初三数学作图题

合集下载

初三数学图形与变换试题

初三数学图形与变换试题

初三数学图形与变换试题1.请在图中作出线段使其平分且长度等于.(要求:用尺规作图,并写出已知、求作,保留作图痕迹,不写作法和结论)【答案】解:两边同乘以得····························4分经检验:是原方程的根。

∴原方程的解为: ····························6分19.已知:线段m,∠BAC·························1分求作:线段AD,使得∠BAD=∠CAD. AD="m" ····2分画图·········································4分【解析】略2.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()【答案】B.【解析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.试题解析:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选B.【考点】简单组合体的三视图.3.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.【答案】108.【解析】如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【考点】1.线段垂直平分线的性质;2.等腰三角形的性质;3.翻折变换(折叠问题).4.如图,在Rt△ABC中,∠ABC=90°,AB=BC.点D是线段AB上的一点,连结CD,过点B 作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②若点D是AB的中点,则AF=AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若,则.其中正确的结论序号是()A.①② B.③④ C.①②③ D.①②③④【答案】C【解析】∵∠ABC=90°,∠GAB=90°,∴AG//BC,∴△AFG∽△CFB,∴,故①正确;又∵∠BCD+∠BEC=∠BEC+∠ABG=90°,∴∠BCD=∠ABG,∵AB=BC,∴△CBD≌△BAG,∴AG=BD,∵BD=AB,∴AG:BC=1:2,∴AF:FC=1:2,∴AF:AC=1:3,∵AC=AB,∴AF=AB,故②正确;当B、C、F、D四点在同一个圆上时,∵∠DBC=90°,∴CD是直径,∴∠CFD=90°,∵BF ⊥CD ,∴BE =EF ,∴BD =DE ,故③正确; 若,则有BD :BC =1:3,∵∠BEC =∠DEB =90°,∠BCD=∠ABG ,∴△BDE ∽△CBE ,∴DE :BE =BE :CE =BD :BC =1:3,∴DE :CE =1:9,∴S △BDF :S △BFC =1:9,即S △BCF=9S△BDF ,故④错误; 故选C.【考点】1.相似三角形的判定和性质;2.圆周角定理;3.三角形全等的判定与性质.5. 下面四个图形中,不是中心对称图形的是( )【答案】B【解析】根据中心对称图形的概念可得:B 图形不是中心对称图形. 故选:B【考点】中心对称图形6. 如图,已知△ACB 与△DFE 是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合,将图(1)中的△ACB 绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则BD 之间的距离为 cm (保留根号).【答案】.【解析】利用△ACB 与△DFE 是两个全等的直角三角形,已知斜边AB=10cm,∠A=30°,可求BC ;利用旋转60°可求∠BCF=30°,进而求出BF 、FC 的长,求出BD 即可.试题解析:连接BD ,过点B 作BF ⊥DC 于点F由题意知,在Rt △ABC 中, ∠A=30°,∠B=60°由旋转的性质知图(2)中,CB=CE 故△BCE 为等边三角形 则∠ECB=60°,∠BCF=30° ∵AB=10cm∴BC=5cm ,AC=CD=cm 故BF=(cm ),FC=cm则DF=FC+DC=cm在Rt △BFD 中,BD=(cm ).【考点】旋转的性质.7. 如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得到△.已知∠AOB=30°,∠B=90°,AB=1,则点的坐标为().A.B.C.D.【答案】A【解析】作BC垂直AO,B'C'垂直A'O,根据旋转后的图形全等得A'B'=AB=1,∠AOB=∠A'OB'=30度,根据30度角直角三角形边角关系,得A'C'=,B'C'=,C'O=,所以B'坐标是(,),故选A.【考点】1.旋转性质 2.解直角三角形8.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【答案】见解析;4.9【解析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.【考点】相似三角形的判定与性质;正方形的性质9.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大D.三个视图的面积一样大【答案】C【解析】因为主视图共有4个小正方形,左视图共有4个小正方形,俯视图共有5个小正方形,所以俯视图的面积最大,故选:C.【考点】几何体的三视图.10.(3分)如图所示物体的主视图是()A.B.C.D.【答案】C.【解析】从正面看下边是一个矩形,上边中间位置是一个矩形.故选C.【考点】简单组合体的三视图.11.(12分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.【答案】(1);(2)答案见试题解析,②③都属于平移;(3)答案见试题解析.【解析】(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长;(2)利用平移拼出正方形;(3)在六边形图形上剪拼成的正方形即可.试题解析:(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长==,(2)如图,②③都属于平移,(3)如图乙:【考点】1.图形的剪拼;2.综合题.12.在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是(结果保留π).【答案】.【解析】将△ABC绕点B旋转60°,顶点C运动的路线长是就是以点B为圆心,BC为半径所旋转的弧,根据弧长公式即可求得.试题解析:∵AB=4,∴BC=2,所以弧长=.【考点】1.弧长的计算;2.旋转的性质.13.下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D.【解析】根据轴对称图形和中心对称图形的概念即可得出结果.试题解析:A、既不是轴对称图形,也不是中心对称图形,故该选项错误;B、是中心对称图形,但不是轴对称图形;故该选项错误;C、是轴对称图形,但不是中心对称图形,故该选项错误;D、既是轴对称图形,也是中心对称图形,故该选项正确.故选D.【考点】1.轴对称图形;2.中心对称图形.14.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.【答案】(1)=;(2)见解析.【解析】根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.试题解析:(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DBF中,AB=DF,∠ABF=∠DFB,BF=FB△ABF≌△DBF(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:,MN∥BF,△AMG∽△ABC,△DHN∽△DEF,,∴MG=HN,MB=NF.在△BMH和△FNG中,BM=FN,∠BMH=∠FNG,MH=NG△BMH≌△FNG(SAS),∴BH=FG.【考点】全等三角形的判定与性质;等腰三角形的性质;平移的性质15.点A关于x轴对称的点的坐标为(2,﹣1),则点A的坐标为,点A到原点的距离是.【答案】(2,1),.【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案,再利用勾股定理计算出A到原点的距离即可.试题解析:∵点A关于x轴对称的点的坐标为(2,﹣1),∴点A的坐标为:(2,1).P到原点的距离为:.【考点】关于x轴、y轴对称的点的坐标.16.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()【答案】A.【解析】从几何体左面看得到一列正方形的个数为2,故选A.【考点】简单组合体的三视图.17.下列图案中既是轴对称图形又是中心对称图形的是()【答案】D.【解析】 A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、即是轴对称图形,也是中心对称图形.故选D.【考点】1.中心对称图形;2.轴对称图形.18.如图,矩形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=40°,则∠BMC=()A.135°B.120°C.100°D.110°【答案】D.【解析】若∠1=40°,∴∠AMA1+∠DMD1=180-40=140°.∴∠BMA1+∠CMD1=70°.∴∠BMC=∠BMA1+∠CMD1+∠1=110°.故选D.【考点】1.翻折变换(折叠问题);2.角平分线的性质;3.矩形的性质.19.在平面直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(3,-2)D.(-2,-3)【答案】A.【解析】根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.【考点】关于原点对称的点的坐标.20.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M.N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1C.2a﹣b=1D.2a+b=1【答案】B【解析】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1。

谈谈“作图题”

谈谈“作图题”

谈谈“作图题”作者:张希麟来源:《初中生世界(初三年级)》2010年第04期作图是学习几何必须具备的一种基本能力, 尺规作图是几何作图的一种基本方法.现从以下五个方面来进行探讨.一、对于基本作图,不仅要会画,还要理解画法的依据例1(2006年宿迁市中考试题)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是().A.(SSS)B.(SAS)C.(ASA)D.(AAS)解析:用圆规截取得O′C′=OC,D′点是两条圆弧的交点,半径分别是OD、CD,说明O′D′=OD,C′D′=CD.因此△OCD和△O′C′D′全等的依据是(S.S.S.),由三角形全等,导出∠A′O′B′=∠AOB.故选A.二、学会将一个作图题分解为基本作图题例2(2005年苏州市中考试题)如图②,直角坐标系中一条圆弧经过网格点A、B、C,其中B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为.解析:圆心到A、B两点距离相等,那么圆心在AB的垂直平分线上,同理圆心又在BC的垂直平分线上,圆心就是两条垂直平分线的交点.因此只要作两次垂直平分线,问题就能解决.由于题中提供了方格纸,结合点A、B、C的特殊位置,只用直尺就能画出线段AB、BC的垂直平分线(见图中虚线),得圆心坐标(2,0).例3(2005年苏州市中考试题)如图③,平行四边形纸条ABCD中,E、F分别是边AD、BC的中点,张老师请同学们将纸条的下半部分?荀ABFE沿EF翻折,得到一个V字形图案.请你在原图中画出翻折后的图形?荀A′B′FE.(用尺规作图,不写画法,保留作图痕迹)解析:由翻折知?荀ABFE和?荀A′B′FE关于直线EF对称.要画出?荀A′B′FE,只要确定点A′和B′.作∠EFB′=∠EFB,截取FB′=FB.找对称点B′点就转化为上述两个基本作图题.A′点类同.B点的对称点B′也可这样来作:过B作EF的垂线,垂足为H;截取HB′=HB.B′的作法也转化为两个基本作图题.(请你动手画一画)三、画弧的重要作用在尺规作图中,直尺的用途就是连线,即过两点作直线、射线或线段.圆规的功能就是画圆弧,弧上的点到圆心的距离都等于定长(半径).例4(2008年无锡市中考试题)已知一个三角形的两条边长分别是1cm和2cm,一个内角为40°.(1)请你借助图④画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有个.解析:如图④,两边夹角,得满足题设条件的三角形.由于题中来指明两条边是40°角的两边,就可能产生其中一边是40°角的对边的情形.有两种可能:(1)2cm是对边的长,如图⑤;(2)1cm为对边的长,因为垂线段长为2sin40°>2sin30°=1,无解,如图⑥.将边长改为3cm和4cm后,当对边长为3cm时,有两解,如图⑦,其余两种情况类似,符合题意的三角形共有4个.四、作图题也要进行“分析”作图题和计算题、证明题一样,在解题中也需要进行分析.已知条件告诉了我们什么?要求作的图形等价于要作出什么?有时这样的分析要多次进行.例5(2007年江西省中考试题)如图⑧,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形,请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).解析:解决本题的关键在于找到∠AOB的平分线上的一个点.已知条件告诉我们OA=OB,说明△AOB是等腰三角形.由于等腰三角形三线合一,因此只要找到AB的中点.已知条件又告诉我们四边形AEBF为矩形,AB是矩形的一条对角线,由于矩形对角线互相平分,所以AB的中点就是矩形对角线的交点.为此,连接AB、EF,交点为C,射线OC就是∠AOB的平分线.五、借助作图,拓宽解题思路例6在方格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图⑨,在方格纸上,以AB为边的格点三角形ABC是等腰三角形,则符合条件的C点共有个.解析:以A为顶点的顶点:以A为圆心,AB长为半径,画弧,与图中格点的交点有6个,能构成等腰三角形的有4个;以B为顶角的顶点,类似,有1个符合条件;以AB为底边,作AB的垂直平分线,与格点无交点.综上,符合条件的C点共有5个.例7(2008年海南省初中数学竞赛题)在平面直角坐标系xoy内,已知点A(3,-3),P是y轴上一点,则使△AOP为等腰三角形的点P共有个.答案:4.同学们,你们答对了吗?。

