常用的三角函数公式大全(可编辑修改word版)

合集下载

(完整word版)三角函数公式全集合

(完整word版)三角函数公式全集合

三角函数1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ]7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。

(完整word版)三角函数公式大全

(完整word版)三角函数公式大全

(完整word版)三⾓函数公式⼤全⾼中三⾓函数公式⼤全[图]1 三⾓函数的定义1.1 三⾓形中的定义图1 在直⾓三⾓形中定义三⾓函数的⽰意图在直⾓三⾓形ABC,如下定义六个三⾓函数:正弦函数余弦函数正切函数余切函数正割函数余割函数1.2 直⾓坐标系中的定义图2 在直⾓坐标系中定义三⾓函数⽰意图在直⾓坐标系中,如下定义六个三⾓函数:正弦函数余弦函数正切函数余切函数正割函数余割函数2 转化关系2.1 倒数关系2.2 平⽅关系2 和⾓公式3 倍⾓公式、半⾓公式3.1 倍⾓公式3.2 半⾓公式3.3 万能公式4 积化和差、和差化积4.1 积化和差公式证明过程⾸先,sin(α+β)=sinαcosβ+sinβcosα(已证。

证明过程见《和⾓公式与差⾓公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和⾓公式)则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于是sin(α-β)=sinαcosβ-sinβcosα(正弦差⾓公式)将正弦的和⾓、差⾓公式相加,得到sin(α+β)+sin(α-β)=2sinαcosβ则sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之⼀)同样地,运⽤诱导公式cosα=sin(π/2-α),有cos(α+β)=sin[π/2-(α+β)]=sin(π/2-α-β)=sin[(π/2-α)+(-β)]=sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α)=cosαcosβ-sinαsinβ于是cos(α+β)=cosαcosβ-sinαsinβ(余弦和⾓公式)那么cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβcos(α-β)=cosαcosβ+sinαsinβ(余弦差⾓公式)将余弦的和⾓、差⾓公式相减,得到cos(α+β)-cos(α-β)=-2sinαsinβ则sinαsinβ=cos(α-β)/2-cos(α+β)/2(“积化和差公式”之⼆)将余弦的和⾓、差⾓公式相加,得到cos(α+β)+cos(α-β)=2cosαcosβ则cosαcosβ=cos(α+β)/2+cos(α-β)/2(“积化和差公式”之三)这就是积化和差公式:sinαcosβ=sin(α+β)/2+sin(α-β)/2sinαsinβ=cos(α-β)/2-cos(α+β)/2cosαcosβ=cos(α+β)/2+cos(α-β)/24.2 和差化积公式部分证明过程:sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosαcos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβcos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβtan(α+β)=sin(α+β)/cos(α+β)=(sinαcosβ+sinβcosα)/(cosαcosβ-sinαsinβ)=(cosαtanαcosβ+cosβtanβcosα)/(cosαcosβ-cosαtanαcosβtanβ)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=tan[α+(-β)]=[tanα+tan(-β)]/[1-tanαtan(-β)]=(tanα-tanβ)/(1+tanαtanβ)诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两⾓和与差的三⾓函数si n(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))三⾓函数和差化积公式sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]⼆倍⾓公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半⾓公式sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他⾮重点三⾓函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)常⽤公式表(⼀)1。

三角函数公式和图像大全[2]

三角函数公式和图像大全[2]

(直打版)三角函数公式和图像大全(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)三角函数公式和图像大全(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)三角函数公式和图像大全(word版可编辑修改)的全部内容。

