向量的内积与向量组的正交变换
向量的内积
![向量的内积](https://img.taocdn.com/s3/m/35af8b12bdd126fff705cc1755270722192e5901.png)
取 1 1
2
2
[1,2 ] [1,1 ]
1
1 1 1
1 3
1 1 1
2 3
2 1 1
则向量组 1 ,2 就是与向量组1 ,2 等价的正交向量组。
设向量
3
x1 x2
与 1 ,2
都正交,即
x3
x1
x2
x3
0
4 2 2
0
3 x1 3 x2 3 x3 0
解此方程组得 3 1
4. 三角不等式:x y x y .
特别地,把长度为 1 的向量称为单位向量。
例如
01,
1
0 2 ,
1 1
0
1
2
1
3
3
都是3维单位向量。
3
对于任何向量 x 0 ,则 x0
1
x是单位向量,
x
这种把向量 x 化成单位向量的过程称为向量 x 的单位化
(或标准化)
根据向量长度的性质3,当
则称其为V 的一个规范正交基(或标准正交基)。
由定义不难得知, 向量组 1, 2 ,, r 为向量空间的一个规范正交基,当且仅当
1 当i j
[i , j ] 0 当i j
i, j 1, 2, , r.
1
0
0
例如
向量组
e1
0
,e2
1
,e3
0
与向量组
0
0
1
1ห้องสมุดไป่ตู้
1
0, 2
0
x1
定定义义4.42.2
设
n
维向量
x
x2
,则称非负实数
xn
向量组的正交性
![向量组的正交性](https://img.taocdn.com/s3/m/859595d084254b35eefd3498.png)
解 先正交化, 取
1 1 1,1,1,1
2
2
(1,2 ) (1, 1)
1
1,1,0,4 1 1 4 1,1,1,1
1111
0,2,1,3
3
3
(1,3 ) (1, 1)
1
(2 ,3 ) (2, 2)
反例:1 (1,0,1),2 (0,0,1)
四 向量空间的正交基
若1,2 , ,r是向量空间V的一个基,且1,2 ,
,r是两两正交的非零向量组,则称1,2 , ,r是
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
2
n
T 2
1
2T 2
2T n
T n
T n
1
nT 2
nTn
1 0
E
0
1
0
0
0
0
(i ,i )
1, (i , j )
0
1
(i j)
b3 a3 c3 .
b1
b2
七、正交矩阵:
1.定义4: 若n阶方阵A满足AT A E(或A1 AT ),则称A为n阶正交矩阵。
2.性质:(i) 若A为n阶正交矩阵 A 1.
(ii) 若A为n阶正交矩阵 AT与A1也是正交矩阵。
(iii) 若A, B为n阶正交矩阵 AB与BA也是正交矩阵。
1向量的内积及正交性
![1向量的内积及正交性](https://img.taocdn.com/s3/m/942c233f52ea551810a68766.png)
|| || ( ) ai2 i 1
则|| || 称为向量 的范数 (或长度). 特别地, 当|| || 1时, 称 为单位向量.
向量范数具有下列性质(其中 与 是向量, k 是数)
1) 非负性: 当 0 时, || || 0 ; 当 0 时, || || 0 ;
15 , 2 15 , 15 15
15 , 5
15 15
.
由施瓦兹(Schwarz)不等式, 即[ ]2 [ ] , 当 0 , 0 时, 可得
[ ] 1. || || || ||
定义 1.3 设 是两个 n 维非零向量,称 arccos [ ] 为向量 的夹角. || || || ||
2 2 2 2 .
又 0,所以|| |||| || || || .
证毕
注 1°当 || || 0 时, 用非零向量 的长度去乘以向量 ,得到一个单位向量,这一过
程通常称为把向量 单位化. 即
0 1 , || ||
所含有的向量个数不会超过.
定义 1.6 若向量空间V 的一组基是正交向量组, 则该组基称为向量空间的正交基. 若 向量空间V 的一组基是正交的单位向量组, 则该组基称为向量空间的规范正交基(或标准正
交基).
