概率论与数理统计第二章(浅色背景)
概率论与数理统计课件第2章
第2章 随机变量及其分布为了更深刻地揭示随机现象的统计规律性,有必要将随机试验的结果数量化,即把随机试验的结果及实数对应起来,可以凭借更多的数学工具研究随机试验的结果,因此需要引入随机变量的概念.2.1 随机变量及其分布函数随机变量的概念定义 2.1 设E 是随机试验,Ω是其样本空间. 如果对每个Ω∈e ,总有一个实值函数)(e X X =及之对应,则称Ω上的实值函数)(e X 为E 的一个随机变量.随机变量常用大写字母Z Y X ,,等表示,其取值用小写字母z y x ,,等表示.若一个随机变量仅取有限个或可列个值,则称其为离散随机变量.若一个随机变量取值充满数轴上的一个区间),(b a ,则称其为连续随机变量,其中a 可以是∞-,b 可以是∞+.通过以下几个例子,可以很好地理解上述随机变量抽象的定义.(1) 掷一颗骰子,出现的点数X . (2) 单位时间内某手机被呼叫的次数Y .(3)某品种杨树的寿命T . (4)测量某物理量的误差ε.(5)若某个试验只有两个结果,例如,播种一颗银杏种子,可以定义随机变量.值得注意的是:(1)对任意实数x ,}{x X ≤表示随机事件;(2)可以求出概率)(x XP ≤.在上面的例子中,,316161)6()5()4(=+==+==>X P X P X P 等;但是不能求得以下概率,如)100(=Y P ,)1500(>T P ,5.1|(|≤εP 等,因此还需要引入随机变量分布函数的概念.随机变量的分布函数定义2.2 设X 是一个随机变量,对任意实数x ,称)()(x X P x F ≤= ()为随机变量X 的分布函数.且称X 服从)(x F ,记为)(~x F X .有时也可用)(x F X (把X 作为F 的下标)以表明是X 的分布函数. 例2.1 向半径为r 的圆内随机抛一点,求此点到圆心之距离X 的分布函数)(x F ,并求.解 事件“x X ≤”表示所抛之点落在半径为)0(r x x ≤≤的圆内,故由几何概率知222)()()(r x rx x X P x F ==≤=ππ,从而43)21(1)2(1)2(1)2(2=-=-=≤-=>r F r X p r Xp . 从分布函数的定义可以看出,任一随机变量X (离散的或连续的)都有一个分布函数.有了分布函数,就可据此计算得及随机变量X 有关事件的概率.下面先给出分布函数的3个基本性质.定理 2.1 任一随机变量的分布函数)(x F 都具有如下三条基本性质:(1)单调性 )(x F 是定义在整个实数轴),(∞+-∞上的单调非减函数,即对任意的21x x <,有)()(21x F x F ≤.(2)有界性 对任意的x ,有1)(0≤≤x F ,且 0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x . (3)右连续性 )(x F 是x 的右连续函数,即对任意的0x ,有 )()0(00x F x F =+.值得注意,满足这3个性质的函数一定是某个随机变量的分布函数.例2.2 设随机变量X 的分布函数为 +∞<<-∞+=x x B A x F ,arctan )(,试求:⑴待定系数B A ,;⑵随机变量X 落在(-1,1)内的概率.解 ⑴ 由0)(=-∞F ,1)(=+∞F , 可得 , 解得 ,于是+∞<<-∞+=x x x F ,arctan 121)(π.⑵ )1()1()11()11(--=≤<-=<<-F F X P X P .利用随机变量X 的分布函数,可以计算有关X 的各种事件的概率.例如,对任意的实数b a ,,有 )()()(a F b F b X a P -=≤<,)0()()(--==a F a F a XP ,)0(1)(--=≥b F b X P , )(1)(b F b XP -=>, )()0()(a F b F b X a P --=<<, )0()()(--=≤≤a F b F b Xa P ,)0()0()(---=<≤a F b F b X a P . 特别当)(x F 在a 及b 连续时,有 )()0(a F a F =-,)()0(b F b F --. 例2.3 设随机变量X 的分布函数为 ,试求:(1))31(≤<X P ;(2))2(>XP ;(3))5.1(=X P . 解 (1)6.04.01)1()3()31(=-=-=≤<F F X p ; (2)4.06.01)2(1)2(=-=-=>F X p ; (3)04.04.0)05.1()5.1()5.1(=-=--==F F X p .§2.2 离散型随机变量的分布律定义2.3 设X 是一个离散型随机变量,其所有可能的取值是 ,,,,21i x x x ,则称X 取i x 的概率 ,2,1,)(===i x X P p i i()为X 的概率分布律或简称为分布律,记为}{~i p X ,分布律也可用列表的方法来表示:或记成⎪⎪⎭⎫ ⎝⎛ii p p px x x X 2121~ 分布律的基本性质: (1) ,2,1,0=≥i p i ;(2).由离散型随机变量X 的分布律很容易写出X 的分布函数:∑≤=≤=xx i i p x X P x F )()(.它的图形是有限级(或无穷级)的阶梯函数.在离散场合,常用分布律来描述分布,很少用到分布函数.因为求离散随机变量X 的有关事件的概率时,用分布律比用分布函数来得更方便.例 设离散型随机变量X 的分布律为试求)5.0(≤X P ,)5.25.1(≤<XP 并写出X的分布函数.解 25.0)1()5.0(=-==≤X P XP ,5.0)2()5.25.1(===≤<X P XP ,⎪⎪⎩⎪⎪⎨⎧≥=++<≤=+<≤-<=3,125.05.025.021,75.05.025.010,25.01,0)(x x x x x F .)(x F 的图形如图2—1所示._x特别地,常量c 可看作仅取一个值的随机变量X ,即 1)(==c XP .这个分布常称为单点分布或退化分布,它的分布函数是 . () 其图形如图2—2.以下例子说明,已知离散型随机变量的分布函数,可以求出它的分布律.例2.5 设随机变量X 的分布函数为 , 则X 的分布律为2.3 常见离散型随机变量分布1.两点分布_ 图 2 — 2_x若离散型随机变量X 的分布律为则称随机变量X 服从参数为p 的两点分布(或10-分布),记为),1(~p B X .例 播种一颗银杏种子,银杏的发芽率为0.9,定义随机变量,则)9.0,1(~B X . 2.二项分布若离散型随机变量X 的分布律为kn k p p k n k X P --⎪⎪⎭⎫ ⎝⎛==)1()(,n k ,,2,1,0 =. (2.4)则称随机变量X 服从参数为p 的二项分布,记为),(~p n B X .两点分布是二项分布中当1=n 时的特例.例2.7 假设银杏移栽的成活率为,现移栽10颗,问至少有8颗成活的概率是多少?解 设移栽银杏的颗数为X ,则)95.0,10(~B X ,而所求概率为)10()9()8()8(=+=+==≥X P X P X P XP9885.005.095.01010010=⎪⎪⎭⎫ ⎝⎛. 3.