初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin (A+B ) = sinAcosB+cosAsinB sin (A-B) = sinAcosB-cosAsinB cos (A+B ) = cosAcosB —sinAsinB cos(A-B ) = cosAcosB+sinAsinBtan (A+B) =tanAtanB -1tanBtanA +tan(A —B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot (A-B ) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA •CosACos2A = Cos 2A —Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA —4(sinA)3 cos3A = 4(cosA )3-3cosAtan3a = tana ·tan (3π+a )·tan(3π—a)半角公式sin (2A)=2cos 1A - cos(2A )=2cos 1A + tan(2A)=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan (2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba -sina —sinb=2cos2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = —2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos )sin(+ 积化和差sinasinb = —21[cos(a+b )—cos (a-b)] cosacosb = 21[cos(a+b )+cos (a —b )] sinacosb = 21[sin (a+b )+sin(a-b )] cosasinb = 21[sin (a+b)-sin (a —b )] 诱导公式sin(-a) = —sinacos (—a ) = cosasin (2π—a) = cosa cos(2π-a) = sinasin (2π+a ) = cosa cos(2π+a ) = -sina sin(π—a ) = sinacos(π—a) = -cosasin(π+a) = —sinacos (π+a) = -cosa tgA=tanA =aa cos sin万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式a •sina+b •cosa=)b (a 22+×sin(a+c ) [其中tanc=ab ]a •sin (a )—b •cos (a ) = )b (a 22+×cos (a —c ) [其中tan(c )=b a ] 1+sin (a) =(sin 2a +cos 2a )21-sin (a ) = (sin 2a —cos 2a )2其他非重点三角函数csc (a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -a acosh (a )=2e e -a a tg h (a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos(2kπ+α)= cosαtan (2kπ+α)= tanαcot(2kπ+α)= cotα公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos(π+α)= —cosαtan (π+α)= tanαcot (π+α)= cotα公式三任意角α与 -α的三角函数值之间的关系:sin (—α)= —sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= —cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π—α)= sinαcos (π—α)= -cosαtan(π—α)= -tanαcot (π-α)= —cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= —sinαcos (2π—α)= cosαtan (2π—α)= -tanαcot(2π-α)= -cotα公式六2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= —sinα tan (2π+α)= -cotα cot(2π+α)= -tanαsin (2π-α)= c osαcos (2π-α)= sinαtan (2π-α)= cotα cot(2π-α)= tanα sin(23π+α)= —cosα cos(23π+α)= sinαtan (23π+α)= -cotα cot(23π+α)= —tanαsin (23π-α)= -cosα cos(23π—α)= —sinαtan (23π-α)= cotα cot(23π-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A •sin (ωt+θ)+B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2—b2=(a+b )(a-b) a3+b3=(a+b)(a2—ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b〈=〉-b≤a≤b|a-b|≥|a|-|b|—|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a —b-b+√(b2-4ac)/2a 根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2—4ac〉0 注:方程有一个实根b2—4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A—B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A—B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB—ctgA) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A—1)/2ctgacos2a=cos2a—sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1—cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1—cosA)) ctg(A/2)=—√((1+cosA)/((1—cosA))和差化积2sinAcosB=sin(A+B)+sin(A—B) 2cosAsinB=sin(A+B)-sin(A—B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A—B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA—tanB=sin(A—B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB —ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a—b)]={[Tan(a+b)/2]/[Tan(a—b)/2]}圆的标准方程(x-a)2+(y—b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2—4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=—2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c’)l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r 〉0 扇形面积公式s=1/2*l*r(直打版)三角函数公式和图像大全(word版可编辑修改) 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S’L注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

(完整word版)三角函数公式表(全)

(完整word版)三角函数公式表(全)

三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.")诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβ2tan(α/2) sinα=——————cos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=—-————-———1-tanα ·tanβtanα-tanβtan(α-β)=——-—--—--————1+tanα ·tanβ1+tan2(α/2)1-tan2(α/2)cosα=—-————1+tan2(α/2)2tan(α/2)tanα=—-————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=-————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·co s[(α-β)/2]sinα—sinβ=2cos[(α+β)/2]·sin [(α—β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α—β)/2] 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=—[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。

(完整word版)三角函数常用公式表

(完整word版)三角函数常用公式表

07高中数学会考复习提纲(2)(三角函数)第四章 三角函数1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。