注
1°如向量组
e1
1 , 2
1 2
T
,
0,
0
, e2
Hale Waihona Puke 1, 21 2例 1.5 用施密特正交化方法,将向量组正交规范化
向量的内积、长度及正交性
![向量的内积、长度及正交性](https://img.taocdn.com/s3/m/fb89fdb1bb0d4a7302768e9951e79b89680268fd.png)
在多维空间中,向量长度可以通过欧几里得范数计算,即 $||vec{a}|| = sqrt{sum_{i=1}^{n} a_i^2}$。
向量模的计算
在数学软件中,如Matlab或Python的NumPy库,可以直接使 用内置函数计算向量长度,如`numpy.linalg.norm()`。
03
02
CHAPTER
向量的长度
向量长度的定义
定义
向量长度是指向量从原点到终点所经 过的距离,通常用符号“||”表示。
几何意义
向量长度等于向量在欧几里得空间中 的模,即以原点为起点、终点为终点 的有向线段的长度。
向量长度的性质
非负性
向量长度总是大于等于0,即对于任意向量$vec{a}$,有 $||vec{a}|| geq 0$。
CHAPTER
向量的正交性
向量正交的定义
两个向量$mathbf{a}$和 $mathbf{b}$正交,当且仅当它们的 内积为零,即$mathbf{a} cdot mathbf{b} = 0$。
正交意味着两个向量在所有方向上都 相互垂直,没有共同的行或列。
向量正交的性质
1
正交向量之间的内积为零,即$mathbf{a} cdot mathbf{b} = 0$。
2
正交向量的点积为零,但不意味着它们的长度为 零。
3
正交向量之间没有共同的行或列,即它们是垂直 的。
向量正交的判断方法
01
检查向量的点积是 否为零
如果$bf{a}$和$mathbf{b}$正 交。
02
检查向量的模长是 否为零
向量的内积、长度及正交性
目录
CONTENTS
• 向量的内积 • 向量的长度 • 向量的正交性 • 向量的应用
向量的内积长度和正交性
![向量的内积长度和正交性](https://img.taocdn.com/s3/m/bfb10b7cdc36a32d7375a417866fb84ae45cc33d.png)
(1) 非负性: 当 x = 时, || x ||= 0;当 x 时, || x || 0. (2) 齐次性: || x ||= |||| x || ;
(2) [ x, y ]= [ x, y];
(3) [x+y, z ]= [ x, z]+ [ y, z];
(4) 当 x = 时, [ x, x ]= 0; 当 x 时, [ x, x ] 0.
施瓦茨(Schwarz)不等式: [ x, y ]2 [ x, x ] [ y, y].
二、向量旳长度及性质
(1) A1 AT ; (2) AAT E;
3 A的列向量是两两正交的 单位向量;
4 A的行向量是两两正交的 单位向量.
设1 , 2 ,, r是向量空间V的一个基,要求V
的一个规范正交基 ,就是要找一组两两正交 的单
位向量e1 ,e2 ,,er ,使e1 ,e2 ,,er与1 , 2 ,, r等 价,这样一个问题,称为 把1,2 ,,r 这个基规
范正交化 .
下面简介施密特正交化措施(Gram-Schmidt orthogonalization’s method )
例如
1, 3
1 , 3
1
T
,
3
1 ,0, 2
1 2
,0
T
,
若
,
则
1
||
||
为单位向量.
若 ,
1 || ||
称为把向量 单位化.
例如 (1,2,3)T , 单位化得 : 1 (1,2,3)T .
第6讲向量的内积与正交化
![第6讲向量的内积与正交化](https://img.taocdn.com/s3/m/3241cabe284ac850ad0242a3.png)
可得: 定理:方阵 A 为正交阵的充分必要条件是 A 的列(行)向量都 是单位向量,且两两正交。
正交矩阵有如下性质: 1) 若 A 为正交矩阵,则 |A|=1 或 |A|= -1; 2) A为正交矩阵,则 AT=A-1 也为正交矩阵; 3) 若A,B为同阶正交矩阵,则 AB 也为正交矩阵。 定义:若 P 为正交矩阵,则线性变换 y = Px 称为正交变换。 性质:正交变换保持线段长度不变。 设 y=Px 为正交变换,则有 由于任意两点的距离均不变,从而正交变换不改变图形的形状, 这是正交变换的优良特性。
(1) (x,y) = (y, x); (2) (kx, y) = k (x, y); (3) (x+y, z) = (x, z)+(y,z); (4) (x, x)≥0,当且仅当 x=0 时, (x,x)=0。 内积还满足施瓦茨(Schwarz)不等式
定义:定义向量
的长度(范数, 模)为
向量的长度具有下述性质: (1) 非负性:当 x≠0 时,|| x ||>0;当 x=0 时,||x||=0; (2) 齐次性: ||k x || = |k| ||x||; (3) 施瓦茨不等式:|(x,y)| ≤ ||x|| ||y||; (4) 三角不等式:||x+y|| ≤ ||x|| + ||y||。
正交的
;
,即得 n 个两两正交的
若现已有线性无关的向量组
,也可以构
建一个与之等价的且两两正交的向量组:
以上过程称为施密特(Schimidt)正交化过程。 进一步,可将 单位化(规范化),
对施密特正交化过程,应注意向量组 等价,其中 t=1,…, r
向量的内积与施密特正交化过程
![向量的内积与施密特正交化过程](https://img.taocdn.com/s3/m/9f353f03326c1eb91a37f111f18583d049640fd9.png)
向量的内积与施密特正交化过程向量的内积是线性代数中重要的概念,它不仅可以表述两个向量之间的夹角关系,还可以用于正交化过程中的计算。
施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
本文将分为以下几个部分介绍向量的内积和施密特正交化过程。
