11矩阵与线性代数综合练习[1]
线性代数试题库(矩阵)
1.对任意n 阶方阵,A B 总有〔〕A.AB BA =B.AB BA =C.()T T T AB A B =D. 222()AB A B = 答案:BAB BA A B ==2.在如下矩阵中,可逆的是〔〕A.000010001⎛⎫ ⎪ ⎪ ⎪⎝⎭B.110220001⎛⎫ ⎪ ⎪ ⎪⎝⎭C.110011121⎛⎫ ⎪ ⎪ ⎪⎝⎭D.100111101⎛⎫ ⎪ ⎪ ⎪⎝⎭答案:D3.设A 是3阶方阵,且2,A =-,如此1A -=〔〕 A.-2B.12-C.12答案:B4.设矩阵111121231A λ⎛⎫ ⎪= ⎪ ⎪+⎝⎭的秩为2,如此λ=〔〕答案:B提示:显然第三行是第一行和第二行的和5.设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,矩阵X 满足方程2AX E A X +=+,求矩阵X .答案:201030102X ⎛⎫ ⎪= ⎪ ⎪⎝⎭解:22()AX E A X A E X A E +=+⇒-=-101001020010101100A A E ⎛⎫⎛⎫ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭显然A E -可逆,所以:112()()()()A E A E X X A E A E ----==--1()()()A E A E A E A E -=--+=+201030102X ⎛⎫ ⎪∴= ⎪ ⎪⎝⎭6.求如下矩阵的秩01112022200111111011A --⎛⎫ ⎪-- ⎪= ⎪- ⎪-⎝⎭答案:37.设矩阵1410,1102P D ---⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,矩阵A 由矩阵方程1P AP D -=确定,试求5A . 答案:511/3127/3127/331/3-⎛⎫ ⎪-⎝⎭11551P AP D A PDP A PD P ---=⇒=⇒=15141/31/310,114/31/3032P P D -----⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭所以:55114101/31/3511/3127/3.110324/31/3127/331/3A PD P ------⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭8.设矩阵A 可逆,证明*11()A A A --= 证明:因为**AA A A A E ==,矩阵A 可逆,所以0A ≠ ⇒**A A A A E A A== 又因为11A A-=,所以:*11()A A A --= 9假如A 是( ),如此A 必为方阵.A. 分块矩阵B. 可逆矩阵C. 转置矩阵D. 线性方程组的系数矩阵答案:B10.设n 阶方阵A ,且0A ≠,如此*1()A -= ( ). A. A A B. *A AC. 1A A -D. *A A答案:A11假如( ),如此A B A. A B = B. 秩()A =秩()BC. A 与B 有一样的特征多项式D. n 阶矩阵A 与B 有一样的特征值,且n 个特征值各不一样答案:B12.设123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,如此T AA =______.答案:123246369⎛⎫ ⎪ ⎪ ⎪⎝⎭13.设m n ⨯矩阵A ,且秩()A r =,D 为A 的一个1r +阶子式,如此D =_____. 答案:0141P AP B -=,且0B ≠,如此A B ______. 答案:115.20311101X ⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭,求矩阵X 。
线性代数习题及解答完整版
线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数矩阵练习题参考答案
《线性代数》第二章练习题参考答案8、设矩阵A满足A2+A-4E=O,则(A-E)-1=(A+2E) 一、填空题1、设A=⎛ 12 ⎫⎛3-2⎫⎛⎝-13⎪⎪⎭,B= ⎝21⎪⎪⎭,则 3A+2B =⎛ 92⎫⎝111⎪⎭; AB =⎛ 70⎫⎝35⎪⎭;BT= 3⎝-2⎛19-3⎫2、设矩阵A=⎛ -15⎫⎪,8⎪⎝13⎭B=⎛ 31⎫则⎛-614⎫-1 -8⎝-20⎪,⎭3A-B= ⎝59⎪,⎭AB= 11⎪⎪。
⎝88⎪⎭3、设A为三阶矩阵,且A=2,则2A*-A-1=2724、设矩阵A为3阶方阵,且|A|=5,则|A*|=__25____,|2A|=____40_ ⎛⎛3、设A= 120⎫340⎪⎪,B=⎛ 23-1⎫T86⎫ 1810⎪⎝-121⎪⎭⎝-240⎪⎪⎭,则AB=⎪⎝310⎪⎭⎛11⎫4、设A=1 225⎪⎪,且r(A)=2,则t= 4 ⎝11t⎪⎭⎛ 1233⎫5、若A=3-12⎪06-24⎪⎪则r(A)=_2____ ⎝0000⎪⎭6、设矩阵A=⎛ 1-1 ⎫⎛⎝23⎪⎪⎭,B=A2-3A+2E,则B-1= 01⎫ 2⎪⎝-1-1⎪⎭7、设A是方阵,已知A2-2A-2E=O,则(A+E)-1=3E-A2⎫1⎪⎭ 2⎛102⎫9、设A是4⨯3矩阵且r(A)=2,B= 020⎪⎪,则r(AB)=⎝-103⎪⎭⎛10、设A= 100⎫ 220⎪⎪,则(A*)-1=1⎛100⎫A=1 220⎪⎪⎝345⎪⎭A10 ⎝345⎪⎭⎛⎛ 100⎫11、设A= 300⎫ 140⎪⎪,则(A-2E)-1=-11⎪⎝003⎪⎭220⎪⎪(用分块矩阵求逆矩阵) ⎝001⎪⎭⎛⎛ 520⎫1-20⎫0-2500⎪12、设A= 2100⎪⎪001-2⎪,则A-1=0012⎪⎪ 33⎪⎝0011⎪⎪⎭⎪⎝00-11⎪33⎪⎭13、已知A为四阶方阵,且A=12,则3281⎛⎫⎛2n⎫14、设A= 2⎫3⎪⎛22,A2= 32⎪⎪⎛2-1n⎪⎪,An= 3⎪,A-1= 3-1⎝4⎪⎭⎝42⎪⎭⎝4n⎪⎭⎝⎛ 100⎫⎪⎛00⎛15、若A= 230则A*= 18⎫ -1260⎪=1⎪,A-1 1800⎫⎪,-1260⎪⎝456⎪⎭⎝-2-53⎪⎭18⎝-2-53⎪⎪⎭二、单项选择题⎫⎪⎪4-1⎪⎭1、若A2=A,则下列一定正确的是 ( D ) (A) A=O (B) A=I (C) A=O或A=I (D)以上可能均不成立2、设A,B为n阶矩阵,下列命题正确的是( C )(A)(A+B)=A+2AB+B;(B)(A+B)(A-B)=A-B; 21(A)a;(B);(C)an-1;(D)an。
线性代数-矩阵及其运算习题
设
D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D
⋅
D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n
−
1
n
n
n n n×n
解
n − 1 − 1 − 1 2
n −1
n n−1
−
n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.
