新北师大版九年级数学上册知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学九年级(上册)各章知识点

第一章特殊平行四边形

第二章一元二次方程

第三章概率的进一步认识

第四章图形的相似

第五章投影与视图

第六章反比例函数

第一章特殊平行四边形

1.1菱形的性质与判定

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

1.2 矩形的性质与判定

※矩形的定义:有一个角是直角的平行四边形叫矩形

..。矩形是特殊的平行四边形。

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。

1.3 正方形的性质与判定

正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

※正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半

第二章 一元二次方程

2.1 认识一元二次方程......

2.2 ...用.配方法求解.....一元二次方程...... 2.3 用公式法求解一元二次方程 2.4 用因式分解法求解一元二次方程 2.5 一元二次方程的跟与系数的关系 2.6 应用一元二次方程

※只含有一个未知数的整式方程,且都可以化为02

=++c bx ax (a 、b 、c 为

常数,a ≠0)的形式,这样的方程叫一元二次方程......

。 鹏翔教图3

※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。

※解一元二次方程的方法:①配方法 <即将其变为0)(2

=+m x 的形式>

②公式法 a

ac

b b x 242-±-= (注意在找ab

c 时须先把方程化为一般形式)

③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。

(主要包括“提公因式”和“十字相乘”)

※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

②将二次项系数化成1;

③把常数项移到方程的右边;

④两边加上一次项系数的一半的平方;

⑤把方程转化成0)(2

=+m x 的形式;

⑥两边开方求其根。

※根与系数的关系:当b 2

-4ac>0时,方程有两个不等的实数根;

当b 2

-4ac=0时,方程有两个相等的实数根;

当b 2

-4ac<0时,方程无实数根。

※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:

a

c x x a

b x x =

⋅-

=+2121。 ※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:

①212

212

22

12)(x x x x x x -+=+ ②

2

12

12111x x x x x x +=+ ③212212214)()(x x x x x x -+=-

2

1221214)(||x x x x x x -+=- ⑤

||22)(|)||(|2121221221x x x x x x x x +-+=+

⑥)(3)(21213

213

23

1x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。

(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(2122

1=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程

0)(21221=++-x x x x x x 的根

※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ※处理问题的过程可以进一步概括为: 解答检验

求解

方程抽象分析问题

→→ 第三章 概率的进一步认识

3.1 用树状图或表格求概率

3.2 用频率估计概率

※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..

; 即:实验次数

频数

数据总数频数频率==

在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。因此,各个小长方形的面积的和等于1。

※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。

用一件事件发生的频率来估计这一件事件发生的概率。 可用列表的方法求出概率,但此方法不太适用较复杂情况。

※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;

※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照

200

10

100=

x 估算出鱼的条数。(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)

※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。

概率的求法:

(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=

n

m (2)、列表法

用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。 (3)树状图法

通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。

相关文档
最新文档