一、向量的内积A·B=a1b1+a2b2+...+anbn1.交换律:A·B=B·A2.分配律:(A+B)·C=A·C+B·C3.结合律:k(A·B)=(kA)·B=A·(kB),其中k为实数4.内积为0的充要条件:当且仅当A、B正交(或垂直)时,A·B=0内积具有很多实际应用,比如:1.计算向量的模长:,A,=√(A·A)2. 计算向量之间的夹角:cosθ = (A·B)/(,A,B,)3.判断两个向量是否垂直:当且仅当A·B=0时,A与B垂直4.判断向量的正负性:当A·B>0时,夹角θ为锐角;当A·B<0时,夹角θ为钝角二、施密特正交化施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
假设有一组线性无关的向量A1,A2,...,An,施密特正交化的过程如下:1.选择一个向量a1作为正交向量组的第一个向量,令b1=a1/,a1,即单位化。
2.对于第k个向量向量Ak(k=2,3,...,n),先将它与前k-1个向量的内积计算出来,然后减去它在前k-1个向量的投影:Ak' = Ak - (Ak·b1)b1 - (Ak·b2)b2 - ... - (Ak·bk-1)bk-1其中,bk = Ak'/,Ak'3. 重复步骤2,直到计算完所有向量。
经过施密特正交化,得到一组正交向量组b1,b2,...,bn。
施密特正交化的过程可以通过内积的运算来实现,将向量投影的概念用到了正交化过程中。
向量的内积与正交
![向量的内积与正交](https://img.taocdn.com/s3/m/3dcbba1cb207e87101f69e3143323968001cf412.png)
使β3 与β1,β2 彼此正交,满足
β3β1 β3, β2 0
即有
β3β1 α3, β1 k1 β1, β1 0
以及
β3β2 α3, β2 k2 β2, β2 0
得
k1
α3 , β1,
β1 β1
,k2
α3 , β2,
β2 β2
于是得
β3
α3
α3 , β1,
1 3
1 21
5 3
1
1 1
1
2 10
那么 β1β2, , βr与 就是与 α1,α2, ,αr 等价的单位正交向量组。
1
例3,a1 1 1
求一组非零向量 α2, α3, 使 α1, α2, α3
两两正交。
解 α2, α3 应满足方程 α1T x 0, 即
x1 x2 x3 0
线性代数
向量的内积与正交
1 向量的内积
2 线性无关向量 组的正交化方法
3 正交阵
内容
向量的内积与正交
定义1 设n 维向量
a1 b1
a2
,
b1
an
b1
令
α, β a1b1 a2b2 anbn
称为向量的内积。
向量的内积是一种运算。如果把向量看成列矩阵,那么向量的内积 可以表示成矩阵的乘积形式
定义2 设有n 维向量
a1
α
=
a1
a1
令
α α, α a12 a22 an2
α 称为n 维向量α 的长度(也称为模或范数)。 向量的长度具有下列性质: (1) α 0,且 α 0当且仅当α 0 (2) kα k α (3) α β α β
性质(1),(2)是显然的,性质(3)称为三角不等式,这里不予证明。
4-1向量的内积与正交
![4-1向量的内积与正交](https://img.taocdn.com/s3/m/86bc1a925122aaea998fcc22bcd126fff7055d0b.png)
BB
1
2 0
0 1
1
2 0
0
1 2
则 B 是正交矩阵。
1 0 2
1 0 0
0 1 0 1 0
1 2
0
0 0 1
1
CC
0
0 0
1 0
1 0
0 0
1 0
2 0
0 0
0 0 E
1 0 1 1 0 1 0 0 2
则 C不 是正交矩阵。
19
性质3 设 A、B 都是正交矩阵,则 AB 也是正交矩阵。
9
例3 1 1,1,1,1T , 2 1,1,1,1T , 3 1,1,1,1T ,
求与 1,2 ,3 都正交的单位向量。
解 设所求向量为 X x1, x2, x3, x4 T
X X
, ,
1 2
0 0
X ,3 0
即
x1 x1
x2 x2
x3 x3
x4 x4
0 0
x1 x2 x3 x4 0
证 因为 A 、B都是正交矩阵,则 A A E BB E
ABAB B A AB B A A B E
则 AB 也是正交矩阵。 性质4 设 A 是正交矩阵,则 A1 与 A, A
也是正交矩阵。 性质5 设 A 是正交矩阵,则 A 1.
20
例6 A 为 n 阶正交阵,则
(1) A 1 或 1 (2) A 是正交矩阵
i j
0, i 1, i
j j
即 A 的 n 个列向量是单位正交向量组。
例5 观察下列矩阵是否为正交矩阵
1 A 0
0
0 1 0
0
1 2
0
B
1 2
线性代数第五章128
![线性代数第五章128](https://img.taocdn.com/s3/m/db752d28763231126edb11de.png)
b1 b2 br e1 , e2 , , e r , || b1 || || b2 || || br ||
则e1, e2, · · · , en是向量空间V的一组规范正交基. 由线性无关向量组a1, a2, · · · , ar 构造出正交向量组 b1, b2, · · · , br 的过程称为施密特(Schimidt)正交化过程.
1 0 0 0 0 1 0 0 设 1 0 , 2 0 , 3 1 , 4 0 . 0 0 0 1
又设
1 2 1 2 0 0 0 0 1 2 1 2 , e4 . e1 , e2 , e3 1 2 1 2 0 0 1 2 1 2 0 0 0 ij ( i , j 1, 2, 3, 4). 由于 [e i , e j ] ij 1 i j
2 2 2 [x, x] = x = x1 + x2 + + xn
当|| x ||=1时, 称x为单位向量
3.当|| x || 0, || y || 0 时, n维向量 x 与 y 的夹角: [ x, y] arccos 规定0 . || x || || y || 4.向量 x 与 y 正交定义为: π 当[x, y]=0,也即 θ = .