2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1(2)、度数与弧度数的换算:π= 180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数) 扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)、各象限的符号: yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin (3)、 特殊角的三角函数值4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”)αsinx y++ _ _ O xy++__ αcosOαtanxy+ +__O=r αsec αsinαtan αcotcsc①、αα22cos 1sin -=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=± 5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-)(βα+T 的整式形式为:)tan tan 1()tan(tan tan βαβαβα-⋅+=+例:若︒=+45B A ,则2)tan 1)(tan 1(=++B A .(反之不一定成立) 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos2cos -= ααα2sin 21cos sin =1cos 2sin2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③、22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sinαα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-= 9、三角函数的图象性质(1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。

三角函数公式大全(诱导、和差及万能)(可编辑修改word版)

三角函数公式大全(诱导、和差及万能)(可编辑修改word版)

三角函数诱导公式目录:诱导公式的本质常用的诱导公式其他三角函数知识公式推导过程诱导公式的本质常用的诱导公式其他三角函数知识公式推导过程诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α 的三角函数转化为角α 的三角函数。

常用的诱导公式公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈zcot(2kπ+α)=cotαk∈zsec(2kπ+α)=secαk∈zcsc(2kπ+α)=cscαk∈z公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα公式三:任意角α 与-α 的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsec(-α)=secαcsc(-α)=-cscα公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscα公式五:利用公式一和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsec(2π-α)=secα csc(2π-α)=-cscα公式六:π/2±α 与α 的三角函数值之间的关系:推算公式:3π/2±α 与α 的三角函数值之间的关系:诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数公式、图像大全

三角函数公式、图像大全

R 无最大值 无最小值
R 无最大值 无最小值
周期性 周期为 2π
周期为 2π
周期为 π
周期为 π
奇偶性 奇函数
偶函数
奇函数
奇函数
单调性
在[ 2kπ - ,2k π+ ] 在[ 2kπ - π, 在(k π - ,
2
2
2
上都是增函数;在
2kπ]上都是
[2kπ+ ,2k π+2 π] 增函数;在
2
3
kπ+ ) 内都是 2
cos(-a) = cosa
sin( -a) = cosa 2
cos( -a) = sina 2
sin( +a) = cosa 2
cos( +a) = -sina 2
sin( π -a) = sina
cos( π -a) = -cosa
学习指导参考
sin( π+a) = -sina cos( π+a) = -cosa tgA=tanA = sin a
arcsinx+arccosx= (x ∈[-1,1 ]) arctanx+arccotx= (X ∈R)
2
2
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
和差化积
sina+sinb=2sin a b cos a b
2
2
sina-sinb=2cos a b sin a b
2
2
cosa+cosb = 2cos a b cos a b

高中三角函数公式大全整理版(可编辑修改word版)

高中三角函数公式大全整理版(可编辑修改word版)

高中三角函数公式大全sin30°=1/2sin45°=√2/2 sin60°=√3/2 cos30°=√3/2cos45°=√2/2 cos60°=1/2 tan30°=√3/3tan45°=1 tan60°=√3 cot30°=√3cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4cos75°=(√6-√2)/4(这四个可根据 sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)正弦定理:在△ABC 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。