解
X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,
线性代数综合练习
《线性代数》总复习题一、判断题1. 仅当021====n k k k 时等式02211=++n n k k k ααα才成立,则向量组n ααα,,21线性无关. ( )2. 若r ααα ,,21线性相关,则r ααα ,,21,n r αα,1+也线性相关.( ) 3. 一个向量组如果含有零向量,则这个向量组一定线性相关. ( ) 4. 如果矩阵A 存在一个不为零的r 阶子式则矩阵的秩为r . ( )5. r ααα ,,21为向量组T 的一部分向量,如果r ααα,,21线性无关,则r ααα,,21为向量组T 的最大无关组. ( )6. 由n 维向量r ααα,,21生成的子空间或者是n 维的或者是r 维的.( ) 7. 任意齐次线性方程组或者无解,或者有唯一解,或者有无穷多解.( ) 8. 初等矩阵可理解为单位矩阵经过一次初等变换而得到. ( ) 9. 矩阵经过初等变换后得到的新矩阵实际上与原矩阵相等. ( ) 10. 矩阵经过初等变换其行列式的值不变. ( ) 11. 矩阵经过初等变换其秩不变. ( ) 12.线性方程组0=⨯x A n m 的解空间维数仅与m ,n 有关. ( ) 13.线性方程组b x A n m =⨯的解全体构成一个)(A R n -维子空间. ( ) 14.方阵A 为实对称矩阵当且仅当A 的特征值为实数. ( ) 15.方阵A 的对应于特征值λ的特征向量x 必定是齐次线性方程组0)(=-x E A λ的解. ( )16.矩阵的秩就是其列(或行)向量组中线性无关向量的个数. ( )17.如果向量空间V 的任一向量均可由r ααα,,21线性表示,则称r ααα,,21为V 的一个基. ( )18. 若在矩阵A 中有一个r 阶子式不为0,则A 中至少有一个r -1阶子式不为0. ( ) 19. 上三角方阵的值就是主对角线上元素的乘积. ( )20. 若r ααα ,,21线性相关,则1α 可由r αα,2线性表示. ( ) 二 、选择题1. 设B A ,为n 阶矩阵,且0≠A ,而0=AB ,则 A )0=B B )0=A 或0=B C) 0=BA D )()222B A B A +=+2.设B A ,为n 阶矩阵且A 可逆,则有A )11---=-A A B )()k k kB A AB =C )111)(---=B A ABD )1*-=n AA3.设⎥⎦⎤⎢⎣⎡=210A B A A ,其中21,A A 都是方阵,且0≠A ,则有 A )1A 可逆但2A 不一定可逆 B )2A 可逆但1A 不一定可逆C )1A 与2A 的可逆性不定D )1A 与2A 均可逆4.设A 为n 阶方阵,则0=A 的充分必要条件是A )两行(列)元素对应成比例B )必有一行为其余行的线性组合C )A 中有一行元素全为0D )任一行为其余行的线性组合 5.A 为n m ⨯矩阵,齐次线性方程组Ax =0仅有零解的充要条件是A 的(A ) 列向量组线性无关 (B )列向量组线性相关 (C )行向量组线性无关 (D )行向量组线性相关6.设线性方程组Ax =b 有m 个方程,n 个未知量,则正确的是(A ) 若Ax =0仅有零解,则Ax =b 有唯一解 (B ) 若Ax =0有非零解,则Ax =b 有无穷多解(C ) 若Ax =b 有无穷多解,则Ax =0仅有零解 (D ) 若Ax =b 有无穷多解,则Ax =0有非零解7.线性方程组Ax =b 有m 个方程,n 个未知量,且r(A )=r, 则此方程组(A )r=m 时,有解 (B )r=n 时,有唯一解 (C )m=n 时,有唯一解 (D )r<n 时,有无穷多解8.方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=--=++=-+08870430252032321321321321x x x x x x x x x x x x 的解的情形是(A) 无解, (B) 基础解系中有一个向量 ,(C) 仅有零解 (D) 基础解系 中有两个向量9.设,,333222111333222111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=c b y c b y c b y B c b x c b x c b x A 且A B ==-27,,则A B + 等于 (A) 5 (B) 5- (C) 10- (D) 20- 10.设向量组αααα1234,,, 线性无关, 则线性无关的向量组是()14433221 , , , αααααααα-+++A ()14433221 , , , αααααααα--++B()14433221 , , , αααααααα-+-+C ()14433221 , , , αααααααα----D三、填空题1. 设A 为44⨯矩阵, B 为55⨯矩阵,且2=A ,2-=B ,则B A -= ,A B -= 2.设()E B A +=21,则当且仅当2B = 时,A A =2 3.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100110202211A ,则=A4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100020101A ,()()=-+-E A E A 93215. []n n b b b a a a 2121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6. 行 列 式a b b d a c c d++++=________________.7. 设E (,)i j 表 示 由n 阶 单 位 矩阵 第i 行 与 第j 行互 换 得 到 的 初 等 矩 阵, 则E (,)i j -=1__________.8. 设A 为正交矩阵, 且*A A T -=, 其中*A 是A 的伴随矩阵, 则A 的行列式等于________.9. 设 A, B 都是n 阶方阵且A 可 逆, 则)(11---AB AB AA T =10. 行列式 i j k→→→123213= 11. 设,100010011⎪⎪⎪⎭⎫ ⎝⎛=AB 且⎪⎪⎪⎭⎫ ⎝⎛--=121112301B 则A -=112. 设V 是由向量TT )3,0,2(,)0,1,1(21==αα 生成的子空间,则向量T )3,1,5(1=β ,T TT)3,1,3(,)3,3,5(,)3,2,0(432-==-=βββ中 属于V .13.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011012111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001b ,则线性方程组b Ax =的解为14. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----020212022的特征值为 15.行列式 D =4443343332312423211412110000a a a a a a a a a a a a 的元素11a 的代数余子式为16.设向量Tb a ),0,,1(=α与向量T )1,1,1,1(-=β和T )1,1,1,1(--=γ都正交, 则a,b 分别为17.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1000010042103101A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1020013600020021B ,则AB = ,(利用分块矩阵乘法求解)18.设向量T )4,3,2,1(=α,T )1,1,1,1(--=β ,则βα,,的夹角为19.非齐次线性方程组⎪⎩⎪⎨⎧=-+=--=+-5321132053321321321x x x x x x x x x 的通解为20.设Tx )2,3,(1=αT )3,1,2(2-=α T )1,2,3(3=α,则当=x 时321,,ααα线性相关.21. 已知α=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11k 是A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211121112的逆矩阵A 1-的特征向量,则k = .四、计算题1. 计算行列式1111 11111111 1111--+---+---=x x x x D2. 计 算 ()2333333433333333332333331≥=n nD n3. 设A 是3阶矩阵,*A 是A 的伴随矩阵,21=A ,求行列式()*123A A --的值.4. 讨论向量组,T)3,2,1(1-=α,T )5,2,0(2-=α ,T )2,0,1(3-=α的线性相关性.5. 设3维向量 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=1111λα , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=1112λα , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=λα1113 , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=20λλβ 问当λ取何值时, β 可由321,,ααα线性表示且表达式唯一.6. 求四维向量组T )5,3,1,2(1-=α T )3,1,3,4(2-=α T )4,3,2,3(3-=αT )17,15,1,4(4-=α T )0,7,6,7(5--=α的秩及最大无关组.7. 试确定参数λ,使矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=152********λλA 的秩最小.8. 验证四维向量T)1,1,1,1(1=αT )1,1,1,1(2--=α T )1,1,1,1(3--=αT)1,1,1,1(4--=α是4R 的一个基,并求向量T )1,1,2,1(=→β在这个基下的坐标.9.验证集合{}R x x x x x x V ∈-==211211,|)3,2,(是否为向量空间.10.问λ取何值时, 方程组 ⎪⎩⎪⎨⎧=++=++++=+++04707)2()33(0)33(28321321321x x x x x x x x x λλλλ 有非零解,并将其通解用基础解系表示出来.11.当λ取何值时,方程组⎪⎩⎪⎨⎧=--+=+--=--+λ4321432143212312022x x x x x x x x x x x x 无解?何时有解?在有解的情况下求其通解。
线性代数例题[1]
行列式例1:若12312,,,,αααββ都是四维列向量,且四阶行列式1231,m αααβ=,1223n ααβα=,四阶行列式32112αααββ+等于多少?例2:设A 是n 阶方阵,且0=A ,则A 中( ) (A ) 必有一列元素全为零; (B ) 必有两列元素成比例;(C ) 必有一列向量是其余列向量的线性组合; (D ) 任一列向量是其余列向量的线性组合.例3:设A 33)(⨯=ij a ,ij A 为ij a 的代数余子式,且ij A ij a =,并且011≠a ,求A . 例4:设四阶方阵A 44)(⨯=ij a ,A E x f -=λ)(,其中E 是n 阶单位矩阵,求:(1)4λ的系数;(2)3λ的系数;(3)常数项.例5:设A 为n 阶方阵,E 是n 阶单位矩阵,E AAT=,0<A ,计算E A +.例6:设A ,B 为n 阶正交矩阵,若0=+B A ,证明B A +是降秩矩阵.矩 阵例1:设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101001A ,证明当3≥n 时,恒有E A A A n n -+=-22. 例2:设)41,31,21,1(),4,3,2,1(==βα,βαTA =,计算n A . 例3:设三阶方阵A ,B 满足关系BA A BA A +=-61,且⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=710004100031A ,求B 例4:设A 是三阶方阵,21=A ,求*12)3(AA --例5:证明:若实对称矩阵A 满足条件O A =2,则O A =例6:设'ξξ-=E A ,其中E 是n 阶单位矩阵,ξ是n 维非零列向量,证明: (1)A A =2的充要条件是1'=ξξ; (2)当1'=ξξ时,A 是不可逆矩阵.例7:已知n 阶方阵A 满足3)(2A E A A =-,求1)(--A E例8:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=803010100100001*A ,且E BAABA 311+=--,求B .例9:设10021)(x x x x f ++++= ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01000001A ,求))((),(A f f A f . 例10:设B A ,是n 阶方阵,且满足B A AB +=,证明:BA AB =例11:设A 是n 阶方阵,是否存在E B ≠,使得A AB =,若存在B ,指出求B 的办法,若不存在,说明理由.例12:设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211a a a a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41424344313233342122232411121314a a a a a a a a a a a aa a a a B ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0010100001010001P ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010010000012P 其中A 可逆,则=-1B ( )(A )211P P A -;(B )211P A P -;(C )121-A P P ;(D )112P A P -.