴的交点坐标是解题的关键.[跟踪训练3] 解下列不等式:(1)|x -1|-|5-x |>2;(2)|2x -1|+|3x +2|≥8. 解 (1)原不等式即为|x -1|-|x -5|>2, 其等价于 ①⎩⎪⎨⎪⎧x <1,1-x -5-x >2或②⎩⎪⎨⎪⎧1≤x ≤5,x -1-5-x >2或③⎩⎪⎨⎪⎧x >5,x -1-x -5>2,解得①无解,②的解集为{x |4<x ≤5},③的解集为{x |x >5},故原不等式的解集为(4,+∞).(2)①当x ≤-23时,|2x -1|+|3x +2|≥8⇔1-2x -(3x +2)≥8⇔-5x ≥9⇔x ≤-95,所以x ≤-95;②当-23<x <12时,|2x -1|+|3x +2|≥8⇔1-2x +3x +2≥8⇔x +3≥8⇔x ≥5,所以x ∈∅;③当x ≥12时,|2x -1|+|3x +2|≥8⇔5x +1≥8⇔5x ≥7⇔x ≥75,所以x ≥75.故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-95∪⎣⎢⎡⎭⎪⎫75,+∞.1.不等式组⎩⎪⎨⎪⎧x +3>0,3x -1≤2x -1的解集为( )A .(-3,0]B .(-3,2]C .∅ D.⎝⎛⎦⎥⎤-3,-45答案 B解析 解不等式组⎩⎪⎨⎪⎧x +3>0, ①3x -1≤2x -1, ②将①式移项,得x >-3.将②式去括号,得3x -3≤2x -1.移项、合并同类项,得x ≤2.所以不等式组的解集为(-3,2],故选B.2.不等式|4-x |≥1的解集为( ) A .[3,5] B .(-∞,3]∪[5,+∞) C .[-4,4] D .R答案 B解析 |4-x |≥1⇒x -4≥1或x -4≤-1,即x ≥5或x ≤3.所以所求不等式的解集为(-∞,3]∪[5,+∞).故选B.3.不等式1<|x +1|<3的解集为( ) A .(0,2) B .(-2,0)∪(2,4) C .(-4,0) D .(-4,-2)∪(0,2) 答案 D解析 由1<|x +1|<3,得1<x +1<3或-3<x +1<-1,所以0<x <2或-4<x <-2.所以所求不等式的解集为(-4,-2)∪(0,2).4.不等式|x +1|-|x -3|≥0的解集是________.答案 [1,+∞)解析 解法一:不等式等价转化为|x +1|≥|x -3|,两边平方,得(x +1)2≥(x -3)2,解得x ≥1,故所求不等式的解集为[1,+∞).解法二:不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故所求不等式的解集为[1,+∞).5.解不等式|x +2|+|x -1|<4.解 |x +2|=0和|x -1|=0的根-2,1把数轴分为三个区间:(-∞,-2],(-2,1),[1,+∞).在这三个区间上|x +2|+|x -1|有不同的表达式,它们构成了三个不等式组.(1)当x ≤-2时,|x +2|+|x -1|<4⇔-2-x +1-x <4⇔-2x <5⇔x >-52, 所以不等式组⎩⎪⎨⎪⎧ x ≤-2,|x +2|+|x -1|<4的解集为⎝ ⎛⎦⎥⎤-52,-2. (2)当-2<x <1时,|x +2|+|x -1|<4⇔x +2+1-x <4⇔3<4,所以不等式组⎩⎪⎨⎪⎧ -2<x <1,|x +2|+|x -1|<4的解集为(-2,1).(3)当x ≥1时,|x +2|+|x -1|<4⇔x +2+x -1<4⇔2x <3⇔x <32, 所以不等式组⎩⎪⎨⎪⎧ x ≥1,|x +2|+|x -1|<4的解集为⎣⎢⎡⎭⎪⎫1,32. 因此原不等式的解集为⎝ ⎛⎦⎥⎤-52,-2∪(-2,1)∪⎣⎢⎡⎭⎪⎫1,32=⎝ ⎛⎭⎪⎫-52,32.。
人教B版高中数学必修第一册课后习题 第2章 等式与不等式 2.2.1 第1课时 不等式的性质
2.2 不等式2.2.1 不等式及其性质第1课时不等式的性质课后训练巩固提升1.已知a,b分别对应数轴上的A,B两点,且A在原点的右侧,B在原点的左侧,则下列不等式成立的是( )A.a-b≤0B.a+b<0C.|a|>|b|D.a2+b2≥-2ab解析:由题意,得a>0,b<0,故A不成立,B,C都不一定成立,D成立.答案:D2.设M=3≥N解析:∵M-N=(3x2-x+1)-(2x2+x)=x2-2x+1=(≥N.答案:D3.设0<a<b,且a+b=1,则四个数1,a,2a,a2+b2中最小的数是( )2B.aC.2aD.a2+b2A.12,a<2a,故只需比较a2+b2与a的大小即可.解析:由0<a<b及a+b=1,得0<a<12由0<a<1,得a2+b2-a=a2+(1-a)2-a=2a2-3a+1>0.故a最小.2答案:B4.设a,b,c∈R,且a>b,则( )A.ac>bcB.1a <1bC.a2>b2D.a3>b3解析:由a>b,c∈R,不能得到ac>bc,所以排除A选项.假设a=2,b=-3,则B,C选项都不成立.易知D选项成立.答案:D5.若a>b>0,c<d<0,则一定有( )A.ad >bcB.ad<bcC.ac >bdD.ac<bd解析:∵c<d<0,∴1d <1c<0,∴-1d>-1c>0.∵a>b>0,∴-ad >-bc>0,∴ad<bc,故选B.答案:B6.设a=x2+1-2x,b=x2-8x+16,且3<x<4,则√a与√b的大小关系为( )A.√a<√bB.√a=√bC.√a>√bD.无法判断解析:由题意,得a=(x-1)2,b=(x-4)2.∵3<x<4,∴√a=x-1,√b=4-x,∴√a−√b=(x-1)-(4-x)=2x-5>0,即√a>√b.答案:C7.设a ∈R,则“a -1a 2-a+1<0”是“|a|<1”的( ) A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:因为a 2-a+1=(a -12)2+34>0, 所以a -1a 2-a+1<0⇒a-1<0|a|<1;若|a|<1,则-1<a<1,所以a -1a 2-a+1<0.故选C.答案:C 8.已知a<0,-1<b<0,则下列不等式成立的是( )A.a>ab>ab 2B.ab 2>ab>aC.ab>a>ab 2D.ab>ab 2>a解析:因为-1<b<0,所以0<b 2<1.所以a<ab 2<0,且ab>0,故选D.本题也可以根据a,b 的取值范围取特殊值,比如令a=-1,b=-12,也容易得到正确答案.答案:D9.(多选题)若1a <1b<0,则下列结论正确的是( )A.a2<b2B.ab<b2C.ba +ab>2 D.|a|-|b|=|a-b|解析:∵1a <1b<0,∴b<a<0,∴b2>a2,∴A正确;∵1a <1b<0,∴b<a<0,又b<0,∴b2>ab,∴B正确;由1a <1b<0知b<a<0,∵ba +ab-2=(√ba-√ab)2>0,∴ba +ab>2,∴C正确.令a=-1,b=-2代入验证知,D不正确.答案:ABC10.已知a>0,b>0,M=√a+√b,N=√a+b,则M,N的大小关系为.解析:易知M>0,N>0.∵M2-N2=(√a+√b)2-(√a+b)2=2√ab>0,∴M2>N2,∴M>N.答案:M>N11.已知两实数a=-2x2+2x-10,b=-x2+3x-9,a,b分别对应数轴上两点A,B,则点A在点B的.(填“左边”或“右边”)解析:∵a-b=-2x2+2x-10+x2-3x+9=-x2-x-1=-(x2+x+1)<0,∴a<b,∴点A在点B的左边.答案:左边答案:313.若(a+1)2>(a+1)3,则实数a的取值范围是.解析:∵(a+1)2>(a+1)3,∴(a+1)2-(a+1)3=-a(a+1)2>0,∴a<0,且a≠-1.答案:(-∞,-1)∪(-1,0)14.已知不等式:①a<0<b;②b<a<0;③b<0<a;④0<b<a;⑤b<a,且ab>0;⑥a<b,且ab<0.其中能使1a <1b成立的是.(填序号)解析:1a <1b⇔b-aab<0⇔b-a与ab异号,然后再逐个进行验证,可知①②④⑤⑥都能使1a <1b.答案:①②④⑤⑥15.设a>b>0,试比较a 2-b2a2+b2与a-ba+b的大小.解:a 2-b2a2+b2−a-ba+b=(a+b)(a 2-b2)-(a-b)(a2+b2)(a2+b2)(a+b)=(a-b)[(a+b)2-(a2+b2)](a2+b2)(a+b)=2ab(a-b)(a+b)(a2+b2).∵a>b>0,∴a+b>0,a-b>0,2ab>0,a2+b2>0,∴2ab(a-b)(a+b)(a2+b2)>0.∴a 2-b2a2+b2>a-ba+b.16.设P=a2b2+5,Q=2ab-a2-4a,若P>Q,求实数a,b应满足的条件. 解:P-Q=a2b2+5-2ab+a2+4a=(ab-1)2+(a+2)2.∵P>Q,∴(ab-1)2+(a+2)2>0.∴ab≠1或a≠-2.即实数a,b应满足的条件为ab≠1或a≠-2.。
2021_2022学年新教材高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修第一
第二章
2.2.1 不等式及其性质
内
容
索
引
01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.了解日常生活中的不等关系.(数学抽象)
2.掌握不等式的性质.(数学抽象)
3.能利用不等式的性质对数或式进行大小比较,解不等式(组)和不等式证
明.(逻辑推理)
思维脉络
课前篇 自主预习
【激趣诱思】
(1)不等式a≥b应读作“a大于或者等于b”,其含义是指“或者a>b,或者a=b”,
等价于“a不小于b”,即若a>b与a=b之中有一个正确,则a≥b正确.
(2)不等式a≤b应读作“a小于或者等于b”,其含义是指“或者a<b,或者a=b”,
等价于“a不大于b”,即若a<b与a=b之中有一个正确,则a≤b正确.
系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合
法.
用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,
则综合法可用框图表示为:
P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q
(2)分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直
至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、
(-)(-)
-
(-)(-)
=
(-)
.
(-)(-)
∵c>a>b>0,∴a-b>0,c-a>0,c-b>0.
(-)
∴(-)(-)>0,-
∴-
>
.
-
−
>0.
高中数学第二章等式与不等式2.2.1不等式及其性质人教B版必修第一册
3.已知 a,b 为实数,且 a≠b,a<0,则 a________2b-ba2.(填 “>”“<”或“=”) 解析:因为 a≠b,a<0,所以 a-2b-ba2=(a-ab)2<0,所 以 a<2b-ba2. 答案:<
4.已知 a,b∈R,x=a3-b,y=a2b-a,试比较 x 与 y 的大小. 解:因为 x-y=a3-b-a2b+a=a2(a-b)+a-b=(a-b)(a2+ 1),所以当 a>b 时,x-y>0,所以 x>y; 当 a=b 时,x-y=0,所以 x=y; 当 a<b 时,x-y<0,所以 x<y.
1.比较实数 a,b 的大小 (1)文字叙述 如果 a-b 是正数,那么 a__>__b;如果 a-b 等于零,那么 a_=___b; 如果 a-b 是负数,那么 a__<__b,反过来也对. (2)符号表示 a-b>0⇔a__>__b;a-b=0⇔a_=___b;a-b<0⇔a__<__b.
■名师点拨 符号“⇔”叫做等价号,读作“等价于”,“p⇔q”的含义是: p 可以推出 q,q 也可以推出 p,即 p 与 q 可以互推.