陕西中考数学第题尺规作图专题练习复习

陕西中考数学第题尺规作图专题练习复习

陕西中考数学第题尺规作图专题练习复习图(1)图(2)2015中考数学--尺规作图(复习)班别:姓名:学号:⼀、理解“尺规作图”的含义1.在⼏何中,我们把只限定⽤直尺(⽆刻度)和圆规来画图的⽅法,称为尺规作图.其中直尺只能⽤来作直线、线段、射线或延长线段;圆规⽤来作圆和圆弧.由此可知,尺规作图与⼀般的画图不同,⼀般画图可以动⽤⼀切画图⼯具,包括三⾓尺、量⾓器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)⽤尺规作⼀条线段等于已知线段;(2)⽤尺规作⼀个⾓等于已知⾓. 利⽤这两个基本作图,可以作两条线段或两个⾓的和或差. ⼆、基本作图最基本,最常⽤的尺规作图,通常称基本作图。

⼀些复杂的尺规作图都是由基本作图组成的。

五种基本作图:1、作⼀条线段等于已知线段;2、作⼀个⾓等于已知⾓;3、作已知线段的垂直平分线;4、作已知⾓的⾓平分线;5、过⼀点作已知直线的垂线;1.作⼀条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1)作射线AP ;(2)在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

2. 作⼀个⾓等于已知⾓。

求作⼀个⾓等于已知⾓∠MON (如图1).已知:如图,∠MON .求作:∠COD ,使∠COD =∠MON . 作法:(1)作射线11M O ;(2)在图(1)上,以O 为圆⼼,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆⼼,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆⼼,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1.则∠D CO 1就是所要求作的⾓. 3.作已知线段的中点。

已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:(1)分别以M、N为圆⼼,⼤于的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ交MN于O.则点O就是所求作的MN的中点。

初三数学旋转作图练习题

初三数学旋转作图练习题

初三数学旋转作图练习题旋转作图是初三数学中的重要内容之一,通过练习旋转作图题目,可以帮助学生更好地理解几何形体的属性及变换规律。

下面,我将为你分享一些初三数学旋转作图练习题,并带你逐步解答。

1. 练习题一:将△ABC绕点O逆时针旋转60°,得到△A'B'C',若A(-2,3),B(0,5),C(2,3),求A'、B'和C'的坐标。

解答:首先,我们需要先求出旋转的中心点O的坐标。

根据题目中的要求,O为坐标平面上的一个点,但并未给出具体坐标,因此我们需要进行求解。

由于O为△ABC的重心,可以用顶点坐标的平均值来表示,所以O的横坐标为(-2+0+2)/3=0,纵坐标为(3+5+3)/3=11/3。

接下来,我们可以使用旋转公式来求出旋转后的点的坐标。

设△ABC绕点O逆时针旋转θ度后的点为A''、B''和C'',则有以下公式:A''(x,y) = ((x'-h)cosθ - (y'-k)sinθ + h, (x'-h)sinθ + (y'-k)cosθ + k)其中,(x,y)为旋转后的点的坐标,(x',y')为原始点的坐标,(h,k)为旋转中心点的坐标,θ为旋转角度。

代入已知数据,可得:A'(-2,3) → A''(x,y)B(0,5) → B''(x',y')C(2,3) → C''(x',y')O(0,11/3) → (h,k)θ = 60°将以上数据代入旋转公式,计算得出:A'' = (-2-0)cos60° - (3-(11/3))sin60° + 0 ≈ -3.732(-2-0)sin60° + (3-(11/3))cos60° + (11/3) ≈ 3.732B'' = (0-0)cos60° - (5-(11/3))si n60° + 0 ≈ -1.732(0-0)sin60° + (5-(11/3))cos60° + (11/3) ≈ 5.732C'' = (2-0)cos60° - (3-(11/3))sin60° + 0 ≈ 1.732(2-0)sin60° + (3-(11/3))cos60° + (11/3) ≈ 3.732因此,A' ≈ (-3.732, 3.732),B' ≈ (-1.732, 5.732),C' ≈ (1.732, 3.732)。

初三数学几何作图练习题

初三数学几何作图练习题

初三数学几何作图练习题在初三数学几何课程中,作图是一项重要的练习和应用技能。

通过几何作图的训练,学生可以培养准确观察、准确操作和空间想象能力,有效提高数学解题的能力。

在本篇文章中,将为您提供一些初三数学几何作图的练习题,帮助您更好地理解和掌握这一知识点。

一、作图练习题1问题:已知△ABC,∠C=90°,BC=3cm,AC=4cm,试作△ABC的外接圆,并确定圆心和半径。

解答:首先,我们可以通过已知条件得出∠A和∠B的度数。

由于∠C=90°,所以∠A+∠B=90°。

又因为△ABC是一个三角形,所以∠A+∠B+∠C=180°。

将这两个等式联立求解即可得到∠A和∠B的度数。

接下来,我们以线段AB为直径作圆,即可得到△ABC的外接圆。

根据圆的性质,将线段AB的中点O连接到圆心,即可确定圆心。

最后,测量线段AO的长度,即可确定圆的半径。

经过计算和测量,我们得出圆心为O,半径为2.5cm。

二、作图练习题2问题:已知△ABC,AC=6cm,BC=8cm,∠C=60°,试作△ABC的内切圆,并确定圆心与半径。

解答:要作出△ABC的内切圆,我们可以利用三角形的角平分线性质来解题。

首先,以线段AC和BC的交点为圆心,以这两条线段的其中一条为半径画弧,将∠C平分成两个角。

再以线段AB为半径,以这两个平分角的顶点为圆心,分别画弧,将线段AB延长与这两个弧交于两点。

连接这两个交点与圆心,即可得到内切圆。

然后,测量圆心到三角形△ABC的三边的距离,求平均值即可得到内切圆的半径。

经过测量和计算,我们得出内切圆的圆心为O,半径为2cm。

三、作图练习题3问题:已知正方形ABCD,AD=4cm,请在正方形ABCD的边AD上作一点E,使得△AEB为等边三角形。

解答:要作出△AEB为等边三角形,我们可以利用正方形的性质和等边三角形的性质来解题。

首先,将线段AD平分,将其分为两个等长的线段,记作AF和FD。

专题21 尺规作图-2019年中考数学考点总动员系列(原卷版)

专题21 尺规作图-2019年中考数学考点总动员系列(原卷版)

2019年中考数学备考之黄金考点聚焦考点二十一:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有解;(6)结论:对所作图形下结论.考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】(2017四川自贡第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,(2017黑龙江绥化第22题)如图,,,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)考点典例二、画已知直线的平行线,垂线【例2】(北京市燕山区2017届九年级一模)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【例3】(北京市海淀区2017-2018学年九年级上学期期中)下面是“作已知三角形的高”的尺规作图过程. 已知:ABC.求作:BC边上的高AD作法:如图,(1)分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AC于点O;(3)以O为圆心,OA为半径⊙O,与CB的延长线交于点D,连接AD,线段AD即为所作的高.请回答;该尺规作图的依据是___________________________________________________【举一反三】(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A .①B .②C .③D .④考点典例三、画三角形【例4】(2017江苏无锡第24题)如图,已知等边△ABC ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹): (1)作△ABC 的外心O ;(2)设D 是AB 边上一点,在图中作出一个正六边形DEFGHI ,使点F ,点H 分别在边BC 和AC 上.【举一反三】已知:线段a 、c 和∠β(如图),利用直尺和圆规作△ABC ,使BC=a ,AB=c ,∠ABC=∠β.(不写作法,保留作图痕迹).考点典例四、通过画图确定圆心【例5】(2017浙江嘉兴同学19题)如图,已知ABC ∆,40B ∠=︒.(1)在图中,用尺规作出ABC ∆的内切圆O ,并标出O 与边AB ,BC ,AC 的切点D ,E ,F (保留痕迹,不必写作法);的度数.(2)连接EF,DF,求EFD【举一反三】(浙江省杭州市余杭区2017届九年级上学期期中)如图,(1)作△ABC的外接⊙O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求⊙O的半径.课时作业☆能力提升1.(2017广西四市)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.(2016-2017学年江苏盐城东台市第二教育联盟初二上10月考)用尺规作图,不能作出唯一直角三角形的是().A.已知两条直角边 B.已知两个锐角C.已知一直角边和直角边所对的一锐角 D.已知斜边和一直角边3.(河南省驻马店市确山县2017-2018学年八年级上学期期中)如图,已知钝角∆ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A. AC平分∠BADB. BH垂直平分线段ADC.D. AB=AD4.(福建省晋江市2017年初中学业质量检查)已知点A,点B都在直线l的上方,试用尺规作图在直线l上 的值最小,则下列作法正确的是( ).求作一点P,使得PA PBA. B. C. D.5.(2017湖北随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E 为圆心,OE 长为半径画弧D. 以点E 为圆心,EF 长为半径画弧6.(浙江省温州市鹿城区第二十三中学2017学年H 上八年级期中)如图,用尺规作图作“一个角等于已知角”的原理是:因为D O C DOC ∆≅∆''',所以D O C DOC ∠=∠'''.由这种作图方法得到的D O C ∆'''和DOC ∆全等的依据是( )A. SSSB. SASC. ASAD. AAS7.(2017届浙江省杭州市淳安县中考模拟)尺规作图特有的魅力曾使无数人沉湎期中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分。