)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanA + tanB 1- tanAtanBtan(A-B) = tanA - tanB 1+ tanAtanBcot(A+B) = cotAcotB-1 cotB + c otAcot(A-B) = cotAcotB +1 cotB - cotA 倍角公式 tan2A =2tanA1- tan 2ASin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosATan3A= 3 t an 3A - (tan A )3 1- (tan A )2tan A t an( 3 A ) tan( 3 + A ) 半角公式= -sin( A )= 2 cos( A )= 2 tan( A )= 2 cot( A )= 2 tan( A )= 1- cos A =sin A2 sin A 和差化积 1+ cos Asina+sinb=2sin a + b cos a - b2 2 sina-sinb=2cos a + b sin a - b22cosa+cosb = 2cos a + b cos a - b2 2cosa-cosb = -2sin a + b sin a - b2 2tana+tanb= sin(a + b )cos a cos b积化和差1sinasinb = - [cos(a+b)-cos(a-b)]2 cosacosb = sinacosb = cosasinb = 诱导公式1 [cos(a+b)+cos(a-b)]21 [sin(a+b)+sin(a-b)]21 [sin(a+b)-sin(a-b)]2sin(-a) = -sinacos(-a) = cosasin( -a) = cosa2cos( -a) = sina2sin( +a) = cosa2 1- cos A 2 1+ cos A 2 1- cos A 1+ cos A 1+ cos A1- cos A(a 2 + b 2 ) (a 2 + b 2 ) cos( +a) = -sina 2sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA = sin acos a万能公式 2 tan a sina=2 1+ (tan a )2 21- (tan a )2cosa=2 1+ (tan a )2 2 2 tan a tana=2 1- (tan a )2 2其它公式 a•sina+b•cosa= ×sin(a+c) [其中b tanc= ] aa•sin(a)-b•cos(a) = ×cos(a-c) [其中 a tan(c)= ] b a a 2 1+sin(a) =(sin +cos )2 2 a a 2 1-sin(a) = (sin -cos ) 2 2其他非重点三角函数csc(a) = sec(a) = 1 sin a 1 cos a公式一:设 α 为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin (π+α)= -sinαA 2 +B 2 + 2A B c os(⋅) t + arcsin[(Asin + Bsin ) A 2 + B 2 + 2 A B c os(⋅)cos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角 α 与 -α 的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到 π-α 与 α 的三角函数值之间的关系: sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到 2π-α 与 α 的三角函数值之间的关系: sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotαA•sin(ωt+θ)+ B•sin(ωt+φ) = ×sin。

(完整word版)高中三角函数公式大全(2)

(完整word版)高中三角函数公式大全(2)

高中三角函数公式大全2009年07月12日 星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a -sina-sinb=2cos2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

(完整版)常用的三角函数公式大全

(完整版)常用的三角函数公式大全

三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ]a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sh(a)=2e -e -aa ch(a)=2e e -aa + th(a)=)()(a ch a sh ch 2A-sh 2A=1sh2A=2shAchAch2A=ch 2A+sh 2A设α为任意角,2n π+α的三角函数值与α的三角函数值之间的关系:假设α为锐角时,先计算2n π+α的值,再确定符号,如果n 为偶数,则三角函数不变,否则转换函数,同时去掉2n π,例如 sin (2n π+α) cos (2n π+α) tan (2n π+α) cot (2n π+α)。