1.若将本例条件改为-1<x<y<3,求 x-y 的取值范围. 解:因为-1<x<3,-1<y<3, 所以-3<-y<1,所以-4<x-y<4. 又因为 x<y,所以 x-y<0,所以-4<x-y<0,故 x-y 的取值范 围为(-4,0).
2.若将本例条件改为-1<x+y<4,2<x-y<3,求 3x+2y 的取 值范围. 解:设 3x+2y=m(x+y)+n(x-y), 则mm+ -nn= =32, ,所以mn==1252., 即 3x+2y=52(x+y)+12(x-y),
高中数学 第二章 等式与不等式学案(含解析)新人教B版必修第一册-新人教B版高一第一册数学学案
章末整合知识结构·理脉络等式与不等式⎩⎪⎪⎨⎪⎪⎧等式⎩⎪⎪⎨⎪⎪⎧等式的性质与方程的解集一元二次方程:ax 2+bx +c =0(a ≠0)⎩⎨⎧求根公式:x =-b ±b 2-4ac2a 根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca 方程组的解集⎩⎪⎨⎪⎧二元一次方程组三元一次方程组二元二次方程组等式与不等式⎩⎪⎪⎨⎪⎪⎧不等式⎩⎪⎪⎨⎪⎪⎧不等关系与不等式⎩⎪⎨⎪⎧不等式的概念实数(代数式)大小的比较⎩⎪⎨⎪⎧ 依据⎩⎪⎨⎪⎧a -b <0⇔a <b a -b =0⇔a =ba -b >0⇔a >b基本方法:作差法、作商法不等式的性质:对称性、传递性、可加性、可乘性等式与不等式⎩⎪⎨⎪⎧一元二次不等式及其解法⎩⎪⎨⎪⎧概念解法⎩⎪⎨⎪⎧ 因式分解法、配方法含参不等式的解法应用⎩⎪⎨⎪⎧ 解分式不等式——化归为整式不等式从实际问题中建立一元二次不等式模型等式与不等式⎩⎪⎪⎪⎨⎪⎪⎪⎧均值不等式⎩⎪⎪⎨⎪⎪⎧内容:a +b2≥ab (a >0,b >0),当且仅当a =b 时,等号成立证明⎩⎪⎨⎪⎧ 几何证明代数证明应用⎩⎪⎨⎪⎧比较大小证明不等式求最值⎩⎪⎨⎪⎧⎦⎥⎤积定和最小和定积最大具备条件一正、二定、三相等解决实际问题要点梳理·晰精华1.不等式基本性质中注意问题(1)不等式的基本性质中性质4、6要注意符号,另外还有一些常用的结论,同学们也要掌握.如:“a >b 且ab >0,则1a <1b ”,“a >b ,c <d ,则a -c >b -d ”,“a >b >0,c >d >0,则a d >bc ”.在使用这些性质时,要注意上述各不等式成立的条件.(2)不等式的基本性质中,对表达不等式性质的各不等式要注意“箭头”是单向的还是双向的,也就是说,每条性质是否具有可逆性.运用不等式的基本性质解答不等式问题时,要注意不等式成立的条件,否则将会出现一些错误.2.一元二次不等式的解法 判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图像一元二次方程ax 2+bx +c =0(a >0)的根有两相异实数根x 1=-b -Δ2a ,x 2=-b +Δ2a(x 1<x 2) 有两相等实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1,或x >x 2} {x |x ∈R ,x ≠-b2a}R ax 2+bx +c <0(a >0)的{x |x 1<x <x 2}∅∅解集3.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则x 1+x 2=-b a ,x 1+x 2=ca ,若bc=0时,关系式仍然成立.4.不等式组、简单分式不等式、绝对值不等式的解法(1)不等式组的解集等于组成该不等式组的每个不等式解集的交集. (2)解简单分式不等式应等价转化为整式不等式(整式不等式组)求解.(3)解绝对值不等式可根据绝对值的几何意义求解,也可按零点分段法逐段脱去绝对值号求解.5.均值不等式及有关结论(1)均值不等式:如果a >0,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即正数a 与b 的算术平均数不小于它们的几何平均数.(2)几个常用的重要结论:①b a +ab≥2(a 与b 同号,当且仅当a =b 时取等号). ②a +1a ≥2(a >0,当且仅当a =1时取等号),a +1a ≤-2(a <0,当且仅当a =-1时取等号).③ab ≤(a +b 2)2(a ,b ∈R ,当且仅当a =b 时取等号).(3)利用均值不等式求最值 已知x >0,y >0,则①如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). ②如果x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值s 24(简记:和定积最大).素养突破·提技能类型 特殊不等式的解法 ┃┃典例剖析__■ 1.一元高次不等式的解法典例1 解不等式:(x +2)(x 2-x -12)>0.思路探究:可转化为不等式组或用数轴标根法两种方法求解.解析:方法一:原不等式可化为⎩⎪⎨⎪⎧x +2>0,x 2-x -12>0或⎩⎪⎨⎪⎧ x +2<0,x 2-x -12<0,即⎩⎪⎨⎪⎧ x >-2,x <-3或x >4或⎩⎪⎨⎪⎧x <-2,-3<x <4.解得x >4或-3<x <-2.所以原不等式的解集为{x |-3<x <-2或x >4}. 方法二:令(x +2)(x 2-x -12)=0, 得x 1=-3,x 2=-2,x 3=4. 将-3,-2,4标在数轴上,如图.由图可知原不等式的解集为{x |-3<x <-2或x >4}.归纳提升:解简单的一元高次不等式,主要通过数轴标根法来求解,其步骤是 (1)将f (x )最高次项系数化为正数.(2)将f (x )分解为若干个一次因式或二次不可分解的因式的积,然后求出f (x )=0的解,并在数轴上标出.(3)自数轴正方向起,用曲线从右至左、自上而下依次从各解穿过数轴. (4)记数轴上方为正,下方为负,根据不等式写出解集.在用数轴标根法求解高次不等式的过程中要注意:①区间端点能否取到;②各因式中最高次项的系数要全为正数;③奇数个等根,穿过,偶数个等根,穿而不过.2.分式不等式的解法典例2 解不等式:x 2+2x -3-x 2+x +6<0.思路探究:一般地,解分式不等式的基本思想是化分式不等式为整式不等式或整式不等式组.解析:原不等式可变形为x 2+2x -3x 2-x -6>0,故原不等式的解集由下面两个不等式组的解集的并集构成:①⎩⎪⎨⎪⎧x 2+2x -3>0,x 2-x -6>0;②⎩⎪⎨⎪⎧x 2+2x -3<0,x 2-x -6<0.解①得x <-3或x >3;解②得-2<x <1.综上可得,原不等式的解集是{x |x <-3或-2<x <1或x >3}.归纳提升:分式不等式的求解在高考中比较常见,解分式不等式的过程就是转化的过程,通过不等式的性质和符号运算规律将其转化为整式不等式问题,注意不等式的等价变形.类型 含参不等式恒成立问题的求解策略 ┃┃典例剖析__■不等式恒成立问题是高考中的热点内容,它以多种形式出现在高中数学的各个分支中,扮演着重要的角色.求解含参不等式的恒成立问题的关键是转化与化归思想.一般而言,针对不等式的表现形式,有如下两种策略.1.判别式法典例3 对于x ∈R ,不等式x 2-2x +3-m ≥0恒成立,求实数m 的取值范围.思路探究:不等式x 2-2x +3-m ≥0恒成立,可转化为函数y =x 2-2x +3-m 图像恒在x 轴及其上方,即Δ≤0.解析:不妨设y =x 2-2x +3-m ,其函数图像是开口向上的抛物线,为了使y ≥0(x ∈R )恒成立,只需对应方程的Δ≤0,即(-2)2-4(3-m )≤0,解得m ≤2.故实数m 的取值范围为(-∞,2].归纳提升:有关含有参数的一元二次不等式问题,若能把不等式转化为二次函数或一元二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.2.分离变量法典例4 若关于x 的不等式ax 2-2x +2>0对于满足1<x <4的一切实数x 恒成立.求实数a 的取值范围.思路探究:可先将参数的a 分离出来即a >2x -2x 2,然后再求2x -2x 2的最值.解析:∵1<x <4,∴不等式ax 2-2x +2>0可转化为a >2x -2x 2,令y =2x -2x 2=-2(1x -12)2+12≤12.∵14<1x<1, ∴当1x =12,即x =2时,函数取得最大值12,∴a >12,即实数a 的取值范围为(12,+∞).归纳提升:如果能够将参数分离出来,建立明确的参数和变量x 的关系,那么可以利用函数的最值求解.a >y 恒成立⇔a >y max ,a <y 恒成立⇔a <y min .类型 均值不等式的变形技巧 ┃┃典例剖析__■ 1.技巧一:添项典例5 求函数y =3x 2+162+x 2的最小值.思路探究:当求和的最小值时,尽可能凑定积,本题需添6,减6. 解析:易知2+x 2>0, 所以y =3(2+x 2)+162+x 2-6≥23(2+x 2)·162+x 2-6=83-6,当且仅当3(2+x 2)=162+x 2,即x =±433-2时,等号成立,此时y min =83-6. 2.技巧二:放入根号内或两边平方典例6 求函数y =x 1-x 2(0<x <1)的最大值.思路探究:求积的最值(因式中含根号),把变量都放在同一条件下的根号里或者将两边平方去根号,整合结构形式,凑成定和,是解决本题的关键所在.解析:由0<x <1,可得y =x 1-x 2=x 2(1-x 2)≤x 2+1-x 22=12,当且仅当x 2=1-x 2,即x =22时,等号成立,此时y max =12. 3.技巧三:分子常数化典例7 设x ∈(0,+∞),求函数y =2xx 2+4的最大值.思路探究:当分子的变量因子次数比分母的小且变量因子不为零时,都可同时除以分子所含变量因子使分子变量常数化,以实现变量形式的统一,从而使问题得以解决.解析:由题意知,y =2x x 2+4=2x +4x .∵x ∈(0,+∞),∴x +4x ≥2x ·4x=4, 当且仅当x 2=4, 即x =2时,等号成立, 此时,y max =12.归纳提升:运用均值不等式求解函数最值的关键是在求解过程中充分重视运用“一正、二定、三相等”这三个条件的基础上,观察结果,合理变形.其中,成功实现变形是关键.。
最新人教B版高中数学必修第一册第二章等式与不等式2.1.1 等式的性质与方程的解集
所以方程的解集为{-1,2}.
反思感悟 因式分解法解一元二次方程
用因式分解法解一元二次方程的一般步骤是:
①将方程右边的各项移到方程左边,使方程右边为0;
②将方程左边分解为两个一次因式的乘积的形式;
③令每个因式分别为零,得到两个一元一次方程;
2
2
本 课 结 束
果a=0时,两边都除以a,无意义,故选项D符合题意.
2.下列分解因式错误的是(
)
A.a2-5a+6=(a-2)(a-3)
B.1-4m2+4m=(1-2m)2
C.-4x2+y2=-(2x+y)(2x-y)
1 2 2
D.3ab+ a b +9=
4
1
3+ ab 2
2
答案 B
解析 A选项,根据十字相乘分解因式可知,A正确;B选项中1+4m2-4m=(12m)2,左右两边不相等,所以B错误;C选项,根据平方差公式可知C正确;D选
2 = 2,
所以 3 = 3, 即 a+b=5.
5 = + ,
5.若式子3x2-mx-2因式分解的结果是(3x+2)(x+n),试求实数m,n的值.
= 1,
3 + 2 = -,
解 ∵(3x+2)(x+n)=3x +(3n+2)x+2n=3x -mx-2,∴
∴
= -1.
2 = -2,
(1)求出m的值并画出此二次函数的图像.
(2)求此二次函数的图像与x轴的交点及函数图像顶点的坐标.
(3)x取什么值时,函数图像在x轴上方.