最新人教版九年级初三数学上册《旋转作图》提升练习题

最新人教版九年级初三数学上册《旋转作图》提升练习题

第2课时旋转作图基础题知识点1旋转作图1.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是________.2.如图所示,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°,画出旋转后的△AB′C′. 3.已知△ABC,请画出以C为旋转中心,顺时针旋转90°后的△A′B′C.4.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形.5.(荆门中考)如图1,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图2中用实线补全图形,这时DF=BE还成立吗?请说明理由.知识点2在平面直角坐标系中的图形旋转6.(烟台中考)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()A.(1,1) B.(1,2) C.(1,3) D.(1,4)7.(邵阳中考)如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°到OA′,则点A′的坐标是________.8.(青岛中考)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是________.中档题9.如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°10.(巴中中考)如图,已知直线y=-43x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A按顺时针方向旋转90°后得到△AO′B′,则点B′的坐标是________.11.(潜江、天门、仙桃中考)如图,在平面直角坐标系中,点A的坐标为(-1,2)点C的坐标为(-3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位,此时点C对应点的坐标为________.12.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E,试确定B,C,D的对应点的位置以及旋转后的四边形.13.(眉山中考)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.综合题14.(永州中考)在同一平面内,△ABC和△ABD如图1放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图2.请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图3,求证:四边形CDFE是平行四边形.参考答案基础题1.点B2.图略所示,△AB′C′为所求三角形.3.如图所示.4.图略,顶点B对应点的位置在点E处,△DEC为△ABC绕点C旋转后得到的三角形.5.补全图形图略.DF=BE成立.理由:∵四边形ABCD是正方形,△AEF是等腰直角三角形,∴AD=AB,AF=AE ,∠FAE =∠DAB =90°.∴∠FAD =∠EAB.在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AD =AB ,∠FAD =∠EAB ,AF =AE.∴△ADF ≌△ABE(SAS).∴DF =BE.6.B7.(-4,3)8.(1,0) 中档题9.B 10.(7,3) 11.(1,-3) 12.略.13.(1)图略.(2)图略.(3)旋转中心的坐标为(-1,0). 综合题14.(1)四边形ABDF 是菱形.理由如下:∵△DFA 是由△ABD 绕AD 的中点旋转180°所得,∴AB =DF ,BD =FA.∴四边形ABDF 是平行四边形.又∵AB =BD ,∴四边形ABDF 是菱形.(2)证明:由(1)知四边形ABDF 是平行四边形,∴AB ∥DF 且AB =DF.由旋转易知四边形ABCE 是平行四边形,∴AB ∥CE 且AB =CE.∴DF ∥CE 且DF =CE ,∴四边形CDFE 是平行四边形.良好的学习态度能够更好的提高学习能力。

苏科版2019-2020初三数学中考专题复习——尺规作图

苏科版2019-2020初三数学中考专题复习——尺规作图

初三数学专题复习尺规作图【基础训练】1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=.2.如图,在▱ABCD中,CD=8,BC=10,按以下步骤作图:①以点C为圆心,适当长度为半径作弧,分别交BC,CD于M,N两点;②分别以点M,N为圆心,以大于MN的长为半径画弧,两弧在▱ABCD的内部交于点P;③连接CP并延长交AD于点E,交BA的延长线于点F,则AF的长为.3.如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC于D 和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为.4.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为.5.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB ②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P 所有正确结论的序号是.6.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).【典型例题】例1.已知:如图,四边形ABCD是平行四边形.(1)用直尺和圆规在BC、AD上分别求作点E,F使AECF为菱形(不要求写作法,保留作图痕迹);(2)求证:AECF为菱形.例2.如图,∠MAN=90°,B,C分别为射线AM,AN上的两个动点,将线段AC绕点A逆时针旋转30°到AD,连接BD交AC于点E.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.例3.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2)连结DE,求证:DE为⊙O的切线;(3)若AC=5,DE=,求BD的长.【巩固练习】1.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的结论是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC2.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接PA;(2)作PA的垂直平分线MN,分别交直线l,PA于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是()A.△OPQ≌△OAB B.PQ∥AB C.AP=BQ D.若PQ=PA,则∠APQ=60°3.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:(1)延长OD交于点M;(2)连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是.4.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若∠AOB=20°,则∠OMN=.5.如图,在菱形ABCD中,按以下步骤作图:①分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E、F;②作直线EF交BC于点G,连接AG;若AG⊥BC,CG=3,则AD的长为.6.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为1.5m2.一位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C是这个正方形的一个内角.(1)请你用尺规为这位木匠在图中作出符合要求的正方形;(2)求加工出的这个正方形的边长.7.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.8.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.9.如图,B是⊙O的半径OA上的一点(不与端点重合),过点B作OA的垂线交⊙O于点C,D,连接OD.E是⊙O上一点,,过点C作⊙O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形;②求证:∠OFC=∠ODC;(2)连接FB,若B是OA的中点,⊙O的半径是4,求FB的长.10.已知⊙O及⊙O外一点P.(1)方法证明:如何用直尺和圆规过点P作⊙O的一条切线呢?小明设计了如图①所示的方法:①连接OP,以OP为直径作⊙O′;②⊙O′与⊙O相交于点A,作直线P A.则直线P A即为所作的过点P的⊙O的一条切线.请证明小明作图方法的正确性.(2)方法迁移:如图②,已知线段l,过点P作一条直线与⊙O相交,且该直线被⊙O所截得的弦长等于l.(保留作图痕迹,不要求写作法和证明)。