泊松分布若离散型随机变量X 的分布律为, ,2,1,0=k , (2.5)其中参数0>λ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λP X.例 已知某种产品表面上的疵点数服从参数5.0=λ的泊松分布,若规定疵点数不超过一个的产品为合格品,疵点数至少为两个的产品为不合格品.试求此产品为不合格品的概率. 解 设X 为此产品表面上的疵点数,则)5.0(~P X,即, ,2,1,0=k .于是有)1()0(1)2(1)2(=-=-=<-=≥X P X P X P X P. 4.几何分布若离散型随机变量X 的分布律为 1)(-==k pq k XP , ,2,1=k , (2.6)其中p q p -=<<1,10,则称随机变量X 服从参数为p 的几何分布,记为)(~p G X.设E 为一随机试验,A 为其事件,p A P =)(,q p A P =-=1)(,现作独立重复试验直到A 出现为止. 以X 表示事件A 出现的总次数,则随机变量X 可取值 ,,,2,1k .以k A 表示在第k 重试验中事件A 出现的事件,则 )()(121k k A A A A P k XP -===)()()()()(A P A P A P A P A A A A P = =1-k pq , ,2,1=k . 5. 超几何分布若离散型随机变量X 的分布律为, (2.7) 其中N n N M ≤≤≤≤0,0,k 是满足不等式 ),min(),0max(M n k m N n ≤≤+-的所有整数,则称随机变量X 服从参数为N M n ,,的超几何分布,记为),,(~N M n H X.例 设一批木工板共N 张,其中有M 张次品(N M ≤≤0),M N -n (N n ≤≤0)张,以X表示所取得的次品数,试求随机变量X 的分布律.解 若M N n -=,则X 可取的最小数显然为0;若M N n ->,则X 可取的最小数为)(M N n --. 这样,X 可取的最小数是 ),0max(m N n +-.若M n ≤,则X 可取的最大数为n ;若M n >,则X 可取的最大数为)(M N n --. 这样,X 可取的最大数是 ),min(M n . 按古典概型计算得 ,其中,N n N M ≤≤≤≤0,0,k 是满足不等式),min(),0max(M n k m N n ≤≤+-的所有整数.2.4 连续型随机变量的概率密度函数定义 2.4 设随机变量X 的分布函数为)(x F ,如果存在实数轴上的一个非负可积函数)(x f ,使得对任意实数x ,有⎰∞-=xdt t f x F )()(,(2.8)则称X 为连续型随机变量,称)(x f 为X的概率密度函数,简称为密度函数.在)(x F 的可导点处有 ()()F x f x '=.(2.9)密度函数的基本性质: (1)0)(≥x f ; (2)⎰∞+∞-=1)(dx x f .(3)若X 的密度函数为)(x f ,则 ,其中I 为某一区间.(4)若X 为连续型随机变量,则=<<)(b X a P =<≤)(b X a P =≤<)(b X a P )(b X a P ≤≤.注意及离散情形的区别.例 已知随机变量X 的密度函数为,求(1)常数c ;(2))3/10(<<X p ;(3)分布函数)(x F . 解 (1)由⎰∞+∞-=dx x f )(1,得2=c ; (2)912)3/10(3/1023/10===<<⎰x xdx X p ; (3)根据x 的取值情况来确定积分⎰∞-=x dt t f x F )()(.当0<x 时,00)(==⎰∞-xdt x F ;当10<≤x 时,⎰∞-=00)(dt x F 202x dt t x=+⎰; 当1≥x 时,⎰∞-=00)(dt x F ⎰+102dt t 101=+⎰xdt . 从而得随机变量X 的密度函数为 ,_x)(x F 的图形如图2—3.例2.11 设随机变量X 的密度函数为⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,)(x x x x x f ,试求随机变量X 的分布函数)(x F .解 当0<x 时,0)()(==⎰∞-xdt t f x F ; 当10<≤x 时,;当21<≤x 时,122)2()(2110-+-=-+=⎰⎰x x dt t dt t x F x;当2≥x 时,1)2()(2110=-+=⎰⎰dt t dt t x F . 综上所述,得X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=2,121,12210,20,0)(22x x x x x x x x F)(x F 的图形如图2—4.2.5 常见连续型随机变量分布1.均匀分布若连续型随机变量X 的密度函数(见图2—5(1))为⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a ab x f , (0) 则称X 服从区间],[b a 上的均匀分布,记为),(~b a U X ,其分布函数为(见图2—5(2))._ 图 2 — 4_x0,(),1,x a x aF x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.(2.11)例1 设随机变量X 服从区间]1,0[上的均匀分布,现对X 进行4次独立观测,试求至少有3次观测值大于1/2的概率. 解 设Y 是3次独立观测中观测值大于1/2的次数,则),4(~p B Y ,其中.由)1,0(~U X ,知X的密度函数为.所以211)21(121==>=⎰dx X p p ,于是0413)1(44)1(34)4()3()3(p p p p Y P Y P Y P -⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛==+==≥ 165)21()21()21(443=+⨯=.2.指数分布若连续型随机变量X 的密度函数为(0>θ), (2.12)1/(b-a)a图2—7(1)p(x)x图2—7(2)F(x)x则称X 服从参数为θ的指数分布,记为.例2 设某电子产品的使用寿命X (h )服从参数为500=θ的指数分布,试求该电子产品的使用寿命超过1000h 的概率. 解 由,知 ⎪⎩⎪⎨⎧≤>=-0,00,5001)(500x x e x f x. 于是1353.05001)1000(210005005001000≈===>-∞+--∞+⎰e e dx e X p xx.3.正态分布正态分布是概率论及数理统计中最重要的一个分布,后面还要指出正态分布是一切分布的中心.1)正态分布的密度函数和分布函数 若连续型随机变量X 的密度函数为, +∞<<∞-x , (2.13)则称X 服从参数为2,σμ的正态分布,记为),(~2σμN X.其中参数+∞<<∞-μ,0>σ.其密度函数)(x f 图形如图2—6(1)所示.)(x f 的图形是一条钟形线,其对称轴为μ=x .)(x f 在μ=x 处取最大值,曲线上对应于图2—8(1)x图2—8(2)σμ±=x 的点为拐点.正态分布),(2σμN 的分布函数为⎰∞---=xt dtex F 222)(21)(σμσπ.(2.14)它是一条光滑上升的S 形曲线,见图2—6(2).