矩阵位移法方法课习题
矩阵位移法练习题一、判断题1-1、不计轴向变形,图示(a)(b)梁整体..
矩阵位移法练习题一、判断题1-1、不计轴向变形,图示(a)(b)梁整体刚度矩阵阶数相同,对应元素不同。
1-2、图示四单元的l,EI,EA相同,它们整体坐标系下的单元刚度矩阵各不相同。
1-3、矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
1-4、一般单元的单元刚度矩阵一定是奇异矩阵,而特殊单元的单元刚度矩阵一定是非奇异矩阵。
1-5、如特殊单元是几何不变体系,其单元刚度矩阵一定是非奇异矩阵。
1-6、由一般单元的单元刚度方程: ,任给,并且为一平衡力系,有唯一解。
1-7、由一般单元的单元刚度方程: ,任给,有唯一解,并且为一平衡力系。
1-8、原荷载与对应的等效结点荷载产生相同的内力和变形。
1-9、在忽略轴向变形时,由单元刚度方程求出的杆端轴力为零。
应根据节点平衡由剪力求轴力。
1-10、如单元定位向量中的元素λi=0,说明该单元第 i 个杆端位移分量对应刚性支座。
二、单项选择题2-1 忽略轴向变形,用先处理法,单元①的定位向量是2-2、在图示约束情况下,单元①的单元刚度矩阵[k]=()( A )2-3、图示结构单元固端弯矩列阵为,则等效结点荷载为(C )2-4、将单元刚度矩阵分块,下列论述错误的是A 是对称矩阵B 不是对称矩阵C D2-5、在矩阵位移法中,基本未知量的确定与哪些因素无关?A 坐标系的选择B 单元如何划分C 是否考虑轴向变形D 如何编写计算机程序2-6、图示体系,忽略轴向变形,则矩阵位移法的基本未知量有几个?A 2B 3C 4D 72-7、不计轴向变形,图示(a )(b )梁整体刚度矩阵有何不同?A 阶数不同B 阶数相同,对应元素不同C 阶数相同,对应元素也相同D 阶数相同,仅元素k22不同2-8、不计轴向变形,图示(a )(b )梁整体刚度矩阵A 阶数相同,对应元素不同B 阶数相同,对应元素相同C 阶数不同,对应元素不同D 阶数不同,对应元素相同2-9、由一般单元的单元刚度方程: ,任给A 可唯一的求出,并且为一平衡力系。
矩阵位移法题目及答案
1.作图示刚架的F、S F、M图,已知各杆截面均为矩形,柱截面宽N0.4m,高0.4m, 大跨梁截面宽0.35m,高0.85m,小跨梁截面宽0.35m,高0.6m,各杆E=3.0×104 MPa。
10分2、计算图示桁架各杆的轴力。
已知A=2400mm2,E=2.0×105MPa。
5分3.作图示连续梁的F、M图,已知各梁截面面积A=6.52m,惯性矩SI=5.504m,各杆E=3.45×104MPa。
5分答案1******************************************************************** ** 1 composite beam 2012.10.17 ** ********************************************************************3E10 16 13 9 11 2 0.2975 17.912E-32 3 0.2975 17.912E-33 4 0.21 6.3E-31 5 0.16 2.133E-33 6 0.16 2.133E-34 7 0.16 2.133E-35 6 0.2975 17.912E-36 7 0.21 6.3E-35 8 0.16 2.133E-36 9 0.16 2.133E-37 10 0.16 2.133E-38 9 0.2975 17.912E-39 10 0.21 6.3E-38 11 0.16 2.133E-39 12 0.16 2.133E-310 13 0.16 2.133E-3 0 10.93.8 10.97.6 10.911.4 10.90 7.77.6 7.711.4 7.70 4.57.6 4.511.4 4.50 07.6 011.4 0111 0112 0113 0121 0122 0123 0131 0132 0133 041 100E3 0 02 0 0 -15E33 0 0 -15E35 100E3 0 0712 2 -26E3 3.813 2 -26E3 2.77 4 -36E3 7.68 4 -36E3 3.812 4 -36E3 7.613 4 -36E3 3.814 3 20E3 4.5第一题结果******************************************************************* * * * 1 composite beam 2012.10.17 * * * *******************************************************************The Input DataThe General InformationE NM NJ NS NLC3.000E+10 16 13 9 1The Information of Membersmember start end A I1 12 2.975000E-01 1.791200E-022 23 2.975000E-01 1.791200E-023 34 2.100000E-01 6.300000E-034 15 1.600000E-01 2.133000E-035 36 1.600000E-01 2.133000E-036 47 1.600000E-01 2.133000E-037 5 6 2.975000E-01 1.791200E-028 6 7 2.100000E-01 6.300000E-039 5 8 1.600000E-01 2.133000E-0310 6 9 1.600000E-01 2.133000E-0311 7 10 1.600000E-01 2.133000E-0312 8 9 2.975000E-01 1.791200E-0213 9 10 2.100000E-01 6.300000E-0314 8 11 1.600000E-01 2.133000E-0315 9 12 1.600000E-01 2.133000E-0316 10 13 1.600000E-01 2.133000E-03The Joint Coordinatesjoint X Y1 .000000 10.9000002 3.800000 10.9000003 7.600000 10.9000004 11.400000 10.9000005 .000000 7.7000006 7.600000 7.7000007 11.400000 7.7000008 .000000 4.5000009 7.600000 4.50000010 11.400000 4.50000011 .000000 .00000012 7.600000 .00000013 11.400000 .000000The Information of SupportsIS VS111 .000000112 .000000113 .000000121 .000000122 .000000123 .000000131 .000000132 .000000133 .000000( NA= 357 )( NW= 1167 )Loading Case 1The Loadings at JointsNLJ= 4ILJ PX PY PM1 100000.0000 .0000 .000002 .0000 .0000 -15000.000003 .0000 .0000 -15000.00000 5 100000.0000 .0000 .00000The Loadings at MembersNLM= 7ILM ITL PV DST12 2 -26000.0000 3.80000013 2 -26000.0000 2.7000007 4 -36000.0000 7.6000008 4 -36000.0000 3.80000012 4 -36000.0000 7.60000013 4 -36000.0000 3.80000014 3 20000.0000 4.500000The Results of CalculationThe Joint Displacementsjoint u v phi1 1.845349E-02 -1.982711E-04 -1.263100E-042 1.841771E-02 -3.424398E-04 -8.180773E-063 1.838193E-02 -5.043591E-04 -1.356524E-044 1.836317E-02 -3.892198E-04 -1.683554E-045 1.608566E-02 -2.069957E-04 -9.278065E-046 1.601139E-02 -5.147233E-04 6.593305E-057 1.599555E-02 -3.701310E-04 -4.819689E-048 1.132049E-02 -1.535800E-04 -1.283845E-039 1.131820E-02 -3.849935E-04 3.869225E-0510 1.130585E-02 -2.796765E-04 -9.193725E-0411 7.105234E-18 -1.638186E-17 -1.781240E-1712 9.610834E-18 -4.106598E-17 -2.156936E-1713 7.783932E-18 -2.983216E-17 -1.882119E-17The Terminal Forcesmember N(st) Q(st) M(st) N(en) Q(en) M(en)1 84035.890 -13086.980 -41569.990 -84035.890 13086.980 -8160.5532 84035.890 -13086.980 -6839.447 -84035.890 13086.980 -42891.1003 31099.080 -28633.300 -52776.720 -31099.080 28633.300 -56029.8104 -13086.980 15964.110 41569.990 13086.980 -15964.110 9515.1395 -15546.320 52936.810 80667.820 15546.320 -52936.810 88729.9806 28633.300 31099.080 56029.810 -28633.300 -31099.080 43487.2307 87221.910 93210.620 -62622.290 -87221.910 180389.400 -268657.0008 26256.560 29751.550 -2861.126 -26256.560 107048.500 -144003.0009 80123.640 28742.190 53107.150 -80123.640 -28742.190 38867.85010 194594.600 113902.200 182788.200-194594.600-113902.200 181698.70011 135681.800 57355.640 100515.700-135681.800 -57355.640 83022.30012 2689.851 83695.000 -146729.300 -2689.851 215905.000 -355668.70013 20483.680 160.171 -42824.000 -20483.680 162639.800 -245087.30014 163818.600 26052.340 107861.500-163818.600-116052.300 211874.00015 410659.800 96108.340 216794.000-410659.800 -96108.340 215693.50016 298321.600 77839.320 162065.000-298321.600 -77839.320 188211.900( NA= 357 )单位(N m)( NW= 1195 )第二题答案******************************************************************* * * * 2 composite beam 2012.10.17 * * * ******************************************************************* 2E11 14 9 4 11 2 2.4E-3 1E-102 3 2.4E-3 1E-103 4 2.4E-3 1E-104 5 2.4E-3 1E-101 8 2.4E-3 1E-101 6 2.4E-3 1E-102 6 2.4E-3 1E-103 6 2.4E-3 1E-103 7 2.4E-3 1E-104 7 2.4E-3 1E-105 7 2.4E-3 1E-105 9 2.4E-3 1E-106 8 2.4E-3 1E-107 9 2.4E-3 1E-100 62 64 66 68 62 36 30 08 081 082 091 092 051 0 -50E3 02 0 -50E3 03 0 -50E3 04 0 -50E3 05 -10E3 -50E3 0第二题结果******************************************************************* * * * 2 composite beam 2012.10.17 * * * *******************************************************************The