中考数学《尺规作图》专题复习试卷含试卷分析

中考数学《尺规作图》专题复习试卷含试卷分析

初三数学专题复习尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。

初三数学画图类模考30道-含答案

初三数学画图类模考30道-含答案

1.(2019•模拟)图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,四边形ABCD的顶点均在格点上,仅用无刻度直尺,分别按下列要求画图.(1)在图①中的线段CD上找到一点E,连结AE,使得AE将四边形ABCD的面积分成1:2两部分.(2)在图②中的四边形ABCD外部作一条直线l,使得直线l上任意一点与点A、B构成三角形的面积是四边形ABCD的面积的.(保留作图痕迹)2.(2019•模拟)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.3.(2019•一模)如图,在10×10的网格中,有一格点三角形ABC.(说明:顶点都在网格线交点处的三角形叫做格点三角形)(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A′B′C′,请直接画出平移后的△A′B′C′;(2)将△A′B'C'绕点C′顺时针旋转90°,得到△A″B″C′,请直接画出旋转后的△A″B″C′.(友情提醒:别忘了标上相应的字母!)(3)在第(2)小题的旋转过程中,点A′所经过的路线长π(结果保留π).B均在格点上,在图①、图②中仅用无刻度的直尺各画一个以A,B,C,D为顶点的菱形.要求:(1)点C,D在格点上(2)所画的两个菱形不全等B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.(1)在图①中的格线MN上确定一点P,使P A与PB的长度之和最小(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.段AB的端点均在格点上,在图①、图②给定的网格中以点A和点B为四边形的相对的两个顶点各画一个四边形,使另外两个顶点在格点上,要求:7.(2019•模拟)如图,在12×6的正方形网格中,每个小正方形的边长均为1.平行四边形ABCD的四个顶点均在格点上,点E是边BC上任意一点,将△ABE沿AE翻折,得到△AB'E,使点B'落在ABCD的边上,按要求在图①、图②中各画出一个△AB'E,并写出此时BE的长.(要求:图①、图②中所画的△AB'E不全等)8.(2019•一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.9.(2019•三模)如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为底边的等腰三角形CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行.10.(2019一模)图①、图②均是边长为1的小正方形组成的6×6的网格,每个小正方形的顶点称为格点.点A、B、C均在格点上,按下列要求画出顶点均在格点上的四边形.(1)在图①中确定顶点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图②中确定顶点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(图①、图②中各画出一个符合条件的四边形即可).11.(2019•模拟)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点.点A、B、C均在格点上.在图①、图②、图③给定的网格中按要求画图.(1)在图①中,画△ABC的高线AD.(2)在图②中,画△ABC的中线CE.(3)在图③中,画△ABC的角平分线BF.要求:借助网格,只用无刻度的直尺,不要求写出画法.12.(2019•模拟)图①、图②均是边长为1的小方形组成的5×5的网格,每个小方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②分别找到两个格点P、Q,连结PQ,交AB于点O.(1)在图①中,线段PQ垂直平分AB;(2)在图②中,使得BO=,要求保留画图痕迹,标好字母.13.(2019•模拟)图①,图②是两张相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图①,点P在小正方形的顶点上,在图①中作出点P关于直线AC的对称点Q,连结AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图②中画出一个以段段AC为对角线,面积为8的平行四边形ABCD,且点B和点D均在小正方形的顶点上.∠BAD=45°,四边形ABCD的周长=.14.(2019•一模)图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②给定的网格中各画一个△APC,使点P在线段AB上,点C为格点,且∠APC的正切值为2.要求:(1)图①中的△APC为直角三角形,图②中的△APC为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹15.(2019•模拟)定义:有一组对边相等而另一组对边不相等的凸四边形叫做“等对边四边形”.(1)已知:图①、图②是5×5的正方形网格,线段AB、BC的端点均在格点上.在图①、图②中,按要求以AB、BC为边各画一个等对边四边形ABCD.要求:四边形ABCD的顶点D在格点上,且两个四边形不全等.(2)若每个小正方形网格的边长为一个单位,请直接写出(1)问中所画每个等对边四边形ABCD的面积4.16.(2019•一模)图1、图2均是3×3的正方形网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上,(1)点C在格点上,且△ABC为等腰三角形,在图1中用黑色实心圆点标出点C所有可能的位置,(2)如图2,点D、M、N均在格点上,请用无刻度的直尺在线段MN上找到一点E,使线段DE=AB.(保留作图痕迹)17.(2019•模拟)图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.【探究】在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.【应用】在图②、图③中,点M、O、N均为格点.(1)利用【探究】的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为.18.(2019•二模)图①、图②均为4×4的正方形网格,每个小正方形的顶点称为格点,线段AB、DE的端点均在格点上.(1)在图①中画出以AB为斜边的等腰直角△ABC,使点C在格点上;(2)在图②中画出以DE为斜边的直角△DEF,使点F在格点上且△DEF与△ABC不全等,再在DE上找到一点P,使得FP最短.(要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法)19.(2019•四模)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画一个以线段AC为对角线、周长为20的四边形ABCD,且点B和点D 均在小正方形的顶点上,并求出BD的长;(2)在图2中画一个以线段AC为对角线、面积为10的四边形ABCD,且点B和点D 均在小正方形的顶点上.20.(2019•模拟)如图,在6×6的正方形网格中,每个小正方形的顶点称为格点,小正方形边长均为1线段AB的端点均在格点上.(1)在图中画出等腰直角△ABC,使∠BAC=90°,则△ABC面积为 6.5.(2)在图中找一点D,并连结AD、BD,使△ABD的面积为.(要求:只用无刻度的直尺,保留作图痕迹,不写作法)21.(2019•三模)图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的顶点都在格点上.(1)利用图①以AB为边画一个面积最大的平行四边形,且这个平行四边形的其他两个顶点在格点上;(2)利用图②以AB为边画一个面积为4的平行四边形,且这个平行四边形的其他两个顶点在格点上;(3)利用图③以AB为边画一个面积为4的菱形,且这个菱形的其他两个顶点在格点上.22.(2018•模拟)如图,在平面直角坐标系中,两个村庄M、N的坐标分别是(4,6)、(1,0),两村庄之间有一条河,河的两岸线的纵坐标分别是2和3,现准备在河上建一座桥(桥近似看成一条线段),桥垂直于河岸线,再在桥的两端向两个村庄铺建直线型路段,当两路段之和最小时,完成下列问题.(1)请画出桥的位置.(用虚线画出必要的辅助线)(2)你所画的桥的位置的数学依据是两点之间,线段最短.(3)直接写出桥的横坐标.23.(2018•二模)图①、图②均为4×4的正方形网络,线段AB、BC的端点均在格点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.24.(2018•二模)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为60米/分,a=960;并在图中画出y与x的函数图象(2)求小新路过小华家后,y与x之间的函数关系式.(3)直接写出两人离小华家的距离相等时x的值.25.(2019•一模)如图,在每个小正方形的边长为1的网格中,点O、M均在格点上,P为线段OM上的一个动点.(1)OM的长等于4;(2)当点P在线段OM上运动,OP=时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置(保留作图的痕迹)26.(2018•一模)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).27.(2018•三模)图①、图②均为3×3的正方形网格,每个小正方形的边长都为1,请在图①、图②中各画一个顶点在格点的三角形.要求:(1)所画的三角形为钝角三角形;(2)所画的三角形三边中有一边长是另一边长的倍;(3)图①、图②中所画的三角形不全等.28.(2019一模)如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,作出△AB1C1;(不要求写作法)(2)设网格小正方形的边长为1cm,用阴影表示出旋转过程中线段BC所扫过的图形,然后求出它的面积.(结果保留π).29.(2019•模拟)如图,六个完全相同的小长方形拼成了一个大长方形,点M、N均在小长方形的顶点,请在大长方形中完成下列画图.要求:仅用无刻度的直尺.(1)在图①中,作一个等腰三角形MNP,使点P在小长方形的顶点.(2)在图②中,作一直线CD,使CD与直线MN垂直.30.(2018•二模)如图,在8×6的正方形网格中,每个小正方形的边长均为1,线段AB、BC的端点均在小正方形的顶点上.(1)在图1中找一点D(点D在小正方形的顶点上),连接AD、BD、CD,使△ABD与△BCD全等;(2)在图2中找一点E(点E在小正方形的顶点上),使△ABE与△BCE均为以BE为直角边的直角三角形,且其中一个三角形的面积是另一个三角形面积的2倍,画出图形,并直接写出△ABE的周长.1.【解答】解:(1)如图①中,线段AE即为所求.(2)如图②中,直线l即为所求.2.【解答】解:符合条件的图形如图所示:3.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,△A″B″C′即为所求.(3)∵A′C′==,∠A′C′A″=90°,∴点A′所经过的路线长为=π,故答案为:π.4.【解答】解:如图,菱形ABCD即为所求.5.【解答】解:(1)如图①,作A关于MN的对称点A′,连接BA′,交MN于P,此时P A+PB=P A′+PB=BA′,根据两点之间线段最短,此时P A+PB最小;(2)如图②,作B关于MN的对称点B′,连接AB′并延长交MN于Q,此时∠AQM =∠BQM.6.【解答】解:如图所示,四边形ADBC即为所求.(答案不唯一)7.【解答】解:如图所示,△AB′E即为所求.8.【解答】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(﹣6,4).9.【解答】解:(1)△ABE即为所求.(2)△CDF即为所求.10.【解答】解:(1)如图①所示:(2)如图②所示:11.【解答】解:(1)如图所示,AD即为所求;(2)如图所示,CE即为所求;(3)如图所示,BF即为所求;12.【解答】解:(1)如图,线段PQ垂直平分线段AB,点O即为所求.13.【解答】解:(1)如图①所示,格点与边AQ构成直角三角形,由勾股定理得:AQ==2,同理可得:QC=CP=P A=2,四边形AQCP的周长=2×4=.答:四边形AQCP的周长为.(2)如图②所示,∵平行四边形ABCD的面积为8,∵底AD=4,高BE=2,在Rt△ABE中,∠ABE=45°,BE=2∴AE=BE=2,∴AB==2,∵ABCD是平行四边形,∵AB=CD=2,AD=BC=4,∴四边形ABCD的周长为.故答案为:.14.【解答】解:如图所示,图①中的△APC为直角三角形,图②中的△APC为锐角三角形.15.【解答】解:(1)满足条件的四边形如图所示.(2)图1中,四边形ABCD的面积=(1+3)×2=4,图2中,四边形ABCD的面积=2×4﹣×1×2﹣×1×2﹣×1×4=4.故四边形ABCD的面积都是4,故答案为4.16.【解答】解:(1)如图1所示;(2)如图2所示;17.【解答】【探宄】证明:∵AB==5,BC=5,∴AB=BC∵AD=CD==.BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,即BD平分∠ABC.【应用】解:(1)射线OP如图所示.(2)如图②连接MN交OP于K,∵四边形OMPN是菱形,∴MN⊥OP,∵OP=,OM=5,∴OK=,∴cos∠MOP==18.【解答】解:(1)△ABC即为所求.(2)Rt△DEF如图所示,取格点K,连接FK交DE于P,此时PF最短.19.【解答】解:(1)如图1所示,四边形ABCD即为所求,BD==4;(2)如图2,四边形ABCD即为所求.20.【解答】解:(1)如图所示:△ABC面积=×÷2=6.5;(2)点D在直线l上即可,答案不唯一.故答案为:6.5.21.【解答】(1)解:如图①.四边形ABCD即为所求.(2)解:知图②.四边形ABCD即为所求.(3)解:如围③.四边形ABCD即为所求.22.【解答】解:(1)如图所示,桥AB即本题所求.(2)两点之间,线段最短(3)设直线M'N的解析式y=kx+b根据题意得:解得:∴y=x﹣当y=2时,2=x﹣x=∴桥的横坐标为.23.【解答】解:如图所示:.24.【解答】解:(1)由图象可知,小新离小华家240米,用4分钟到达,则速度为60米/分;小新按此速度再走16分钟到达书店,则a=16×60=960米故答案为:60,960(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0)将点(4,0)、(20,960)代入得解得∴y1=60x﹣240(4≤x≤20时)(3)当两人分别在小华家两侧时,两人到小华家距离相同240﹣6x=40x解得x=2.4当小新经过小华家并追上小华时,两人到小华家距离相同60x﹣240=40x解得:x=12∴两人离小华家的距离相等时,x的值为2.4或1225.【解答】解:(1)由勾股定理得:OM=4;故答案为:4;(2)如图,取AB=CD=,分别交格线于点E和F,连接EF交OM于P,点P即为所求;理由是:∵EM=5.5,OF=2.5,EM∥OF,∴△EMP∽△FOP,∴,∴,∴,∴,∴OP=.26.【解答】解:(1)如图1所示;(2)如图2、3所示;27.【解答】解:如图所示;28.【解答】解:(1)作图如图:(2)线段BC所扫过的图形如图所示.根据网格图知:AB=4,BC=3,所以AC=5,阴影部分的面积等于扇形ACC1与△ABC的面积和减去扇形ABB1与△AB1C1,故阴影部分的面积等于扇形ACC1减去扇形ABB1的面积,两个扇形的圆心角都90度.∴线段BC所扫过的图形的面积S=π(AC2﹣AB2)=(cm2).29.【解答】解:(1)如图①中,△MNP即为所求.(2)如图②中,直线CD即为所求.30.【解答】解:(1)点D如图1所示,(2)点E如图2所示,△ABE的周长=AB+BE+AE=2+2+2=4+2.。

初三数学总复习作图例题及习题

初三数学总复习作图例题及习题

初三数学总复习作图例题及习题画角平分线利用直尺和圆规把一个角二等分. 已知:如图,∠AOB求作:射线OC ,使∠AOC =∠BOC跟踪练习1、如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。

2、已知:锐角△ABC ,求作:点 P ,使PA =PB ,且点 P 到边 AB 的距离和到边 AC 的距离相等。

3.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.4.如图,有分别过A 、B 两个加油站的公路1l 、2l 相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两条公路1l 、2l 的距离也相等。

请用尺规作图作出点P (不写作法,保留作图痕迹).AB CoBA图3BOANM6.如图,在△ABC 中,AD⊥BC,垂足为D.(2)尺规作图(不写作法,保留作图痕迹):作△ABC 的外接圆⊙O,作直径AE ,连接BE. (3)若AB=8,AC=6,AD=5,求直径AE 的长.(证明△ABE ∽△ADC.)7.山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美,图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的,图3是图2放大后的一部分,虚线给出了作图提示,请用圆规和直尺画图。

(1)根据图2将图3将补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形。

8.如图,已知Rt △ABC 和Rt △EBC ,90B ∠=°。

以边AC 上的点O 为圆心、OA 为半径的⊙O 与EC 相切,D 为切点,AD//BC 。

(1)用尺规确定并标出圆心O ;(不写做法和证明,保留作图痕迹) (2)求证:E A C B ∠=∠ (3)若AD=1,2tan 2D AC ∠=,求BC 的长。