例13:设A 是3阶方阵,将A 的第一列与第二列交换得B ,再把B 的第二列加到第三列得C ,则满足C AQ =的可逆矩阵为(A )⎪⎪⎪⎭⎫⎝⎛101001010 (B )⎪⎪⎪⎭⎫ ⎝⎛100101010 (C )⎪⎪⎪⎭⎫ ⎝⎛110001010(D )⎪⎪⎪⎭⎫⎝⎛100001110例14:设B A ,是n 阶方阵,已知B 可逆,且满足022=++B AB A ,证明A 和BA +都是可逆矩阵,并求它们的逆.例15:设C A ,分别是m 阶和n 阶非奇异方阵,B 是n m ⨯矩阵,证明:(1)⎪⎪⎭⎫ ⎝⎛=C B AM 0为可逆矩阵;(2)⎪⎪⎭⎫ ⎝⎛-=-----111110CBCAA M 例16:求n 阶行列式10001000011000中所有元素的代数余子式的和.例17:设A 是n 阶方阵,且存在正整数m ,使0=mA ,又B 是n 阶可逆矩阵,证明矩阵方程XB AX =只有零解.例18:(1)设B A ,是n 阶方阵,且0=AB ,证明:n B R A R ≤+)()((2)设A 是n 阶方阵,且E A A 22=-,证明:n A E R A E R =++-)()2(例19:已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=96342321t Q ,P 为三阶非零矩阵,且0=PQ ,则( ) (A )6=t 时,P 的秩必为1;(B )6=t 时,P 的秩必为2;(C )6≠t 时,P 的秩必为1;(D )6≠t 时,P 的秩必为2.例20:设A 是m n ⨯矩阵,B 是n m ⨯矩阵,其中m n <,若E AB =,证明B 的列向量线性无关.例21:求)2(≥n n 阶方阵A 的秩,其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a bbb a bb b a A例22:求设D C B A ,,,是和n 阶方阵, ⎪⎪⎭⎫ ⎝⎛=D CB AG ,且CB AD CA AC ==,,又行列式0≠A ,求证:n G R n 2)(<≤.例23:设A 是n m ⨯矩阵,B 是s n ⨯矩阵,并且n A R =)(,证明: )()(B R AB R =例24:设n 维列向量组s ααα, ,,21线性无关,向量组t βββ, ,,21可用s ααα, ,,21线性表示,表示矩阵为C ,证明:(1))(),,(21C R R t =βββ, (2)当s t =时,有s βββ, ,,21线性无关C ⇔是可逆矩阵. 例25:设βα,为三维列向量,矩阵 TTA ββαα+=, 其中T T βα,分别是βα,的转置.证明: )1( 秩2)(≤A r(2) 若βα,线性相关,则秩2)(<A r (2008年数学一)例26:设B A ,均为2阶方阵,**,B A 分别为B A ,的伴随矩阵,若3,2==B A ,则分块矩阵⎪⎪⎭⎫ ⎝⎛O BA O的伴随矩阵为 (A )⎪⎪⎭⎫⎝⎛O A B O**23 . (B )⎪⎪⎭⎫⎝⎛O A B O **32. (C )⎪⎪⎭⎫⎝⎛O B A O **23. (D )⎪⎪⎭⎫⎝⎛O B A O **32. (答案: B) (2009年数学一、二、三)向 量例1:设向量组321,,ααα线性无关,证明向量组211ααβ+=,322ααβ+=,133ααβ+=也线性无关.例2:设向量组m ααα, ,,21线性无关,讨论向量组211ααβ+=,322ααβ+=,1ααβ+=m m , 的线性相关性.例3:设向量组m ααα, ,,21线性无关,向量组βααα,,m ,,21线性相关,则向量β可由向量组m ααα, ,,21线性表示.例4:设向量)',,,(21n a a a =α,A 为n 阶矩阵,如01≠-αm A ,0=αmA ,则αααα12,,,,-m AA A 线性无关.例5:设A 为n 阶矩阵,证明)()(1+=n n A R A R例6:设向量组)3(,,121≥-m m ααα, 线性相关,向量组m ααα,, 32,线性无关,问(1)1α能否由132,-m ααα,, 线性表示?(2)m α能否由121,-m ααα,, 线性表示?例7:设向量组l ααα, ,,21线性无关,向量1β可由它线性表示,向量2β不能由它线性表示,证明1+l 个向量2121,,,ββααα+k l , 线性无关.例8:设向量组},,{21m A ααα, =与向量组},,{21l B βββ, =的秩相同,且向量组A 可由向量组B 线性表示,证明A 与B 等价.例9:设A 为n 阶矩阵,s ααα, ,,21是一组n 维向量,满足11αα=A ,s i A i i i ,,3,2,1 =+=-ααα,并且01≠α,证明向量组s ααα, ,,21线性无关.例10:设321,,ααα是线性无关的5维向量组,321,,βββ也是5维向量组,满足3,2,1,,0),(==j i j i βα。
线性代数试题及答案解析
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
线性代数第二章矩阵试题及答案
第二章矩阵一、知识点复习1、矩阵的定义由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。
例如.2 -1 0 1 1 _1110 22 5 4 -2 9<3 3 3 -1 8丿是一个4 5矩阵.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。
元素全为0的矩阵称为零矩阵,通常就记作0。
两个矩阵A和B相等(记作A = B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。
2、n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。
n阶矩阵的从左上角到右下角的对角线称为主对角线。
下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵:对角线外的的兀素都为0的n阶矩阵.单位矩阵:对角线上的的兀素都为1的对角矩阵,记作E(或I).数量矩阵:对角线上的的兀素都等于一个常数c的对角矩阵,它就是cE上三角矩阵:对角线下的的兀素都为0的n阶矩阵.下二角矩阵:对角线上的的兀素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满足A T=-A矩阵•也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。
_ 2(1)A是正交矩阵A T=A-1(2)A是正交矩阵 A =1阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。
②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。
把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。
每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。
线性代数练习题-矩阵
线性代数练习题——矩阵一、 填空题1、 设⎟⎟⎠⎞⎜⎜⎝⎛=1032A ,则1−A = 2、设A ,B 为n 阶方阵,且2=A ,3−=B ,则=−12AB 3、 设A 为3阶方阵,且5=A ,则=−13A4、 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=10030116030242201211A ,则秩)(A r = 5、 ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2413100231214012A ,由第2,3行,第2,4列得到的二阶子式为=D ___。
6、 已知T A A =,T B B =,则AB 是对称矩阵的充分必要条件是______。
7、 设矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100120301A ,且A 的伴随矩阵为*A ,则=*AA ______。
二、 单项选择题1. 关于矩阵下列说法正确的是( )(A )若A 可逆,则A 与任何矩阵可交换,BA AB = (B )若A 可逆,则T A 也可逆(C )若A 可逆,B 也可逆,则B A ±也可逆 (D )若A 可逆,B 也可逆,则AB 不一定可逆2. 设B A ,均为n 阶方阵,则必有( )(A )||||||||A B B A ⋅=⋅(B )||||||B A B A +=+(C )B A B A T +=+)((D )T T T B A AB =)(3. 设矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+221211111λ的秩为2,则=λ( )(A )0 (B )1 (C )2 (D )34. 设CB AC =,且C 为n m ×矩阵,则B A ,分别是( )矩阵(A )m n ×与n m × (B )n m ×与m n × (C )n n ×与m m ×(D )m m ×与n n × 5. 设A 与B 均为n 阶对称矩阵,则( )也为n 阶对称矩阵(A )1)(−AB (B )11−−B A (C )AB (D )B A −6. 初等矩阵( )(A )相乘仍为初等矩阵 (B )都可逆 (C )相加仍为初等矩阵 (D )以上都不对7. 已知⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛10113121A ,则=A ( ) (A )⎟⎟⎠⎞⎜⎜⎝⎛−0113 (B )⎟⎟⎠⎞⎜⎜⎝⎛−1301 (C )⎟⎟⎠⎞⎜⎜⎝⎛−3110 (D )⎟⎟⎠⎞⎜⎜⎝⎛−1031 8. 设A ,B 为n 阶矩阵,且0=AB ,则必有( )(A )0=A 或0=B (B )0=+B A(C )0=A 或0=B(D )A +0=B 9. 若A ,B 均为n 阶非零矩阵,且22))((B A B A B A −=−+则必有( )(A )BA AB = (B )E A = (C )E B = (D )A ,B 为对称矩阵10. 已知B 为可逆阵,则11[()]T B −−=( ) (A )B(B )T B (C )1−B (D )TB )(1− 三、 计算题 1、⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=520012121A ,⎟⎟⎠⎞⎜⎜⎝⎛−=413212B ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=401223C 求C AB T −; 2、设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=412711310A 求1−A ;3、设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=101020101A ,E 为三阶单位矩阵,满足B A E AB +=+2,求矩阵B ;4、设⎟⎟⎠⎞⎜⎜⎝⎛=1011A ,求所有与A 可交换的矩阵; 5、设A 为3阶方阵,31=A ,求行列式1*)2(3−−A A 的值,其中*A 为A 的伴随矩阵; 6、已知矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=4553251101413223211a A 的秩是3,求a 的值。
线性代数综合练习100题