向量的长度及性质
(1) 非负性: || x || 0, 当且仅当x=0时有|| x || = 0;
(2) 齐次性: || x|| = | | || x ||;
(3) 三角不等式: || x+y || || x || + || y ||.
内积空间与正交变换的基本概念
![内积空间与正交变换的基本概念](https://img.taocdn.com/s3/m/ab12972915791711cc7931b765ce05087632756e.png)
内积空间与正交变换的基本概念内积空间和正交变换是线性代数中重要的概念,它们在数学和物理等领域都有广泛的应用。
本文将介绍内积空间和正交变换的基本概念,以及它们在实际问题中的应用。
一、内积空间的定义和性质内积空间是指在定义了内积运算的向量空间。
内积运算是指将两个向量进行运算得到一个标量的运算,常用的内积运算有点乘和矩阵乘法等。
内积空间具有以下性质:1. 正定性:对于任意非零向量v,它的内积与自身的内积大于零,即(v, v) > 0。
当且仅当v等于零向量时,(v, v)等于零。
2. 线性性:对于任意向量u、v和w,以及任意标量a和b,有(u+v, w) = (u, w) + (v, w)和(au, v) = a(u, v)。
3. 对称性:对于任意向量u和v,有(u, v) = (v, u)。
内积空间可以是有限维的,也可以是无限维的。
常见的有限维内积空间是欧几里得空间,而无限维内积空间的例子有L2空间和Hilbert空间等。
二、正交变换的定义和性质正交变换是指保持向量间内积不变的线性变换。
设A是一个n阶实矩阵,若AA^T=I(其中I是单位矩阵),则称A是正交矩阵。
正交矩阵表示的线性变换称为正交变换。
正交变换具有以下性质:1. 保持内积:对于任意向量u和v,有(Au, Av) = (u, v)。
2. 保持长度:对于任意向量u,有||Au|| = ||u||,其中||u||表示向量u的长度。
3. 保持角度:对于任意两个非零向量u和v,它们的夹角与它们的像Au和Av的夹角相等。
正交变换常用于解决几何和物理问题,如旋转、平移和镜像等。
正交变换在图像处理和编码等领域也有广泛的应用。
三、内积空间与正交变换的关系内积空间和正交变换之间有着密切的联系。
给定一个内积空间V和一个正交变换矩阵A,可以构造一个新的内积空间W,其中向量的内积定义为(u, v) = (Au, Av)。
这个内积空间W称为V关于正交变换A的像空间。
线性代数-正交矩阵
![线性代数-正交矩阵](https://img.taocdn.com/s3/m/180a65fa5f0e7cd18525360d.png)
的一个规范正交基. e1 , e2 ,, en是Rn的规范正交基
e
T i
e
j
0, 1,
i j; i j.
1 1 0 0
2
2
0
0
e1
1 2
,e2
1
2
, e3
1 2
,e4
Y Y TY X T AT AX X T X X
正交变换保持向量的长度不变.
本节小结 内积与正交变换 α,β αTβ
1. 正交向量组 [αi ,α j ] (αTi ,α j ) 0
线性无关(Th5.3)
2. 规范正交化 正交基
必可逆
3. 正交矩阵 三条性质
正交规范基 i eTi a [ei ,a] AT A E AT A1
(1,1,1)
(
1 2
, 1,
1) 2
则 β1,β2,β3为正交向量组. 然后再单位化得
e1
1
1
1 (
1 ,0, 2
1 ), e2 2
1 2
2 (
1, 3
1, 3
1
), 3
e3
1 3
3 (
1 , 6
2, 6
1 ). 6
那末,e1,e2,e3 就是所求的正交单位向量组.
附加定义设n维向量e1,e2, ,er是向量空间V(V Rn)的一个基,
内积的基本性质 [, ] a1b1 a2b2 anbn (1) [, ] [, ]
(2) [k, ] kk[a1,b1 ]k[a2,bk2] kanbn (3) [1 2, ] [1 , ] [ 2 , ]
向量的内积与向量组的正交化ppt课件
![向量的内积与向量组的正交化ppt课件](https://img.taocdn.com/s3/m/6d7140cbdbef5ef7ba0d4a7302768e9951e76e8b.png)
+
1
+
2
3 0.
1 0
它的基础解系为
1
0 , 1
2
1 . 1
把基础解系正交化,即合所求.亦即取 a2 1,
a3
2
[ [
1, 1,
2]
1]
1
.
其中[1, 2] 1,[1,1] 2,于是得
a2
1 0 , 1
a3
0 1 1
1 2
1 0 1
1 2
1 2 . 1
4、正交矩阵与正交变换
定义4 若n阶方阵A满足 AT A E 即A1 AT ,则称A为正交矩阵.
定理 证明
A为正交矩阵的充要条件是 A的列向量都是单位向量且两两正交.
a11
AT
A
E
a12 L
a21
a22 L
L L L
an1 a11 an2 a21 L L
a12
a22 L
L L L
201
由于
0 1 2 0, 所以 1 , 2 , 3 线性无关 .