E BCAD9、如图,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。

2018年初三数学创新作图试卷

2018年初三数学创新作图试卷

2018年初三数学创新作图试卷一.解答题(共13小题)1.如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..2.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.3.已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.4.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(第6题)(2)在图2中,画出△ABC中AB边上的高.5.如图,是由两个全等的矩形拼在一起的图形,请仅用无刻度的直尺,直接在图中用连线的方式按要求画出图形,并用字母表示所画图形.(1)在图(1)中画出一个平行四边形(要求不与原矩形重合);(2)在图2中画出一个菱形.6.如图,△ABC中(∠BAC<60°),AB=AC,AD⊥BC于点D.(1)如图1,请你在AD上,仅用圆规确定E点,使∠BEC=60°;(保留痕迹,不写画法)(2)如图2,请你在AB、AC上,仅用圆规确定F、G两点,使∠BFC=∠BGC=90°.(保留痕迹,不写画法)7.在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.8.如图,在△ABC 中,AB=AC=1,∠A=36°,▱EFGH 的顶点F ,G ,H 分别在AC ,AB ,BC 边上,且FC=CH .(1)请仅用无刻度的直尺作出∠ACB 的平分线.(2)在(1)中,若∠ACB 的平分线与AB 交于点D ,则AD 的长是 .9.如图,请仅用无刻度的直尺按下列要求画图:(1)如图1,在△ABC 中,AB=AC ,M 、N 分别是边AB 、AC 上的两点,且BM=CN ,请画出线段BC 的垂直平分线;(2)如图2,在菱形ABCD 中,∠B=60°,E 是AB 边的中点,请画出线段BC 的垂直平分线.10.仅用无刻度...的直尺作出符合下列要求的图形. (1)如图甲,在射线OP 、OQ 上已截取OA=OB ,OE=OF .试过点O 作射线OM ,使得OM 将∠POQ 平分;(2)如图乙,在射线OP 、OQ 、OR 上已截取OA=OB=OC ,OE=OF=OG (其中OP 、OR 在同一根直线上).试过点O 作一对射线OM 、ON ,使得OM ⊥ON . 11.下面两个图中,点A 、B 、C 均在⊙O 上,∠C=40°,请根据下列条件,仅用无刻度的直尺各画一个直角三角形,使其一个顶点为A ,且一个内角度数为40°.(1)在图1中,点O 在∠C 外部;(2)在图2中,点O 在∠C 内部且点D 在弦AB 上.12.在⊙O 中,点A ,B ,C 在⊙O 上,请仅用无刻度的直尺作图: (1)在图1中,以点C 或点B 为顶点作一锐角,使该锐角与∠CAB 互余; (2)在图2中,已知AD ∥BC 交⊙O 于点D ,过点A 作直线将△ACB 的面积平分.13.如图,▱ABCD 的顶点A 、B 、D 均在⊙O 上,请仅用无刻度的直尺按要求作图.(1)AB 边经过圆心O ,在图(1)中作一条与AD 边平行的直径;(2)AB 边不经过圆心O ,DC 与⊙O 相切于点D ,在图(2)中作一条与AD 边平行的弦.2018年初三数学创新作图答案参考答案与试题解析一.填空题(共1小题)1.如图,已知正五边形ABCDE,请用无刻度的直尺,准确地画出它的一条对称轴(保留作图痕迹)..【分析】根据正五边形的对称性,先任意作出两条对角线相交于一点,然后过第五个顶点与这个交点作出对称轴即可.【解答】解:如图所示,直线AK即为所求的一条对称轴(解答不唯一).【点评】本题考查了利用轴对称变换作图,熟练掌握正五边形的对称性是解题的关键.二.解答题(共12小题)2.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.【分析】(1)过点C作直径CD,由于AC=BC ,=,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.【解答】解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质.3.已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【分析】(1)求出三角形CD边上的高作图,(2)找出BE及它的高相乘得20,以AB为一边作平行四边形..【解答】解:设小正方形的边长为1,则S梯形ABCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.【点评】本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.4.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【分析】(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似,利用圆周角定理画图.【解答】解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.【点评】此题主要考查了复杂作图,关键是掌握三角形的三条高交于一点,直径所对的圆周角是90°.5.如图,是由两个全等的矩形拼在一起的图形,请仅用无刻度的直尺,直接在图中用连线的方式按要求画出图形,并用字母表示所画图形.(1)在图(1)中画出一个平行四边形(要求不与原矩形重合);(2)在图2中画出一个菱形.【分析】(1)利用平行四边形的性质结合矩形的性质得出即可;(2)利用菱形的性质结合矩形的性质得出符合题意的答案.【解答】解:(1)如图1,四边形ABCD为所求平行四边形;(2)如图2,四边形ABCD为所求菱形.【点评】此题主要考查了应用设计与作图,正确掌握矩形与菱形的性质是解题关键.6.如图,△ABC中(∠BAC<60°),AB=AC,AD⊥BC于点D.(1)如图1,请你在AD上,仅用圆规确定E点,使∠BEC=60°;(保留痕迹,不写画法)(2)如图2,请你在AB、AC上,仅用圆规确定F、G两点,使∠BFC=∠BGC=90°.(保留痕迹,不写画法)【分析】(1)利用等腰三角形的性质以及等边三角形的判定方法得出即可;(2)利用圆周角定理进而求出即可.【解答】解:(1)作图如图1;(2)作图如图2.【点评】此题主要考查了复杂作图,熟练应用圆周角定理得出是解题关键.7.在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P (1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.【分析】①如图1中,∠P即为所求;②如图2中,∠P即为所求;③如图3中,∠EPC即为所求;【解答】解:①如图1中,tan∠P=1.理由:∵∠P=∠DOC=45°,∴tan∠P=1.∴∠P即为所求;如图2中,tan∠P=.理由:∵∠P=∠FAC,∴tan∠P=tan∠FAC==.∴∠P即为所求.如图3中,tan∠EPC=2.理由:∵∠E=∠FAC,PE是直径,∴∠FAC+∠AFC=90°,∠E+∠EPC=90°,∴∠AFC=∠EPC,tan∠EPC=tan∠AFC==2.∴∠EPC即为所求;【点评】此题考查了圆周角定理与三角函数的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.8.如图,在△ABC中,AB=AC=1,∠A=36°,▱EFGH的顶点F,G,H分别在AC,AB,BC边上,且FC=CH.(1)请仅用无刻度的直尺作出∠ACB的平分线.(2)在(1)中,若∠ACB的平分线与AB交于点D,则AD的长是.【分析】(1)连结FH、EG,它们相交于点O,根据平行四边形的性质得OF=OH,而CF=CH,所以连结OC,则OC平分∠ACB;(2)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠ACB=72°,∠ACD=∠DCB=36°,∠CDB=72°,则可判断AD=CD=CB,设AD=x,则CD=BC=x,BD=1﹣x,再证明△CDB∽△ABC,利用相似比得到=,然后解方程求出x 即可.【解答】解:(1)如图,CO为所作;(2)∵AB=AC=1,∠A=36°,∴∠ABC=∠ACB=72°,∵CD平分∠ACB,∴∠ACD=∠DCB=36°,∴∠CDB=72°,∴AD=CD=CB,设AD=x,则CD=BC=x,BD=1﹣x,∵∠DCB=∠A,∴△CDB∽△ABC,∴=,即=,整理得x2+x﹣1=0,解得x1=(舍去),x2=,∴AD 的长为.故答案为.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了相似三角形的判定与性质.9.如图,请仅用无刻度的直尺按下列要求画图:(1)如图1,在△ABC中,AB=AC,M、N分别是边AB、AC上的两点,且BM=CN,请画出线段BC的垂直平分线;(2)如图2,在菱形ABCD中,∠B=60°,E是AB边的中点,请画出线段BC的垂直平分线.【分析】(1)连接CM和BN,它们相交于点O,利用三角形全等可证明OB=OC,而AB=AC,则直线AO垂直平分BC,如图1;(2)连接BD、AC相交于点0,连接CE交BO于P,根据菱形的性质和等边三角形的判定与性质可判断CE和BO为等边△ABC的高、中线,所以AP垂直平分AF,如图2.【解答】解:(1)如图1,AD为所作;(2)如图2,AF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.10.仅用无刻度...的直尺作出符合下列要求的图形.(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作一对射线OM、ON,使得OM⊥ON.【分析】(1)连接AF交BE于C,过点C作射线OM即可;(2)同法作射线ON平分∠GOQ,作射线OM平分∠QOP即可;【解答】解:(1)如图甲中,射线OM即为所求;(2)如图乙中,射线ON、OM即为所求;【点评】本题考查基本作图,角平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.下面两个图中,点A、B、C均在⊙O上,∠C=40°,请根据下列条件,仅用无刻度的直尺各画一个直角三角形,使其一个顶点为A,且一个内角度数为40°.(1)在图1中,点O在∠C外部;(2)在图2中,点O在∠C内部且点D在弦AB上.【分析】(1)过点A作直径AD,连结BD,根据圆周角定理得到∠D=∠C=40°,∠ABD=90°,从而可判断△ABD满足条件;(2)延长CD交圆于点E,过点E作直径EF,连结AF,根据圆周角定理得到∠F=∠C=40°,∠EAF=90°,从而可判断△AEF满足条件.【解答】解:(1)如图1,△ABD为所作;(2)如图2,△AEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.熟练掌握圆周角定理是解决此题的关键.12.在⊙O中,点A,B,C在⊙O上,请仅用无刻度的直尺作图:(1)在图1中,以点C或点B为顶点作一锐角,使该锐角与∠CAB互余;(2)在图2中,已知AD∥BC交⊙O于点D,过点A作直线将△ACB的面积平分.【分析】(1)作直径CE,连接BE,则∠CBE=90°,所以∠E与∠BCE互余,根据圆周角定理得到∠A=∠E,于是得到∠BCE与∠CAB互余;(2)连接点O和CD与AB的交点,此直线与BC相交于点F,由于AD∥BC,则四边形ADBC为等腰梯形,从而得到OF垂直平分BC,然后根据三角形面积公式可判断直线AF将△ACB的面积平分.【解答】解:(1)如图1,∠BCE为所作;(2)如图2,AF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.13.如图,▱ABCD的顶点A、B、D均在⊙O上,请仅用无刻度的直尺按要求作图.(1)AB边经过圆心O,在图(1)中作一条与AD边平行的直径;(2)AB边不经过圆心O,DC与⊙O相切于点D,在图(2)中作一条与AD边平行的弦.【分析】(1)连接AC、BD交于点K,过点O、K作直径EF.EF为所求.(2)连接OD,DO的延长线交AB于T,连接AC、BD交于K,过T、K作弦GH,GH为所求.【解答】解:(1)连接AC、BD交于点K,过点O、K作直径EF.EF为所求.(2)连接OD,DO的延长线交AB于T,连接AC、BD交于K,过T、K作弦GH,GH为所求.【点评】本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