(完整word)三角函数诱导公式大全,推荐文档

(完整word)三角函数诱导公式大全,推荐文档

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

(完整word版)三角函数公式及求导公式

(完整word版)三角函数公式及求导公式

一、诱导公式口诀:(分子)奇变偶不变,符号看象限。

1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。

(完整word)三角函数转换公式大全,文档

(完整word)三角函数转换公式大全,文档

三角函数公式1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin^2 A=2Cos^2 A — 1=1— 2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3 -3cosAtan3a = tan a ? tan(π /3+a)? tan(π /3-a)4、半角公式sin(A/2) =√ {(1--cosA)/2}cos(A/2) =√ {(1+cosA)/2}tan(A/2) =√ {(1--cosA)/(1+cosA)}cot(A/2) =√ {(1+cosA)/(1-cosA)}tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、引诱公式sin(-a) = -sin(a)cos(-a) = cos(a)sin( π /2-a) = cos(a)cos( π /2-a) = sin(a)sin( π /2+a) = cos(a)cos( π /2+a) = -sin(a)sin( π -a) = sin(a)cos( π -a) = -cos(a)sin( π +a) = -sin(a)cos( π +a) = -cos(a)tgA=tanA = sinA/cosA8、全能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其他公式a?sin(a)+b?cos(a) = [√ (a^2+b^2)]*sin(a+c) [ a?sin(a)-b?cos(a) = [√ (a^2+b^2)]*cos(a-c) [其中, tan(c)=b/a]其中, tan(c)=a/b]1+sin(a) = [sin(a/2)+cos(a/2)]^2;1-sin(a) = [sin(a/2)-cos(a/2)]^2;;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin 〔 2kπ+α〕 = sin αcos 〔 2kπ+α〕 = cos αtan 〔 2kπ+α〕 = tan αcot 〔 2kπ+α〕 = cot α13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin 〔π+α〕 = -sinαcos 〔π+α〕 = -cos αtan 〔π+α〕 = tan αcot 〔π+α〕 = cot α14、公式三:任意角α与- α的三角函数值之间的关系:sin 〔 - α〕 = -sin cos 〔 - α〕 = cos tan 〔 - α〕 = -tan cot 〔 - α〕 = -cotαααα15、公式四:利用公式二和公式三可以获取π- α与α的三角函数值之间的关系:sin 〔π - α〕 = sin αcos 〔π - α〕 = -cos αtan 〔π - α〕 = -tanαcot 〔π - α〕 = -cotα16、公式五:利用公式 - 和公式三可以获取2π - α与α的三角函数值之间的关系:sin 〔 2π - α〕 = -sinαcos 〔 2π - α〕 = cos αtan 〔 2π - α〕 = -tan αcot 〔 2π - α〕 = -cotα17、公式六:π/2 ±α及 3π /2 ±α与α的三角函数值之间的关系:sin 〔π /2+ α〕 = cos αcos 〔π /2+ α〕 = -sinα。

(完整word版)高中三角函数公式大全

(完整word版)高中三角函数公式大全

高中三角函数公式大全2009年07月12日 星期日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a -sina-sinb=2cos2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +-tana=2)2(tan 12tan2a a- 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosαcos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ。