2.1.1+等式的性质与方程的解集2023-2024学年高一上学期数学人教B版(2019)必修第一册
(2) 如果a=b,则对任意不为零的c,都有_______________.
ac=bc
因为减去一个数等于加上这个数的相反数,除以一个不为
零的数等于乘以这个数的倒数,所以上述等式性质中的
“加上”与“乘以”,如果分别改为“减去”与“除以”,
结论仍成立。
思考 1:下列各式是否正确?
x y
错因探究:未知数的系数含有字母,a+3 与 0 的关系不确定,
b-1
因此应对 a 进行讨论,切勿直接利用等式的性质得出 x=
.
a+3
解析:当 a=-3,b=1 时,
由(a+3)x=b-1 得 0·x=0,此时解集为 R;
当 a=-3,b≠1 时,
由(a+3)x=b-1 得 0·x=b-1,
此时解集为∅;
下面我们介绍另外一个经常会用到的恒等式:对任意的x,
a,b,都有
(x+a)(x+b)=x2+(a+b)x+ab.
这个恒等式的证明,只需将左边展开然后合并同类项即可,
留作练习。
可以利用这个恒等式来进行因式分解。给定式子x2 +Cx +D,
如果能找到a和b,使得 D=ab 且C=a+b,则
x2 +Cx +D=(x+a)(x+b)
对任意x,y都成立,所以可用其他代数式去替换其中的x,y,等
式仍会成立,若用一z 替换其中的 y,则
(x-z)2=x2+2x(-z)+(-z)2
=x2-2xz+z2,
由此就得到了以前学过的两数差的平方公式.
典例精析
例1 化简(2x+1)2-(x-1)2.
人教版高中数学B版必修一《第二章 等式与不等式——一元二次方程的解集及其根与系数的关系》课件
一
二
课前篇 自主预习
2.填空
方程 ax2+bx+c=a
x+2������������
2+4������������-������2(a≠0),
4������
(1)当 Δ=b2-4ac>0 时,方程的解集为
-������+
������2-4������������ 2������
,
-������-
������2-4������������ 2������
么可得 x=± ������或 mx+n=± ������,从而通过降次转化为一元一次方程. (2)配方法: 用配方法解一元二次方程的一般步骤是: ①化二次项系数为1:用二次项系数去除方程两边,将方程化为 x2+px+q=0的形式; ②移项:把常数项移至方程右边,将方程化为x2+px=-q的形式; ③配方:方程两边同时加上“一次项系数一半的平方”,使方程左边成 为含有未知数的完全平方形式,右边是一个常数,把方程化为 (x+m)2=n(n≥0)的形式; ④用直接开平方法解变形后的方程.
=
4������������ 4������.
(2)原方程等价于(x-2)(x+1)=0,
∴方程的两根为 x1=2,x2=-1.
x1+x2=1,x1x2=-2.
课前篇 自主预习
-8-
-9-
课堂篇 探究学习
探究一
探究二
思维辨析 当堂检测
反思感悟 一元二次方程的常见解法 (1)开平方法:如果方程能化成 x2=p 或(mx+n)2=p(p≥0)的形式,那
x1+x2= 2������ + 2������
高中数学 第二章 等式与不等式本章小结学案(含解析)新人教B版必修第一册-新人教B版高一第一册数学学
第二章等式与不等式本章小结学习目标能够从函数的观点认识方程和不等式,感悟函数和方程、不等式之间的联系,认识函数的重要性.掌握等式与不等式的性质.重点提升数学抽象、逻辑推理和数学运算素养.自主预习{等式式与不等关系实数大小的比较依据——次不等式及其解法{{课堂探究任务一:不等式的基本性质的应用例1下列结论中正确的是()①a>b>0,d>c>0⇒ac>bd;②a>b,c>d⇒a-c>b-d;③ac2>bc2⇒a>b;④a>b⇒a n>b n(n∈N,n>1).A.①②③B.①③C.②③④D.①③④任务二:一元二次不等式的解法及其应用例2解下列不等式:(1)x-1x≥2;(2)2x3+x2-5x+2>0.例3解关于x的不等式(x-2)(ax-2)>0.解一元二次不等式的步骤:任务三:二次函数、一元二次方程、一元二次不等式之间的关系例4当实数m取何范围的值时,方程x2+(m-3)x+m=0的两根满足:(1)都是正根;(2)都在(0,2)内?思考:根的分布问题应该从哪几个方面考虑?例5已知一元二次不等式ax2+bx+1>0的解集为{x|-2<x<1},则a= ,b= .任务四:基本不等式的应用例6已知3a2+2b2=5,试求y=(2a2+1)(b2+2)的最大值.例7如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.课堂练习1.若a ∈R 且a ≠0,比较a 与1a 的大小.2.求函数y=x 4+3x 2+3x 2+1的最小值.核心素养专练对任意x ∈[1,2],不等式1-mx ≤√1+x≤1-nx 恒成立,试求n 的最大值与m 的最小值.参考答案自主预习略 课堂探究例1 思路分析:判断不等关系的真假,要紧扣不等式的性质,应注意条件与结论之间的联系. 【解析】∵d>c>0⇒1c >1d>0,又a>b>0,∴a c >bd,∴①对;∵a>b ,-c<-d 不同向,不等式不可加,∴②错; ∵ac 2>bc 2,c 2>0,∴a>b ,∴③对;只有当a>b>0时,才有a n >b n ,∴④错,故选B .答案:B例2 【思路分析】对于(1),要先移项、通分化为f(x)g(x)≥0(或f(x)g(x)≤0)的形式,再化为整式不等式,转化必须保持等价;对于(2),要因式分解后借助穿根法处理.【解】(1)原不等式可化为x -1x -2≥0,∴-x -1x>0,∴{x(x +1)≤0,x ≠0,∴-1≤x<0.∴原不等式的解集为{x|-1≤x<0}.(2)原不等式可化为(x-1)(x+2)(2x-1)>0. 利用数轴标根法或穿根法(如图所示),∴-2<x<12或x>1.∴不等式的解集为{x |-2<x <12或x >1}.例3 【思路分析】不等式中含有参数a ,因此需要先判断参数a 对方程(x-2)(ax-2)=0的解的影响,然后求解.【解】(1)当a=0时,原不等式化为x-2<0,∴x<2,∴原不等式的解集为{x|x<2}.(2)当a<0时,原不等式化为(x-2)(x -2a )<0.方程(x-2)(x -2a )=0的两根为2,2a ,又2>2a,∴原不等式的解集为{x |2a<x <2}.(3)当a>0时,原不等式化为(x-2)(x -2a )>0.方程(x-2)(x -2a )=0的两根为2,2a .当0<a<1时,2a >2,原不等式的解集为{x |x >2a 或x <2}. 当a=1时,原不等式化为(x-2)2>0,解集为{x ∈R |x ≠2}. 当a>1时,2>2a >0,原不等式的解集为{x |x >2或x <2a }. 综上所述,不等式解集为当a=0时,{x ∈R |x<2};当a=1时,{x ∈R |x ≠2};当a<0时,{x |2a<x <2};当0<a<1时,{x |x >2a 或x <2};当a>1时,{x |x >2或x <2a }.解一元二次不等式的步骤: 1.若能因式分解,则用数轴穿根法; 2.若不能因式分解,则用配方法. 配方法的步骤:(1)把一元二次不等式的二次项系数化为1;(2)一元二次不等式通过配方变为(x-h )2>k 或(x-h )2<k 的形式; (3)根据k 值情况确定不等式的解集.例4 【思路分析】对于(1),可利用判别式及根与系数的关系求解;对于(2),可构造二次函数,结合二次函数的图像求解.【解】(1)设方程的两根为x 1,x 2.则由题意可得{Δ=m 2-10m +9≥0,x 1+x 2=3-m >0,x 1x 2=m >0.解得m 的取值范围是(0,1]. (2)(由对应的函数几何意义求解) 设f (x )=x 2+(m-3)x+m ,由题意得{Δ=m 2-10m +9≥0,f(0)=m >0,0<3-m2<2,f(2)=3m -2>0.解得23<m ≤1. 思考:根的分布问题应该从哪几个方面考虑? 1.开口方向; 2.判别式Δ; 3.对称轴;4.区间端点函数值的正负.例5 【思路分析】由于一元二次不等式解集的分界点是相应一元二次方程的两根,所以解答就从这个关系入手.【解析】由于ax 2+bx+1>0的解集为{x|-2<x<1},所以-2和1是方程ax 2+bx+1=0(a ≠0)的两根. 由根与系数的关系,得 {-2+1=-ba ,-2×1=1a ,解得a=b=-12. 答案:-12-12例6 【思路分析】要求积的最大值,关键是结合条件配凑出和为定值,然后利用基本不等式求解. 【解】∵2a 2+1>0,b 2+2>0,y=(2a 2+1)(b 2+2),∴√12y =√3(2a 2+1)·4(b 2+2)≤6a 2+3+4b 2+82.∵3a 2+2b 2=5,∴6a 2+4b 2=10. ∴√12y ≤212,可得√y ≤7√34.∴y 的最大值为14716.例7 【思路分析】对于(1),首先建立矩形AMPN 的面积y 与DN 的长x 的函数关系式,然后利用不等式求解;对于(2),根据(1)中建立的函数关系式结合基本不等式求解.【解】(1)设DN 的长为x (x>0)米,则AN 的长为(x+2)米,如图所示.∵DN AN =DC AM ,∴AM=3(x+2)x.∴矩形花坛AMPN 的面积y=AN ·AM=3(x+2)2x.由y>32,得3(x+2)2x>32.∵x>0,∴3x 2-20x+12>0.解得0<x<23或x>6,即DN 长的取值范围是(0,23)∪(6,+∞). (2)由(1)知矩形花坛AMPN 的面积为y=3(x+2)2x=3x 2+12x+12x=3x+12x +12≥2√3x ·12x +12=24.当且仅当3x=12x,即x=2时,矩形花坛AMPN 的面积取得最小值24平方米.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 课堂练习1.【思路分析】可以利用作差比较法比较两个代数式的大小. 【解】a-1a =(a -1)(a+1)a.当a=±1时,(a -1)(a+1)a=0,则a=1a ;当-1<a<0或a>1时,(a -1)(a+1)a>0,则a>1a . 当a<-1或0<a<1时,(a -1)(a+1)a<0,则a<1a .2.【思路分析】从函数解析式结构上看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,怎么办呢?事实上,我们可以把分母视为一个整体,用它来表示分子,原式即可展开.【解】令t=x 2+1,则t ≥1,且x 2=t-1.∴y=x 4+3x 2+3x 2+1=(t -1)2+3(t -1)+3t =t 2+t+1t=t+1t +1.∵t ≥1,∴t+1t ≥2√t ·1t =2,当且仅当t=1t ,即t=1时,等号成立.∴当x=0时,函数取得最小值3.核心素养专练【思路分析】对任意x ∈[1,2],不等式恒成立,且m 与n 都是一次的,因此可考虑分离参数m 和n. 