Input DataThe General InformationE NM NJ NS NLC2.000E+11 14 9 4 1The Information of Membersmember start end A I1 12 2.400000E-03 1.000000E-102 23 2.400000E-03 1.000000E-103 34 2.400000E-03 1.000000E-104 45 2.400000E-03 1.000000E-105 1 8 2.400000E-03 1.000000E-106 1 6 2.400000E-03 1.000000E-107 2 6 2.400000E-03 1.000000E-108 3 6 2.400000E-03 1.000000E-109 3 7 2.400000E-03 1.000000E-1010 4 7 2.400000E-03 1.000000E-1011 5 7 2.400000E-03 1.000000E-1012 5 9 2.400000E-03 1.000000E-1013 6 8 2.400000E-03 1.000000E-1014 7 9 2.400000E-03 1.000000E-10The Joint Coordinatesjoint X Y1 .000000 6.0000002 2.000000 6.0000003 4.000000 6.0000004 6.000000 6.0000005 8.000000 6.0000006 2.000000 3.0000007 6.000000 3.0000008 .000000 .0000009 8.000000 .000000The Information of SupportsIS VS81 .00000082 .00000091 .00000092 .000000( NA= 270 )( NW= 907 )Loading Case 1The Loadings at JointsNLJ= 5ILJ PX PY PM1 .0000 -50000.0000 .000002 .0000 -50000.0000 .000003 .0000 -50000.0000 .000004 .0000 -50000.0000 .000005 -10000.0000 -50000.0000 .00000The Loadings at MembersNLM= 0The Results of CalculationThe Joint Displacementsjoint u v phi1 -1.052370E-04 -9.375000E-04 -7.026900E-052 -1.746814E-04 -1.193735E-03 1.087907E-043 -2.441259E-04 -8.137530E-04 -3.230397E-054 -3.552370E-04 -1.302888E-03 -1.022944E-045 -4.663480E-04 -9.375000E-04 1.412285E-046 3.860367E-04 -8.812350E-04 1.226822E-047 -7.938921E-04 -9.903881E-04 -6.211760E-058 -3.833334E-18 -1.325000E-17 -2.257494E-049 2.833334E-18 -1.175000E-17 3.510750E-04The Terminal Forcesmember N(st) Q(st) M(st) N(en) Q(en) M(en)1 16666.660 .009 .007 -16666.660 -.009 .0112 16666.660 -.009 -.008 -16666.660 .009 -.0113 26666.660 .011 .011 -26666.660 -.011 .0104 26666.660 -.010 -.012 -26666.660 .010 -.0075 75000.000 -.001 -.003 -75000.000 .001 -.0046 -30046.240 -.002 -.004 30046.240 .002 -.0027 49999.980 -.002 -.003 -49999.980 .002 -.0038 39060.150 -.002 -.005 -39060.150 .002 -.0039 21032.390 .002 .004 -21032.390 -.002 .00310 49999.980 .002 .002 -49999.980 -.002 .00311 -30046.240 .002 .005 30046.240 -.002 .00212 75000.000 .001 .003 -75000.000 -.001 .00413 69106.410 .003 .008 -69106.410 -.003 .00414 51078.650 -.004 -.009 -51078.650 .004 -.004( NA= 270 )( NW= 907 )第三题答案******************************************************************** ** 3 composite beam 2012.10.17 ** ******************************************************************** 3.45E10 4 5 6 11 2 6.5 5.52 3 6.5 5.53 4 6.5 5.54 5 6.5 5.50 040 060 080 0120 011 012 013 022 042 052 013 0 -320E3 -100E341 4 -10.5E3 402 4 -10.5E3 203 4 -10.5E3 204 4 -10.5E3 40第三题结果******************************************************************* * * * 3 composite beam 2012.10.17 * * * *******************************************************************The Input DataThe General InformationE NM NJ NS NLC3.450E+10 4 5 6 1The Information of Membersmember start end A I1 12 6.500000E+00 5.500000E+002 23 6.500000E+00 5.500000E+003 34 6.500000E+00 