(完整word版)高中三角函数公式大全

(完整word版)高中三角函数公式大全

高中三角函数公式大全2009 年 07 月 12 日 礼拜日 19:27三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtanA tanB 1- tanAtanBtanA tanB 1 t a n A t a n B cotAcotB -1 cotB cotA cotAcotB 1 cotB cotA2tanA1 tan2 ASin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式 3 sin3A = 3sinA-4(sinA) 3cos3A = 4(cosA) -3cosA tan3a = tana ·tan( +a)· tan( -a)3 3 半角公式sin( A )= 1 cos A22cos( A )= 1 cos A2 2tan( A )= 1 cos A2 1 cosAA 1 cos A cot( )=tan2A tan(A-B) = cot(A+B) = cot(A-B) = 倍角公式 tan(A+B) =2 1 cosA tan( A )= 1 cos A = sin A2 sin A 1 cosA和差化积a b a b sina+sinb=2sin2 cos 2a b a bsina-sinb=2cos sin2 2cosa+cosb = 2cos a b cos a b22cosa-cosb = -2sin a b sin a b2 2tana+tanb= sin(a b)cosa cosb积化和差 1sinasinb = - [cos(a+b)-cos(a-b)]cosacosb = 1 [cos(a+b)+cos(a-b)]2sinacosb = 1 [sin(a+b)+sin(a-b)]2cosasinb = 1 [sin(a+b)-sin(a-b)]引诱公式 2sin(-a) = -sinacos(-a) = cosasin( -a) = cosa2cos( -a) = sina2sin( +a) = cosa2cos( +a) = -sina2sin( -πa) = sinacos( π-a) = -cosasin( π +a)-sina=cos( π +a) -=cosasin atgA=tanA = cosa全能公式 2tanasina= 2(tan a ) 21 21 (tan a ) 2cosa= 2(tan a ) 21 22tana tana=2 1 (tan a ) 22其余公式a?sina+b?cosa= (a 2 b 2 ) × sin(a+c) [此中 tanc= b ]a a?sin(a)-b?cos(a) = (a 2b 2 ) ×cos(a-c) [此中 tan(c)= a ] a ab21+sin(a) =(sin +cos )2 21-sin(a) = (sin a -cos a )2 2 2其余非要点三角函数csc(a) = 1 sec(a) = sin a1cosa双曲函数e a - e -a sinh(a)=2cosh(a)=e ae -a 2 sinh( a)tg h(a)=公式一:设 α为随意角,终边同样的角的同一三角函数的值相等:sin (2k π+α)= sin αcos (2k π+ α) = cos αtan (2k π+α)= tan αcot (2k π+α)= cot α公式二:设 α为随意角, π+α的三角函数值与 α的三角函数值之间的关系:sin (π+α)= -sin αcos (π+α)= -cos αtan (π+α)= tan αcot (π+α)= cot α公式三:随意角 α与 -α的三角函数值之间的关系:sin (-α) = -sin α cos (-α) = cos αtan (-α) = -tan αcot (-α) = -cot α公式四:利用公式二和公式三能够获得 π-α与 α的三角函数值之间的关系:sin (π-α)= sin αcos (π-α)= -cos αtan (π-α)= -tan αcot (π-α)= -cot α公式五:利用公式 -和公式三能够获得 2π-α与 α的三角函数值之间的关系:sin (2π-α)= -sin αcos (2π-α)= cos αtan (2π-α)= -tan αcot (2π-α)= -cot α 公式六:±α及3 ±α与 α的三角函数值之间的关系:2 2sin ( +α)= cos α2cos ( +α) = -sin α2tan ( +α)= -cot α2cot ( +α)= -tan α2sin ( -α)= cos α2cos ( -α)= sin α2tan ( -α)= cot α2cot ( -α)= tan α2sin ( 3+α)= -cos α 2 cos (3 +α) = sin α 2 tan (3 +α)= -cot α 2 cot (3 +α)= -tan α 2 sin ( 3-α) = -cos α 2cos(3-α)= -sin α2tan(3-α) = cot α2cot(3-α) = tan α2(以上 k∈ Z)这个物理常用公式我费了半天的劲才输进来,希望对大家实用A?sin(2 2ABcos() ×ω t+ θ )+ B?sin( ω t+A φ )B= 2sin tarcsin[(Asin Bsin ) A2 B2 2 ABcos( )三角函数公式证明(所有)2009-07-08 16:13公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b| ≤|a|+|b|-b||a≤|a|+|b| |a|-≤b≤b<=>a≤b|a-b| ≥ -|a||b| -|a| ≤ a≤ |a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a注:韦达定理鉴别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)= √((1-cosA)/2) sin(A/2)=- √((1-cosA)/2)cos(A/2)= √ ((1+cosA)/2) cos(A/2)=-√ ((1+cosA)/2)tan(A/2)=√-cosA)/((1+cosA)) tan(A/2)=-√ ((1-cosA)/((1+cosA))ctg(A/2)=√ ((1+cosA)/((1-cosA)) ctg(A/2)=-√ ((1+cosA)/((1-cosA))和差化2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前 n 和 1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯ +(2n-1)=n22+4+6+8+10+12+14+⋯ +(2n)=n(n+1)12+22+32+42+52+62+72+82+⋯ +n2=n(n+1)(2n+1)/613+23+33+43+53+63+⋯ n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+ ⋯ +n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:此中 R 表示三角形的外接半径余弦定理b2=a2+c2-2accosB 注:角 B 是 a 和 c 的角正切定理 :[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:( a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a 是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:此中 ,S'是直截面面积, L 是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h----------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,能够获得 2 组积化和差 :相加: cosAcosB=[cos(A+B)+cos(A-B)]/2相减: sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,能够获得 2 组积化和差 :相加: sinAcosB=[sin(A+B)+sin(A-B)]/2相减: sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共 4 组积化和差,而后倒过来就是和差化积了不知道这样你能够记着伐,实在记不住考试的时候也能够暂时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论: (不要求记忆 )(1)anA+tanB+tanC=tanA tanB· ·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2) sin(B/2)· sin(C/2)+1·(4)sin2A+sin2B+sin2C=4sinA sinB· ·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知 sin α=m sin( α+2β), |m|<1,求证 tan( α+β)=(1+m)/(1-m)tan β解:sin α=m sin( α+2β)sin(a+ -β )=msin(a+ β +β )sin(a+ β )cos-cos(a+β β )sin β =msin(a+ β )cos β +mcos(a+β )sin βsin(a+ β )cos-βm)=cos(a+(1 β )sin β (m+1) tan( α +β )=(1+m)/(1-m)tan β。