【解】∵1-mx ≤√1+x≤1-nx 恒成立,∴-mx ≤√1+x -1≤-nx ,∴-mx ≤√1+x√1+x ≤-nx ,∴-mx ≤√1+x(1+√1+x)≤-nx.又∵x ∈[1,2],∴n ≤(√1+x)2+√1+x≤m 恒成立. 设y=(√1+x)2+√1+x,x ∈[1,2],令√1+x =t ,则t ∈[√2,√3],y=1t 2+t . 可求得y min =3-√36,y max =2-√22,∴m=2-√22,n=3-√36.故所求n 的最大值为3-√36,m 的最小值为2-√22.学习目标1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,通过类比理解等式与不等式的共性与差异;2.会解常见的方程和不等式及不等式组,如一元二次方程、一元二次不等式、绝对值不等式、二元及三元方程组等;3.掌握基本不等式,结合具体实例,能用基本不等式解决简单的最大值和最小值问题. 本章重点:绝对值不等式的解法、一元二次不等式的解法、均值不等式的应用.本章难点:均值不等式的灵活应用及不等式的证明.重点提升数学抽象、逻辑推理和数学运算素养.培养学生类比思想、分类讨论思想和数形结合的数学思想等.知识点梳理课堂探究●不等式性质的应用例1(1)(多选)下列命题正确的有()A.若a>1,则1a<1B.若a+c>b,则1a <1 bC.对任意实数a,都有a2≥aD.若ac2>bc2,则a>b(2)已知2<a<3,-2<b<-1,求ab,b2a的取值范围.◎跟踪训练1(多选)已知a,b,c∈R,那么下列命题中错误的是() A.若a>b,则ac2>bc2B.若ac >bc,则a>bC.若a3>b3且ab<0,则1a >1 bD .若a 2>b 2且ab>0,则1a <1b●不等式组的解法 例21.解不等式组:{5x-1<3(x +1),2x-13-1≤5x +12.2.已知关于x 的不等式组{x +a ≤0,3+2x >5的整数解只有3个,求a 的取值范围.3.解下列关于x 的不等式. (1)-1<x 2+2x-1≤2; (2)m 2x 2+2mx-3<0.◎跟踪训练2 解下列不等式. (1)x -1x+2≤0; (2)-3x 2-2x+8≥0; (3)ax 2-(a+1)x+1<0.●绝对值不等式的解法 例3 解下列不等式. (1)|2x-5|>3; (2)|2x-1|+|2x+1|≤6.◎跟踪训练3解下列不等式.(1)|2x+1|-2|x-1|>0;(2)|x+3|-|2x-1|<x2+1.●均值不等式例4若x>0,y>0,且x+2y=5,求9x +2y的最小值,并求出取得最小值时x,y的值.◎跟踪训练41.函数y=x(3-2x)(0≤x≤1)的最大值是.2.当x>1时,不等式x+1x-1≥a恒成立,当x= 时等号成立,实数a的取值范围是.●等式与不等式的应用例5某单位用2 160万元购得一块空地,计划在该空上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积.课堂练习1.已知集合M={x|-4≤x ≤7},N={x|x 2-x-12>0},则M ∩N=( ) A.{x|-4≤x<-3或4<x ≤7} B.{x|-4<x ≤-3或4≤x<7} C.{x|x ≤-3或x>4} D.{x|x<-3或x ≥4}2.(多选)已知a>b>0,下列不等式不成立的是( ) A.a+1b >b+1aB.a+1a ≥b+1bC.b a >b+1a+1D.b-1b>a-1a3.不等式|x+1|-|x-2|≥1的解集是 .4.已知x>0,y>0,且满足8x +1y=1,xy= 时,x+2y 的最小值为 .核心素养专练[A 基础达标]1.(多选)如果a ,b ,c 满足c<b<a ,且ac<0,那么下列不等式中一定成立的是( ) A .ab>ac B .c (b-a )>0 C .cb 2<ab 2 D .ac (a-c )<02.若a>0,b>0,且a 2+3b 2=6,则ab 的最大值为( ) A .1B .√2C .√3D .23.设m>1,P=m+4m -1,Q=5,则P ,Q 的大小关系为( ) A .P<QB .P=QC .P ≥QD .P ≤Q4.不等式1+x>11-x 的解集为( ) A .{x|x>0} B .{x|x ≥1} C .{x|x>1} D .{x|x>1或x=0} 5.设a ,b 是不相等的正数,x=√a+√b2,y=√a+b 2,则x ,y 的大小关系是 (用“>”“<”或“=”连接).6.设m+n>0,则关于x 的不等式(m-x )(n+x )>0的解集是 .7.已知0<x<12,则y=12x (1-2x )的最大值为 ,此时x= . 8.解下列不等式: (1)0<|x-2|≤|4x+2|; (2)2x+1x -5≥-1.9.已知x ,y 都是正数.(1)若3x+2y=12,求xy 的最大值;(2)若x+2y=3,求1x +1y 的最小值.[B 能力提升]10.不等式4x -2≤x-2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)11.已知实数x ,y ,若x ≥0,y ≥0且x+y=3,则x+1x+2+y y+1的最大值为 ,此时xy= . 12.解不等式3x -7x 2+2x -3≥2.13.解关于x 的不等式ax 2+(1-a )x-1>0(a<0).14.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE=CE ,AB>AD ,矩形的周长为8 cm .(1)设AB=x cm,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽?参考答案课堂探究例1 (1)AD (2)-6<ab<-213<b 2a <2跟踪训练1 ABD例2 1.解集为[-1,2) 2.(-5,-4]3.解:(1){x 2+2x -1≤2,x 2+2x -1>-1⇒{x 2+2x -3≤0,x 2+2x >0⇒{-3≤x ≤1,x >0或x <-2,不等式的解集为{x|-3≤x<-2或0<x ≤1}.(2)当m=0时,-3<0恒成立,解集为R .当m ≠0时,二次项系数m 2>0,Δ=16m 2>0.不等式化为(mx+3)(mx-1)<0.当m>0时,解集为{x |-3m <x <1m }; 当m<0时,解集为{x |1m <x <-3m }.跟踪训练2 (1)(-2,1](2)[-2,43] (3)解:当a=0时,x>1,解集为(1,+∞);当a ≠0时,方程化简为(ax-1)(x-1)<0.当a<0时,方程整理为(x -1a )(x-1)>0,(1a <0), ∴x>1或x<1a ,解集为(-∞,1a )∪(1,+∞);当a>0时,方程整理为(x -1a )(x-1)<0,(1a>0), 当0<a<1时,1a >1,∴1<x<1a ,解集为(1,1a); 当a=1时,1a =1,∴方程无解,解集为空集;当a>1时,1a <1,∴1a <x<1,解集为(1a ,1). 例3 (1)(-∞,-1)∪(4,+∞)(2)[-32,32]跟踪训练3(1)不等式的解集为{x |x >14}.(2)不等式的解集为{x |x <-25或x >2}.例4 解:因为x>0,y>0,且x+2y=5, 所以9x +2y =15(x+2y )(9x +2y ) =15(13+18y x +2x y ) ≥15(13+2√18y x ·2x y )=5,当且仅当{x +2y =5,18y x =2x y,即{x =3,y =1时等号成立. 所以9x +2y 的最小值为5,此时x=3,y=1. 跟踪训练41.982.2 a ≤3例5 解:设将楼房建为x 层,平均综合费用设为y 元. 则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y=560+48x+10 800x =560+48(x +225x ). 当x+225x取最小值时,y 有最小值. ∵x>0,∴x+225x ≥2√x ·225x =30. 当且仅当x=225x ,即x=15时,上式等号成立.∴当x=15时,y 有最小值2 000元.因此该楼房建为15层时,每平方米的平均综合费用最少. 课堂练习1.A2.BCD3.[1,+∞)4.36 18 核心素养专练A 基础达标1.ABD2.C3.C4.C5.x<y6.(-n ,m )7.116 148.(1){x |x ≤-43或x ≥0且x ≠2} (2){x |x >5或x ≤43}9.(1)6 (2)1+23√2B 能力提升10.B11.43 212.(-3,1)13.当-1<a<0时,解集为{x |1<x <-1a } 当a=-1时,解集为⌀ 当a<-1时,解集为{x |-1a <x <1} 14.解: (1)设DE=y cm,则AE=CE=(x-y )cm, 由矩形周长为8 cm,可得AD=(4-x )cm . 在三角形ADE 中,由勾股定理可得(4-x )2+y 2=(x-y )2, 整理得y=4-8x ,由AB>AD 可得x>2,由周长为8可得x<4, 综上DE 长度为(4-8x )cm,2<x<4. (2)S=12(4-x )×y ,由y=4-8x 可得S=12(4-x )·(4-8x )=2(4-x )(1-2x )=2(6-x -8x), 由2<x<4可得x+8x ≥2√8=4√2,当且仅当x=2√2时取到等号, 因此S max =2(6-4√2)=12-8√2,此时队徽的长为2√2 cm,宽为(4-2√2)cm .。
高中数学第二章等式与不等式2.1.3方程组的解集新人教B新人教B高一第一册数学教案