图2—7给出了在μ和σ变化时,相应正态密度曲线的变化情况.(1)从图2—7(1)中可以看出:如果固定σ,改变μ的值,则图形沿x 轴平移,而不改变其形状.也就是说正态密度函数的位置由参数μ所确定,因此也称μ为位置参数.(2)从图2—7(2)中可以看出:如果固定μ,改变σ的值,则σ越小,曲线越陡峭;σ越大,曲线越扁平.也就是说正态函数的尺度由参数σ所确定,因此也称σ为尺度参数.2)标准正态分布称0=μ,1=σ的正态分布)1,0(N 为标准正态分布. 记标准正态分布的密度函数为)(x ϕ,分布函数为)(x Φ,即,+∞<<∞-x ,图2—9(1)图2—9(2))(x Φ,+∞<<∞-x .由于标准正态分布的分布函数不含任何未知参数,故其值)()(x X P x ≤=Φ完全可以算出,附表2对0≥x 给出了)(x Φ的值,利用这张表可以算得(1)-=-Φ1)(x )(x Φ. (2))(1)(x x XP Φ-=>. (3))()()(a b x Xa P Φ-Φ=<<.(4)1)(2)|(|-Φ=<c c X P . 例3 设)1,0(~N X,利用附表1,求下列事件的概率:(1)8944.0)25.1()25.1(=Φ=≤X p .(2)1056.08944.01)25.1(1)25.1(=-=Φ-=>X p .(3)1056.08944.01)25.1(1)25.1()25.1(=-=Φ-=-Φ=-<X p . (4)7888.018944.021)25.1(2)25.1(=-⨯=-Φ=≤X p . 3)一般正态分布的标准化为了计算及一般正态变量有关的事件的概率,需要将一般正态分布进行标准化,然后再查标准正态分布函数表. 若),(~2σμN X,则(1). (2.15) (2))()()(σμσμ-Φ--Φ=≤<a b b X a P .(2.16)例4 设)4,86(~N X ,试求 (1))9282(<<X p ; (2)常数a ,使得95.0)(=<a XP .解 (1))28682()28692()9282(-Φ--Φ=<<X p1)2()3()2()3(-Φ+Φ=-Φ-Φ= 9759.019772.09987.0=-+=. (2)由95.0)286()(=-Φ=<a a X p ,或,其中1-Φ为Φ的反函数.从附表1由里向外反查得 9495.0)64.1(=Φ,9505.0)65.1(=Φ,再利用线性内插法可得95.0)645.1(=Φ,即645.1)95.0(1=Φ-,故 , 从中解得29.89=a .2.6 随机变量函数的分布设)(x g y =是定义在直线上的一个函数,X 是一个随机变量,那么)(X g Y=作为X 的一个函数,同样也是一个随机变量. 我们所要研究的问题是:已知X 的分布,如何求)(X g Y=的分布.2.6.1 离散型随机变量函数的分布设X 是一个离散型随机变量,X 的分布律为则)(X g Y =也是一个离散型随机变量,此时Y 的分布律可表示为Y)()()(21i x g x g x gPip p p 21当 ),(,),(),(21i x g x g x g 中有某些值相等时,则把那些相等的值分别合并,并将对应的概率相加即可.例2.15 已知X 的分布律为(1)求121+=X Y 的分布律;(2)求X X Y -=32的分布律. 解 (1)121+=X Y 的分布律为(2) X X Y -=32的分布律为再将相等的值合并得2.6.2 连续型随机变量函数的分布通过以下几则例子,介绍求连续型随机变量函数的分布的一种方法,称之为分布函数法.例2.16 设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f X , 试求随机变量12+=X Y 的密度函数)(y f Y .解 )12()()(y X P y Y P y F Y ≤+=≤=))1(21(21)()(-='=y p y F y f X Y Y.一般地,还可以利用分布函数法证明以下定理. 定理 设X 是连续型随机变量,其密度函数为)(x f X .)(X g Y=是另一个随机变量.若)(x g y =严格单调,其反函数)(y h 有连续导函数,则)(X g Y=的密度函数为⎩⎨⎧<<'=其他,0,|)(|)]([)(b y a y h y h f y f X Y .(2.17)其中)}(),(min{+∞-∞=g g a ,)}(),(max{+∞-∞=g g b .证明 不妨设)(x g y =是严格单调递增函数,这时它的反函数)(y h 也是严格单调递增函数,且)(>'y h .记)(-∞=g a ,)(+∞=g b ,这就意味着)(x g y =仅在区间),(b a 取值,于是当a y <时,0)()(=≤=y Y P y F Y ; 当b y >时,1)()(=≤=y Y P y F Y ; 当b y a ≤≤时,))(()()(y X g P y Y P y F Y ≤=≤= =dt t f y h X P y h X ⎰∞-=≤)()())((. 由此得Y 的密度函数为⎩⎨⎧<<'=其他,0,)()]([)(by a y h y h f y f X Y .同理可证当)(x g y =是严格单调递减函数时,结论也成立.但此时应注意0)(<'y h ,所以要加绝对值符号,这时,)(+∞=g a ,)(-∞=g b .利用上述定理,可以证明以下一个很有用的结论. 定理2.3 若),(~2σμN X,则.证明 是严格递增函数,仍在),(∞+-∞上取值,其反函数为μσ+==y y h x )(,σ=')(y h ,由定理可得2221)()()]([)(y X X Y e y f y h y h f y f -=+='=πσμσ,所以.定理 设随机变量X 服从正态分布),(~2σμN X ,则当0≠a 时,有~b aX Y +=),(~22σμa b a N X +.证明 当)0(0<>a 时,b ax y +=是严格递增(减)函数,仍在),(∞+-∞上取值,其反函数为a b y y h x /)()(-==,a y h /1)(=',由定理可得|1|)(|)(|)]([)(aa b y f y h y h f y f X X Y -='= }2)]([exp{)|(|21222σμσπa b a y a +--=. 这是正态分布),(22σμa b a N +的密度函数,结论得证.这个定理表明:正态变量的线性函数仍为正态变量.特别地,取σ/1=a ,σμ/-=b ,则~b aX Y +=)1,0(N ,此即定理2.3.定理 若X 的分布函数)(x F X 为连续严格递增的连续函数,则)(X F YX =服从区间)1,0(上均匀分布)1,0(U .证明 由于分布函数)(x F X 仅在区间]1,0[上取值,所以 当0<y 时,0))(()()(=≤=≤=y X F P y Y P y F X Y . 当1≥y 时,1))(()()(=≤=≤=y X F P y Y P y F X Y . 当10<≤y 时,))(()()(y X F P y Y P y F X Y ≤=≤= y y F F y F X P X X X ==≤=--)(()((11.从而⎩⎨⎧<<='=其他,010,1)()(x y F y f Y Y ,所以~Y )1,0(U .