(完整word版)六种三角函数性质.doc

(完整word版)六种三角函数性质.doc

六种三角函数性质、公式三角函数包括。

它包含六种基本函数: 正弦、余弦、正切、余切、正割、余割y=sinxy-5- 2 12-7o -4-3-2 -3 -2 -12y=cosxy-5-3-- 2 12-4-7-2 -3o 22-1yy=tanx3 7 2225 3 4223 3 7 2225 422yy=cotxxx3-- o3 - 2222x-- 2o3 2x22.反三角函数:arcsinx arccosxarctanxarccotx函数y=sinxy=cosxy=tanxy=cotx{ x | x ∈ R 且{ x | x ∈ R 且 定义域RRx ≠ k π+,k ∈ Z } x ≠ k π∈,kZ }2[ -1,1]x=2k π+ 时[ -1,1]x=2k π时 y max =1R2Ry max =1x=2k π +π时无最大值 值域无最大值y min =-1无最小值x=2k π-时 y min =-1无最小值2周期性 周期为 2π 奇偶性奇函数在[ 2k π-,2k π+ ]单调性22上都是增函数;在周期为 2π偶函数在[ 2k π-π,2k π]上都是增函数;在[ 2k π,2k π+π]上都是减函数周期为 π奇函数在 (k π- ,2周期为 π奇函数在 (k π,k π+π)内都是减函数(k ∈ Z)[ 2kπ+2 (k ∈ Z),2k π+ π]k π+ )内都是增2 3 2上都是减函数 (k ∈Z) 函数 (k ∈ Z)名称定义理解定义域值域性质单调性奇偶性周期性反正弦函数y=sinx(x ∈〔-,〕的反函2 2数,叫做反正弦函数,记作 x=arsinyarcsinx 表示属于[-,]2 2且正弦值等于 x 的角[-1, 1][-,]2 2在〔 -1, 1〕上是增函数arcsin(-x)=-arcsinx都不是同期函数反余弦函数y=cosx(x ∈〔0, π〕)的反函数,叫做反余弦函数,记作x=arccosyarccosx 表示属于[ 0,π],且余弦值等于 x 的角[-1, 1][0,π]在[ -1,1]上是减函数arccos(- x)= π-ar ccosx反正切函数反余切函数y=tanx(x ∈ (-,y=cotx(x ∈(0, π ))的反函数,叫做2 反余切函数,记2)的反函数,叫作 x=arccoty做反正切函数,记作x=arctanyarctanx 表示属于arccotx 表示属于(- , ),且正切值(0,π)且余切值等于 x 的角2 2等于 x 的角(-∞,+∞)(-∞, +∞)(-,) (0,π)2 2在 (-∞, +∞)上是增在(-∞,+∞)上是数减函数arctan(-x)=-arctanx arccot(- x)= π-arccotx恒等式互余恒等式sin(arcsinx)=x(x ∈cos(arccosx)=x([ -1,x∈[ -1,1] )1] )arcsin(sinx)=x( arccos(cosx)=x(x∈[ - , ] )x∈[ 0, π] )2 2arcsinx+arccosx=(x∈[ -1,1] )2tan(arctanx)=x(x ∈cot(arccotx)=x(xR)arctan(tanx)=x ∈ R)( x∈ (- , ))arccot(cotx)=x(x∈ (0, π))2 2arctanx+arccotx=(X ∈R)2y=secx 的性质:(1)定义域 ,{x|x ≠π /2+k π∈,k Z}(2)值域 ,| secx |≥1.即 secx≥1或 secx≤- 1;(3)y=secx是偶函数,即sec( - x)=secx .图像对称于y 轴 ;(4)y=secx是周期函数.周期为2kπ (k∈ Z ,且 k≠ 0),最小正周期T=2π .