2.1.3 方程组的解集 考点 学习目标 核心素养 二元一次方程组的解法 会利用代入消元法或加减消元法解二元一次方程组数学运算三元一次方程组的解法会选用合适的消元法求解三元一次方程组数学运算 二元二次方程组的解法灵活运用具体方法求解“二·一”型和“二·二”型的二元二次方程组数学运算问题导学预习教材P51-P54的内容,思考以下问题:1.什么是方程组?2.什么是方程组的解集?1.方程组一般地,将多个方程联立,就能得到方程组.2.方程组的解集方程组中,由每个方程的解集得到的交集称为这个方程组的解集.■名师点拨 当方程组中未知数的个数大于方程的个数时,方程组的解集可能有无穷多个元素,此时,如果将其中一些未知数看成常数,那么其他未知数往往能用这些未知数表示出来.由方程组⎩⎪⎨⎪⎧x +m =4,y -3=m 可得x 与y 的关系是( ) A .x +y =1B .x +y =-1C .x +y =7D .x +y =-7解析:选C.由⎩⎪⎨⎪⎧x +m =4, ①y -3=m , ②,将②代入①得 x +y -3=4,即x +y =7.若|x +y -5|+(x -y -9)2=0,则x ,y 的值分别为( )A .-2,7B .7,-2C .-7,2D .2,-7解析:选B.由题意知⎩⎪⎨⎪⎧x +y -5=0, ①x -y -9=0, ② ①+②得2x -14=0,即x =7,①-②得2y +4=0,即y =-2.方程组⎩⎪⎨⎪⎧x +6y =12,3x -2y =8的解集为________. 解析:⎩⎪⎨⎪⎧x +6y =12, ①3x -2y =8, ② ②×3得9x -6y =24 ③①+③得10x =36,即x =185, 将x =185代入①得y =75, 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫185,75. 答案:⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫185,75 方程组⎩⎪⎨⎪⎧x +y -z =0, ①y +z -x =7, ②z +x -y =9 ③的解集为________.解析:①+②+③得x +y +z =16 ④④-①,得z =8;④-②,得x =4.5;④-③,得y =3.5.所以原方程组的解集为{(x ,y ,z )|(4.5,3.5,8)}.答案:{(x ,y ,z )|(4.5,3.5,8)}二元一次方程组的解法选择合适的方法解下列方程组:(1)⎩⎪⎨⎪⎧2x -y =3, ①3x +4y =10. ② (2)⎩⎪⎨⎪⎧x +2y =3, ①3x -4y =4. ② 【解】 (1)由①,得y =2x -3, ③把③代入②,得3x +4(2x -3)=10,解得x =2.把x =2代入③,得y =1.所以原方程组的解集为{(x ,y )|(2,1)}.(2)①×2,得2x +4y =6, ③③+②,得5x =10,解得x =2.把x =2代入①,得2+2y =3,解得y =12. 所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫2,12.解二元一次方程组看系数选方法当方程中有未知数的系数为1(或-1)时,可直接用代入法消元.否则观察相同未知数的系数,当系数互为相反数时,相加消元;当系数相等时,相减消元;当系数既不相等,又不互为相反数时,需要通过变形使同一个未知数的系数相等或互为相反数再相减或相加消元.1.若x ,y 满足方程组⎩⎪⎨⎪⎧2x +y =7,x +2y =8,则x +y 的值是( ) A .5 B .-1 C .0 D .1解析:选A.⎩⎪⎨⎪⎧2x +y =7, ①x +2y =8. ② 法一:②×2-①,得3y =9,解得y =3.把y =3代入②,得x =2.所以x +y =2+3=5.法二:由①+②,得3x +3y =15.化简,得x +y =5.故选A.2.用适当的方法解方程组:⎩⎪⎨⎪⎧3(x +y )-4(x -y )=4, ①x +y 2+x -y 6=1. ② 解:由②×6,得3(x +y )+(x -y )=6. ③ ③-①,得5(x -y )=2,即x -y =25. 把x -y =25代入③,得x +y =2815.解方程组⎩⎪⎨⎪⎧x +y =2815,x -y =25,得⎩⎪⎨⎪⎧x =1715,y =1115.所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫1715,1115. 三元一次方程组的解法角度一 一般型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x +y +z =12, ①x +2y +5z =22, ②x =4y . ③【解】 把③分别代入①②,得⎩⎪⎨⎪⎧5y +z =12,6y +5z =22,解得⎩⎪⎨⎪⎧y =2,z =2. 把y =2代入③,得x =8.所以原方程组的解集为{(x ,y ,z )|(8,2,2)}.消元法解三元一次方程组的两个注意点(1)在确定消去哪个未知数时,要从整体考虑,一般选择消去后可以使计算量相对较小的未知数.(2)消去的未知数一定是同一未知数,否则就达不到消元的目的.角度二 轮换型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x +y =3, ①y +z =5, ②z +x =4. ③【解】 ①+②+③,得2(x +y +z )=12,即x +y +z =6. ④④-①,得z =3;④-②,得x =1;④-③,得y =2.所以原方程组的解集为{(x ,y ,z )|(1,2,3)}.解三元一次方程组时,应具体问题具体分析,找出其结构特点及系数之间的关系,灵活巧妙地消元.本例中,由于未知数的系数都相同,故采用了整体代入来消元的方法,简化了运算.角度三 连等型三元一次方程组的解法解方程组⎩⎪⎨⎪⎧x 3=y 4=z 5, ①x -y +2z =18. ②【解】 设x 3=y 4=z5=k (k 为常数,k ≠0), 则x =3k ,y =4k ,z =5k .将它们代入②中,得3k -4k +10k =18,解得k =2.所以x =6,y =8,z =10,所以原方程组的解集为{(x ,y ,z )|(6,8,10)}.用参数法解连等形式的方程组解连等形式的方程组时,通常采用参数法,用同一个字母表示方程组中各个未知数,根据题目所给的条件一步就可求出字母的值.此外,比例形式的方程也可运用参数法.通过参数法达到消元的目的,使运算更加简便,且不易出错.已知二次函数的图像过点(1,0),(2,3),(3,28),求这个二次函数的解析式.解:设函数解析式为y =ax 2+bx +c (a ≠0),由题意, 得⎩⎪⎨⎪⎧a +b +c =0, ①4a +2b +c =3, ②9a +3b +c =28. ③②-①,得3a +b =3, ④③-②,得5a +b =25, ⑤由④和⑤组成方程组⎩⎪⎨⎪⎧3a +b =3,5a +b =25. 解得a =11,b =-30,把a =11,b =-30代入①,得11-30+c =0,解得c =19.所以a =11,b =-30,c =19.所以所求函数解析式为y =11x 2-30x +19.二元二次方程组的解法角度一 “二·一”型的二元二次方程组解方程组⎩⎪⎨⎪⎧x 2+2xy +y 2=4, ①x -2y =5. ②【解】 法一:由②得x =2y +5, ③将③代入①,得(2y +5)2+2y (2y +5)+y 2=4.整理,得3y 2+10y +7=0.解得y 1=-73,y 2=-1. 把y 1=-73代入③,得x 1=13, 把y 2=-1代入③,得x 2=3. 所以原方程组的解是⎩⎪⎨⎪⎧x 1=13,y 1=-73,⎩⎪⎨⎪⎧x 2=3,y 2=-1. 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫13,-73,(3,-1). 法二:由①得(x +y )2=4,即x +y =2或x +y =-2.原方程组转化为⎩⎪⎨⎪⎧x +y =2,x -2y =5.或⎩⎪⎨⎪⎧x +y =-2,x -2y =5. 解得⎩⎪⎨⎪⎧x 1=3,y 1=-1,⎩⎪⎨⎪⎧x 1=13,y 2=-73. 所以方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎝ ⎛⎭⎪⎫13,-73,(3,-1).“二·一”型的二元二次方程组的实数解有三种情况:有一解、两解和没有解.把一元一次方程代入二元二次方程,消去一个未知数之后,得到一个一元二次方程.由根的判别式可知,解的情况可能是有两个不相等的实数解,两个相等的实数解或无实数解,这样的二元二次方程组的解也就相应地有三种情况.简言之,有一个二元一次方程的二元二次方程组的实数解的情况,一般可通过一元二次方程的根的判别式来判断.角度二 “二·二”型的二元二次方程组解方程组⎩⎪⎨⎪⎧x 2-3xy -4y 2=0, ①x 2+4xy +4y 2=1. ② 【解】 由①得(x -4y )(x +y )=0,所以x -4y =0或x +y =0,由②得(x +2y )2=1,所以x +2y =1或x +2y =-1.原方程可化为以下四个方程组:⎩⎪⎨⎪⎧x -4y =0,x +2y =1,⎩⎪⎨⎪⎧x -4y =0,x +2y =-1,⎩⎪⎨⎪⎧x +y =0,x +2y =1,⎩⎪⎨⎪⎧x +y =0,x +2y =-1. 解这四个方程组,得原方程组的四个解是:⎩⎪⎨⎪⎧x 1=23,y 1=16,⎩⎪⎨⎪⎧x 2=-23,y 2=-16,⎩⎪⎨⎪⎧x 3=-1,y 3=1,⎩⎪⎨⎪⎧x 4=1,y 4=-1. 所以方程组的解集为{(x ,y )|⎝ ⎛⎭⎪⎫23,16,⎝ ⎛⎭⎪⎫-23,-16,(-1,1),(1,-1)}.解“二·二”型方程组的基本思想仍是“转化”,转化的方法是“降次”“消元”.它的一般解法是:(1)当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解这两个“二·一”型方程组,所得的解都是原方程组的解.(2)当方程组中两个二元二次方程都可分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程分别与第二个二元二次方程分解所得的每一个二元一次方程组成方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.1.解方程组⎩⎪⎨⎪⎧x +y =8, ①xy =12. ② 解:法一:由①得y =8-x , ③把③代入②,整理得x 2-8x +12=0,解得x 1=2,x 2=6.把x 1=2代入③,得y 1=6.把x 2=6代入③,得y 2=2.所以原方程组的解集为{(x ,y )|(2,6),(6,2)}.法二:根据方程中根与系数的关系可知,x ,y 是一元二次方程z 2-8z +12=0的两个根,解这个方程,得z 1=2,z 2=6.所以原方程组的解集为{(x ,y )|(2,6),(6,2)}.2.解方程组⎩⎪⎨⎪⎧x 2-y 2=1, ①(x -y )2-2(x -y )-3=0. ② 解:由②得(x -y -3)(x -y +1)=0.所以x -y -3=0或x -y +1=0.所以原方程组可化为两个方程组:⎩⎪⎨⎪⎧x 2-y 2=1,x -y -3=0,⎩⎪⎨⎪⎧x 2-y 2=1,x -y +1=0. 用代入消元法解方程组,分别得⎩⎪⎨⎪⎧x 1=53,y 1=-43,⎩⎪⎨⎪⎧x 2=-1,y 2=0. 所以原方程组的解集为{(x ,y )|⎝ ⎛⎭⎪⎫53,-43,(-1,0)}. 1.解下列方程组:(1)⎩⎪⎨⎪⎧2x +5y =16, ①8x -7y =10; ② (2)⎩⎪⎨⎪⎧x +1=5(y +2),x -32=y +63. 解:(1)由①,得2x =16-5y , ③把③代入②,得4(16-5y )-7y =10,解得y =2.把y =2代入③,得x =3,所以原方程组的解集为{(x ,y )|(3,2)}.(2)⎩⎪⎨⎪⎧x +1=5(y +2),x -32=y +63. 化简方程组,得⎩⎪⎨⎪⎧x -5y =9, ①3x -2y =21. ②②-①×3,得13y =-6,解得y =-613. 把y =-613代入①,得x =8713.