5.500000E+004 45 6.500000E+00 5.500000E+00The Joint Coordinatesjoint X Y1 .000000 .0000002 40.000000 .0000003 60.000000 .0000004 80.000000 .0000005 120.000000 .000000The Information of SupportsIS VS11 .00000012 .00000013 .00000022 .00000042 .00000052 .000000( NA= 66 )( NW= 299 )Loading Case 1The Loadings at JointsNLJ= 1ILJ PX PY PM3 .0000 -320000.0000 -100000.00000The Loadings at MembersNLM= 4ILM ITL PV DST1 4 -10500.0000 40.0000002 4 -10500.0000 20.0000003 4 -10500.0000 20.0000004 4 -10500.0000 40.000000The Results of CalculationThe Joint Displacementsjoint u v phi1 0.000000E+00 3.713943E-18 4.951923E-172 0.000000E+00 -2.916827E-17 -5.219418E-053 0.000000E+00 -1.405865E-03 1.038816E-064 0.000000E+00 -3.431731E-17 4.276883E-055 0.000000E+00 6.771635E-18 5.239688E-05The Terminal Forcesmember N(st) Q(st) M(st) N(en) Q(en) M(en)1 .000 172860.600 904807.700 .000 247139.400-2390385.0002 .000 359543.300 2390385.000 .000-149543.300 2700481.0003 .000-170456.700-2800481.000 .000 380456.700-2708654.0004 .000 277716.300 2708654.000 .000 142283.700 .000( NA= 66 )( NW= 315 )。
矩阵位移法例题1
50 3 10 15 57 . 5
3 . 891 50 6 . 228 15 79 . 625 57 . 5
2 . 2387 10 6 m 7 2 . 6993 10 m 4 . 2905 10 6 rad
矩 阵 位 移 法(例题)
结构刚度方程为
F K
即
50 202 . 667 3 8 10 15 10 57 . 794 57 . 5 14 . 425 57 . 794 129 . 422 12 . 948 14 . 425 1 12 . 948 2 127 . 306 3
1 (0,0,0)
5m
y
(2)
(1 )
( 2 )
o
x
5m
(0,0,0) 3
2.5m
矩 阵 位 移 法(例题)
单元(1)
0
168 0 0 8 10 168 0 0
0
0 8 . 064 20 . 16 0 8 . 064 20 . 16
(2)
k
(2)
矩 阵 位 移 法(例题)
结构刚度矩阵
168 34 . 667 8 K 10 57 . 794 14 . 425 202 . 667 8 10 57 . 794 14 . 425 57 . 794 8 . 064 121 . 358 20 . 16 7 . 212 20 . 16 7 . 212 67 . 2 60 . 106 14 . 425
矩阵位移法例题
0
2 1 2
0
0
4 1 3
00 2 00 3
0
0
K③
41
3
0
0
0
00 3 000
5 集成总刚度矩阵
第8章矩阵位移法
4 2 2 2
0 1 8 4 0
K 2 2 4 2 4 1
21
2
4
12
2
0
2 1 4 1 4 1 3 0 2 8
1
2
3
6 形成荷载向量
P 60 190 62.5T
2 结点位移编号矩阵 3 各单元旳定位向量
0 0 0 C 0 0 1
0 0 2 0 0 0
2 3T
U1 0 0 0 0 0 1 U2 0 0 1 0 0 2 U3 0 0 2 0 0 0
-90 250
-250 187.5 -112.5
1
2
3
4
第8章矩阵位移法
4 各单元旳刚度矩阵
单元旳刚度矩阵与解法一相同
2 12i 2 BCx l2 Cy
12i (B l2 )CxC y
2 12i 2
BC Y
2 l
Cx
6i l Cy 6i l Cx
2 12i 2 BCx 2 C y
l 12i (B 2 )CxC y l
12i (B 2 )CxC y
l 2 12i 2 BCy 2 Cx
l
6i l Cy 6i l Cx
(e)
K
6i
4i
l Cy
6i l Cx
2i
2 12i 2 BCx 2 C y
l
12i (B 2 )CxC y
l
6i
矩阵位移法方法课习题
已知图示结构的单元编码及局部坐标如图, 已知图示结构的单元编码及局部坐标如图,局部坐标单元刚 度矩阵相同如( ) 按结点号顺序写出结点位移编, 度矩阵相同如(c)式。求:按结点号顺序写出结点位移编, 并求结构刚度矩阵。 并求结构刚度矩阵。
2 i
①
3
1
−10 0 0 0 0 10 0 −2 2 0.5 0 0.5 0 0.5 0.2 0 −0.5 0.1 e 6 k = ×10 L(c) 0 10 0 0 −10 0 0 −2 −0.5 0 2 −0.5 0 −0.5 0.2 0 0.5 0.1
3kN/m
① ②
4m
用矩阵位移法求解图示结构。标示整体坐标系, 用矩阵位移法求解图示结构。标示整体坐标系,单元局 部坐标系;按结点号顺序编写结点位移编码; 部坐标系;按结点号顺序编写结点位移编码;写出单元 定位向量;求结构结点荷载列阵{F}。 定位向量;求结构结点荷载列阵 。
4 4m 20kN/m 1 2 4m 3 6m 10 kN . m
T
试求杆14的轴力。 试求杆 的轴力。 EA = 1kN 的轴力
1kN 1kN 2 4 6 1m 1 3 1m 1m y 5 M, θ x
已知图示结构的结点位移列阵为
{ ∆} = [ 0
0 0 0.841 − 0.5752 − 0.9964 0 0 − 0.7425]
T
试求杆32的杆端力列阵中 端的剪力 试求杆 的杆端力列阵中1端的剪力。 的杆端力列阵中 端的剪力。
l
y
M, θ x
试求图示结构在所示位移编码情况下的结点荷载列阵
P 1(0,0,0) 2 (0,0,1) q 3 (0,2,3) 4 (0,0,0) l 5 (0,0) l