前面的例子及定理,都要求)(x g 严格单调,这在有些场合不能满足.以下的两个例子是更一般的情形.例 设随机变量X 服从标准正态分布)1,0(N ,试求2X Y =的分布.解 由于02≥=X Y ,所以当0≤y 时,0)()(=≤=y Y P y F Y . 当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤= , 从而21)()21)((21)()()(-=---='=yy yy yy y F y f Y Y ϕϕϕ,于是 ⎪⎩⎪⎨⎧≤>=--0,00,21)(221y y e y y f y Y π.(2.6.2)具有上述密度函数的分布称为自由度为1的卡方分布,记为)1(~2χY .例 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<=其他,00,2)(2ππx x x f X ,求X Y sin =的密度函数)(y f Y .解 由于X 在区间),0(π内取值,所以X Y sin =的可能取值为区间)1,0(.在Y 的可能取值区间外,0)(=y F Y .当10<<y 时,)(sin )()(y X P y Y P y F Y ≤=≤=)arcsin ()arcsin 0(ππ≤≤-+≤≤=X y P y X Pdt t f y X )(arcsin 0⎰=dt t f y X )(arcsin ⎰-+ππ 从而 22222121)arcsin (21arcsin 2)()(y y y y y y F y f Y Y -=--+-='=ππππ.综合得 ⎪⎩⎪⎨⎧<<-=其他,010,12)(2y yy f Y π.。
概率论与数理统计图文课件最新版-第2章-随机变量及其分布
函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
概率论与数理统计第2章ppt课件
1 3x
0
1
2
3X
处的离跳散跃型高随度机恰变为量P{的X=分x布i}.函数为跳跃函数,在xi
§4. 连续型随机变量的概率密度
1. 定义:对于随机变量X的分布函F(x), 如果存在非负函数f(x),使对于任意实数x有:
F(x)xf(t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称密度函数。
精选课件
21
例4. 3个人抓阄数。
解:X的概率分布: P{X=1}=1/3
P{X=2}=2/3×1/2=1/3
P{X=3}=2/3×1/2×1/1=1/3
X的分布函数:
Y
0 x <1
1
1/3 1 x <2
2/ 3
F(x)=
2/3 2 x <3 1/ 3
则:P{X=k} Cnk pnkqnnk 其中:qn=1-pn
(令=μV; pn=μ△V=μV/n= /n):
考虑当 n +时
P{X=k} =nl imCnkpnkqnnk
limn! ()k(1)nk
nl n i m k1 k !!n(nn (n n k1)) !n (n n kn 1)k((11 n))kn
k
k!
k=0、1、2、3、……
n
Poissn定理:n为正整数,pn=/n, >0。 则对任一非负整数k有:
nl im Cnkpnkqnnk
k
k!
其中:= npn.
例3. 某人打靶命中率为0.001, 重复射击 5000次,求至少命中2次的概率。
解:设X为至命中次数。
P(X2) =1-P(X<2) =1-P(X=0)-P(X=1)
概率论及数理统计课件第2章
在随机试验中,人们除了对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验结果相联系的变量。在
本章中,我们将用实数来表示随机试验的各种结果(数量化),即随机变量。这样,不仅可以更全面揭示随机试验的客 观存在的统计规律性,而且可使我们用(数学分析)微积分的方法来讨论随机试验。
在随机试验中,如果把试验中观察的对象与实数对应起来,即建立对应关系X,使其对试验的每个结果 ,都有一
个实数X( )与之对应,
试验的结果
对应关系X
实数X( )
则X的取值随着试验的重复而不同, X是一个变量,且在每次试验中,究竟取什么值事先无法预知,也就是说X是 一个随机取值的变量,称X为随机变量。
(1)在有些试验中,试验结果本身就是由数量表示的,如掷骰子观察得到骰子的点数1、2、3、4、5、6。
则称P(X=xk)=pk(k=1, 2, … ) 为随机变量X 的概率分布律或称分布律,也称概率函数。
分布律可用表格形式表示为:
X
x1
x2
x3
…
xk
…
P
p1
p2
p3
…
pk
…
# 概率分布
1、写出可能取值--即写出了样本点 2、写出相应的概率--即写出了每一个样本点出现的概率
例 设袋中有5只球,其中有2只白球,3只黑球。现从中任取3只球(不放回),求抽得的白球数X为k的概率 。
X()1,1,=反正 面面
例 将一枚硬币抛掷三次,观察正面H、反面T出现情况的试验中,其样本空间为 S={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}.
记每次试验出现正面的总次数为随机变量X,则X作为样本空间S上的函数定义为
概率论与数理统计 第二章 随机变量及其分布
6 6 X ~ ( ), 且 P X 0 e 即 e e 6
P { X 2 } 1 P { X 2 } 1 P { X 0 } P { X 1 }
6 6 1 e 6 e 0 . 9826
A={X=1},B={X=2},C={X=0}
② 设Y为进行5次试验中成功的次数,则 D={Y=1},F={Y1},G={Y3}
随机变量的分类
离散型随机变量 随机变量 连续型 非离散型 奇异型(混合型)
§2 离散型随机变量的分布律(P27)
定义 若随机变量X取值x1, x2, …, xn, … ,且取这些 值的概率依次为p1, p2, …, pn, …, 则称 P{X=xk}=pk, (k=1, 2, … ) 为X的分布律。 可表为 X~ P{X=xk}=pk, (k=1, 2, … ), 或…
k k n
k 0 , 1 , , n
若以X表示n重贝努里试验中事件A发生的次数, P(A)=p, 则称X服从参数为n,p的二项分布。 记作X~b(n,p), 其分布律为:
P { X k } p ( 1 p ), ( k 0 , 1 ... n ) C n
kk
n k
例2 掷一颗骰子10次,求(1)双数点出现6次的概率? (2)“3”点出现两次的概率? 解:(1)设X表出现双数点的次数,则X~b(10,1/2) 6 6 10 6 6 10 1 1 1 所求概率: P ( X 6 ) C ( ) ( ) C ( ) 10 10 2 2 2 (2) 设Y表出现“3”点的次数,则Y~b(10,1/6) 2 1258 所求概率为: P ( Y 2 ) C () () 10
概率论与数理统计--第二章PPT课件
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
概论论与数理统计 第2章_PPT课件
1 2
分别表示两事件
发生的概率.