故原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )|⎝ ⎛⎭⎪⎫8713,-613. 2.解方程组⎩⎪⎨⎪⎧3x -y +z =4, ①x +y +z =6, ②2x +3y -z =12. ③解:①+③,得5x +2y =16. ④②+③,得3x +4y =18. ⑤解由④⑤组成的方程组,得⎩⎪⎨⎪⎧x =2,y =3. 把x =2,y =3代入②,得z =1.所以原方程组的解集为{(x ,y ,z )|(2,3,1)}.3.解方程组⎩⎪⎨⎪⎧x 2-4y 2+x +3y -1=0, ①2x -y -1=0. ② 解:由②,得y =2x -1, ③把③代入①,整理,得15x 2-23x +8=0.解这个方程,得x 1=1,x 2=815. 把x 1=1代入③,得y 1=1;把x 2=815代入③,得y 2=115. 所以原方程组的解集为⎩⎨⎧⎭⎬⎫(x ,y )|(1,1),⎝ ⎛⎭⎪⎫815,115. [A 基础达标]1.若方程组⎩⎪⎨⎪⎧2a -3b =13,3a +5b =30.9的解集为{(a ,b )|(8.3,1.2)},则方程组⎩⎪⎨⎪⎧2(x +2)-3(y -1)=13,3(x +2)+5(y -1)=30.9,的解集为( ) A .{(x ,y )|(6.3,2.2)}B .{(x ,y )|(8.3,1.2)}C .{(x ,y )|(10.3,2.2)}D .{(x ,y )|(10.3,0.2)} 解析:选A.由题意可得⎩⎪⎨⎪⎧x +2=8.3,y -1=1.2.即⎩⎪⎨⎪⎧x =6.3,y =2.2.2.已知|x -z +4|+|z -2y +1|+|x +y -z +1|=0,则x +y +z =( )A .9B .10C .5D .3解析:选A.由题意,得⎩⎪⎨⎪⎧x -z +4=0, ①z -2y +1=0, ②x +y -z +1=0. ③③-①,得y =3.把y =3代入②,得z =5.把z =5代入①,得x =1.所以x +y +z =1+3+5=9.故选A.3.已知关于x ,y的方程组⎩⎪⎨⎪⎧3x -y =5,4ax +5by =-22和⎩⎪⎨⎪⎧2x +3y =-4,ax -by =8有相同的解,则(-a )b 的值为________.解析:因为两方程组有相同的解,所以原方程组可化为①⎩⎪⎨⎪⎧3x -y =5,2x +3y =-4;②⎩⎪⎨⎪⎧4ax +5by =-22,ax -by =8. 解方程组①,得⎩⎪⎨⎪⎧x =1,y =-2. 代入方程组②,得⎩⎪⎨⎪⎧4a -10b =-22,a +2b =8,解得⎩⎪⎨⎪⎧a =2,b =3. 所以(-a )b =(-2)3=-8.答案:-84.若x +43=y +64=z +85,且x +y +z =102,则x =________.解析:由已知得⎩⎪⎨⎪⎧x +43=y +64, ①x +43=z +85, ②x +y +z =102, ③由①得y =4x -23, ④ 由②得z =5x -43, ⑤ 把④⑤代入③并化简,得12x -6=306,解得x =26.答案:265.已知方程组⎩⎪⎨⎪⎧x -y =2,y -z =3,z +x =1的解也是方程3x +my +2z =0的解,则m 的值为________.解析:⎩⎪⎨⎪⎧x -y =2, ①y -z =3, ②z +x =1. ③①+②,得x -z =5, ④将③④组成方程组⎩⎪⎨⎪⎧z +x =1,x -z =5,解得⎩⎪⎨⎪⎧x =3,z =-2. 把x =3代入①,得y =1.故原方程组的解是⎩⎪⎨⎪⎧x =3,y =1,z =-2.代入3x +my +2z =0,得9+m -4=0,解得m =-5.答案:-56.解下列三元一次方程组:(1)⎩⎪⎨⎪⎧z =y +x , ①2x -3y +2z =5, ②x +2y +z =13; ③(2)⎩⎪⎨⎪⎧2x +3y +z =11, ①x +y +z =0, ②3x -y -z =-2. ③解:(1)将①代入②、③,消去z ,得⎩⎪⎨⎪⎧4x -y =5,2x +3y =13. 解得⎩⎪⎨⎪⎧x =2,y =3.把x =2,y =3代入①,得z =5.所以原方程组的解集为{(x ,y ,z )|(2,3,5)}.(2)①-②,得x +2y =11. ④①+③,得5x +2y =9. ⑤④与⑤组成方程组⎩⎪⎨⎪⎧x +2y =11,5x +2y =9.解得⎩⎪⎨⎪⎧x =-12,y =234.把x =-12,y =234代入②,得z =-214. 所以原方程组的解集为{(x ,y ,z )|⎝ ⎛⎭⎪⎫-12,234,-214}. 7.解方程组⎩⎪⎨⎪⎧x 2+xy =12, ①xy +y 2=4. ② 解:①-②×3得x 2+xy -3(xy +y 2)=0,即x 2-2xy -3y 2=0⇒(x -3y )(x +y )=0,所以x -3y =0或x +y =0,所以原方程组可化为两个二元一次方程组:⎩⎪⎨⎪⎧x -3y =0,xy +y 2=4,⎩⎪⎨⎪⎧x +y =0,xy +y 2=4. 用代入法解这两个方程组,得原方程组的解是:⎩⎪⎨⎪⎧x 1=3,y 1=1,⎩⎪⎨⎪⎧x 2=-3,y 2=-1. 所以该方程组的解集为{(x ,y )|(3,1),(-3,-1)}.8.解方程组:(1)⎩⎪⎨⎪⎧xy -x -y +1=0, ①3x 2+4y 2=1; ② (2)⎩⎪⎨⎪⎧3x 2-xy -4y 2-3x +4y =0, ①x 2+y 2=25. ② 解:(1)由①得(x -1)(y -1)=0,即x =1或y =1.(ⅰ)当x =1时,4y 2=-2无解.(ⅱ)当y =1时,3x 2=-3无解,所以原方程组的解集为∅.(2)由①得(3x -4y )(x +y )-(3x -4y )=0,(3x -4y )(x +y -1)=0,即3x -4y =0或x +y -1=0.由⎩⎪⎨⎪⎧3x -4y =0x 2+y 2=25得⎩⎪⎨⎪⎧x =4y =3或⎩⎪⎨⎪⎧x =-4y =-3. 由⎩⎪⎨⎪⎧x +y -1=0x 2+y 2=25得⎩⎪⎨⎪⎧x =4y =-3或⎩⎪⎨⎪⎧x =-3y =4. 所以原方程组的解集为{(x ,y )|(4,3),(-4,-3),(4,-3),(-3,4)}.[B 能力提升]9.解方程组⎩⎪⎨⎪⎧x 2-y 2=5(x +y ), ①x 2+xy +y 2=43. ② 解:由①得,x 2-y 2-5(x +y )=0⇒(x +y )(x -y )-5(x +y )=0⇒(x +y )(x -y -5)=0, 所以x +y =0或x -y -5=0,所以原方程组可化为两个方程组:⎩⎪⎨⎪⎧x -y -5=0,x 2+xy +y 2=43或⎩⎪⎨⎪⎧x +y =0,x 2+xy +y 2=43, 用代入法解这两个方程组,得原方程组的解是:⎩⎪⎨⎪⎧x 1=-1y 1=-6,⎩⎪⎨⎪⎧x 2=6y 2=1或⎩⎨⎧x 3=43y 3=-43,⎩⎨⎧x 4=-43y 4=43, 所以原方程组的解集为{(x ,y )|(-1,-6),(6,1),(43,-43),(-43,43)}.10.解方程组:(1)⎩⎪⎨⎪⎧3x 2+xy +y 2=15, ①3x 2-31xy +5y 2=-45; ② (2)⎩⎪⎨⎪⎧4a 2+4b 2=1, ①16a 2+1b 2=1. ②(a >0,b >0) 解:(1)①×3+②得,3x 2-7xy +2y 2=0,(3x -y )(x -2y )=0,3x -y =0或x -2y =0,将y =3x 代入①得,x 2=1,所以⎩⎪⎨⎪⎧x =1y =3或⎩⎪⎨⎪⎧x =-1y =-3, 将x =2y 代入①得,y 2=1,所以⎩⎪⎨⎪⎧x =2y =1或⎩⎪⎨⎪⎧x =-2y =-1. 所以原方程组的解集为{(x ,y )|(1,3),(-1,-3),(2,1),(-2,-1)}.(2)令x =1a 2,y =1b 2. 所以⎩⎪⎨⎪⎧4x +4y =116x +y =1⇒⎩⎪⎨⎪⎧x =120y =15⇒⎩⎪⎨⎪⎧1a 2=1201b 2=15.所以⎩⎨⎧a =25b =5(因为a >0,b >0). 即原方程组的解集为{(a ,b )|(25,5)}.11.k 为何值时,方程组⎩⎪⎨⎪⎧y =kx +2, ①y 2-4x -2y +1=0. ② (1)有一个实数解,并求出此解;(2)有两个不相等的实数解;(3)没有实数解.解:将①代入②,整理得k 2x 2+(2k -4)x +1=0, ③ Δ=(2k -4)2-4×k 2×1=-16(k -1).(1)当k =0时,y =2,则-4x +1=0,解得x =14, 方程组的解为⎩⎪⎨⎪⎧x =14y =2.当⎩⎪⎨⎪⎧k 2≠0,Δ=0时,原方程组有一个实数解,即k =1时方程组有一个实数解,将k =1代入原方程组得⎩⎪⎨⎪⎧y 2-4x -2y +1=0,y =x +2.解得⎩⎪⎨⎪⎧x =1,y =3. (2)当⎩⎪⎨⎪⎧k 2≠0,Δ=-16(k -1)>0时,原方程组有两个不相等的实数解,即k <1且k ≠0. 所以当k <1且k ≠0时,原方程组有两个不相等的实数解.(3)当⎩⎪⎨⎪⎧k 2≠0,Δ=-16(k -1)<0时,解得k >1,即当k >1时,方程组无实数解. [C 拓展探究]12.规定:⎪⎪⎪⎪⎪⎪a c bd =ad -bc .例如,⎪⎪⎪⎪⎪⎪2 -13 0=2×0-3×(-1)=3. 解方程组⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪3 y 2 x =1,⎪⎪⎪⎪⎪⎪x z -3 5=8,⎪⎪⎪⎪⎪⎪3 z 6 y =-3.解:根据规定,得⎪⎪⎪⎪⎪⎪3 y 2 x =3x -2y =1, ⎪⎪⎪⎪⎪⎪x z -3 5=5x +3z =8, ⎪⎪⎪⎪⎪⎪3 z 6 y =3y -6z =-3,所以⎩⎪⎨⎪⎧3x -2y =1, ①5x +3z =8, ②3y -6z =-3, ③②×2+③,得10x +3y =13. ④将①与④组成二元一次方程组⎩⎪⎨⎪⎧3x -2y =1,10x +3y =13. 解这个方程组,得⎩⎪⎨⎪⎧x =1,y =1. 把y =1代入③,得z =1,所以原方程组的解集为{(x ,y ,z )|(1,1,1)}.。
高一上数学必修一第二章《2.2.4 均值不等式及其应用》知识点梳理
2.2.4 均值不等式及其应用
【学习目标】 1、学会推导并掌握均值不等式定理. 2、能够简单应用定理求最值. 重点: 对均值不等式的推导、理解及初步应用。 难点: 对均值不等式的理解。
一、新课讲解: (一)相关概念: 1.给定两个正数 a, b,数 a b 称为 a, b 的算术平均数,数 ab 称为 a,b 的几何平均数。
三、归纳总结:
1.算术平均值和几何平均值
2.均值不等式(又称基本不等式)以及均值不等式的几何意义
3.用均值不等式解题的格式要求
3/3
2 证明:教材 P73 页。 (四)深度分析: 【均值不等式】——又称基本不等式 1.基本不等式中的 还可以是零,其实质是:两个正实数的算术平均值不小于它们的几何平均值。 2.均值不等式有什么几何意义呢?