第1章 矩阵位移法习题
COLLEGE OF CIVIL ENGINEERING AND ARCHITECTURE
u4 0, v4 0, 4 36436 / E
单元坐标下:各单元的杆端力向量如下:
F 0.93 19.56 43.70 0.93 (2) F 0.45 19.08 34.52 0.45 (3) F 19.08 0.45 1.78 19.08
例 4. 平面刚架如图所示,各杆截面相同。E=1×107kN/m2, A=0.24m2,I=0.0072m4,求各杆端力,并画出内力图。
解: 1. 结构离散如图所示;
2.列出单元参数表;
单元①③ a=0° 单元②
EA 4 105 l
EI 0.12 105 l
3. 单元坐标表示的单 元刚度矩阵 先处理法
0 1 0 0 1 1 0 2 3 2
T
(2)
3 2 1 λ 0 2 0 λ 0 0
3 2 1 1 0 0 0 EA 2 1 0 2 0 0 0 0
K (2) 1 0 EA 0 0 2
K (1)
1 0 K (2) 1 0
0 1 0 0 0 1 0 0
0 0 EA 0 2 0
3. 整体坐标描述的各单元刚度矩阵
单元(1)的单元坐标和整体坐标一致 后处理法
K (1) K (1) 1 0 1 0 0 1 0 0 0 1 0 0 0 0 EA 0 3 0
广西大学土木建筑工程学院
COLLEGE OF CIVIL ENGINEERING AND ARCHITECTURE
例1:已知某单元的单元坐标下的杆端力:
9矩阵位移法习题.docx
第9章矩阵位移法习题解答习题9・1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
(T )(2)矩阵位移法棊木未知量的数冃与位移法棊木未知量的数冃总是相等的。
(|T*) F(3)单元刚度矩阵都具有对称性和奇界性。
(F )(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
(T )(5)结构刚度短阵与单元的编号方式冇关。
(F )(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
(F )【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错谋。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统-•编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1) ______________________________________________________________ 矩阵位移法分析包含三个基本环节,其一是结构的___________________________________ ,其二是_________ 分析,-其三是______ 分析。
(2)已知某单元©的定位向量为[3 5 6 7 8 9]丁,则单元刚度系数紜应叠加到结构刚度矩阵的元素—中去。
(3) ________________________________________________________________________ 将非结点荷载转换为等效结点荷载,等效的原则是____________________________________ o(4)矩阵位移法屮,在求解结点位移之前,主要工作是形成_____________________ 矩阵和_______________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为J2=[w2V2 ft]T=[O.S 0.3 0.5]丁,单元①的始、末端结点码为3、2,单元定位向量为= [0 0 0 3 4 5]T,设单元与兀轴之间的夹角为« = |,则(6 )用短阵位移法求得平面刚架某单元在单元坐标系中的杆端力为戸=[7.5 -48 -70.9 -7.5 48 -121.09]7,则该单元的轴力F* _______________________ k N。
矩阵位移法习题(1)
单元②: 0 0 0 F F ② 0 0 0
e ○
FE ②
2、整体坐标下单元等效结点荷载列向量 FEe
通过坐标转换,将局部坐标下单元等效结点荷载列向量 FEe 转换为整体坐标系下单元等效结点荷载
e e 列向量 FE ,并在整体坐标系下单元等效结点荷载列向量 FE 一侧标注单元定位向量。
F e F F Fe F F k e e
e
e
结构内力
e F e e 方法2: F F Tk e
通过单元定位向量
将结点位移转换为单元 的杆端位移
e
由单元刚度方程 求得整体坐标系下由杆端位移 引起的杆端力列向量
Fe k e e
坐标转换 整体坐标系下杆端位力向量转换为 局部坐标系下杆端力列向量
E=200*10^9; I=32*10^-5; A=1*10^-2; EA l L=[4,5]; For i=1:2 0 F1=E*A/L(i); 0 F2=12*E*I/L(i)^3; e k F3=6*E*I/L(i)^2; EA F4=4*E*I/L(i); l F5=2*E*I/L(i); 0 K1=[F1,0,0,-F1,0,0; 0,F2,F3,0,-F2,F3; 0 0,F3,F4,0,-F3,F5; -F1,0,0,F1,0,0; 0,-F2,-F3,0,F2,-F3; 0,F3,F5,0,-F3,F4]; end
1 2 3 0 4 0 单元定位向量 单元定位向量
4.937 9.456 4 10 33 . 45 126.355 单元②:
1 2 3 4
4.937 9.456 4 10 33 . 45 126.355
《结构力学习题集》(下)-矩阵位移法习题及答案 (2)
第七章 矩阵位移法一、就是非题1、单元刚度矩阵反映了该单元杆端位移与杆端力之间得关系。
2、单元刚度矩阵均具有对称性与奇异性。
3、局部坐标系与整体坐标系之间得坐标变换矩阵T 就是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间得关系。
5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。
6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。
7、结构刚度方程矩阵形式为:,它就是整个结构所应满足得变形条件。
8、在直接刚度法得先处理法中,定位向量得物理意义就是变形连续条件与位移边界条件。
9、等效结点荷载数值等于汇交于该结点所有固端力得代数与。
10、矩阵位移法中,等效结点荷载得“等效原则”就是指与非结点荷载得结点位移相等。
11、矩阵位移法既能计算超静定结构,也能计算静定结构。