一般地,对任意实数集 I ,随机变量 X 在 I 上取值常写成 {X I} ,
它表示事件 {e | X (e) I} ,此时有
P{X I} P{e | X (e) I} .
§2.2 离散型随机变量及其分布
定 义 2.3 设 离 散 型 随 机 变 量 X 所 有 可 能 取 值 为 xi (i 1, 2, ) ,则称 X 取 xi 的概率
X ~ P() . 显然有下式成立:
(1) P{X k} 0 ( k 0,1, 2, );
(2) P{X k 0
k}
e
k 0
k
k!
e k
k0 k !
e
e
1.
定理 2.1(泊松定理)对二项分布 b(n, p) ,设 np , 0 ,
则
lim
n
Ckn
pk
(1
p)nk
k e (k
系.设一个随机试验只有两个结果 A 和 A ,且 P(A) p ,
现将试验独立进行 n 次,记 X 为 n 次试验中 A 出现的次
数,则 X ~ b(n, p) ,记 Xi 为第 i 次试验中 A 出现的次数,
1, 第i次试验中A 出现即Xi Nhomakorabea0,
第i次试验中A
不出现
,i
1, 2,
, n ,则 Xi ~ b(1, p) ,
对应数.这样随机试验的结果就是随机变化的变量,把随机试
验的结果数量化,便于应用数学知识研究随机现象,使对随机
现象的研究更深入和简单.
▪
例2.1 抛掷一枚硬币两次,观察出现正面(记为 H )
和反面 (记为T )的情况.
《概率论与数理统计》课件 概率学与数理统计 第二章
作为某一个离散型随机变量的分布律。
为了直观地表达分布律,我们还可以作类似图2-1的分布律图。
图2-1
图2-1中 xi 处垂直于 x 轴的线段高度为 pi,它表示 X 取 xi 的概 率值。
例2.1 一盒中装有编号为1,2,3,4,5的五个球,现从中任意取三 个球,求所抽出三个球的中间号码 X 的概率分布。
Pa X b PX b PX a Fb 0 Fa
Pa X b PX a Pa<X b
Fa Fa 0 Fb Fa
Fb Fa 0
随机变量的分类:
1. 离散型随机变量:随机变量只取数轴上的有限个或可列个点。 2. 连续型随机变量:随机变量的可能取值充满数轴上的一个或 若干区间。 3. 奇异型随机变量:既不是离散型随机变量,也不是连续型随 机变量。在理论上很有价值,而实际问题中很少有应用。
解 以 p 表示每盏灯禁止汽车通过的概率,显然 X 的可能取值
为0,1,2,3,4,易知 X 的分布律为
表2-3
或写成
P X k 1 pk p,k 0,1,2,3 P X 4 1 p4
将 p 0.4, p 0.6 代入上式,所得结果如表2-4所示。
表2-4
二、常用离散型随机变量的分布
1
PX 2 1 PX 2 1 PX k k 0
1 0.9995000 50.9994999
≈1 50 e5 5e5 0! 1!
查表可得 P X 2 1 0.00674 0.03369 0.95957
例2.6 某人进行射击,设每次射击的命中率为,独立射击400次, 试求至少击中两次的概率。
记作 X 0 -1 分布。写成分布律表形式见表2-5。
表2-5
对于一个随机试验,若它的样本空间只包含两个元素,
概率论与数理统计浙大版第二章 ppt课件
E1: 将一枚硬币连掷两次,观察正反面出现的情况。
概率论与数理统计浙大版第二章
2
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你是
否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式?
教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨,
概率论与数理统计浙大版第二章
12
§2 离散型随机变量及其分布
概率论与数理统计浙大版第二章
13
一、离散型随机变量的定义及其分布律
1.离散型随机变量的定义 如果随机变量X所有可能的取值是有限个或无 穷可列个,则称X为离散型随机变量。
2.离散型随机变量的分布律
要掌握一个离散型随机变量的分布律,必须
且只需知道以下两点:
设e是一个随机试验其样本空间为se在e上引入一个变量x如果对s中每一个样本点e都有一个x的取值xe与之对应我们就称x为定义在随机试验e的一个随机变量
第二章 随机变量及其分布
随机变量 概率分布函数 离散型随机变量 连续型随机变量
随机变量的函数
概率论与数理统计浙大版第二章
1
第一节 随 机 变 量
在上一章中,我们把随机事件看作样本空间 的子集;这一章里我们将引入随机变量的概念, 用随机变量的取值来描述随机事件。
令X=“报童每天卖出的报纸份数” 试将“报童赔钱”这一事件用X的取值表 示出来。
解:分析
{报童赔钱}
{卖出报纸的钱不够成本}
当 0.50 X<1000× 0.3时,报童赔钱.
故{报童赔钱}{X 600}
概率论与数理统计浙大版第二章
10
3、随机变量的概率分布 对于一个随机试验,我们关心下列两件事情: (1)试验会发生一些什么事件? (2)每个事件发生的概率是多大?
概率论与数理统计第二章
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
概率论与数理统计第二章
1 ,max= 2
4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2
x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布
《概率论与数理统计》第2章 随机变量及其分布
第二章 随机变量及其分布
注 意 点 (2)
第11页
对离散随机变量的分布函数应注意: (1) F(x)是递增的阶梯函数; (2) 其间断点均为右连续的; (3) 其间断点即为X的可能取值点; (4) 其间断点的跳跃高度是对应的概率值.
23 April 2012
第二章 随机变量及其分布
例2.2.1 已知 X 的分布列如下:
0,
x 0, x 0.
求 (1) 常数 k. (2) F(x).