研究: 将均值不等式两边平方得, a b 2 ab ,可以得出:均值不等式的一个几何意义: 2
2 2.多个正数的算术平均值和几何平均值的定义。 (二)学生活动 1: 完成教材 P72“尝试与发现” ,解决下列问题: 1.算术平均数的几何意义?几何平均值的几何意义? 2.它们的大小关系如何呢? (三)均值不等式:
1/3
1.语言表述:两个正数的算术平均值大于或等于它们的几何平均值。 2.数学表达:如果 a,b 都是正数,那么 a b ab ,当且仅当 a = b 时,等号成立。
所有周长一定的矩形中,正方形的面积最大。
二、典型例题: 例 1 已知 x >0,求 y = x+ 1 的最小值,并说明 x 为何值时 y 取得最小值。
x
解:因为 x >0,所以根据均值不等式有 x 1 2 x 1 2 ,其中等号成立当且仅当 x 1 ,
新教材人教B版高中数学必修第一册第二章 等式与不等式 练习(2)(解析版)
第二章 等式与不等式提升训练一、选择题1.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0【答案】C【解析】由c <b <a 且ac <0,知a >0,c <0,而b 的取值不确定,当b =0时,C 不成立.2.若a >0,b >0,且a 2+3b 2=6,则ab 的最大值为( )A .1 B.2 C. 3D .2 【答案】C【解析】因为6=a 2+3b 2≥23ab ,所以ab ≤3,当且仅当a 2=3b 2,即a =3,b =1时等号成立,故选C.3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <QB .P =QC .P ≥QD .P ≤Q 【答案】C【解析】因为m >1,所以P =m +4m -1=m -1+4m -1+1≥2(m -1)·4m -1+1=5=Q ,当且仅当m -1=4m -1,即m =3时等号成立,故选C.4.不等式1+x >11-x的解集为( ) A .{x |x >0}B .{x |x ≥1}C .{x |x >1}D .{x |x >1或x =0} 【答案】C【解析】不等式可化为1+x -11-x >0,通分得-x 21-x >0,即x 2x -1>0, 因为x 2>0,所以x -1>0,即x >1.故选C.5.下列命题中,一定正确的是( )A .若a >b 且1a >1b,则a >0,b <0 B .若a >b ,b ≠0,则a b >1C .若a >b 且a +c >b +d ,则c >dD .若a >b 且ac >bd ,则c >d【答案】A【解析】A 正确,若ab >0,则a >b 与1a >1b 不能同时成立;B 错,如取a =1,b =-1时,有a b =-1<1;C 错,如a =5,b =1,c =1,d =2时,有a +c >b +d ,c <d ;D 错,取a =-1,b =-2,则a >b ,令c =-3,d =-1,有ac >bd ,c <d .6.不等式14-5x -x 2<0的解集为( )A .{x |-7<x <2}B .{x |x <-7或x >2}C .{x |x >2}D .{x |x <-7} 【答案】B【解析】原不等式等价于x 2+5x -14>0,所以(x +7)·(x -2)>0,即x <-7或x >2,故选B.7.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)【答案】B【解析】①当x -2>0,即x >2时,原不等式等价于(x -2)2≥4,解得x ≥4.②当x -2<0,即x <2时,原不等式等价于(x -2)2≤4,解得0≤x <2.8.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1B .-1C .2D .3【答案】B 【解析】把⎩⎪⎨⎪⎧x =2,y =1代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3.所以a -b =-1,故选B. 9.已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最大值是( ) A.63 B .-233C.433D .-433 【答案】D【解析】不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据根与系数的关系,可得:x 1x 2=3a 2,x 1+x 2=4a ,那么x 1+x 2+a x 1x 2=4a +13a, 因为a <0,所以-⎝⎛⎭⎫4a +13a ≥24a ×13a =433,即4a +13a ≤-433, 故x 1+x 2+a x 1x 2的最大值为-433,故选D. 二、填空题10.如果a >b ,ab >0,那么1a 与1b 的大小关系是________. 【答案】1a < 1b【解析】因为a >b ,ab >0,所以a ab >b ab ,即1b >1a. 11.已知x =1是不等式k 2x 2-6kx +8<0的解,则k 的取值范围是________.【答案】2<k <4【解析】x =1是不等式k 2x 2-6kx +8<0的解,把x =1代入不等式,得k 2-6k +8<0,解得2<k <4.12.若a ∈R ,则a 2+14a 2+5的最小值为________.【答案】6【解析】a 2+14a 2+5=(a 2+5)+9a 2+5=a 2+5+9a 2+5≥2a 2+5·9a 2+5=6,当且仅当a 2+5=9a 2+5,即a =±2时等号成立.13.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 【答案】47【解析】由a +b =1,知13a +2+13b +2=3b +2+3a +2(3a +2)(3b +2)=79ab +10,又ab ≤⎝⎛⎭⎫a +b 22=14(当且仅当a =b =12时等号成立),所以9ab +10≤494,所以79ab +10≥47. 三、解答题14.设集合A ={x |4-x 2>0},B ={x |-x 2-2x +3>0}.(1)求集合A ∩B ;(2)若不等式2x 2+ax +b <0的解集为B ,求a ,b 的值.【答案】(1)A ∩B ={x |-2<x <1}(2)a=4,b=6【解析】(1)A ={x |4-x 2>0}={x |-2<x <2},B ={x |-x 2-2x +3>0}={x |-3<x <1},故A ∩B ={x |-2<x <1}. (2)因为2x 2+ax +b <0的解集为B ={x |-3<x <1},所以-3和1为方程2x 2+ax +b =0的两个根.所以有⎩⎪⎨⎪⎧2×(-3)2-3a +b =0,2×12+a +b =0,解得⎩⎪⎨⎪⎧a =4,b =-6. 15.已知正数x ,y 满足1x +9y=1. (1)求xy 的最小值;(2)求x +2y 的最小值.【答案】(1)36 .(2)19+6 2.【解析】(1)由1=1x +9y ≥21x ·9y ,得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9x y≥19+22y x ·9x y =19+62,当且仅当2y x =9x y ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.16.已知y =x 2-2x -8,若对一切x >2,均有y ≥(m +2)x -m -15,求实数m 的取值范围.【答案】m ≤2.【解析】当x >2时,y ≥(m +2)x -m -15恒成立,所以x 2-2x -8≥(m +2)x -m -15在x >2时恒成立,则x 2-4x +7≥m (x -1)在x >2时恒成立.所以对一切x >2,均有不等式x 2-4x +7x -1≥m 成立. 又x 2-4x +7x -1=(x -1)+4x -1-2 ≥2(x -1)×4x -1-2=2(当且仅当x =3时等号成立). 所以实数m 的取值范围是m ≤2.17.某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起,包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞收入50万元.(1)问捕捞几年后总利润最大,最大是多少?(2)问捕捞几年后平均利润最大,最大是多少?【答案】(1)捕捞10年后总利润最大,最大是102万元 (2)捕捞7年后平均利润最大,最大是12万元【解析】(1)设该船捕捞n 年后的总利润为y 万元.则y =50n -98-⎣⎡⎦⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102.所以当捕捞10年后总利润最大,最大是102万元.(2)年平均利润为y n=-2⎝⎛⎭⎫n +49n -20≤-2(2n ·49n -20)=12,当且仅当n =49n ,即n =7时等号成立.所以当捕捞7年后平均利润最大,最大是12万元.18.设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.【答案】见解析【解析】(1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两个根分别为2和-1a. ①当a <-12时,解不等式得-1a <x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a <x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅; ③当-12<a <0时,解不等式得2<x <-1a ,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a 或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.。
高中数学第二章等式与不等式2.1.1等式的性质与方程的解集新人教B新人教B高一第一册数学教案
2.1.1 等式的性质与方程的解集考点学习目标核心素养等式的性质掌握等式的性质,会用十字相乘法分解因式数学运算会利用等式的性质解一元一次方程,数学运算方程的解集会用因式分解法解一元二次方程问题导学预习教材P43-P46的内容,思考以下问题:1.等式的性质有哪些?2.恒等式的概念是什么?3.十字相乘法的内容是什么?4.方程的解集的概念是什么?1.等式的性质(1)等式的两边同时加上(减去)同一个数或代数式,等式仍成立;(2)等式的两边同时乘以(除以)同一个不为零的数或代数式,等式仍成立.[注意] 等式性质成立的条件,特别是性质(2)中的“不为零”.2.恒等式一般地,含有字母的等式,如果其中的字母取任意实数时等式都成立,则称其为恒等式,也称等式两边恒等.3.方程的解集一般地,把一个方程所有解组成的集合称为这个方程的解集.判断正误(正确的打“√”,错误的打“×”) (1)若a =b ,则a -c =b -c .( )(2)若a =b ,则a c =bc .( )(3)若a c =bc,则a =b .( )(4)x 3+1=(x +1)(x 2-x +1).( ) (5)x 2+5x +6=(x +2)(x +3).( ) 答案:(1)√ (2)× (3)√ (4)√ (5)√下列各式由左边到右边的变形为因式分解的是( ) A .a 2-b 2+1=(a +b )(a -b )+1 B .m 2-4m +4=(m -2)2C .(x +3)(x -3)=x 2-9D .t 2+3t -16=(t +4)(t -4)+3t 答案:B已知x 2+kxy +64y 2是一个完全式,则k 的值是( ) A .8 B .±8 C .16 D .±16答案:D方程2x +13-3x +42=12的解集为________.解析:由2x +13-3x +42=12,得2(2x +1)-3(3x +4)=3,即-5x -10=3,所以x =-135.所以方程的解集为⎩⎨⎧⎭⎬⎫-135.答案:⎩⎨⎧⎭⎬⎫-135方程x 2+2x -15=0的解集为________. 解析:x 2+2x -15=(x -3)(x +5)=0, 所以x =3或x =-5.所以方程的解集为{3,-5}. 答案:{3,-5}利用十字相乘法分解单变量多项式角度一 x 2+(p +q )x +pq 型式子的因式分解分解因式: (1)x 2-3x +2; (2)x 2+4x -12.【解】 (1)如图,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图中的两个x 用1来表示(如图).(2)由图,得所以x 2+4x -12=(x -2)(x +6).x 2+(p +q )x +pq 此类二次三项式的特点是:(1)二次项系数是1; (2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.其分解因式为:x 2+(p +q )x +pq =(x +p )(x +q ). 角度二 ax 2+bx +c 型式子的因式分解分解因式: (1)6x 2+5x +1; (2)6x 2+11x -7; (3)42x 2-33x +6; (4)2x 4-5x 2+3. 【解】 (1)由图,得所以6x 2+5x +1=(2x +1)(3x +1). (2)由图,得所以6x 2+11x -7=(2x -1)(3x +7). (3)由图,得所以42x 2-33x +6=(6x -3)(7x -2). (4)由图,得所以2x 4-5x 2+3=(x 2-1)(2x2-3)=2(x +1)(x -1)⎝ ⎛⎭⎪⎪⎫x +62⎝⎛⎭⎪⎪⎫x -62.对于ax2+bx+c,将二次项的系数a分解成a1×a2,常数项c 分解成c1×c2,并且把a1,a2,c1,c2排列如图:,按斜线交叉相乘,再相加,就得到a1c2+a2c1,如果它正好等于ax2+bx+c 的一次项系数b,那么ax2+bx+c就可以分解成(a1x+c1)(a2x+c2),其中a1,c1位于上图中上一行,a2,c2位于下一行.把下列各式分解因式:(1)x2-3x+2=________;(2)x2+37x+36=________;(3)(a-b)2+11(a-b)+28=________;(4)4m2-12m+9=________.解析:(1)x2-3x+2=(x-1)(x-2).(2)x2+37x+36=(x+1)(x+36).(3)(a-b)2+11(a-b)+28=[(a-b)+4][(a-b)+7]=(a-b+4)(a-b+7).(4)4m2-12m+9=(2m-3)2.答案:(1)(x-1)(x-2)(2)(x+1)(x+36)(3)(a-b+4)(a-b+7)(4)(2m-3)2利用十字相乘法分解双变量多项式角度一x2+(p+q)xy+pqy2型式子的因式分解把下列各式因式分解:(1)a2-2ab-8b2;(2)x+5xy-6y(x>0,y>0);(3)(x+y)2-z(x+y)-6z2;(4)m4+m2n2-6n4.【解】(1)(a+2b)(a-4b);(2)(x+6y)(x-y);(3)(x+y+2z)(x+y-3z);(4)(m+2n)(m-2n)(m2+3n2).x2+(p+q)xy+pqy2这类二次齐次式的特点是:(1)x2的系数为1;(2)y2的系数为两个数的积(pq);(3)xy的系数为这两个数之和(p+q).x2+(p+q)xy+pqy2=x2+pxy+qxy+pqy2=x(x+py)+qy(x +py)=(x+py)(x+qy).