112
即 A 有 3 个线性无关的特征向量 , 因而 A 可对角化 .
2 1 2 (2) A 5 3 3
1 0 2
2 1
2
A E 5 3 3 + 13
1
0 2
所以 A 的特征值为 1 2 3 1 . 把 1代入 A E x 0 , 解之得基础解系 (1,1,1)T ,
内积的运算性质 其中 x, y, z为n维向量,为实数 :
(1) [x, y] [y, x]; (2) [x, y] [x, y]; (3) [x + y, z] [x, z] + [y, z];
正交变换的结论
![正交变换的结论](https://img.taocdn.com/s3/m/b3780e1ebc64783e0912a21614791711cd797940.png)
正交变换的结论
正交变换是指将一个向量或者一个坐标系通过某种方法进行变换,使得变换前后的向量或坐标系之间保持角度不变,即原来是直角的地方变换后仍然是直角。
正交变换包括旋转、镜像和旋转加镜像等多种类型。
正交变换的结论有以下几点:
1. 正交变换保持向量长度不变:对于正交变换后的向量,它们的长度与变换前的向量长度相同。
这是因为正交变换不改变向量的大小,只改变了向量的方向。
2. 正交变换保持向量之间的夹角不变:对于任意两个向量,它们的夹角在经过正交变换后仍然保持不变。
这是因为正交变换不改变向量之间的夹角,只是改变了它们的方向。
3. 正交变换保持向量的内积不变:对于两个向量,它们的内积在经过正交变换后仍然保持不变。
这是因为向量的内积可以用向量的长度和夹角表示,而正交变换不改变向量的长度和夹角,因此内积也不会改变。
4. 正交变换可以用矩阵表示:对于一个n维向量的正交变换,可以用一个n*n 的正交矩阵来表示。
这个矩阵的每一列都是一个单位向量,且这些向量之间两两正交。
5. 正交变换的逆变换也是正交变换:对于一个正交变换,它的逆变换也是正交变换。
这是因为正交变换保持向量长度、夹角和内积不变,因此它的逆变换也会保持这些性质不变。
综上所述,正交变换是一种非常重要的数学工具,它在许多领域都有广泛的应用,如图像处理、信号处理、物理学等。
了解正交变换的性质和结论对于理解这些应用非常有帮助。
向量的内积与正交向量组
![向量的内积与正交向量组](https://img.taocdn.com/s3/m/990bb604cec789eb172ded630b1c59eef8c79a68.png)
§2.4 向量的内积与正交向量组定义1 在中,设向量n R ,,2121⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a βα令,),(2211n n b a b a b a +++= βα称为向量与的内积.),(βααβ.),(βαβαT =例如,设则与的内积.)2,1,3,2(,)0,0,1,1(T T =−−=βααβ.12010312)1(),(=⨯+⨯+⨯+⨯−=βα内积是向量的一种运算,可用矩阵记号表示为根据定义1,不难验证内积具有下述性质:,0),)(4().,(),)(3().,(),)(2().,(),)(1(≥++=+==ααγβγαγβαβαβααββαk k 当且仅当时,有其中为中的向量,为常数.0=α.0),(=ααγβα,,n R k n R 定义2 对中的向量其长度向量长度也称为向量的范数.,),,,(21Tn a a a =α.),(22221n a a a +++== ααα例如,向量的长度T )2,1,1(=α.6211),(222=++==ααα向量长度具有下面的性质:当且仅当时,有.0α≥(1),0=α0=α.k k αα=•(2)(3)对任意向量,有βα,)1(.),(βαβα•≤如果上面不等式可写成这一等式称为柯西-施瓦次不等式.,),,,(,),,,(2121Tn T n b b b a a a ==βα.12121∑•∑≤∑===n i i n i i n i i i b a b a 证:当时,(1)式显然成立,以下. 令t 是一个实数,作向量. 由内积的性质(4)可知,不论t 取何值,一定有0=β0≠ββαγt +=,0),(),(≥++=βαβαγγt t对于不等式(1)当且仅当线性相关时,等号才成立.这由上述证明过程可以看出.用向量的长度去除向量,就得到一个单位向量,通常称为把向量单位化.即0),(),(2),(2≥++t t βββααα取代入上式,得),(),(βββα−=t ,0),(),(),(2≥−βββααα即),,)(,(),(2ββααβα≤两边开方得βαβα•≤),(βα,长度为1的向量称为单位向量,对于中的任一非零nR 向量,向量是一个单位向量.ααα1)0(≠ααα例1零向量与任意向量的内积为0,因此零向量与任意向量正交.定义3 如果两个向量与的内积等于0,即则称向量与互相正交. 记为.αβ,0),(=βααββα⊥例2 中的单位坐标向量组是两两正交的.n R n εεε,,,21 ⎩⎨⎧≠==)(0)(1),(j i j i j i εε定义4如果中的非零向量组两两正交,即则称该向量组为正交向量组.n R s ααα,,,21 ),,,2,1,;(0),(s j i j i j i =≠=αα定理4.1中的正交向量组线性无关.nR 证设为中的正交向量组,且有数,s ααα,,,21 n R s k k k ,,,21 .02211=+++s s k k k ααα 使得上式两边与向量组中的任意向量求内积,得i α,0)0,(),(2211==+++i s s i k k k ααααα 即,0),(),(),(2211=+++s i s i i k k k αααααα 由于,所以上式可化简为)(0),(j i j i ≠=αα,0),(1=i i k αα而为非零向量,于是得,从而线性无关.i α,0),(≠i i αα),,2,1(0s i k i ==s ααα,,,21.),(),(),(),(),(),(,),(),(),(),(,),(),(,111122221111222231111333111122211−−−−−−−−=−−=−==s s s ss s s s s ββββαββββαββββααβββββαββββααβββββααβαβ如果已知中的线性无关的向量组则可以生成正交向量组使这两个向量组等价.