综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A A B E ,则+=A B A E . 7.若n 阶方阵,,A B C 满足=A B C E ,则'''=B A C E .8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B 13n --. 9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 11166611033102⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C =0A B(1)m nab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100. 15.已知110001011001001101000111101a -⎛⎫ ⎪-⎪ ⎪=- ⎪- ⎪ ⎪-⎝⎭A , 则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0A X 的通解为(1,1,,1),k k ' 为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0A X 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-. 19.如果(1,1,1)'=-ξ是方阵2125312a b-⎛⎫⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0. 20.已知A 与B 相似,且3021⎛⎫=⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--. 21.已知33⨯A 的特征值为1,2,3,则1*||-+=AA 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为±.26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X A X A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X A X A X ,则1-=P AP 000103012⎛⎫ ⎪⎪ ⎪-⎝⎭. 28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0A X 的系数矩阵A 的秩为r ,则=0A X 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0A X 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0A X 只有零解,则=AX β有唯一解; (B )若=0A X 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0A X 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ). (A )*||=A A A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A .7.设,A B 是n 阶方阵,A 非零,且=A B 0,则必有(D ).(A )=0B ; (B )=0B A ; (C )222()+=+A B A B ; (D )||0=B .8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A . 10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ).(A )若有全不为0的数12,,,m k k k 使11m m k k ++=0 αα,则向量组12,,,m ααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0 ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0 ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '= X 都有''X A X =X B X ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ; (C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )A B 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵;(C )若,A B 都是正交矩阵,则A B 也是正交矩阵; (D )若,A B 都是实对称矩阵,则A B 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0A X 与=0B X 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价. 18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a aa a a a ⎛⎫⎛⎫⎪ ⎪== ⎪⎪⎪ ⎪+++⎝⎭⎝⎭A B12010100100010001101⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ). (A )12=A P P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B . 19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B . 20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆. 21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,400000000000000⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭B ,则A 与B (A ). (A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0B X 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A等于(C ).(A )a ; (B )1a; (C )2n a -; (D )n a .25.设,A B 是n 阶方阵,则必有(D ).(A )11||||||--+=+A B A B ; (B )111||---+=+A B B A ; (C )222()=A B A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0A X 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη. 27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ).(A )6π; (B )4π; (C )3π; (D )2π.28.若1231,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ).(A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A . 30.设矩阵111222333a b c a b c a b c ⎛⎫⎪ ⎪ ⎪⎝⎭的秩是3,则直线333121212x a y bz ca ab bc c ---==---与直线111232323x a y bz ca ab bc c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A .解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ, 令 12341111010010(),0101000114D ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪== ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭T T T T T ,由=A TTD得 11*13111131111113||41111---⎛⎫ ⎪-⎪=== ⎪--- ⎪ ⎪--⎝⎭A TD T T T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--⎪ ⎪ ⎪=⋅ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-⎪ ⎪ ⎪==⋅ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A T D T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====AA AA A .2.设0100102ac b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A , (1),,a b c 满足什么条件时,A 的秩是3; (2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bcac b b b ⎛⎫ ⎪--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭A 当2a bc ≠时,A 的秩是3.(2)0100102a b c⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===. (3)要想A 为正交阵,应满足'=A A E ,即0010100100001011010022a b a c cb ⎛⎫⎛⎫⎪ ⎪⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭. 2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,222a b c ==-=. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一;(2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示. 解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+⎪ ⎪+⎝⎭B 由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪⎪=+−−→-- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭行B22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+⎪⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一. (3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=-⎪ ⎪⎝⎭βξξξξξξ 又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ.所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ 111232221232(,2,3)2123211231nnn n n n n n ++++⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n nn n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭. 5.设122212221-⎛⎫⎪=-- ⎪ ⎪--⎝⎭A , (1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪=⎪ ⎪-⎝⎭T A T 于是 111115--⎛⎫ ⎪ ⎪=⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫ ⎪ ⎪+=⎪ ⎪ ⎪⎝⎭T E A T , 故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值. 解:设α为A 的特征值为λ的特征向量,则λ=A αα. 即 2111112111211k k λ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.·129·即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-. 7.设11 111, 1112a a a ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求: (1)a 的值;(2)正交阵P ,使'P A P 为对角阵. 解:(1)211111111101101120112a a a a a a aa a ⎛⎫⎛⎫⎪ ⎪=→-- ⎪⎪⎪ ⎪-----⎝⎭⎝⎭B111011000(1)(2)2a a a aaa ⎛⎫⎪→-- ⎪⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-. (2)此时112121211-⎛⎫⎪=- ⎪ ⎪-⎝⎭A , 112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--= ⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得1333⎛ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪⎪-⎝⎭ξ,单位化得·130·2202⎛⎫ ⎪⎪= ⎪ ⎪⎪- ⎪⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得3636η⎛⎫ ⎪ =-⎪ ⎪ ⎪ ⎪⎝⎭;令326033326⎛⎫ ⎪ =-⎪ ⎪-⎪ ⎪⎝⎭P ,此时P 为正交阵,并且'P A P 为对角阵033⎛⎫⎪ ⎪⎪-⎝⎭. 8.已知线性方程组(I )11112213314421122223324400a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b b b b b b ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫==⎪⎪⎝⎭⎝⎭A B 由12,ξξ为(I )的一个基础解系得0'=A B .由12,ξξ线性无关,所以()2R =B ,又0'=B A ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组·131·1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a--⎛⎫⎛⎫ ⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β 1024211530042452ab a a -⎛⎫ ⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解 112212314224253x k k x k k x k x k -++⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数. 10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:·132· 322122||101423123k kkλλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+. 