初三数学作图题

初三数学作图题

初三数学作图题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN作图题1、(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,新课标第一网∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.2、(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图.分析:①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答:解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD: AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.3、(2013•昆明)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C、D平移后的对应点A1、B1、C1、D1的位置,然后顺次连接即可;(2)根据网格结构找出B1、C1、D1绕点A1逆时针旋转90°的对应点B2、C2、D2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标.解答:解:(1)四边形A1B1C1D1如图所示;(2)四边形A1B2C2D2如图所示,C2(1,﹣2).点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.4、(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C 均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.5、(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.6、(2013年江西省)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度...的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【答案】 (1)如图1,点P 就是所求作的点;(2)如图2,CD 为AB 边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E , 连接BE ,就得到AC 边上的高BE ;同理设BC 与圆的交点为D , 连接AD ,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高. 【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考. 【关键词】 创新作图 圆 三角形的高7、(2013年武汉)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△11B A C ;平移△ABC ,若A 的对应点2A 的坐标为(0,4),画出平移后对应的△222C B A ;(2)若将△11B A C 绕某一点旋转可以得到△222C B A ,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标. 解析:(1)画出△A 1B 1C 如图所示: (2)旋转中心坐标(23,1 ); (3)点P 的坐标(-2,0).8、(2013凉山州)在同一平面直角坐标系中有5个点:A (1,1),B (﹣3,﹣1),C (﹣3,1),D (﹣2,﹣2),E (0,﹣3).(1)画出△ABC 的外接圆⊙P ,并指出点D 与⊙P 的位置关系;(2)若直线l 经过点D (﹣2,﹣2),E (0,﹣3),判断直线l 与⊙P 的位置关系.考点:直线与圆的位置关系;点与圆的位置关系;作图—复杂作图. 专题:探究型.分析:(1)在直角坐标系内描出各点,画出△ABC 的外接圆,并指出点D 与⊙P 的位置关系即可;(2)连接OD ,用待定系数法求出直线PD 与PE 的位置关系即可.解答:解:(1)如图所示:△ABC 外接圆的圆心为(﹣1,0),点D 在⊙P 上; (2)连接OD ,设过点P 、D 的直线解析式为y=kx+b , ∵P (﹣1,0)、D (﹣2,﹣2),xy(B 1)C 2B 2A 2A 1ACB O 第21题图–1–2–3–4–512345–1–2–3–4–512345xyA CB O 第21题图–1–2–3–4–512345–1–2–3–4–512345∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥PE,∵点D在⊙P上,∴直线l与⊙P相切.点评:本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.9、(2013•眉山)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)考点:作图-旋转变换;弧长的计算;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B绕点C顺时针旋转90°后的A2、B2的位置,然后顺次连接即可;(3)利用勾股定理列式求出BC的长,再根据弧长公式列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C如图所示;(3)根据勾股定理,BC==,所以,点B旋转到B2所经过的路径的长==π.点评:本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构准确找出对应点的位置是解题的关键.10、(2013•广安)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).考点:作图—应用与设计作图.专题:作图题.分析:分直径在直角边AC、BC上和在斜边AB上三种情况分别求出半圆的半径,然后作出图形即可.解答:解:根据勾股定理,斜边AB==4,①如图1、图2,直径在直角边BC或AC上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=4﹣4,②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=2,作出图形如图所示:点评:本题考查了应用与设计作图,主要利用了直线与圆相切,相似三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.11、(2013•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.12、(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.13、(2013•巴中)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)考点:作图-旋转变换;轴对称-最短路线问题;作图-平移变换.分析:(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).点此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求求最评:小值问题是考试重点,同学们应重点掌握.14、(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点:作图-位似变换;作图-旋转变换.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.15、(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.16、(2013•苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是△DFG或△DHF(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).考点:作图—应用与设计作图;列表法与树状图法.分析:(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.解答:解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF.点评:此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.17、(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.分析:△ABC绕A点逆时针旋转90°得到△A1B1C1,△A1B1C1沿直线B1C1作轴反射得出△A2B2C2即可.解答:解:如图所示:点评:此题主要考查了图形的旋转变换以及轴对称图形,根据已知得出对应点位置是解题关键.18、(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C 都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点坐标是解题关键.19、(2013•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解解:∵∠C=90°,AC=1,BC=,答:∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.20、(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?考点:作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.解答:解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.21、(2013•孝感)如图,已知△ABC和点O.(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?考点:作图-旋转变换;作图—复杂作图.分析:(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.22、(2013•咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x 轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.23、(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)考点:作图—应用与设计作图.分析:仔细分析题意,寻求问题的解决方案.到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.解答:解:(1)作出线段AB的垂直平分线;(2)作出角的平分线(2条);它们的交点即为所求作的点C(2个).点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解.24、(2013哈尔滨)如图。

初三数学图形与坐标试题

初三数学图形与坐标试题

初三数学图形与坐标试题1.在如图的平面直角坐标系中,已知点A(-2,-1),B(0,-3),C(1,-2),请在如图上画出△ABC和与△ABC关于x轴对称的△A1B1C1.【答案】作图见解析.【解析】根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再根据网格结构找出点A、B、C关于x轴对称点A1、B1、C1的位置,然后顺次连接即可.试题解析:△ABC和与△ABC关于x轴对称的△A1B1C1如图所示.【考点】作图-轴对称变换.2.点P(5,-3)关于原点的对称点的坐标为【答案】(-5,3)【解析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.试题解析:∵5的相反数是-5,-3的相反数是3,∴点P(5,-3)关于原点的对称点的坐标为(-5,3),【考点】关于原点对称的点的坐标.3.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.【答案】(﹣4,3).【解析】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【考点】坐标与图形变化-旋转4.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)【答案】D【解析】根据两种变换的规则,先计算f(5,-9)=(5,9),再计算g(5,9)即可.解:g(f(5,-9))=g(5,9)=(9,5).故选D.5.在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A.(-1,-2)B.(1,-2)C.(2,-1)D.(-2,1)【答案】A【解析】关于x轴对称的点横坐标不变纵坐标相反,所以选A.6.将点A(4,0)绕着原点按顺时针旋转45°得到点B,则B点坐标是()A.(4, 4)B.(4,-4)C.(2, 4)D.(2,-4)【答案】B.【解析】作出图形,过点B作BC⊥x轴于点C,判断出△OBC是等腰直角三角形,根据等腰直角三角形的性质求出OC=BC=4,再写出点B的坐标即可.如图,过点B作BC⊥x轴于C,∵点A(4,0),∴OB=OA=4,∵旋转角是45°,∴△OBC是等腰直角三角形,∴OC=BC=4×=4,∴点B的坐标为(4,-4).故选B.考点: 旋转的性质.7.如图,在平面直角坐标系中,点O是原点,点B(0,),点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,则点M的坐标是(,).【答案】(1,)【解析】∵点B(0,),∴OB=。

初三数学复习尺规作图ppt课件

初三数学复习尺规作图ppt课件

⊙O就是所求作的圆
10
A O
B
C
O
A
B C
直角三角形外心是斜边AB
的中点
钝角三角形外心在 △ABC的外面 11
已知: △ABC(如图) 求作:△ABC的内切圆
A
N OM
B
D
C
作法:1. 作∠ABC、 ∠ACB的平分线BM和 CN,交点为O.
2. 过点O作OD⊥BC,垂足为D.
3. 以O为圆心,OD为半径作⊙O.
. D. B . C
. B,,C,,D,, O
C
使得 OA, OB, OC, OD, 1
OA OB OC OD 2
(4)顺次连接A,B,,B,C,,C,D,,D,A,,得到
19
A D
B
C. O.
C

D
B. .
点O也在四边形ABCD外
A(点O在这两个四边形的两侧20 )
点O在四边形ABCD内
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
顶点的位置确定,只要能分别作
B
出这三个顶点关于直线l 的对称
点,连接这些对称点,就能得到
C
要作的图形。
A O
l
作法: 1、过点A作直线l 的垂线,垂足

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析

初三数学立体图形试题答案及解析1.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝【答案】B.【解析】这是一个正方体的平面展开图,共有六个面,相对两个面之间隔一个正方形.因此,其中面“成”与面“功”相对,“中”与面“考”相对,面“预”与面“祝”相对.故选B.【考点】正方体及其表面展开图.2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。

如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是A.五棱柱B.六棱柱C.七棱柱D.八棱柱【答案】B【解析】九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故此选项错误;B、六棱柱共18条棱,故此选项正确;C、七棱柱共21条棱,故此选项错误;D、九棱柱共27条棱,故此选项错误;故选:B.【考点】棱柱与棱锥3.如图所示的是某几何体的三视图,则该几何体的形状是()A.三棱锥B.正方体C.三棱柱D.长方体【答案】C.【解析】根据三视图可以想象出该物体由三条棱组成,底面是三角形,此只有三棱柱的三视图与题目中的图形相符.故选C.【考点】由三视图判断几何体.4.下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.【答案】(1)作图见解析(2)作图见解析(3)作图见解析【解析】思路分析:(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.解:(1)如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可;(2)如图,2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;(3)如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.点评:本题考查了图形的剪拼,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.5.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm3【答案】B【解析】该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。

初三数学灯光与影子试题

初三数学灯光与影子试题

初三数学灯光与影子试题1.画出下图中各木杆在灯光下的影子【答案】如图所示:【解析】根据物高把光线挡住,照不到的地方形成影长,即可作出图形.如图所示:【考点】中心投影作图点评:作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以作图题形式出现,属于基础题,难度不大.2.某人在室内从窗口向外观看(如下图).(1)在右图中将视点用点标出.(2)在右图中将视线画出.(3)在下图中,画出视角,并测量视角度数.(4)此人若想在此窗口观察室外更多的影物,应该靠近窗口,还是远离窗口?【答案】(1)(2)(3)如图所示:(4)应该靠近窗口【解析】两个物体与影长的对应顶点的连线交于一点,这样得到的投影是中心投影.(1)(2)(3)如图所示:(4)此人若想在此窗口观察室外更多的影物,应该靠近窗口.【考点】中心投影作图点评:作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以作图题形式出现,属于基础题,难度不大.3.以下各图是某人站在室内,由远及近逐渐靠近窗口观察室外的一组照片。