由一个线性无关向量组生成满足上述性质的正交向量组的过程,一般称为将该向量组正交化,将一个向量组正交化可以应用施密特正交化方法,其步骤如下:n R 12,,,,s ααα12,,,,s βββ对于中的线性无关向量组,令n R s ααα,,,21解.)21,21,1()1,1,0(21)1,1,1(30)0,1,1(),(),(),(),(,)1,1,0()1,1,1(33)2,0,1(),(),(,)1,1,1(222231111333111122211T T T T T T T T−=−−−−−=−−=−=−=−===ββββαββββααβββββααβαβ例3已知线性无关向量组将其化为正交向量组.,)0,1,1(,)2,0,1(,)1,1,1(321T T T −===ααα定义5设n 阶实矩阵Q ,满足则称Q 为正交矩阵.例如,单位矩阵E 为正交矩阵;在平面解析几何中,两直角坐标系间的坐标变换矩阵,是正交矩阵.正交矩阵具有下述性质:(1)若Q 为正交矩阵,则其行列式的值为1或-1.(2)若Q 为正交矩阵,则Q 可逆,且(3)若P , Q 都是正交矩阵,则它们的积PQ 也是正交矩阵.,E Q Q T =⎪⎭⎫⎝⎛−θθθθcos sin sin cos .1T Q Q =−定理4.2设Q 为n 阶实矩阵,则Q 为在正交矩阵的充分必要条件是其列(行)向量组是单位正交向量组.即Q 为正交矩阵的充分必要条件是其列向量组是单位正交向量组.类似可证,Q 的正交矩阵的充分必要条件是其行向量组是单位正证设,其中为Q 的列向量组.Q 是正交矩阵等价于而),,,(21n Q ααα =n ααα,,,21 ,E Q Q T =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T n T n T n n T T T n T T T n T n T T T Q Q αααααααααααααααααααααααα 2122212121112121),,,(由此可知等价于E Q Q T =⎩⎨⎧=≠===),,2,1,;(0),,,2,1(1n j i j i n i j T i i T i αααα11例4正交阵的例子:定义6若Q 为正交矩阵,则线性变换y =Qx 为正交变换.由正交变换的定义可知这表明正交变换不改变向量的长度,这正是正交变换的优良特性..31313161616221210)2(;010100001)1(⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−⎪⎪⎪⎭⎫⎝⎛−−.x x x Qx Q x y y y T T T T ====。
向量的内积、正交性
![向量的内积、正交性](https://img.taocdn.com/s3/m/3a1a9529bcd126fff7050ba5.png)
2 2 2 x1 x2 x3 [ x , x ]
向量的长度 定义:令
|| x || [ x , x ]
2 2 2 x1 x2 xn
称 || x || 为 n 维向量 x 的长度(或范数). 当 || x || = 1时,称 x 为单位向量. 向量的长度具有下列性质:
[x, y]2 ≤ [x, x] [y, y].
回顾:线段的长度
P(x1, x2)
x2
[x, x] = x12 + x22 + … + xn2 ≥ 0
若令 x = (x1, x2)T,则
| OP |
2 2 x1 x2 [ x , x ]
O
x1
P 若令 x = (x1, x2, x3)T,则 x3 x2 x1 O
|| e1 || [e1 , e1 ] 1
从而 e1, e2, …, er 是向量空间 V 中的一个规范正交基.
1 1 4 例:设 a1 2 , a2 3 , a3 1 ,试用施密特正交化 1 1 0 过程把这组向量规范正交化.
x1 x 3 得 x2 0
1 1 从而有基础解系 0 ,令 a3 0 . 1 1
定义: n 维向量e1, e2, …, er 是向量空间 V R n中的向量, 满足 e1, e2, …, er 是向量空间 V 中的一个基(最大无关组); e1, e2, …, er 两两正交; e1, e2, …, er 都是单位向量, 则称 e1, e2, …, er 是V 的一个规范正交基.
说明:
• 内积是两个向量之间的一种运算,其结果是一个实数. • 内积可用矩阵乘法表示:当x 和 y 都是列向量时, [x, y] = x1 y1 + x2 y2 + … + xn yn = xT y .
第三节 向量的内积和施密特正交化
![第三节 向量的内积和施密特正交化](https://img.taocdn.com/s3/m/5593a65a3c1ec5da50e270a3.png)
因为
两两正交,所以
, 0 i j, i, j 1, 2,..., m
i j
可得:
i i ,i 0
i 0 i ,i 0
而:
则只有
i 0 i 1,2,..., m .