二、选择题1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.21341234123412342、平面杆件结构一般情况下得单元刚度矩阵,就其性质而言,就是:A.非对称、奇异矩阵;B.对称、奇异矩阵;C.对称、非奇异矩阵;D.非对称、非奇异矩阵。
3、单元i j 在图示两种坐标系中得刚度矩阵相比:A.完全相同;B.第2、3、5、6行(列)等值异号;C.第2、5行(列)等值异号;D.第3、6行(列)等值异号。
4、矩阵位移法中,结构得原始刚度方程就是表示下列两组量值之间得相互关系:A.杆端力与结点位移;B.杆端力与结点力;C.结点力与结点位移;D.结点位移与杆端力。
结构力学习题集矩阵位移法习题及答案老八校
1文档收集于互联网,已整理,word 版本可编辑.第八章 矩阵位移法 – 老八校一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。
,cos α=C ,sin α=S ,C C A ⋅= S S D S C B ⋅=⋅=,,各杆EA 相同。
2文档收集于互联网,已整理,word 版本可编辑.17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。
设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。
18、计算图示结构原始刚度矩阵的元素4544,K K 。
第九章 矩阵位移法例题
Cy
=
3 5
⎡ 192
[k](4) =
EA
⎢ ⎢
144
3000 ⎢−192
⎢⎣− 144
144 108 − 144 − 108
− 192 − 144 192 144
− 144⎤
− 108⎥⎥
144 ⎥
108
⎥ ⎦
贡献刚度矩阵
⎡192 144 0 0⎤
[K ](4) = EA ⎢⎢144 108 0 0⎥⎥
⎪⎪ ⎨ ⎪
40 0
⎪⎪ ⎬
=
⎪⎪ ⎨
⎪⎪
0 0
⎪⎪ ⎬ ⎪
⎢0 − 3 − 6 0 3 − 6⎥ ⎪ 0 ⎪ ⎪ 60 ⎪ ⎪ 22.74 ⎪
⎢ ⎢⎣0 6
8
0
−6
⎥ 16 ⎥⎦
⎪⎪⎩ 12.033 ⎪⎪⎭
⎪⎪⎩− 40⎪⎪⎭ ⎪⎪⎩−10.98⎪⎪⎭
{ } 单元(2){δ }(2) = δ (2) = 1 {− 50.081 0 12.033 − 50.081 0 11.382}T EI
结点 4 荷载
荷载贡献
{P}= {0 0 0 20}T
总荷载向量
{P}= {−10 −13.33 13.33 10}T
解结构方程,求出位移向量
{∆} = 1 {− 50.081 −19.350 12.033 11.382}T
EI 求单元内力
{ } 单元(1){δ }(1) = δ (1) = 1 {− 50.081 0 −19.350 − 50.081 0 12.033}T EI
⎢ ⎢⎣0 6
⎥ 8 0 − 6 16 ⎥⎦
⎪⎪⎩11.382⎪⎪⎭ ⎪⎪⎩ 10 ⎪⎪⎭ ⎪⎪⎩ 2.60 ⎪⎪⎭
第九章 矩阵位移法
1
2
3
12、在矩阵位移法中整体分析的实质是结点平衡。 ( ) 13、已知图示刚架各杆 EI=常数,当只考虑弯曲变形,且各杆单元类型相同时,采 用先处理法进行结点位移编号,其编号正确。( )
1 ( 0,0,0 )
2( 0,1,2 )
4 (0,0,0 )
3 ( 0,1,3)
14、单元刚度方程所表示的是_______两组物理量之间的关系。
Δ1
EI
l
Δ2
Δ3
EI
l
34、图示结构结点 2 的等效荷载列阵{P}等于{__________}T。
20kNxθyFra bibliotek1 4m
30kN 2
10kN/m
3
3m
3m
158
D:[3 2 4 0 0 1]T。
3
6
2
5
2
4
7
11
3
22、已知某单元定位向量为[0 3 5 6 7 8]T,则单元刚度系数 k36 应叠加到整
155
体刚度矩阵的_______中去。
A. k36 ; B. k56 ; C. k03 ; D. k58 。
23、图示结构整体刚度矩阵[K]中元素 k22 等于( )
5、结构的刚度方程[F] {∆}={P}表示结构全部节点的位移条件。( ) 6、整体坐标系中的杆端力,即是杆端力 N、Q 和 M。( ) 7、 用矩阵位移法计算连续梁时无需对单元刚度矩阵作坐标变换。 ( )
8、 结构刚度矩阵是对称矩阵,即有 kij = k ji ,这可由位移互等定理得到证明。
() 9、 结构刚度矩阵反映了结构结点位移与荷载之间的关系。 ( ) 10、单元刚度矩阵都具有对称性和奇异性。( ) 11、图示结构,按矩阵位移法求解时,将结点 1 和 3 的转角作为未知量是不可以
《结构力学习题集》-矩阵位移法习题及答案
第八章 矩阵位移法一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.2134123412341234xy M , θ( )二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
123ll4ll5EI2EIEA(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)xyM , θEI13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
l(0,0,1)(0,5,0)(2,3,4)l①②123xy M , θ14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
l l l1342A , I AA /222A I , 2A xyM , θ15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
矩阵位移法练习题
需要注意的几个问题
(1)初学者易把单元的固端力与传统位移法中载常 数混淆,造成求等效荷载时出错。单元的固端力是在固 定单元的杆端其不能有任何位移时荷载作用下的杆端力 (即固端力)。
例如,对于梁式杆,不论连接该杆的结点是铰结点、 定向结点,均按两端固定梁计算固端力。
(2)在考虑轴向变形的单元刚度矩阵中剔除EA项, 即得忽略轴向变形的单元刚度矩阵。
3
6
2
5
2
4
7
11
3
A. (0 0 1 2 3 4)T C. (0 0 1 3 2 4)T
解:答案为B。
B. (2 3 4 0 0 1)T D. (3 2 4 0 0 1)T
总结
例: 图示结构整体刚度矩阵K中元素k22等于( ) A. 28EI/3l B. 12EI/l C. 20EI/3l D. 16EI/l
解:在未引入支撑条件时, 其整体刚度矩阵K是____ 阶方阵。
解 : 答案为21×21。
总结
例:图示结构若只考虑弯曲变形,括号中的数字为结点
位移分量编码,则其整体刚度矩阵中元素k11等于( ).