解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪⎪ ⎪⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k kk k k 因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =. 因此 322010423-⎛⎫⎪=- ⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫⎪= ⎪ ⎪--⎝⎭0ξ, 得 23(1,2,0),(0,1,1)''=-=ξξ 令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫⎪=- ⎪ ⎪-⎝⎭A . 11.设101020101⎛⎫⎪= ⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E 由于001010100⎛⎫⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,·133·得 201030102⎛⎫⎪=+= ⎪ ⎪⎝⎭B A E , 12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫ ⎪= ⎪ ⎪⎝⎭C ,则=C A B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A BC. 13.设有线性方程组123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0ab b ba b bba= 即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫⎪⎪ ⎪⎝⎭为任意常数.·134· (3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X P Y 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a ab b⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B 故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP . 由,A B相似知|||λλ-=-E A E B ,即32223(2)()a b a b λλλ-+--+- 3232λλλ=-+,比较系数得:0,0a b ==. 由100010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P A P B ,知A 的特征值是0,1,2. 解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ -⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛⎪==⎪ ⎪ ⎪- ⎪⎝⎭P P P P .·135·15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2t t λλ--A B ,则应有(21,,2)A B t t λλ=-----,且1220s λ⋅=---= A B t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3A B =- ,故公垂线方程为44133122y z z ++-==-.16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)λλλ++-+--=解得14λ=.从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩ππL 0L·136· 17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4bb b b λλλλλλ-=--=-+++-E B 比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪=⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量 3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B . 18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01⎛⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的·137·特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X P Y 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ, 可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:12310221,0,00122⎛⎛⎫⎪⎛⎫⎪ ⎪ ⎪===⎪ ⎪ ⎪⎪ ⎪⎝⎭⎪ - ⎪⎝⎭⎝⎭P P P . 令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P ,则在正交变换=X P Y 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面. 解:二次型f 所对应的矩阵为51315333c -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A , 因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,0),'''=-==-P P P ,取正交变换阵·138·⎛⎫- ⎪ ⎪ =-⎪ ⎪⎝⎭P , 则在正交线性变换=X P Y 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+ ,求1000a . 解法1: 由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A22,并且12,2211⎛ = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+-的特征向量.记12(,)2211⎛ == ⎪ ⎪⎝⎭T ξξ,于是112112-⎛-⎪=⎪+-⎪⎝⎭T则1102102-⎛⎫+⎪= - ⎝⎭A T T99999910202-⎛⎫⎪= ⎝⎭A T T10001000999999555))])522210210555))]522210210-+⎪= ⎪-+⎪⎝⎭所以100010001000)522a =-.·139·解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ将n D 按第一行展开可得1nn n D D αβ--= (1)由, αβ的对称性可得1n n n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111nD --=-补充定义100,1D D -== ,则 12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+-==,由(3)知·140· 000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++1000100000αβαβ-=-10001000522⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦. 四、证明题1.证明69169169(1)316916nn D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅ 2 假设当n k≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916kk k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m =0A ,则=20A . 证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .·141·所以A 经初等变换可以化为100000000000⎛⎫⎪⎪ ⎪⎪⎪⎝⎭,于是存在可逆阵,P Q ,使1000100000(100)00000⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪⎪⎪ ⎪⎝⎭⎝⎭A P Q P Q ,取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A U V .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =, 或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=A X X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0.(2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r - ξξξ为=0A X 的基础解系212,,,n r - ηηη是()n -=0A E X 的基础解系,则112,,,n r - ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r - ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n·142· 个线性无关的特征向量1211,,,,,n r n r -- ξξηη. 从而A 可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E TA T 于是1()tr()tr()R r -===A T A T A .4.设,A B 是n 阶正定矩阵,证明:A B 的特征值全大于0. 证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P A B P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P P P 正定,它的特征值全大于0, 因A B 与1212()()''''P P P P 相似,从而A B 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k ≠0A α,则1,,,,k k - A A A αααα线性无关; (2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n n R R +=A A . 证:(1)反证法若1,,,,k k + A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01kk l l l +++=0 αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠ ,则 11i i ki i k l l l +++++=0 A A A ααα, 两边乘以矩阵k i -A ,得121kk k ii i k l l l +-++++=0 A AAααα,由于1k +=0Aα,故对任意1m k ≥+都有m=0A α,从而由上式得k i l α=0A ,但k≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n=0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn - A AA αααα线性无关,与1n +个n 维向量1,,,,n n - A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0A X 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0AX 的解,所以方程1n +=0AX 与n=0A X 同解,所以1()()n n+=R A R A .6.已知向量组12,,,(2)m m ≥ ααα线性无关,试证:向量组1112,mk =+=βααβ 22111,,,m m m m m m m k k ---+=+= ααβααβα线性无关.·143·证:假设有一组数121,,,,m m l l l l - 使得112211m m m m l l l l --++++=0 ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0 ααααααα,即有112211112211()m m m m m m l l l l k l k l k l ----++++++++=0 αααα由于12,,,m ααα线性无关,所以1211122110m m m m l l l l k l k l k l ---====++++= ,所以1210m m l l l l -===== .