解:
(1) k =3.
(2)
1 e3x , x 0,
F(x) 0,
x 0.
23 April 2012
第20页
第二章 随机变量及其分布
第21页
例2.2.4
1 x,
设
X
~
p(
x)
1
x,
0,
1 x 0 0 x1
其它
第二章 随机变量及其分布
第8页
2.2.1 离散随机变量的分布列
设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列. 分布列也可用表格形式表示:
X x1 x2 …… xn …… P p1 p2 …… pn ……
23 April 2012
第二章 随机变量及其分布 y
第35页
O
μ
x
23 April 2012
第二章 随机变量及其分布
第36页
正态分布的性质
(1) p(x) 关于 是对称的. 在 点 p(x) 取得最大值.
p(x)
σ 小
(2) 若 固定, 改变,
p(x)左右移动,
王学民《概率论与数理统计》第二章课件
表2.2.1 二项分布的泊松分布近似
n k nk 二项分布 p q k
泊松分布
k
k!
n=100 p=0.01 0.366
e
k n=10 p=0.1 0 0.349
n=20 p=0.05 0.358
n=40 p=0.025 0.363
λ=1(=np)
0.368
1
2 3 4 ⋮
k! 其中λ>0是个常数,则称X服从参数为λ的泊松分布 ,记作X~P(λ)。 容易验证: (1)P(X=k)>0,k=0, 1, 2, ⋯; k k (2) P X k e e e e 1。 k 0 k 0 k ! k 0 k !
(3) F lim F x 0, F lim F x 1;
x x
(4)F(x+0)=F(x),即F(x)在每一点x处都是右连续的。
离散型随机变量X的分布函数为 F x P X x P X xk
图2.4.2 X的密度曲线
图2.4.3
X的分布函数曲线
二、几个常见的连续型分布
1.均匀分布 2.正态分布 3.指数分布
1.均匀分布
如果连续型随机变量X具有如下的概率密度函数 1 , a xb f x b a 其他 0 , 则称X服从[a, b]上的均匀分布,记作X~U[a, b]。X的 分布函数为 xa 0, x a F x , a xb b a xb 1,
X P
x1 p1
x2 p2
⋯ ⋯
xn pn
⋯ ⋯
概率论与数理统计第二章课件PPT
例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a ,有 b
P a X b P X x P X x i i a x b a x b 1 1 pk
解
用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson distribution)
定义2 设随机变量X的可能取值为0,1,2,…,n,…,而X 的分布律为
pk P X k
路口1
路口2
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2
即
X
p
0
1
2
3
1 2
1 4
《概率论与数理统计》教学课件(共8章)第2章 随机变量及其概率分布
显然,p1+p2+p3+p4=1。
2.1 离散型随机变量
2.1.2 离散型随机变量的分布律
(2) X为直到取得白球时的取球次数。因为每次取出的黑球仍放回去,所以X的所有可能取值是一
切正整数1, 2, …,n, ….由于是放回抽样,故每次抽球的试验是独立的。由独立事件的概率乘法公式,得
X的分布律:
p1=P{X=1}=25, p2=P{X=2}=35×25=265,
概率论与数理统计
第2章 随机变量及其概率分布
2.1 离散型随机变量 2.2 连续型随机变量 2.3 分布函数 2.4 随机变量函数的分布
2.1 离散型随机变量
2.1.1 随机变量的概念
在第1章中,我们讨论了随机事件及其概率.为了全面研究随机试验的结果,我们引入随机变量这 一十分重要的概念。我们所讨论的随机事件几乎无一例外地可用随机变量来描述,用随机变量描述随 机现象是概率论中最重要的方法。
P{X>6}=P{X=7}+P{X=8}+P{X=9} =C97(0.2)7(0.8)2+C98(0.2)8(0.8)+(0.2)9 ≈0.0003.
这一结果表明,供应6个人的需电量,超负荷的可能性仅为0.03%。也就是说,平均在大约55.6h 中,可能有一分钟超负荷。
2.1 离散型随机变量
2.1.3 几种常见的概率分布律
称X=X(ω)为该试验的一个随机变量。
本书中,用大写字母X, Y, Z, W等表示随机变量,用小写字母x, y, z, w等表示实数。
随机变量的取值随着试验的结果而定,因而在试验之前,只能知道它可能取值的范围,而不能预
知它取哪一个值。且试验的所有结果的出现都有一定的概率,因而随机变量的取值也有一定的概率。
《概率论与数理统计》第二章随机变量及其分布共26页word资料
第二章随机变量及其分布........................................................................................................ - 1 - 第一节随机变量及其分布函数...................................................................................... - 2 - 一随机变量概念........................................................................................................ - 2 -二随机变量的分布函数............................................................................................ - 3 -基础训练2.1 ................................................................................................................ - 6 - 第二节离散型随机变量及其概率分布............................................................................ - 6 - 一离散型随机变量及其概率分布............................................................................ - 6 -二常见的几种离散型随机变量及其分布................................................................ - 9 -基础训练2.2 .............................................................................................................. - 13 - 第三节连续型随机变量及其概率分布.......................................................................... - 13 - 一连续型随机变量及其分布的概念与性质.......................................................... - 14 -二常见的几种连续型随机变量及其分布.............................................................. - 17 -基础训练2.3............................................................................................................. - 22 - 第四节随机变量函数的分布.......................................................................................... - 22 - 一离散型随机变量函数的分布.............................................................................. - 22 -二连续型随机变量的函数分布.............................................................................. - 23 -基础训练2.4............................................................................................................. - 26 - 综合训练二........................................................................................................................ - 26 - 内容小结及题型分析二.................................................................................................... - 26 - 拓展提高二........................................................................................................................ - 26 - 阅读材料二........................................................................................................................ - 26 - 数学实验二........................................................................................................................ - 26 -第二章随机变量及其分布【本章导读】本章主要讲述随机变量与分布函数,一维离散型随机变量、连续型随机变量的概率分布,常见分布及函数的分布.【本章用到的先修知识】级数的运算,变限积分,分段函数的积分,无穷积分.【本章要点】随机变量的概念,分布函数,分布律,概率密度,常见随机变量的分布,函数的分布.在上一章中,我们用样本空间的子集,即基本事件的集合来表示随机试验的各种结果.这种表示的方式对全面讨论随机试验的统计规律性及数学工具的运用都有较大的局限. 在本章中,我们将介绍概率论中另一个重要的概念:随机变量. 随机变量的引入,使概率论的研究由个别随机事件扩大为随机变量所表征的随机现象的研究. 这样,不仅可更全面揭示随机试验的客观存在的统计规律性,而且可使我们用高等数学的方法来讨论随机试验.第一节 随机变量及其分布函数一 随机变量概念在第一章里,我们主要研究了随机事件及其概率,读者可能会注意到在随机现象中,有很大一部分问题与实数之间存在着某种客观的联系. 例如,在产品检验问题中,我们关心的是抽样中出现的废品数;在车间供电问题中,我们关心的是某时间段正在工作的车床数;在电话问题中关心的是某一段时间内的话务量等. 对于这类随机现象,其试验结果显然可以用数值来描述,并且随着试验的结果不同而取不同的数值。
概率论与数理统计第二章_PPT课件
3,4,5
1.随机变量的定义
设E是一个随机试验,S是其样本空间.我们称样本空
间上的函数 X X e e S
为一个随机变量,如果对于任意的实数 x,集合
e : X e x X x
X (e)
e
都是随机事件.