A. 36EI / l 3
B. 72EI / l 3
C. 108EI / l 3
ql2 90i
,
2
ql 2 360 i
(6) 求杆端力并绘制弯矩图如图所示c。
(c) 45.6 16.8 2.4
4.8 M图(kN·m)
总结
四、思考题
1. 单元刚度矩阵的物理意义及其性质与特点各是什么? 2. 单元定位向量是由什么组成?他的用处是什么? 3. 刚架中有铰结点时应该怎样处理?
解:答案选A。
EI 2 2EI
9矩阵位移法习题解答,重庆大学,文国治版教材课后答案.
第9章 矩阵位移法习题解答习题9.1 是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
( )(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
( ) (3)单元刚度矩阵都具有对称性和奇异性。
( )(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
( ) (5)结构刚度矩阵与单元的编号方式有关。
( )(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
( ) 【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2 填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的________,其二是________分析,其三是________分析。
(2)已知某单元○e 的定位向量为[3 5 6 7 8 9]T ,则单元刚度系数35ek 应叠加到结构刚度矩阵的元素____中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是________________。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成________________矩阵和________________列阵。
(5)用矩阵位移法求得某结构结点2的位移为T 2222[]u v θ=Δ=[0.8 0.3 0.5]T ,单元①的始、末端结点码为3、2,单元定位向量为(1)T [000345]=λ,设单元与x 轴之间的夹角为π2α=,则(1)=δ________________。
(6)用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为T [7.54870.97.548121.09]e =----F ,则该单元的轴力F N =______kN 。
【解】(1)离散化,单元,整体; (2)k 68;(3)结点位移相等;(4)结构刚度,综合结点荷载; (5)[0 0 0 0.3 -0.8 0.5]T ; (6)-7.5。
习题课11.矩阵位移法
矩阵位移法
一.刚架单元编码、结点编码及局部坐标、整 体坐标如图,各杆长 l 及线刚度 i 均相同。 (1) 不计轴向变形,试写出整体刚度方程。
{ F } = [ K ]{∆}
θ1 ∆} = θ2 { θ 3
M0
2M 0
M0
M0 { F } = 2M0 −M 0
a 3 + b3 1 1 2 1 2 δ 33 = ( ⋅ a ⋅ a ⋅ a + ⋅ b ⋅ b ⋅ b) = EI 2 3 2 3 3EI
∆ 3C = −∑ FRK CK = −(−1×1) = 1
−3EI X 3 = 3 3 (↑↓) a +b
2 B端产生单位竖向位移 A a l b B
e vB = 1
2 2 M 01 ,M 02
单元②的固端弯矩
M0
单元②上的荷载对2端的力矩
2) 位移法方程 结点2
∑M
2
=0
1 M 2 + M 12 = 0
6i2 1 2 v3 + ( M 02 + M 01 ) = 0 (4i1 + 4i2 )θ 2 − l2
①
结点3
∑F
y
=0
F + kv3 = 0
2 y2
3
Fy22
k 64 k 65 k 66
0 0
1
k1 1 k1 2
k1 3
k1 6 k 26 k 36
2
k 21 k 2 2 k 2 3 k 31 k 3 2 k 3 3
[k ] =
2
1 0 0
3
0 0 4
2
k 61 k 6 2 k 6 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组装结构原始刚度矩阵之前,必须对单元刚度矩阵,等 效结点荷载列阵进行坐标转换?