故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+= βααβααβ 11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0 ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0 αααααααα,即111221()()()m m m m k k k k k k -++++++=0 ααα又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+= ,因为m 是奇数,所以线性方程组(1)的系数行列式11011101(1)2001001m D +==+-=≠,112100m m m k k k k kk -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ==== ,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为·144· 122311,,,,,()n n n R n -++++= ααααααααA ,问齐次线性方程组=0B X 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0B X ,没有非零解. 当n 为偶数时,=0B X 有非零解.由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++ αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0B X 没有非零解,但当n 为偶数时,因122311()()()()n nn -+-++++-+=0 αααααααα,122311,,,,n n n -++++ αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0B X 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++ αξξξ. 试证:1,,,n - A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ ,对应的特征向量依次为12,,,nξξξ,则1111(),,n n nnλλ=++=++=++ A A A A αξξξξξξ 11111n n n n n λλ---=++ Aαξξ.设有一组数011,,,n k k k - ,使得1011n n k k k --+++=0 αααA A即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0 ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n nn k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n n n n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n nk k k ----⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ 又由于1111221111()01n n i j j i nn n n--≤<≤-=-≠∏λλλλλλλλ.·145·所以0110n k k k -==== , 即21,,,,n - A A A αααα线性无关.10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E TAT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ . 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P A P Q B Q 于是11--=PA P QB Q .即111()()---=PQA PQB故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A A X , (1)=0A X (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·146· 另一方面,对任意1nn x x ⎛⎫⎪=∈ ⎪ ⎪⎝⎭RX 如果'=0A A X ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '= A X ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ==== ,即=0A X ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立.13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵.证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n = ,于是1()E e e e = j n由已知,1,2,,j j j n λ== A e e得11()(),,A e e e e e e A E E A E λλλ=== j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·147·121n λλλ-⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭P A P D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ== ,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫⎪ ⎪⎪ ⎪'== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A PD PP P 1122n n δδδδδδ⎛⎫⎛⎫⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故 2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα.因而2'-'E αααα为正交矩阵.16.设方程组=0A X 的解都是=0B X 的解,且()()R R =A B ,试证:=0A X 与=0B X 同解.证:设()()R R r ==A B ,则=0A X 的基础解系含有n r -个线性无关的向量,不妨设为·148· 12,,,n r - ξξξ. 有,(,,)A ==-01 i i n r ξ.又=0A X 的解必为=0B X 的解,从而,(,,)i i n r ξ==-01 B 从而12,,,n r - ξξξ也是=0B X 的基础解系.于是=0B X 的通解为11.n r n r k k --+ ξξ则=0A X 与=0B X 同解.17.设A 是n 阶方阵,12(,,,)n b b b '= β是n 维列向量,0⎛⎫=⎪'⎝⎭AB ββ,若()()R R =A B,则=AX β有解.证:由于()()()R R R ≤= A B A β,又由于()()R R ≤ A A β,所以()()R R = A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==< α是r 个线性无关的n 维实向量,12(,,,)n b b b '= β 是线性方程组1111221211222211220n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量, 试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++ βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r == βα于是11(,)(,)0r r k k =++= βββαα,从而=0β,矛盾.所以12,,,,r αααβ线性无关.19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则A B 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵, 设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n = P P P P ,则112211,,n n k k k λλλ--⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P A P P B P 并且,0,(1,,)i i k i n λ>= ,所以。
《线性代数》综合练习题,附答案
《线性代数》综合练习题一、选择题1. 设A ,B 都是n 阶方阵,且AB=0,则必有( ).A.0=A 或0=BB.0=+B AC. 0||=A 或0||=BD. 0||||=+B A2. 设A ,B ,C 都是n 阶方阵,且ABC=E,其中E 为n 阶单位方阵,则必有( ).A. ACB=EB. BC A =EC. CBA=ED. BAC=E3. 设A ,B 都是n 阶方阵,且A 与B 等价,则( ).A. R(A)=R(B)B. )det()det(B A =C. )det()det(B E A E -=-λλD. 存在可逆矩阵P,使B AP P =-14. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=-1*)(A ( ). A.A A )det(1 B. 1)det(1-A A C.*)det(1A A D. A A *)det(1 5. 设方阵A 满足A 2-A -2E=0, 则必有( ).A.E A -=B. E A 2=C. A 可逆D. A 不可逆6. 设A 是n 阶可逆矩阵,*A 是A 的伴随矩阵,则=⋅|*|||A A ( ).A. 1B. n A ||C. 1||-n AD. 1||+n A7. 设A,B 为n 阶方阵,则必有( ).A. AB=BAB. │A+B│=│A│+│B│C. │A -B│=│A│-│B│D. │AB│=│A││B│8.设B A ,都是n 阶可逆矩阵,则下列结论不正确的是( ).A. B A +一定可逆B. AB 一定可逆C . 11--B A 一定可逆 D. TT B A 一定可逆.9.下列矩阵中,与矩阵⎪⎪⎭⎫ ⎝⎛1011可交换的是( ). A. ⎪⎪⎭⎫ ⎝⎛2011 B. ⎪⎪⎭⎫ ⎝⎛1111 C. ⎪⎪⎭⎫ ⎝⎛2032 D. ⎪⎪⎭⎫ ⎝⎛--121110.矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 为非奇异矩阵的充要条件是( ). A. 0=-bc ad B. 0=-cd abC. 0≠-bc adD. 0≠-cd ab11.设A 为n 阶方阵,k 为非零常数,则必有( ).A. ||||A kA =B. ||||A k kA =C. ||||1A k kA n -=D. ||||A k kA n =12.下列说法正确的是( ).A. 设A 为n 阶方阵,且A 2=A ,则A=E 或A=0.B. 设A,B,C 为n 阶方阵, AB=AC 且A≠0,则B=C.C. 设A ,B ,C 都是n 阶方阵,且AB=E ,CA=E ,则B=C.D. 设A 为n 阶方阵,且A 2=0,则A=0.13.矩阵⎪⎪⎭⎫ ⎝⎛5321的逆矩阵是( ). A. ⎪⎪⎭⎫ ⎝⎛--5321B. ⎪⎪⎭⎫ ⎝⎛--1325 C. ⎪⎪⎭⎫ ⎝⎛--5321 D. ⎪⎪⎭⎫ ⎝⎛--5231 14.设A 为3阶方阵,|A|=3,则|3A -1|= ( ).A. 1B. -1C. 9D. -915. 设C B A ,,都是n 阶可逆矩阵,则=-1)(ABC ( ). A. 111---C B A B. 111---A C BC. 111---B A CD. 111---A B C16. 设A 是一个3阶的反对称矩阵,则|A|= ( ).A. -1B. 0C. 1D. 无法确定17.设α⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321a a a ,β],,[321b b b =,)3,2,1(0,0=≠≠i b a i i ,则方阵A=αβ的秩为( ).A. 0B. 1C. 2D. 318.如果向量组线性相关,那么( ).A. 这个向量组中至少有一个零向量.B. 这个向量组中至少有两个向量成比例.C. 这个向量组中至少有一个向量可以由其余向量线性表示.D. 这个向量组中所有向量都可以由其余向量线性表示.19.下列说法正确的是( ).A. 等价的向量组含有相同的向量个数.B. 如果向量组线性相关,那么这个向量组中至少有一个零向量.C. 如果向量组线性相关,那么这个向量组中至少有两个向量成比例.D. n 维单位向量组是线性无关的.20.设向量组α1],0,0,1[=α2],1,0,0[=则β=( )时,它是α1, α2的线性组合.A. ]2,1,0[B. ]0,2,1[C. ]2,0,1[D. ]0,1,2[21.向量组α1,α2,… ,αm 的秩不为0的充要条件是( ).A. 向量组α1,α2,… ,αm 中至少有一个非零向量.B. 向量组α1,α2,… ,αm 中至多有一个非零向量.C. 向量组α1,α2,… ,αm 中全部是非零向量.D. 向量组α1,α2,… ,αm 线性无关.22.设向量组α1,α2,… ,αm 的秩为)2(-≤m r r ,则下列说法错误的是( ).A. 向量组α1,α2,… ,αm 中至少有一个含r 个向量的部分组线性无关.B. 向量组α1,α2,… ,αm 中含r 个向量的部分组都线性无关.C. 向量组α1,α2,… ,αm 中含1+r 个向量的部分组都线性相关.D. 向量组α1,α2,… ,αm 中含2+r 个向量的部分组都线性相关.23.设α1,α2,α3为3阶方阵A 的列向量组,则α1,α2,α3线性无关的充要条件是( ).A. │A│0≠B. A 的秩3)(<A RC. 方阵A 不可逆D. 方阵A 是奇异的24. 下列说法错误的是( ).A.1+n 个n 维向量必相关.B. 等价的向量组有相同的秩.C. 任一n 维向量一定可由n 维单位向量组线性表示.D. 零向量不可以由n 维单位向量组线性表示.25. 若R (A )=2,则5元齐次线性方程组A x =0的基础解系中有( )个向量。