(1)按此人逐渐靠近窗口的顺序,这5张照片的顺序应为__________;(2)说出此人观察室外的视角由大到小的顺序.【答案】(1)②→④→③→⑤→④(2)视角由大到小的顺序为④⑤③④②【解析】根据中心投影的特点和规律依次分析各个图形即可判断.(1)按此人逐渐靠近窗口的顺序,这5张照片的顺序应为②→④→③→⑤→④;(2)视角由大到小的顺序为④⑤③④②.【考点】中心投影的特点和规律点评:此类问题主要考查学生对生活中的常见现象的理解能力,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.太阳光线形成的投影是_________,灯光形成的投影是_________.【答案】平行投影,中心投影【解析】直接根据平行投影和中心投影的形成原因填空即可.太阳光线形成的投影是平行投影,灯光形成的投影是中心投影.【考点】平行投影和中心投影点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.5.将一个三角板放在太阳光下,它所形成的投影是_________,也可能是_________.【答案】三角形,一条线段【解析】根据太阳高度角不同,所形成的投影也不同,即可判断.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形.【考点】平行投影的特点点评:利用数学知识分析身边中的现象是数学学科的指导思想,体现了“数学来源于生活,服务于生活”.6.为了测量水塔的高度,我们取一竹杆,放在阳光下,已知2米长的竹杆投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为_________.【答案】40米【解析】设水塔高为x米,根据同一时刻物体的高度和影长成正比即可列方程求解.设水塔高为x米,由题意得解得则水塔高为40米.【考点】平行投影的应用点评:方程思想在初中数学的学习中极为重要,也是中考中的热点,在各种题型中均有出现,需多加关注.7.身高相同的小明和小丽站在灯光下的不同位置,已知小明的投影比小丽的投影长,我们可以判定小明离灯光较_________.【答案】远【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.由题意可得小明离灯光较远.【考点】中心投影的特点点评:此类问题主要考查学生对生活中的常见现象的理解能力,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.8.“皮影戏”作为我国一种民间艺术,对它的叙述错误的是()A.它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B.表演时,要用灯光把剪影照在银幕上C.灯光下,做不同的手势可以形成不同的手影D.表演时,也可用阳光把剪影照在银幕上【答案】D【解析】“皮影戏”是我国的民间故事表演,它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲,演时,要用灯光把剪影照在银幕上,灯光下,做不同的手势可以形成不同的手影,这些都是“皮影戏”的常识,故A、B、C都是正确的,D是错误的故选D.【考点】中心投影的应用点评:利用数学知识分析身边中的现象是数学学科的指导思想,体现了“数学来源于生活,服务于生活”.9.如图,电杆上有一路灯:电杆两侧的两根木棍在路灯下的位置如图所示,如何确定路灯的位置.【答案】如图所示:【解析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源,由此可得出路灯的位置.如图,两直线的交点即为光源的位置.【考点】中心投影作图点评:作图能力是学生必须具备的基本能力,因为此类问题在中考中比较常见,一般以作图题形式出现,属于基础题,难度不大.10.为什么同一物体早晨的影子较长,中午的影子较短,点燃一只蜡烛,找一木棍变换蜡烛的位置能得出怎样的结论?【答案】因为早晨的太阳线与水平线的夹角小,所以对同一物体,早晨时刻在太阳下的影子比中午长;在蜡烛下则为中心投影,水平转动蜡烛位置则改变影子也随着旋转,但长度不变.【解析】根据太阳光线与地平线夹角的变化可作出解释,再由中心投影的特点可对蜡烛移动作出解释.因为早晨的太阳线与水平线的夹角小,所以对同一物体,早晨时刻在太阳下的影子比中午长;在蜡烛下则为中心投影,水平转动蜡烛位置则改变影子也随着旋转,但长度不变.【考点】平行投影及中心投影的特点和规律点评:此类问题主要考查学生对生活中的常见现象的理解能力,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。

北京中考数学习题精选:尺规作图

北京中考数学习题精选:尺规作图

一、选择题1、(北京市丰台区初二期末)如图,已知射线OM .以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是 A .90° B .60° C .45° D .30°答案:B 二、填空题2.(北京市怀柔区初二期末)下面是“作一个角等于已知角”的尺规作图过程.已知:∠AOB. 求作:一个角,使它等于∠AOB. 作法:(1)作射线O A ''; (2)以O 为圆心,任意长为半径作弧, 交OA 于C ,交OB 于D ; (3)以O '为圆心,OC 为半径作弧C E '', 交O A ''于C ';E'O'C'D'DCB'A'OBA请回答:这样作一个角等于已知角的理由是 .答案:全等三角形的对应角相等;有三边分别相等的两个三角形全等;同圆(等圆)的半径相等.3.(北京市顺义区八年级期末)如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的同样长为半径画弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连结CD .请回答:若CD =AC ,∠A =50°,则∠ACB 的度数为 .答案:1054.(北京市平谷区初二期末)阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”小艾的做法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧. (2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧. (3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求. 老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________________________________________________________. 解: 到线段两端距离相等的点在线段的垂直平分线上; 两点确定一条直线;(或sss ;全等三角形对应角相等;等腰三角形的三线合一)5、(北京海淀区二模)下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.已知:线段AB .求作:以AB 为斜边的一个等腰直角三角形ABC . 作法:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为 半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;OQABBA COQP AB(3)以O 为圆心,OA 的长为半径作圆,交直线PQ 于点C ; (4)连接AC ,BC .则ABC △即为所求作的三角形.请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 . 答案:①直径所对的圆周角为直角②线段垂直平分线上的点与这条线段两个端点的距离相等6、(北京房山区二模)阅读下面材料: 在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________.D ABC EAB尺规作图:作一条线段等于已知线段. 已知:线段AB .求作:线段CD ,使CD =AB .如图:(1) 作射线CE ;(2) 以C 为圆心,AB 长为答案:两点确定一条直线;同圆或等圆中半径相等7、(北京东城区二模)阅读下列材料:数学课上老师布置一道作图题:小东的作法如下:老师说:“小东的作法是正确的.”请回答:小东的作图依据是.答案:三边分别相等的两个三角形全等;全等三角形的对应角相等;两点确定一条直线;内错角相等两直线平行.8、(北京东城区二模)在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是A.图2B. 图1与图2C. 图1与图3D. 图2与图3答案C9、(北京朝阳区二模)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是.答案:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义.10、(北京通州区一模)答案11. (北京门头沟区初三综合练习)下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.已知:线段a 、b ,求作:Rt ABC ∆.使得斜边AB b =,AC a = 作法:如图.(1)作射线AP ,截取线段AB b =; (2)以AB 为直径,作⊙O ; (3)以点A 为圆心,a 的长为半径作弧交⊙O 于点C ;bPCOAB(4)连接AC 、CB .ABC 即为所求作的直角三角形.请回答:该尺规作图的依据是__________.答案等圆的半径相等,直径所对的圆周角是直角,三角形定义12.(北京顺义区初三练习)在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.小华的做法如下:老师说:“小华的作法正确” .请回答:小华的作图依据是 . 答案:同圆半径相等,对角线相等且互相平分的四边形是矩形.(或直径所对的圆周角是直角,三个角是直角的四边形是矩形. 等等) 13.(北京石景山区初三毕业考试)小林在没有量角器和圆规的情况AB(1)如图1,任取一点O ,过点O 作直线l 1,l 2; (2)如图2,以O 为圆心,任意长为半径作圆,与直线l 1,l 2分别相交于点A 、C ,B 、D ;(3)如图3,连接AB 、BC 、CD 、DA . 四边形ABCD 即为所求作的矩形.图3图2图1OOOABCDl 1l 2l 1l 2l 2l 1DCBA下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 .答案:(1)斜边和一条直角边分别相等的两个直角三角形全等; (2)全等三角形的对应角相等.14.(北京平谷区中考统一练习)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON . 求作:射线OP ,使它平分∠MON . 作法:如图2,(1)以点O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (2)连结AB ;(3)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于点P ;(4)作射线OP .所以,射线OP 即为所求作的射线.请回答:该尺规作图的依据是 . 答案答案不唯一:到线段两端点距离相等的点在线段的垂直平分线上;等腰三角形三线合一. 15.(北京海淀区第二学期练习)下面是“过圆上一点作圆的切线”的尺规作图过程.已知:⊙O 和⊙O 上一点P .求作:⊙O 的切线MN ,使MN 经过点P .作法:如图,(1)作射线OP ;(2)以点P 为圆心,小于OP 的长为半径作弧交射线OP 于A ,B 两点; (3)分别以点A ,B 为圆心,以大于12AB 长为 半径作弧,两弧交于M ,N 两点;(4)作直线MN .则MN 就是所求作的⊙O 的切线.请回答:该尺规作图的依据是 .答案与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.PONMBAP O16. (北京怀柔区一模)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:该尺规作图的依据是____________________________.答案到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.17.(北京市朝阳区综合练习(一))下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:△ABC.求作:△ABC 的内切圆.BAC 如图,(1)作∠ABC ,∠ACB 的平分线BE 和CF ,两线相交于点O;(2)过点O 作OD ⊥BC ,垂足为点D;(3)点O 为圆心,OD 长为半径作⊙O.DOCABEF已知:直线a和直线外一点P.求作:直线a的垂线,使它经过P.作法:如图,(1)在直线a上取一点A, 连接P A;(2)分别以点A和点P为圆心,大于AP的长为半径作弧,两弧相交于B,C两点,连接BC交P A于点D;(3)以点D为圆心,DP为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是.答案与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角18.(北京市大兴区检测)下面是“求作∠AOB的角平分线”的尺规作图过程.已知:如图,钝角∠AOB.求作:∠AOB的角平分线.作法:①在OA和OB上,分别截取OD、OE,使OD=OE;②分别以D 、E 为圆心,大于12DE的长为半径作弧, 在∠AOB 内,两弧交于点C ; ③作射线OC.所以射线OC 就是所求作的∠AOB 的角平分线.请回答:该尺规作图的依据是 . 答案SSS 公理,全等三角形的对应角相等. 19.(北京东城区一模)已知正方形ABCD .求作:正方形ABCD 的外接圆. 作法:如图,(1)分别连接AC ,BD ,交于点O ;(2) 以点O 为圆心,OA 长为半径作O .O 即为所求作的圆.请回答:该作图的依据是_____________________________________. 答案正方形的对角线相等且互相平分,圆的定义20.(北京丰台区一模)下面是“作一个角等于已知角”的尺规作图过程.已知:∠A .求作:一个角,使它等于∠A . 作法:如图,(1)以点A 为圆心,任意长为半径作⊙A ,交∠A 的两边于B ,C 两点; (2)以点C 为圆心,BC 长为半径作弧,A D CB A与⊙A 交于点D ,作射线AD . 所以∠CAD 就是所求作的角.请回答:该尺规作图的依据是 . 答案在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.21、(北京昌平区第一学期期末质量抽测)阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆(如图);第二步:以B 点为圆心,1为半径作弧交半圆于点C (如图); 第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为________.(第16题图)答案:22、(北京朝阳区第一学期期末检测)16. 下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程. xA B 01C5O请回答:该尺规作图的依据是 .答案:到线段两端距离相等的点在线段垂直平分线上;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;等边三角形的判定;圆的定义.23、(北京房山区第一学期检测)下面是“作圆的内接正方形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正方形. 作法:如图,(1)过圆心O 作直线AC ,与⊙O 相交于A ,C 两点; (2)过点O 作直线BD ⊥AC ,交⊙O 于B ,D 两点; (3)连接AB ,BC ,CD ,DA . ∴四边形ABCD 为所求.请回答:该尺规作图的依据是 .(写出两条) 答案:OCBCDBAO24、(北京大兴第一学期期末)下面是“作出所在的圆”的尺规作图过程.已知:.求作:所在的圆.作法:如图,(1)在上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的所在的圆..请回答:该尺规作图的依据是.答案: 不在同一直线上的三个点确定一个圆;圆是到定点的距离等于定长的点的集合;线段垂直平分线上的点到线段两个端点的距离相等.25、(北京丰台区第一学期期末)下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是 ; (2)直线PA ,PB 是⊙O 的切线,依据是 . 答案:直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线. 26、(北京海淀区第一学期期末)下面是“作一个30°角”的尺规作图过程.OPCNPOAMB已知:∠O 和∠O 外一点P . 求作:过点P 的∠O 的切线. 作法:如图, (1)连接OP ;(2)分别以点O 和点P 为圆心,大于 12OP 的长为 半径作弧,两弧相交于M ,N 两点;(3)作直线MN ,交OP 于点C ;请回答:该尺规作图的依据是 .答案:三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,一条弧所对的圆周角是它所对圆心角的一半;或:直径所对的圆周角为直角,三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,直角三角形两个锐角互余; 或:直径所对的圆周角为直角,1sin 2A =,A ∠为锐角,30A ∠=︒. 27、(北京怀柔区第一学期期末)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下: 已知:△OAB .AB请回答:这样做的依据是 . 答案:圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.28、(北京门头沟区第一学期期末调研试卷)下面是“作已知圆的内接正方形”的尺规作图过程 .请回答:该尺规作图的依据是______________________________________________. 答案:到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)29、(北京密云区初三(上)期末)下面是“经过圆外一点作圆的切线”的尺规作图的过程.DC N MBO A已知:⊙O .求作:⊙O 的内接正方形. 作法:如图,(1)作⊙O 的直径AB ; (2)分别以点A ,点B 为圆心,大于12AB 的长为 半径作弧,两弧分别相交于M 、N 两点;请回答,该作图的依据是________________________.以上作图的依据是:__________________________________________________________.答案:经过半径外端且并且垂直于这条半径的直线是圆的切线,直径所对的圆周角为直角。