随机变量的特点:
R
S
1). X的全部可能取值是互斥且完备的
2). X的部分可能取值描述随机事件
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:
1 , 2 , 3 , . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”,则 X 的所有可能取值为:
0 ,1 ,2 ,3 , ,3 . 0
( 5 ) 对 于 随 机 变 量 , 我 们 常 常 关 心 的 是 它 的 取 值 .
( 6 )我 们 设 立 随 机 变 量 ,是 要 用 随 机 变 量 的 取 值 来 描 述 随 机 事 件 .
实例2 掷一个硬币, 观察出现的面 , 共有两个 结果: e1(反面朝 ), 上
e2 (正面朝 ), 上 若用 X 表示掷一个硬币出现正面的次数, 则有
1 ,2 ,3 , . 注意 X(e) 的取值是可列无穷个!
实例7 某公共汽车站每隔 5 分钟有一辆汽车通 过, 如果某人到达该车站的时刻是随机的, 则
X(e) 此人的等车,时间
是一个随机变量. 且 X(e) 的所有可 能取值为: [0,5].
实例8 设某射手对目标进行射击,如果我们以目标 中心为坐标原点,考查射击点的平面位置(坐标), 为了便于研究,我们引入两个变量X,Y,其中
若用 X 表示该家女孩子的个数时 , 则有
概率论与数理统计 第二章随机变量及其分布剖析PPT课件
射手射击击中目标.
这种对应关系在数学上表现为一种实值函数.
w.
X(w) R
对于试验的每一个样本点w,都对应着一个实数 X(w),而X(w)是随着实验结果不同而变化的一个 变量。
机
随机变量的定义
设 随 机 实 验 E的 样 本 空 间 , 若 对 每 一 个 样 本 点
, 都 有 唯 一 的 实 数 X()与 之 对 应 ,则 称 X()为 随 机 变 量 , 简 记 为 X.
P (X k ) ( 1 p )k 1 p , (k 1 ,2 , )
则称随机变量X服从以p为参数的几何分布,
记作
X ~G(p) 。
超几何分布
设N个元素分为两类,有M个属于第一类,N-M
个属于第二类。现在从中不重复抽取n个,其 中包含的第一类元素的个数X的分布律为
P(Xk)CM kC C N n N n kM, (k0,1, ,l) 其中l=min{M,n}, 则称随机变量X服从参数为 的超几何分布,记作 X~H(N,M,n)
由泊松定理,n重贝努里试验中稀有事件 出现的次数近似地服从泊松分布.
例5. 某车间有5台车床,由于种种原因(由 于装、卸工作等),时常需要停车.设各 台车床的停车或开车是相互独立的. 若车床在任一时刻处于停车状态的 概率是1/3,求车间中恰有一台车床处 于停车状态的概率。
解:X:处于停车状态的车床数
密度函数 f (x)在某点处a的高度,并不反映 X取值的概率. 但是,这个高度越大,则X 取a附近的值的概率就越大. 也可以说,在 某点密度曲线的高度反映了概率集中在该 点附近的程度.
f (x)
o
x
例1 :某型号电子管的寿命X(小时)的概率密度为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2
2
2
1
1
1
0
X X (e) e出现正面的个数 RX {0,1,2,3} A1 { X 1} A2 {X X 1}
定义:设E是随机试验,它的样本空间为 X=X(e)是定义在样本空间上的实值单值函数,
称 X 为随机变量。
注:如果e本身是数,则令 X = X(e) = e,那么X就 是一个随机变量。 引例2 测量某灯泡的寿命, 令
的台数” Ai 表示“第i个人维护的20台中发生故障而不
i = 1,2,3,4 能及时维修”,
P( A1 A2 A3 A4 ) P( A1 ) P( X 2). =0.0169.
所以,4个人维护80台,发生故障而不能及时维修的概率:
2、设Y—80台同一时刻发生故障的台数, 则Y~b(80,0.01) =0.0087
例1. 已知随机变量X 的分布律为 求分布函数 F ( x)
解: F ( x) P{ X x} 当 x 0 时, { X x}
X
pk
0 1 3
1 1 6
2 1 2
F ( x) 0
1 当 0 x 1 时, F ( x) P{ X x} P{ X 0} 3 当 1 x 2时, 1 1 1 F ( x) P{ X 0} P{ X 1} 3 6 2 当x 2时 F ( x) P{ X 0} P{ X 1} P{ X 2} 1
所以,1、2两种方案,选取第二种。
定理1(泊松Poisson定理) 设 正整数,若
是一常数,n是
,则对任一固定的非负整数
证明
由
得
对于任意固定的
故有
Ⅲ.泊松分布 若随机变量 X 的分布律
P{ X k}
k
k!
e
k 0 , 1, 2 ,
其中 0 是常数 , 称 X 服从参数为 的泊松分布, 记为 X ~ ( ) (或X ~ p( )).
为n重伯努利试验,或称n重伯努利概型。
n重伯努利试验中, X— 事件A发生的次数 所以 注:
2、二项分布 定义2.如果随机变量
的分布律为 则称 服从参数为
其中
时,二项分布为
这就是(0—1)分布,常记为
某班有30名同学参加外语考试,每人及格的概率 例1、 X
Pk
. . 0
n=13, p = 0.5 Pk
.. k
当(n+1) p 不为整数时,二项概率 P ( X = k ) 在 k =[(n+1) p]达到最大 0 值;
...
n=10, p = 0.7
k
某人购买彩票, 设每次买一张, 中奖的概率为0.01, 例3.