工程数学(线性代数)综合练习题
一、判断题:1.四阶行列式 D== abcd. ( )2.n阶行列式D==( )3.设A为n阶矩阵,k为不等于零的常数,则( )4.设A,B均为n阶矩阵,则( )5.若n阶矩阵A,B满足AB=0,则有A=0或者B=0. ( )6.对n阶矩阵A,若存在n阶矩阵B,使AB=E(E为n阶单位矩阵),则A可逆且有( )7.设A,B均为n阶矩阵且A,则A,B均可逆. ( )8.若n阶矩阵A,B均为可逆矩阵,则A+B仍为可逆矩阵. ( )9.设A,B均为n阶可逆矩阵,则. ( )10.若n阶矩阵A为对称矩阵,则A为可逆矩阵. ( )11.若n阶矩阵A为正交矩阵,则A为可逆矩阵. ( )12.若n阶可逆矩阵A=,则( )13.若存在使式子成立,则向量组线性无关.( )14.若向量组线性相关,则可用线性表示. ( )15.设为基本单位向量组,则线性无关. ( )16.若是向量组的一个极大无关组,则均可用线性表示. ( )17.等价向量组所含向量个数相同. ( )18.若是向量组的一个极大无关组,则此极大无关组与原向量组等价.( )19.若矩阵A有一个r(r<m<n)阶子式不等于零,一个r+1阶子式等于零,则Rank(A)=r.( )20.任意矩阵A的秩等于它的等价标准形中1的个数. ( )21.任何一个齐次线性方程组都有基础解系. ( )22.任何一个齐次线性方程组都有解. ( )23.若线性方程组AX=B(A为矩阵,X=)满足Rank则此方程组有解. ( ) 24若线性方程组AX=0(A为n阶矩阵,X同上)满足,则此方程组无解. ( )25.若线性方程组AX=B(A,X同24题,B=满足此方程组有无穷多解.( )26.若都是AX=B(A,X,B同23题)的解,则仍是此方程组的解. ( )二、填空题:1. 四阶行列式_____________________.2. 五阶矩阵其中则_______,________,_____________.3. 设A,B均为n阶矩阵,且则=_______________.4. 设矩阵,则的余子式为_________________,的代数余子式为________________,A的顺序主子式为__________________________.5. 设三阶矩阵则kA-E =________________(k为不等于零的常数,E为三阶单位矩阵),若则=________________.此时A在等价关系下的标准形为____________________.6. 已知当为任意常数时,向量组线性________关(相关还是无关)._______(能还是不能)用线性表示.7.设则向量用向量线性表示的表达式为_______________________.向量组_____________(是或不是)线性相关.8. n阶矩阵A可逆的充分必要条件是1)___________________________________, 2)___________________.9. 设A为五阶矩阵,且则其中为A的伴随矩阵.10.设矩阵其中则= ,= ,= 。
线性代数综合测试题
合同变换法
通过合同变换将二次型化为标准 形。具体步骤包括构造一个可逆 矩阵 $C$,使得 $C^TAC$ 为对 角矩阵,从而得到标准形。
正定二次型判断方法
顺序主子式法
若二次型的顺序主子式均大于零,则该二次型为 正定二次型。
特征值法
若二次型的特征值均大于零,则该二次型为正定 二次型。
惯性指数法
若二次型的正惯性指数等于其变量的个数,则该 二次型为正定二次型。
线性代数综合测试
目录
CONTENTS
• 矩阵及其运算 • 行列式及其性质 • 线性方程组求解与应用 • 向量空间与线性变换 • 特征值与特征向量 • 二次型及其标准形
01
矩阵及其运算
矩阵基本概念与性质
矩阵的定义
01
由$m times n$个数排成的$m$行$n$列的数表称为$m times
n$矩阵。
确定主元、进行行变换、回代求 解。
矩阵方程求解方法
1 2
矩阵方程形式
Ax=b,其中A为系数矩阵,x为未知数列向量, b为常数列向量。
求解方法
通过对系数矩阵A进行初等行变换,将其化为行 最简形矩阵,从而得到方程组的解。
3
特殊情况处理
当系数矩阵A为奇异矩阵(即行列式为零)时, 方程组可能无解或有无穷多解,需根据具体情况 进行分析。
THANKS
感谢您的观看
在行列式的展开过程中,需要计算余子式和代数余子式,它们与 元素的位置和符号有关。
克拉默法则及应用
克拉默法则
对于n元线性方程组,如果系数矩阵的行列式不等于零,则方程组 有唯一解,且解可以通过系数矩阵和常数项矩阵的行列式计算得出。
克拉默法则的应用
利用克拉默法则可以求解一些特殊类型的线性方程组,如系数矩阵 为范德蒙德矩阵的方程组等。
《线性代数与解析几何》矩阵部分练习题及答案
《线性代数》练习题矩阵部分一、填空题1.设A 是3阶方阵,A =-3,则2A =______,3A =______2 设A =1203⎛⎫⎪⎝⎭,B =a b c d ⎛⎫⎪⎝⎭,则当b,d 为任意常数,且c=______ a=______时,恒有AB=BA.3.设矩阵A =111022003⎛⎫ ⎪ ⎪ ⎪⎝⎭,T A 为矩阵A 的转置矩阵,则TAA =______, 4.若A =011001000⎛⎫⎪ ⎪ ⎪⎝⎭,f(x)=33x +x,则f(A) =______. 5.设A =120303010-⎛⎫⎪- ⎪ ⎪⎝⎭,则)()(E +A E -A =______。
6.设A =101210325⎛⎫⎪⎪ ⎪--⎝⎭,则)(1E --A =______。
7.设A =5200210000120011⎛⎫ ⎪⎪⎪- ⎪⎝⎭,则1-A =______。
8.n 阶可逆矩阵A,B,若A =3,则1-K B A B =______。
9.对于n 阶方阵A ,若T AA =2E ,则A =______。
10.已知 n 阶矩阵A 可逆,则( )成立。
A ,)(12-A =12-A ; B,)(12--A =112--A ; C,)(12--A =112-A ; D,)(12-A =2A .11.对于n 阶可逆矩阵A,B,则下列等式中( ) 不成立。
A )(1-AB =1-A 1-B B, )(1-AB = 11-A .11-BC, )(1-AB =1-A .1-BD , )(1-AB =1AB12.若A 为n 阶方阵,且3A =0,则矩阵()1-E -A =______。
13.设A 为3阶方阵,且3A =,则212⎛⎫A ⎪⎝⎭=______。
14.设A =[]1,2,3,[]1,1,1B =,则()KT A B =______。
15.设A 为3阶方阵,且2A =,则132-*A -A =______。
线性代数[1]
《线性代数(文)》综合复习资料一、填空题1.排列315426的逆序数为 。
2. 行列式111222333D == 。
3.若A = 101λ⎛⎫ ⎪⎝⎭,则矩阵A 的k 次幂kA = 。
4.若向量组321,,ααα线性无关,则向量组133221,,αααααα+++,是线 性 的。
5.431712325701⎛⎫⎛⎫ ⎪⎪-=⎪⎪ ⎪⎪⎝⎭⎝⎭。
6.设==D D 则,010111101 。
7.设=≠-⎪⎪⎭⎫ ⎝⎛=-1),0 A bc ad d c b a A 则(其中 。
8.已知齐次线性方程组12312312322020340x x x x x x x x x λ+-=⎧⎪+-=⎨⎪-+=⎩有非零解,则λ= 。
9.已知()2104,,,α=,()1024,,,β=-,32αβ-= 。
10.设向量2132122112123,ααβααβααβαα+=+=+=,,线性无关,则一定 是线性 关的。
11.在六阶行列式263265135441det(),ij D a a a a a a a =中应带 号。
12.若11022xc c c ,x = 则x = 。
13.矩阵1132A -⎛⎫= ⎪⎝⎭的标准形是I =。
14.设n 阶矩阵A ,满足方程2230A A E ++=,则1A -= 。
15.123312132124x x x ⎛⎫⎛⎫ ⎪⎪=⎪⎪ ⎪⎪⎝⎭⎝⎭。
16.排列542163的逆序数为 。
17.123456789D == 。
18. 设100101010⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则2=A。
19.若向量组123(1,1,1),(1,2,3),(1,3,)t ααα===线性相关,则t = 。
二、单项选择题1.下列排列中是奇排列的是( ).A) 4321; B) 1234 ; C) 2314; D) 4123.2. 矩阵1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭的秩等于( ).A )0;B )1;C )2;D )3。
(精选)线性代数矩阵习题
(精选)线性代数矩阵习题习题课一.单项选择题1. 设A 为n 阶可逆矩阵,λ为A 的一个特征根,则A 的伴随矩阵的特征根之一为( )A.n A ||1-λB. ||1A -λC. ||A λD. n A ||λ2.设λ为非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值为( )A.34B.43C.21D.413.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( )A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 4.设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ) A. B E A E -=-λλB. A 与B 有相同的特征值与特征向量C. A 与B 都相似于一对角矩阵D. 对任意常数t ,有A tE -与B tE -相似二.填空题1.若四阶矩阵A 与B 相似,矩阵A 的特征值为51,41,31,21,则行列式=--||1E B 2.设n 阶方阵A 伴随矩阵为*A ,且,0||≠A 若A 有特征值λ,则E A +2*)(的特征值为3.矩阵=1111111111111111A 的非零特征值为 4.n 阶矩阵A 的元素全是1,则A 的n 个特征值为三、计算题1.设=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件. 2.设三阶实对称矩阵A 的特征值为1,2,3;矩阵A 的属于特征值1,2,的特征向量分别为,)1,2,1(,)1,1,1(21T T --=--=αα(1)求A 的属于特征值3的特征向量; (2)求矩阵A .3.设T)1,1,1(-=ξ为---=2135112b a A 的一特征向量. (1)求b a ,及特征值ξ; (2) A 可否对角化?4.设三阶矩阵 A 满足),3,2,1(==i i A i i αα其中,)2,1,2(,)1,2,2(,)2,2,1(321TT T --=-==ααα 试求矩阵A .5.设矩阵,3241223----=k k A 问k 为何值时,存在可逆矩阵P ,使得AP P 1-为对角矩阵?并求出P 和相应的对角矩阵.答案一.单项选择题 1、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则ξλξ**A A A =,即ξλξ*||A A =, 从而ξλξ|)|(1*A A -=.注:一般地,我们有:若λ为A 的一个特征根,则 (1)T A 的特征根为λ;(2)k A 的特征根为kλ; (3)aA 的特征根为λa ;(4)若A 可逆,则1-A 的特征根为λ1; (5)若0≠λ,则*A 的特征根为||1A -λ; (6)kE A +的特征根为k +λ.2、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则,,2222ξλξξλξa aA A ==(a 为实数), 所以, 12)31(-A 的一个特征值为12)231(-?=43. 3、解: B. 4、解: D. 二.填空题 1、解: 24.设ξλξξ(=A 为A 的属于λ的一个特征向量), A 可逆, 则ξλξ1 1--=A ,ξλξ)1()(11-=---E A ,即 E A--1的特征值为1-λ-1, 从而=--||1E A (2-1)(3-1)(4-1)(5-1)=24.另一方面, A 与B 相似,所以,存在可逆矩阵P 使得 B AP P =-1 , 即P A P B111---=,P E A P EP P P A P E B )(111111-=-=-------,所以E B--1与E A --1相似,相似矩阵有相同的行列式,因此, =--||1E B 24.2、解:.1||22+λA若A 的特征值为λ,则*A 的特征值为λ||A ,2*)(A 的特征值为22||λA ,所以, E A +2*)(的特征值为.1||22+λA3、解: 4.计算特征行列式λλλλλλλλλ01010010001)4(1111111111111111||-=----------------=-A E 0)4(3=-=λλ .所以,非零特征值为4.4、解:n,0,其中0为n-1重根.