,m线性无关.
故1 ,2 ,
4 标准正交向量组
则a b a1b1 a2b2 a3b3
内积的运算性质
其中 , , 为n维向量, 为实数: (1) , , ;
(2)
, , ;
(3)
, , , ;
解
所以P是正交矩阵.
例6
已知三维
验证矩阵 1 1 1 1 2 2 2 2 1 1 1 1 解 P的每个列向量都是单位 向量, 且两两正交, 2 2 2 2 是正交矩阵. P 所以P是正交矩阵 . 1 1 0 0 2 2 1 1
1 例4 已知 a 1 1 , 求一组非零向量a 2 , a 3 , 使 a 1 , a 2 , 1 a 3 两两正交. T , 应满足方程 a1 x 0,即 解 a2 a3 x1 x 2 x 3 0.
它的基础解系为 1 0 1 0 , 2 1 . 1 1
所以 e1 , e2 , e3 , e4
为标准正交向量组
5 施密特正交化 将任意给定的线性无关的非零向量组 a1 , a2 ,, am 化为正交向量组的方法——施密特正交化
二维几何空间
1 1
2 2
2 2 k1
1 1
显然
k 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 − 1 4 例3 设 a 1 = 2 , a 2 = 3 , a 3 = − 1 , 试用施密 − 1 1 0 特正交化过程把这组向 量规范正交化 . 解: 取 b1 = a1 ; − 1 1 − 1 4 5 [a 2 , b1] 3 − 2 = 1 ; b2 = a 2 − 2 b1 = b1 1 6 − 1 3 1 [a 3 , b1] [a 3 , b2] − b3 = a 3 − 2 b1 2 b2 b1 b2
[ξ 1 ,ξ 2] ξ 1. a2 = ξ 1 , a3 = ξ 2 − [ξ 1 ,ξ 1]
其中[ξ 1 ,ξ 2] = 1,[ξ 1 ,ξ 1] = 2, 于是得
1 0 1 1 a2 = 0 , a3 = 1 − 0 = − 1 − 1 2 − 1
[α , β ] (2 ) 当 α ≠ 0, β ≠ 0时 ,θ = arccos
α β
例1 求向量 α = (1,2,2,3 )与 β = (3,1,5,1)的夹角 .
α ⋅ β = 18 = 2 解: Q cosθ = 3 2⋅6 2 α β π ∴θ = .
4
三、正交向量组的概念及求法 (一)正交向量组的概念 定义5.7: 定义5.7: 正交的概念
那么 β 1 ,L, β s两两正交 , 且β 1 ,L, β s与α1 ,Lα s 等价 .
规范化), (2)单位化 规范化 ,取 )单位化(规范化
β1 β2 βs e1 = , e2 = , LL , es = , β1 β2 βs
那么 e1 , e2 ,L, e s为R n的一个单位 (规范 )正交向量组 .
[b1 , a 3 ] [b2 , a 3 ] b3 = a 3 − b1 − b2 [b1 , b1 ] [b2 , b2 ] 8 − 14 T (0,−2,−1,3)T= (1,1,−2,0)T = (3,5,1,−1) − (1,1,1,1) − 4 14 单位化, 再单位化, 得规范正交向量组如下
[α , β ] = α T β .
内积的运算性质
(其中α , β , γ 为n维向量 , k为实数 ) :
(1) ( 2) ( 3)
[α , β ] = [β ,α ] ; [kα , β ] = k [α , β ]; [α + β , γ ] = [α , γ ] + [β , γ ];
(4)[α ,α ] ≥ 0, 且当α ≠ 0时有[α ,α ] > 0. [α 当且仅当 α=0时, ,α ]=α α=0
k1α1 + k2α 2 + L + krα r = 0
以 a T 左乘上式两端 ,由于 α iT α j = 0 ( i ≠ j ) i
所以: 所以: kiα i α i = 0
T
由 αi ≠ 0 ⇒ αi αi = αi
T
2
≠ 0, 从而有 ki = 0 (0 ≤ i ≤ r ).
故α 1 ,α 2 ,L,α r 线性无关 .
a1 = (1,1,1,1)T , a2 = (1,−1,0,4)T , a3 = ( 3,5,1,−1)T 正交规范化. 正交规范化
正交化, 解: 先正交化, 取 T b1 = a1 = (1,1,1,1) [b1 , a2 ] b b2 = a2 − [b1 , b1 ] 1 1−1+ 4 (1,−1,0,4) − (1,1,1,1)T= (0,−2,−1,3)T = 1+1+1+1
, a 3 应满足方程 aT x = 0,即 1 解: a 2 x1 + x 2 + x 3 = 0.