共买800次,求他至少中奖两次的概率。 解: 把每次购买彩票看成一次随机试验 设中奖的次数为 X ,则 X ~ b(800, 0.01) 即 P{ X k} C k 0.01k 0.99800 k (k 0,1,,800) 800
∴可以使用分布函数值描述随机变量落在区间里的概率。 (1) P{x1 X x2} (2) P{x1 X x2} 同理,还可以写出
P{X x1} P{X x1}
二、分布函数的性质
⑴ 单调不减性: ,则
⑵ 0 F ( x) 1 ,且
⑶ 右连续性: 上述三条性质,也可以理解为判别函数是否是分布函数 的充要条件。
注: F ( x) f ( x)的方法.
随机变量的统计规律
分布函数
离散型r.v的 分布函数 分布函数 的性质 连续型r.v的 分布函数
概率分布律
概率密度
二、常用的连续型随机变量
1、均匀分布 定义、 若 连续型随机变量 X 的概率密度为:
1 , a xb f ( x) b a 其它 0,
1. 概率密度 定义1. 设 F(x) 是随机变量 X的分布函数,若存在非负 函数 f x x , ,使对任意实数 x 有
则称 X为连续型随机变量,称 f ( x)为 X 的概率密度函 数,简称概率密度或密度函数。 f (x)的意义: 随机变量 X在点x 处的密集程度。
二、 密度函数的性质 (1) 非负性 (2) 归一性
所以,
例2、 向[0,1]区间随机抛一质点,以 X表示质点坐标. 假定质点落在[0,1]区间内任一子区间内的概率与区间 长度成正比,求 X的分布函数. 解: 当 当 当 时, 时, 时,
特别,令
第五、六节 连续型随机变量及其分布
一、连续型随机变量的定义 二、常用的连续型随机变量
第二章
一、连续型随机变量的定义
随机变量函数和普通函数的区别:
1. 定义域不同 随机变量定义在样本空间上,定义域可以是数也可以 不是数;而普通函数是定义在实数域上的。 2. 随机变量函数的取值在试验之前无法确定,有一定 的概率;而普通函数却没有。
随机变量的分类:
离散型随机变量 随机变量 连续型随机变量
非离散型随机变量
其它
第二、三节 离散型随机变量及其分布
则称 X 服从 [a, b]上的均匀分布,
记作: X ~ U [a, b]
f (x)的 图形
分布函数为:
F ( x)
x
0, xa f (t )dt , b a 1,
F (x) 1
x a, a x b, x b.
图形如下
a
0
b
x
均匀分布的概率背景
P( x X x x) lim x 0 x
进而
P( x X x x) f ( x)x
3、连续性随机变量的特点
(1)
(2)
(3) F(x)连续。
例 1、 设连续型随机变量 X的概率密度为
求 A的值, 解: f ( x)dx
0
f (t ) d t
x1 x2
f (x)
密度函数的几何意义 即X落在[ x1 , x2 ]上的概率 [ x1 , x2 ] 上曲线 y f x 之下的曲边 梯形的面积。 0
x1 x2
x
(4) f (x)在点x 处连续,则 f ( x)
F ( x)
故
F ( x x) F ( x) f ( x) lim x 0 x
引例 将一枚硬币连抛三次,事件A1为“恰有一次出 现正面”,A2为至少有一次出现正面,求P(A1), P(A2) S {HHH, HHT, HTH , THH , HTT , THT , TTH , TTT }
A1 {HTT, THT, TTH}
X : 出现正面的次数
e: 样本点
e
X
HHH HHT HTH THH HTT THT TTH TTT
f x 0 x ,
f ( x)dx= 1.
性质(1)、(2)是密度函数的充要性质; 这两条性质是判定一个函数 f ( x) 是否为某随机变量 X的概率密度函数的充要条件。 f (x) 面积为1
1
0 x
3
P( x1 X x2 )=
x2 x1
第二章 随机变量及其分布
一、随机变量 二、离散型随机变量及其分布 三、随机变量的分布函数 四、连续型随机变量及其分布 五、随机变量的函数的分布
第一节
随机变量
第二章
对于随机试验而言,它的结果未必是数量化的。 为了更方便地从数量方面研究随机现象的统计规律, 有必要将随机试验的结果数量化。 人们作随机试验时,常常不是关心试验结果本 身,而是对和试验结果联系着的某个数感兴趣
A 3.
1 3 x Ae dx A( )e 3
3 x
0
A 1 3
1 3 x 3 0
1 3
f ( x ) dx
1 3 0
3e 3 x dx e
1 e 1.
例 2、 及概率密度函数 f (x)。 解:
求常数 a,b,
例 3、 解:
,求A , B 及 f (x)。
二、常用的离散型随机变量及其分布(重点)
Ⅰ. (0—1)分布 定义1.如果随机变量
的分布律为
则称
服从参数为
的(0—1)分布。
(0 —1)分布的分布律也可写成 注:如果随机试验只有两个结果,总能定义一个服从 (0 —1)分布的随机变量。
Ⅱ.二项分布 1.伯努利概型 ① n重独立试验 在相同的条件下对试验E重复做n次,若n次试验中各 结果是相互独立的,则称这n次试验是相互独立的。 ② 伯努利概型 两种可能结果,且 设随机试验E只有 ,将试验E独立地重复进行n次,则称这n次试验
解:
0
1
2
……
30
设100件产品中有95件合格品,5件次品,先从中 例 2、 随机抽取10件,每次取一件,X—10件产品中的次品数, (1)有放回的抽取,求 X的分布律; (2)无放回的抽取,求 X的分布律; (3)有放回的情况,求10件产品中至少有2件次品的概率。 解:(1) A — 取得次品, P(A)=0.05,
泊松分布的图形特点: X ~ ( )
泊松分布的应用
近数十年来,泊松分布日益显示其重要性,成为概 率论中最重要的几个分布之一。泊松分布在管理科 学、运筹学以及自然科学的某些问题中都占有重要 的地位。 ① 排队问题:在一段时间内窗口等待服务的顾客 数 X ~ p (l ) . ② 生物存活的个数 X ~ p (l ) . ③ 放射的粒子数 X ~ p (l ) .
第四节 随机变量的分布函数
一、分布函数的概念
第二章
二、分布函数的性质
三、离散型分布函数的求法