初三尺规作图练习题

初三尺规作图练习题

初三尺规作图练习题尺规作图是初中数学中的基础内容,通过使用尺子和圆规来进行几何图形的绘制和构造。

这是一项重要的技能,它能够培养学生的空间想象力、观察力和创造力。

以下是几个初三尺规作图练习题,帮助学生巩固和提高这一技能。

练习一:画等边三角形1. 用尺子和圆规画一个等边三角形。

2. 以线段AB为边,以A为圆心,画一个以线段AB为半径的圆弧。

3. 以线段BA为边,以B为圆心,画一个以线段BA为半径的圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个等边三角形。

练习二:画正四边形1. 画一个边长为5cm的正四边形。

2. 以点A为圆心,以5cm为半径,画一个圆弧。

3. 以点B为圆心,以5cm为半径,画一个圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个正四边形。

练习三:画正六边形1. 画一个边长为4cm的正六边形。

2. 以点A为圆心,以4cm为半径,画一个圆弧。

3. 连接圆弧上的点与圆心A,得到一条线段。

4. 以线段AB为边,以点B为圆心,以4cm为半径,画一个圆弧。

5. 连接圆弧上的点与线段AB的端点,得到一条线段。

6. 以线段AC为边,以点C为圆心,以4cm为半径,画一个圆弧。

7. 连接圆弧上的点与线段AC的端点,得到一个正六边形。

练习四:画平行线1. 画一条任意长度的线段AB。

2. 以点A为圆心,以任意半径,画一个圆弧。

3. 以点B为圆心,以相同的半径,画一个圆弧。

4. 这两个圆弧相交于点C和D。

5. 连接CD,得到一条平行于线段AB的线段。

以上是初三尺规作图练习题,通过这些练习,可以提高学生的尺规作图能力,加深对几何图形的理解,培养学生的观察和推理能力。

这些技能对于初中数学以及将来的学习和职业发展都具有重要意义。

希望同学们能够认真练习,掌握这一基本技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学作图题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN作图题1、(2013•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,新课标第一网∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.2、(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4考点:角平分线的性质;线段垂直平分线的性质;作图—基本作图.分析:①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答:解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC:S△ABC=AC•AD: AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.点评:本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.3、(2013•昆明)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位,再向下平移6个单位,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C、D平移后的对应点A1、B1、C1、D1的位置,然后顺次连接即可;(2)根据网格结构找出B1、C1、D1绕点A1逆时针旋转90°的对应点B2、C2、D2的位置,然后顺次连接即可,再根据平面直角坐标系写出点C2的坐标.解答:解:(1)四边形A1B1C1D1如图所示;(2)四边形A1B2C2D2如图所示,C2(1,﹣2).点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.4、(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C 均落在格点上.(Ⅰ)△ABC的面积等于6;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.考点:作图—相似变换;三角形的面积;正方形的性质.专题:计算题.分析:(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求解答:解:(Ⅰ)△ABC的面积为:×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求点评:此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.5、(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.6、(2013年江西省)如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度...的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【答案】 (1)如图1,点P 就是所求作的点;(2)如图2,CD 为AB 边上的高.【考点解剖】 本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】 图1点C 在圆外,要画三角形的高,就是要过点B 作AC 的垂线,过点A 作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC 与圆的交点为E , 连接BE ,就得到AC 边上的高BE ;同理设BC 与圆的交点为D , 连接AD ,就得到BC 边上的高AD ,则BE 与AD 的交点就是△ABC 的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC 的三条高的交点P ,再作射线PC 与AB 交于点D ,则CD 就是所求作的AB 边上的高. 【解答过程】 略.【方法规律】 认真分析揣摩所给图形的信息,结合题目要求思考. 【关键词】 创新作图 圆 三角形的高7、(2013年武汉)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△11B A C ;平移△ABC ,若A 的对应点2A 的坐标为(0,4),画出平移后对应的△222C B A ;(2)若将△11B A C 绕某一点旋转可以得到△222C B A ,请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标. 解析:(1)画出△A 1B 1C 如图所示: (2)旋转中心坐标(23,1 ); (3)点P 的坐标(-2,0).8、(2013凉山州)在同一平面直角坐标系中有5个点:A (1,1),B (﹣3,﹣1),C (﹣3,1),D (﹣2,﹣2),E (0,﹣3).(1)画出△ABC 的外接圆⊙P ,并指出点D 与⊙P 的位置关系;(2)若直线l 经过点D (﹣2,﹣2),E (0,﹣3),判断直线l 与⊙P 的位置关系.考点:直线与圆的位置关系;点与圆的位置关系;作图—复杂作图. 专题:探究型.分析:(1)在直角坐标系内描出各点,画出△ABC 的外接圆,并指出点D 与⊙P 的位置关系即可;(2)连接OD ,用待定系数法求出直线PD 与PE 的位置关系即可.解答:解:(1)如图所示:△ABC 外接圆的圆心为(﹣1,0),点D 在⊙P 上; (2)连接OD ,设过点P 、D 的直线解析式为y=kx+b , ∵P (﹣1,0)、D (﹣2,﹣2),xy(B 1)C 2B 2A 2A 1ACB O 第21题图–1–2–3–4–512345–1–2–3–4–512345xyA CB O 第21题图–1–2–3–4–512345–1–2–3–4–512345∴,解得,∴此直线的解析式为y=2x+2;设过点D、E的直线解析式为y=ax+c,∵D(﹣2,﹣2),E(0,﹣3),∴,解得,∴此直线的解析式为y=﹣x﹣3,∵2×(﹣)=﹣1,∴PD⊥PE,∵点D在⊙P上,∴直线l与⊙P相切.点评:本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.9、(2013•眉山)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)考点:作图-旋转变换;弧长的计算;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B绕点C顺时针旋转90°后的A2、B2的位置,然后顺次连接即可;(3)利用勾股定理列式求出BC的长,再根据弧长公式列式计算即可得解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C如图所示;(3)根据勾股定理,BC==,所以,点B旋转到B2所经过的路径的长==π.点评:本题考查了利用轴对称变换作图,利用旋转变换作图,以及弧长的计算,熟练掌握网格结构准确找出对应点的位置是解题的关键.10、(2013•广安)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).考点:作图—应用与设计作图.专题:作图题.分析:分直径在直角边AC、BC上和在斜边AB上三种情况分别求出半圆的半径,然后作出图形即可.解答:解:根据勾股定理,斜边AB==4,①如图1、图2,直径在直角边BC或AC上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=4﹣4,②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,∴=,解得r=2,作出图形如图所示:点评:本题考查了应用与设计作图,主要利用了直线与圆相切,相似三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.11、(2013•温州)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.考点:作图-旋转变换;作图-平移变换.专题:图表型.分析:(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.解答:解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.12、(2013•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.13、(2013•巴中)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)考点:作图-旋转变换;轴对称-最短路线问题;作图-平移变换.分析:(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.解答:解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).点此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求求最评:小值问题是考试重点,同学们应重点掌握.14、(2013•宁夏)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.考点:作图-位似变换;作图-旋转变换.分析:(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.解答:解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.点评:此题考查了位似变换的性质与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.15、(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.16、(2013•苏州)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是△DFG或△DHF(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).考点:作图—应用与设计作图;列表法与树状图法.分析:(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.解答:解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF.点评:此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.17、(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.分析:△ABC绕A点逆时针旋转90°得到△A1B1C1,△A1B1C1沿直线B1C1作轴反射得出△A2B2C2即可.解答:解:如图所示:点评:此题主要考查了图形的旋转变换以及轴对称图形,根据已知得出对应点位置是解题关键.18、(2013•淮安)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C 都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点坐标是解题关键.19、(2013•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解解:∵∠C=90°,AC=1,BC=,答:∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.20、(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?考点:作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.解答:解:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).点评:本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.21、(2013•孝感)如图,已知△ABC和点O.(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?考点:作图-旋转变换;作图—复杂作图.分析:(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.22、(2013•咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x 轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.23、(2013•白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)考点:作图—应用与设计作图.分析:仔细分析题意,寻求问题的解决方案.到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.解答:解:(1)作出线段AB的垂直平分线;(2)作出角的平分线(2条);它们的交点即为所求作的点C(2个).点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解.24、(2013哈尔滨)如图。

相关文档
最新文档