(计算方法如上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题1设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=30041003A ,则310040003TA ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦( )T 2 若,2O A=则O A = ( ) F3若O AB =,则O BA = ( )F 4任何方阵都唯一存在逆矩阵 ( )F7任意两个数字行列式可以比较大小 ( ) T 8只有同阶行列式才可以进行相加 ( ) F 9齐次线性方程组必有零解 ( ) T10 n 阶齐次线性方程组有唯一零解的条件是系数矩阵A 可逆 ( ) T11 矩阵乘法不满足消去率,即AC=BC ,一般不能推出A=B ( ) T12 设A 、B 为同阶方阵,则()kkkB A AB = ( ) F13 任意两个矩阵相乘均不可交换 ( ) F14 设矩阵A 与B ,若满足AB=BA ,称A 与B 为可交换矩阵 ( )T16设矩阵A 与B ,则()'''B A B A +=+ ( ) T17设矩阵A 与B ,则()'''B A AB = ( ) F20 任何可逆矩阵的逆矩阵唯一存在 ( ) T 21 方阵A 可逆的充要条件是行列式0≠A ( ) T 22 若A 为可逆矩阵,则()A A =--11 ( ) T23若A 为可逆矩阵,则()()1''11,---=AA A 且也是可逆矩阵 ( ) T24若A 为可逆矩阵,k 为一个非零常数,则()111---=AkkA kA 也是可逆矩阵,且( )T25若A 为可逆矩阵,且AB=AC ,则B=C ( ) T26若A 、B 为同阶可逆矩阵,则AB 也是可逆矩阵,且()111---=BAAB ( )F32 行列式转置,其值不变 ( )T33 行列式两行(或列)互换,其值不变 ( ) F 34 行列式两行(或列)相同,其值为零 ( ) T35 行列式某两行(或列)成比例,其值为零 ( ) T 36行列式某行(或列)的k 倍加到另一行(或列)上,其值不变 ( )T37 设A ,B 都是n 阶方阵,则B A AB = ( )T 40对齐次线性方程组=AX ,若()则方程组有非零解未知数个数),(n A r < ( )T二、填空题 2⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡1013201004321= ⎥⎦⎤⎢⎣⎡-64054 ⎥⎦⎤⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012321132132= 5 8 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134= ⎪⎪⎪⎭⎫ ⎝⎛49635 9 ()⎪⎪⎪⎭⎫⎝⎛1233,2,1= []1012=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112101132215矩阵A=⎥⎦⎤⎢⎣⎡-231021的转置矩阵是 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20321117 已知矩阵,253011,131201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=B A 则()'AB = 11458⎡⎤⎢⎥-⎣⎦46矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765463632121A 的行简化阶梯矩阵为 20 431(123)570r ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦= 3 36 054321907= -132 3810960085307421= 18039=--975416074121975440 已知=---21,111214012A 则 1 改 43 1300040005A-⎛⎫⎪= ⎪ ⎪⎝⎭,则______A = 601 44 设3A 为三阶方阵,则 332______A A -= -8 45 若n 阶可逆方阵A 的0≠A ,*A 是A 的伴随矩阵,则1-A*A47 方程个数小于未知量个数的齐次线性方程组 非零解 答:必有 49若线性方程组()()()()=⎪⎩⎪⎨⎧--=--=-=+-λλλλλ无解,则653124332321x x x x x x1或352线性方程组A X b =的增广矩阵A化成阶梯形矩阵1321002101,0000100a ⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭当___a =时,A X b =有解,且有_______解 1,无数多53 若齐次线性方程组1231212320200kx x x x kx x x x ++=⎧⎪+=⎨⎪-+=⎩有非零解,则k= 3或-255 方程组AX=0的系数矩阵A 经过初等行变换化为1230130014B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则方程组有 解 唯一 56方程组AX=0的系数矩阵A 经过初等行变换化为11103200B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则方程组有 解 无数多 57 方程组AX=B 的增广矩阵A化成阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21030101001~A ,则方程组的解为 58方程组AX=B 的增广矩阵A化成阶梯形矩阵12060013002C -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,方程组的解为 无解60 设B A ,为两个已知矩阵,且B E -可逆,则方程X BX A =+的解X = ()1E B A --三、选择题 1 矩阵()()lk ijnm ijb B a A ⨯⨯==,相等的条件是( )DA A 、B 均为方阵 B l k n m ==,C ij ij b a = Dl k n m ==,且ij ij b a =6 由362541062930819503264--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥得到的矩阵中的元素a 32=(). BA 53B 12C -26D 1511 矩阵的乘法中,以下法则( )一般是不成立的 DA()()BC A CAB = B()AB AC CB A +=+C()()()为常数k B kA AB k = DB A BC AC ==则若,12 若A 是对称矩阵,则条件( )成立 CA AA -=1B '=-A A 1C '=A AD AAI -=114 设矩阵A 、B 、C 满足AB=AC ,且A ≠0,则( )C A B=C B B ≠C C B 可能等于C ,也可能不等于C D 以上都不对.15 以下矩阵中,是行阶梯型矩阵的是( ) AA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-34011302012B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000000021C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-30311002023 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-314000201016以下矩阵中,是行简化阶梯型矩阵的是( ) BA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡23087605123B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1001000021C⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--5643203102 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000300001217 若|A|=2,且A 为5阶方阵,则|-2A|=( ) CA 4B -4C -64D 64.18 设A,B 均为n 阶矩阵,则必有( ) C A A B A B +=+ B AB=BA ;C AB BA =D 111()A B A B ---++= 19 设A,B 为n 阶方阵,满足关系AB=O ,则必有( ) CA A=B=OB A+B=O ;C A =0或B =0D 0A B +=20设A ,B均为n 阶方阵,若()()22B A B A B A -=-+,则必有( ) DA I A =B O B =C B A =D BA AB =21 已知矩阵A 23⨯、B 32⨯、C 33⨯,下列( )运算可行 D A AC B CB C AB-BC D ABC22 设==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=X B AX B A ,则且,4321,3152( )B A ⎥⎦⎤⎢⎣⎡-7431 B ⎥⎦⎤⎢⎣⎡--651412C ⎥⎦⎤⎢⎣⎡611913D ⎥⎦⎤⎢⎣⎡-811910 26 矩阵⎪⎪⎪⎭⎫⎝⎛----281127152442312的秩为 ( ) C A 1 B 2 C 3 D 4523678231321094626=( ) DA 93B 87C 91D 056 103100204199200395301300600=( ) B A 200 B 2000 C 2001 D 20157 211240139x x=根的个数为( )B A 3 B 2 C 1 D 058 n 阶行列式所有元素均为1,则值为( ) DA nB 1C !nD 060 已知行列式147258369---,代数余子式12A 为( )C A -3 B 3 C -6 D 6 61 n 阶方阵A 的n 个行(或列)向量线性无关的充要条件是( )AA 0A ≠B 0A ≠C *0A ≠ D*0A>62 若A 为n 阶方阵,k 为实数,则下列各式成立的是( ) CA kA k A= B kA k A= CnkA kA = D nkA k A =63 行列式00000000a b c abcd=( )BA abcdB abcd -C 2a bcd D22a b cd64 行列式211212kk k=0的充分条件是( ) C A 0=k B 1=k C 2=k D 3=k65 设A 为三阶方阵且=-=A A A 则,2( ) DA 4B -4C 16D -1667 设A 为n阶方阵,且=≠=**A A A a A 的伴随矩阵,则是,0( ) C A a Ba1 C 1a-n D na70 设方阵A 的行列式中则A A ,0=( ) C A 必有一列元素为0 B 必有两列成比例 C 必有一列向量是其余列向量的线性组合 D 任一列向量是其余列向量的线性组合 72所对应的齐次线性方程是非齐次线性方程组b AX AX ==0下列结论正确的是( ) D A 有唯一解仅有零解,则若b AX AX ==0 B 有无穷多解有非零解,则若b AX AX ==0C 仅有零解有无穷多解,则若0==AX b AXD 有非零解有无穷多解,则若0==AX b AX74 设n 元齐次线性方程组0=AX 的系数矩阵为A ,且()有非零解的充要条件为则0,==AX r A R( ) CA n r =B n r ≥C n r <D n r > 76 设A 是()b AX l A R n m ==⨯则方程组矩阵,,( ) A A时有解m l = B 时有唯一解n l = C时有唯一解n m = D 时有无穷多解n l <83已知非齐次线性方程组的系数矩阵行列式为0,则( ) D A 方程组有无穷多解 B 方程组无解 C 方程组有唯一解或无穷多解 D 方程组可能无解,也可能有无穷多解92 若方程组⎪⎩⎪⎨⎧=+-=-+=++0200z y x z ky x z y kx 只有零解,则k 的取值为( ) CA 1=kB 4=kC 41≠-≠k k 且 D41=-=k k 或 95若方程组B AX =的增广矩阵A ~化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---008451051211,则方程组的解为( )BA 无解B 有无数多组解C 不能确定D 以上答案都不对 96若方程组B AX =的增广矩阵A ~化为()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+--331012004321t t t t ,当t=( )时,方程组无解A 2=tB 3-=tC 1=tD 2-=t C100 对方程组AX=B,以下结论错误的是( ) C A()()则方程组有解若,~A r A r = B()()则方程组无解若,~A r A r ≠C 若方程个数与未知数个数相等,则方程组有唯一解D 若方程个数与未知数个数相等,且0≠A ,则方程组有唯一解四、解答题3设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求A AB 23-4设矩阵 A = ⎥⎦⎤⎢⎣⎡2142,B =⎥⎦⎤⎢⎣⎡--1122, 求AB . 8设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?14 设⎪⎪⎪⎭⎫⎝⎛---=145243121A ,求逆矩阵A -1 17用逆矩阵解方程组⎩⎨⎧=-=+212y x y x20 用矩阵的初等行变换化下列矩阵为行阶梯型矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---83023541102727当矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛34223177111044113λ的秩等于2,求λ1设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是(A )若()1P C =,则A C 与B C 也独立. (B )若()1P C =,则A C 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ).设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P(B |A )=0 C .P (AB )=0 D .P (A ∪B )=11、若A ⊃B ,则A ∪B =___ __;AB =___ __ 。