它的基础解系为 1 0 ξ 1 = 0 ,ξ 2 = 1 . − 1 − 1
把基础解系正交化,即合所求. 把基础解系正交化,即合所求.亦即取
第三节 实对称矩阵的特征值和特征向量
一、向量内积的定义及性质 定义5.5 设有n 定义5.5 设有 维向量 a1 b1 a2 , β = b2 , α= M M a b n n 令 [α , β ] = a1b1 + a2b2 + L + anbn 引例1.doc 引例1.doc
由于 β 1 ⊥ β 2 , 故 c 3 等于α 3 分别在 β 1 , β 2 上的投影 向量 c 31 及 c 32 之和, 即
[α 3 , β 1]
几 何
解
释
β
2
a2
c3 = c31 + c32 =
β1
2
β1+
[α 3 , β 2]
β2
2
β 2,
β 3 = α 3 − c3 .
1 例4: 已知 a 1 = 1 , 求一组非零向量 a 2 , a 3 , 使 a 1 , a 2 , 1 a 3 两两正交 .
β3 β 1 = a1 ; a3 c2 为α 2 在 β 1 上的投影向量 , 即 c32 β 1 ] β 1 = [α 2 , β 1] , c2 = [α 2 , 2 β1 β1 β1 β1 c31 β 2 = α 2 − c2 ; c3 c2 为α 3 在平行于 β 1 , β 2 的 c3 平面上的投影向量 , a1 β1
如果 α = ( a 1 , a 2 , L , a n )T , β = ( b1 , b2 , L , bn )T 上面的不等式可写为: 上面的不等式可写为:
∑ i =1
n
a i bi ≤
∑ i =1
n
a i2 ⋅
∑ i =1
n
bi2
这一不等式称为柯西-布涅夫斯基不等式, 这一不等式称为柯西-布涅夫斯基不等式,它说明 R n 中的任意两个向量的内积与它们长度之间的关系。 中的任意两个向量的内积与它们长度之间的关系。 单位向量: 长度为1的向量称为单位向量 的向量称为单位向量, 单位向量: 长度为 的向量称为单位向量,对于 R n 中的任 一非零向量 α ,
上述正交化方法亦可这样表述: 上述正交化方法亦可这样表述: 取: = α β1 1
β 2 = α 2 − (α 2 , e1 )e1
β 3 = α 3 − (α 3 , e1 )e1 − (α 3 , e2 )e2
M
β1 e1 = β1 β2 e2 = β2 β3 e3 = β3
称 [α , β ]为向量 α 与 β 的 内积 .
说明: 说明 1. n(n ≥ 4 ) 维向量的内积是 维向量数量积 维向量的内积是3维向量数量积 的推广,但是没有3维向量直观的几何意义 维向量直观的几何意义. 的推广,但是没有 维向量直观的几何意义.
2. 内积是向量的一种运算 , 如果 α , β 都是列 向量 ,内积可用矩阵记号表示 为 :
(二)向量组正交化方法
如果已知 R n中的线性无关向量组 α 1 ,α 2 ,L ,α s , 则可以由此生成正交向 量组 β 1 , β 2 ,L , β s,并使这 性表示。 两个向量组可以互相线 性表示。这一过程称为 将 向量组正交化。 向量组正交化。正交化 的方法采用施密特正交 化
方法, 方法,现介绍其基本步 骤。 设 α 1 , α 2 ,L ,α s为 R 中的线性无关向量组
T
二、向量的长度及性质
2 2 α = [α ,α ] = a12 + a2 + L + an , 定义5.6 定义5.6 令 称 α 为 n 维向量 α 的长度 (或范数 ).
(在 R 中向量 α 的长度就是对应点到原点的距离 在 的长度就是对应点到原点的距离)
2
向量的长度具有下述性质: 向量的Байду номын сангаас度具有下述性质:
n
(1)正交化,取 β 1 = α1 , )正交化, [α 2 , β 1 ] β , β2 = α2 − [β 1 , β 1 ] 1
引例2.doc 引例2.doc
[α 3 , β 1 ] [α 3 , β 2 ] β3 = α3 − β1 − β2 [β1 , β1 ] [β 2 , β 2 ]
α 1 α 是一个单位向量。 是一个单位向量。 ( = ⋅ α =1 ) α α α
向量单位化:向量用向量的长度去除, 向量单位化:向量用向量的长度去除,就得到一个单位 向量。 向量。
n 单位向量及 维向量间的夹角
(1) 当 α = 1 时 , 称 α 为 单位向量 .
称为 n 维向量 α 与 β 的 夹角 .
b1 1 T 1 1 1 1 e1 = = (1,1,1,1) = , , , b1 2 2 2 2 2 T b2 1 T − 2 −1 3 ( 0 , − 2 , − 1, 3 ) = 0 , e2 = , , = b2 14 14 14 14 T b3 1 T 1 1 −2 (1,1,− 2 ,0 ) = , , ,0 e3 = = 6 b3 6 6 6
互相正交。 当[α , β ] = 0, 即α T β = 0 时, 称向量 α与β 互相正交。
由定义知 , 若 α = 0, 则 α 与任何向量都正交 .
定义5.8: 定义5.8: 正交向量组的概念
若一非零向量组中的向量两两正交, 若一非零向量组中的向量两两正交,即:
α iTα j = 0 ( i ≠ j; i , j = 1,2,L, n)
1. 非负性
当α ≠ 0 时, α > 0;当α = 0 时, α = 0;
2. 齐次性 kα = k α ; 3. 三角不等式 α + β ≤ α + β .