角度二ax2+bxy+cy2型式子的因式分解把下列各式因式分解:(1)6m2-5mn-6n2;(2)20x2+7xy-6y2;(3)2x4+x2y2-3y4;(4)6(x+y)+7z(x+y)+2z(x>0,y>0,z>0).【解】 (1)(3m +2n )(2m -3n ). (2)(4x +3y )(5x -2y ). (3)(x +y )(x -y )(2x 2+3y 2).(4)(3x +y +2z )(2x +y +z ).对ax 2+bxy +cy 2因式分解时,若将y 2也视为常数,则与ax 2+bx +c 的分解方法是一致的.1.分解下列各因式:(1)x 2-xy -2y 2-2x +7y -3; (2)ab -2a -b +2.解:(1)(x -2y )(x +y )-2x +7y -3=(x -2y +1)·(x +y -3);(2)(b -2)(a -1).2.分解因式:x 2+(2m +1)x +m 2+m .解:x 2+(2m +1)x +m (m +1)=(x +m )(x +m +1). 一元一次方程的解集用适当的方法求下列方程的解集: (1)x0.7-0.17-0.2x0.03=1;(2)x -12⎣⎢⎡⎦⎥⎤x -12(x -1)=2(x -1)3.【解】 (1)原方程可化为107x -1003(0.17-0.2x )=1,即107x -17-20x 3=1,去分母,得30x -7(17-20x )=21, 去括号,得30x -119+140x =21, 移项,得30x +140x =21+119, 合并同类项,得170x =140, 系数化为1,得x =1417.所以该方程的解集为⎩⎨⎧⎭⎬⎫1417.(2)去小括号,得x -12⎝ ⎛⎭⎪⎫x -12x +12=2x -23,去括号,得x -12x +14x -14=2x -23,去分母,得12x -6x +3x -3=8x -8, 移项,得12x -6x +3x -8x =-8+3, 合并同类项,得x =-5. 所以该方程的解集为{-5}.解一元一次方程时,有些变形的步骤可能用不到,要根据方程的形式灵活安排求解步骤.(1)在分子或分母中有小数时,可以化小数为整数.注意根据分数的基本性质,分子、分母必须同时扩大同样的倍数.(2)当有多层括号时,应按一定的顺序去括号,注意括号外的系数及符号.1.求下列方程的解集: (1)4-3(10-y )=5y ; (2)2x -13=2x +16-1.解:(1)去括号,得4-30+3y =5y .移项,得3y -5y =30-4. 合并同类项,得-2y =26.系数化为1,得y =-13. 所以该方程的解集为{-13}.(2)去分母,得2(2x -1)=(2x +1)-6. 去括号,得4x -2=2x +1-6. 移项,得4x -2x =1-6+2. 合并同类项,得2x =-3. 系数化为1,得x =-32.所以该方程的解集为⎩⎨⎧⎭⎬⎫-32.2.如果方程x -43-8=-x +22的解集与方程4x -(3a +1)=6x+2a -1的解集相同,求式子a -1a的值.解:解方程x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2), 去括号,得2x -8-48=-3x -6, 移项、合并同类项,得5x =50,系数化为1,得x =10.把x =10代入方程4x -(3a +1)=6x +2a -1, 得4×10-(3a +1)=6×10+2a -1,解得a =-4. 当a =-4时,a -1a =-4-1-4=-154.因式分解法解一元二次方程用因式分解法求下列方程的解集. (1)6x (x +1)=5(x +1); (2)(2x -1)2-(x +1)2=0; (3)(x +3)(x +1)=6x +2.【解】 (1)分解因式,得(6x -5)(x +1)=0, 所以6x -5=0或x +1=0,所以x 1=56,x 2=-1.所以方程的解集为⎩⎨⎧⎭⎬⎫56,-1.(2)分解因式,得[(2x -1)+(x +1)][(2x -1)-(x +1)]=0, 所以3x (x -2)=0,所以x 1=0,x 2=2. 所以方程的解集为{0,2}.(3)整理,得x 2-2x +1=0.即(x -1)2=0,所以x 1=x 2=1. 所以方程的解集为{1}.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程的左边分解为两个一次因式的积;(3)令每个因式等于0,得两个一元一次方程,再求解.[提醒] ①用因式分解法解一元二次方程,经常会遇到方程两边含有相同因式的情况,此时不能将其约去,而应当移项将方程右边化为零,再提取公因式,若约去则会使方程失根;②对于较复杂的一元二次方程,应灵活根据方程的特点分解因式.用因式分解法求下列方程的解集:(1)x ⎝⎛⎭⎪⎫x -12=x ; (2)(x -3)2+2x -6=0;(3)9(2x +3)2-4(2x -5)2=0.解:(1)x ⎝ ⎛⎭⎪⎫x -12-1=0, 即x ⎝ ⎛⎭⎪⎫x -32=0, 所以x 1=0,x 2=32, 所以该方程的解集为⎩⎨⎧⎭⎬⎫0,32. (2)(x -3)2+2(x -3)=0,(x -3)(x -3+2)=0,所以x -3=0或x -1=0,所以x 1=3,x 2=1,所以该方程的解集为{3,1}.(3)[3(2x +3)+2(2x -5)][3(2x +3)-2(2x -5)]=0, 所以(10x -1)(2x +19)=0,所以10x -1=0或2x +19=0,所以x 1=110,x 2=-192.所以该方程的解集为⎩⎨⎧⎭⎬⎫110,-192.1.分解因式x 3-x ,结果为( )A .x (x 2-1)B .x (x -1)2C .x (x +1)2D .x (x +1)(x -1)解析:选D.x 3-x =x (x 2-1)=x (x +1)(x -1).2.已知a +b =3,ab =2,计算:a 2b +ab 2等于() A .5 B .6C .9D .1解析:选B.a 2b +ab 2=ab (a +b )=2×3=6.3.分解因式a 2+8ab -33b 2得( )A .(a +11)(a -3)B .(a +11b )(a -3b )C .(a -11b )(a -3b )D .(a -11b )(a +3b )解析:选B.a 2+8ab -33b 2=(a -3b )(a +11b ).4.方程3x (x -2)=2-x 的解集为________.解析:因为3x (x -2)=2-x ,所以3x (x -2)-(2-x )=0,即3x (x -2)+(x -2)=0,所以(x -2)(3x +1)=0,所以x =2或x =-13, 所以方程的解集为⎩⎨⎧⎭⎬⎫2,-13. 答案:⎩⎨⎧⎭⎬⎫2,-13 5.把下列各式分解因式:(1)x 2+15x +56;(2)6x 2+7x -3;(3)x 2-6xy -7y 2;(4)8x 2+26xy +15y 2.解:(1)x 2+15x +56=(x +7)(x +8);(2)6x 2+7x -3=(2x +3)(3x -1);(3)x 2-6xy -7y 2=(x -7y )(x +y );(4)8x 2+26xy +15y 2=(2x +5y )(4x +3y ).[A 基础达标]1.多项式2x 2-xy -15y 2的一个因式为( )A .2x -5yB .x -3yC .x +3yD .x -5y 解析:选B.2x 2-xy -15y 2=(x -3y )(2x +5y ).2.(a +b )2+8(a +b )-20分解因式得( )A .(a +b +10)(a +b -2)B .(a +b +5)(a +b -4)C .(a +b +2)(a +b -10)D .(a +b +4)(a +b -5)解析:选A.(a +b )2+8(a +b )-20=[(a +b )-2][(a +b )+10]=(a +b -2)(a +b +10).3.若多项式x 2-3x +a 可分解为(x -5)(x -b ),则a ,b 的值是( )A .a =10,b =2B .a =10,b =-2C .a =-10,b =-2D .a =-10,b =2解析:选C.因为(x -5)(x -b )=x 2-(5+b )x +5b ,所以⎩⎪⎨⎪⎧-(5+b )=-35b =a ,即⎩⎪⎨⎪⎧b =-2a =-10. 4.方程2x -(x +10)=5x +2(x +1)的解集为( )A .⎩⎨⎧⎭⎬⎫43B .⎩⎨⎧⎭⎬⎫-43 C .{-2} D .{2}解析:选C.因为2x -(x +10)=5x +2(x +1),所以2x -x -10=5x +2x +2,即-6x =12,所以x =-2.5.下列说法正确的是( )A .解方程3x (x +2)=5(x +2)时,可以在方程两边同时除以(x +2),得3x =5,故x =53B .解方程(x +2)(x +3)=3×4时,对比方程两边知x +2=3,x +3=4,故x =1C .解方程(3y +2)2=4(y -3)2时,只要将两边开平方,方程就变形为3y +2=2(y -3),从而解得y =-8D .若一元二次方程的常数为0,则0必为它的一个根答案:D6.若x 2+mx -10=(x +a )(x +b ),其中a ,b 为整数,则m 取值的集合为________.解析:因为x 2+mx -10=(x +a )(x +b )=x 2+(a +b )x +ab ,所以⎩⎪⎨⎪⎧m =a +b ab =-10. 又因为a ,b 为整数,所以⎩⎪⎨⎪⎧a =-1b =10或⎩⎪⎨⎪⎧a =1b =-10或⎩⎪⎨⎪⎧a =2b =-5或⎩⎪⎨⎪⎧a =-2b =5, 所以m =±9或±3,所以m 取值的集合为{-9,-3,3,9}.答案:{-9,-3,3,9}7.已知y =1是方程2-13(m -y )=2y 的解,则关于x 的方程m (x -3)-2=m (2x -5)的解集为________.解析:因为y =1是方程2-13(m -y )=2y 的解,所以2-13(m -1)=2,即m =1.所以方程m (x -3)-2=m (2x -5)⇒(x -3)-2=2x -5, 解得x =0.所以方程的解集为{0}.答案:{0}8.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =________.解析:设a +b =x ,则原方程可化为4x (4x -2)-8=0,整理,得(2x +1)(x -1)=0,解得x 1=-12,x 2=1,则a +b =-12或1. 答案:-12或1 9.把下列各式分解因式:(1)6x 2+7x -3;(2)12x 2+25x +12;(3)42x 2-5x -2;(4)72x 2+7x -2.解:(1)(2x +3)(3x -1);(2)(3x +4)(4x +3);(3)(6x +1)(7x -2);(4)(9x +2)(8x -1).10.把下列各式分解因式:(1)x 2-y 2-x +3y -2;(2)6xy +4x +3y +2;(3)x 2-(a +b )x +ab ;(4)(x +y )2-(3+a )|x +y |+3a .解:(1)(x +y )(x -y )-x +3y -2=(x +y -2)(x -y +1);(2)(2x +1)(3y +2);(3)(x -a )(x -b );(4)(|x +y |-3)(|x +y |-a ).[B 能力提升]11.规定一种运算:⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc .例如:⎪⎪⎪⎪⎪⎪⎪⎪x 21 5=8,运算得5x -2=8,解得x =2.按照这种运算的规定,那么⎪⎪⎪⎪⎪⎪⎪⎪x 2x 2 x =5时,x 的值为________.解析:由题意,得⎪⎪⎪⎪⎪⎪⎪⎪x 2x 2 x =x 2-4x =5,即x 2-4x -5=0,解得x =5或x =-1.答案:5或-112.小奇设计了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数a 2-3b -5,例如把(1,-2)放入其中,就会得到12-3×(-2)-5=2.现将实数对(m ,3m )放入其中,得到实数5,则m =________.解析:因为将实数对(m ,3m )放入其中,得到实数5, 所以m 2-9m -5=5,解得m =10或-1.答案:10或-113.用因式分解法求下列方程的解集:(1)x 2-10x +9=0;(2)2(x -3)=3x (x -3);(3)4(3x -2)(x +1)=3x +3;(4)2(2x -3)2-3(2x -3)=0;(5)2x 2-16=x 2+5x +8;(6)(3x -1)2+3(3x -1)+2=0.解:(1)(x -1)(x -9)=0,所以x 1=1,x 2=9;所以该方程的解集为{1,9}.(2)整理,得(x -3)(2-3x )=0,所以x -3=0或2-3x =0,所以x 1=3,x 2=23; 所以该方程的解集为⎩⎨⎧⎭⎬⎫3,23. (3)4(3x -2)(x +1)-3(x +1)=0,所以(x +1)(12x -11)=0,所以x 1=-1,x 2=1112; 所以该方程的解集为⎩⎨⎧⎭⎬⎫-1,1112. (4)(2x -3)[2(2x -3)-3]=0,(2x -3)(4x -9)=0,所以x 1=32,x 2=94; 所以该方程的解集为⎩⎨⎧⎭⎬⎫32,94. (5)2x 2-x 2-5x -16-8=0, x 2-5x -24=0,(x -8)(x +3)=0,所以x 1=8,x 2=-3;所以该方程的解集为{8,-3}.(6)[(3x -1)+1][(3x -1)+2]=0,3x (3x +1)=0,所以x 1=0,x 2=-13; 所以该方程的解集为⎩⎨⎧⎭⎬⎫0,-13. 14.阅读材料,解答问题.为解方程(x 2-1)2-3(x 2-1)=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则(x 2-1)2=y 2,原方程化为y2-3y=0,解得y1=0,y2=3.当y=0时,x2-1=0,所以x2=1,x=±1;当y=3时,x2-1=3,所以x2=4,x=±2.所以原方程的解为x1=1,x2=-1,x3=2,x4=-2.[问题]解方程:(x2+3)2-4(x2+3)=0.解:设x2+3=y,原方程可化为y2-4y=0,即y(y-4)=0,所以y1=0,y2=4.当y=0时,x2+3=0,此时方程无解;当y=4时,x2+3=4,所以x=±1,所以x1=1,x2=-1.所以该方程的解集为{-1,1}.[C 拓展探究]15.已知方程(2 018x)2-2 017×2 019x-1=0的较大根为m,方程x2+2 018x-2 019=0的较小根为n.求m-n的值.解:将方程(2 018x)2-2 017×2 019x-1=0化为(2 0182x+1)(x-1)=0,所以x1=-12 0182,x2=1,所以m=1.同理,由方程x2+2 018x-2 019=0可得(x+2 019)(x-1)=0,所以x1=-2 019,x2=1,所以n=-2 019,所以m-n=2 020.。