单元局部坐标系 x 轴与整体坐标系x夹角 45
整体坐标系下杆端位移
e
TTLeabharlann e中的坐标变换矩阵
T T 中的第一行第二列元素为
。
在矩阵位移法中需将单元荷载变化为等效结点荷载,这里 等效的含义是________________
P
q
1(0,0,0)
2(0,0,1) 3(0,2,3)4(0,0,0) l
l/2 l/2
5(0,0)
l
l
y
M,
x
试求图示结构在所示位移编码情况下的综合结点荷载列阵元素
F1, F3, F4
P3 Mq
P2 l /2
P1 l /2
(2,3,4) (0,0,1)
(0,0,0)
y M, x
l
已知图示结构结点位移列阵为
EI
2(0,3) x y
M,
l
l
x
用先处理法求图示结构刚度矩阵的元素 K22, K33
1(0,0,0) 2(0,0,1) 3(0,2,3)
EI
2EI (0,2,4E)I
4(0,0,0)
l
EA
y
M,
5(0,0,0)
x
l
l
l
EA l
0
EA
0
0
l
0
12EI 6EI
12EI 6EI
0 0
l3
l2
6EI 4EI
l2
l
0 0
l3 6EI
l2
l2 2EI
l
EA
EA
l
0
0
0
12EI 6EI l3 l2
l 0
0
0
12 E I l3
6EI l2
0
6EI 2EI
l
l
0
6EI l2
4EI l
用先处理法写出图示结构的综合结点荷载列阵 F
试求杆14的轴力。 EA1kN
1kN 2
1kN
4
6
1m
1 3
y
5
M,
x
1m
1m
已知图示结构的结点位移列阵为
0 0 0 0 . 8 4 1 0 . 5 7 5 2 0 . 9 9 6 4 0 0 0 . 7 4 2 5 T
试求杆32的杆端力列阵中1端的剪力。
a32 0
a33 0
0 a44
a35 0
a36 0
0
a52 a53
0
a55
a56
0 a62 a63 0 a65 a66
求图示结构的结构刚度矩阵及等效结点荷载,已知两单元在 局部坐标系下的单元刚度矩阵为
500kN/m 0
0 - 500kN/m 0
0
0
12kN/m 24kN
0
- 12kN/m 24kN
k1k2103- 5000kN/m
24kN 0
0 0 0 0 0 0 0 . 1 0 6 6 0 . 4 5 8 4 0 . 1 3 9 0 0 . 0 5 2 2 0 . 5 4 1 6 0 . 0 3 4 3 0 0 . 5 4 1 6 0 . 1 1 6 2 T 试求杆34的杆端力列阵中的第6个元素。
q
ql 2 2
ql
3 l /2 y M,
l /2
x
1
l
试求图示结构在所示位移编码情况下的结点荷载列阵元素
F4, F5, F6
q ql 3 (1,2,3)
q
5 (0,7,8)
4 (4,5,6)
。
1 (0,0,0) 2 (0,0,0) l /2 l /2
l
ly M, x
试求图示结构在所示位移编码情况下的结点荷载列阵 P
5
1kN/m
1kN
3
4
EI= 1kN m. 2
EA= 1kN
1
2
0.5 m 0.5 m
1m
1m y M, x
已知图示桁架的结点位移列阵为
0 0 2 . 5 6 7 7 0 . 0 4 1 5 1 . 0 4 1 5 1 . 3 6 7 3 1 . 6 0 9 2 1 . 7 2 6 5 1 . 6 4 0 8 0 1 . 2 0 8 4 0 . 4 0 0 7 T
试求杆23的杆端力列阵的第2个元素。
1kN m. 1kN/m
2
3
1kN 1
EA= 1kN
EI= 1kN .m
1m
0.5 m 0.5 m
y M, x
用先理处法可得图示结构刚度矩阵 K为 :(其中:E=常数,
C E A /l,i E I/l ,C 1 6 i/l ,C 2 1 2 i/l2 。)
4iC C1 2i
D. KC1
C2C
C1
2i
C1 4iC
求图示结构的结构刚度矩阵及综合结点荷载,已知两单元 在局部坐标系下的单元刚度矩阵为
q
1
①
l
2
ql
②
3
a11 0 0 a14 0 0
0
a22 a23
0
a25
a26
k1
k2
0 a41
I, EA EA
l
4i C1 2i
A. KC1 C2
C1
;
l
y M,
2i C1 4i C
x
4i C1C 2i
B. KC1 C2C C1 ;
2i C1C 4iC
4i C1 2i
C. KC1 C2C C1;
2i C1 4i
结构刚度矩阵一定是对称矩阵,其理论根据是____________。
图示梁的结构刚度矩阵元素 K34和K44为
y
。1
2
3
4
5
6
7x
()
i= 1 i1 =.5 i= 2
i= 2.5i= 3
i= 3.5
图示结构采用位移编码先处理法集成所得结构刚度矩阵元素 K 12
不计轴向变形。
0(0,0) 1(1,2)
2EI
0
12 E I l3
6EI l2
0
12 E I l3
0
6EI
l2 2EI
l
0
6EI l2
0
6EI 2EI
l
l
0
6EI l2
4EI l
已知图示结构结点位移列阵为
0 0 0 - 0 . 1 5 6 9 - 0 . 2 3 3 8 0 . 4 2 3 2 0 0 0 T
1kN 1kN
1m
1
2
EA= 1kN
EI= 1kN m. 2
3
0.5 m 0.5 m
1kN m.
y
1kN/m
M,
x
EA
l
0
0
EA
l
0
0
12 E I l3 6EI l2
0
12 E I l3
0
6EI l2 4EI l
0
6EI l2
EA
l 0
0 EA l 0