(5)正割与余弦互为倒数;余割与正弦互为倒数;(6)正割函数无限趋于直线x=π/2+Kπ;(7)正割函数是无界函数;( 8)正割函数的导数:(secx )′=secx×tarx;( 9 正割函数的不定积分:∫secxdx=ln∣ secx+tanx∣ +Cy=cscx 的性1、定义域: { x | x ≠kπ, k ∈Z}2、值域: { y | y≤ -1 或 y ≥1}3、奇偶性:奇函数4、周期性:最小正周期为2π5、图像:图像渐近线为:x=kπ,k∈Z余割函数与正弦函数互为倒数第一部分三角函数公式·两角和与差的三角函数cos( α +β )=cos α·-sincosα·β sin βcos( α-β )=cos α· cosβ +sin α· sin βsin( α±β )=sin α· cosβ± cosα· sin βtan( α +β )=(tan α +tan-tanβ )/(1α· tan β)tan( α-β )=(tan -tanα β )/(1+tan α· tan β)·和差化积 [/url] 公式:sin α +sin β =2sin[( α +β )/2]cos[(-βαsin α-sin β =2cos[( α +β )/2]sin[(-β)/2] αcosα +cosβ =2cos[( α +β )/2]cos[(-βαcosα-cosβ=-2sin[( α +β )/2]sin[(-β)/2] α·积化和差 [/url] 公式:sin α· cosβ =(1/2)[sin( α-β+β)] )+sin( αcosα· sin β =(1/2)[sin(-sin( α-αβ+β))]cosα· cosβ =(1/2)[cos( α-+ββ)])+cos( αsin α· sin-(1/2)[cos(β=α-cos(+β)-αβ )]·倍角公式 [/url] :sin(2 α )=2sin α· cosα =2/(tan α +cot α)cos(2 α )=(cos α-(sin)^2 α )^2=2(cos α-1=1)^2-2(sin α )^2tan(2 α )=2tan α-tan^2/(1 α)cot(2 α )=(cot^2-1)/(2cotαα)sec(2 α )=sec^2 α-tan^2/(1 α)csc(2 α )=1/2*sec α· cscα·三倍角公式:sin(3 α ) = 3sin-4sin^3α α = 4sin α· sin(60 °-+α)sin(60 °cos(3 α ) = 4cos^3-3cosαα = 4cos α· cos(60 ° +-α)cos(60 °tan(3 α ) = (3tan-tan^3α α )/(1-3tan^2 α ) = tan α tan( π /3+ α-α))tan( π /3 cot(3 α )=(cot^3-3cotα α )/(3cot^2-1) α·n 倍角公式:sin(n α )=ncos^(n-1) α· sin-C(n,3)cos^(nα-3) α· sin^3 α+C(n,5)cos^(n-α· sin^5 α-cos(n α )=cos^n-C(n,2)cos^(nα-2) α· sin^2 α +C(n,4)cos^(n-α· sin^4- α·半角公式 [/url] :sin( α /2)= ±√-cos((1α )/2)cos( α /2)= ±√ ((1+cos α )/2)tan( α /2)= ±√-cos((1α )/(1+cosα ))=sinα /(1+cos-cot( α /2)= ±√ ((1+cos-cosαα)/(1))=(1+cos α )/sin α-=sincosα)/(1 sec( α /2)= ±√ ((2sec α /(sec α +1)) csc( α/2)= ±√ ((2sec -1))α /(sec α·辅助角公式:Asin α +Bcosα =√ (A^2+B^2)sin()(αtan+φφ =B/A)Asin α +Bcosα =√ (A^2+B^2)cos(-φ)(αtan φ =A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2 α =(1-cos(2 α ))/2=versin(2α )/2cos^2α =(1+cos(2 α ))/2=covers(2α )/2tan^2 α =(1-cos(2 α ))/(1+cos(2α ))·三角和的三角函数:sin( α +β +γ )=sin α· cosβ· cosγ +cosα· sin β·-sincosα·γ+cossinβ·α·sicosβ· nγcos( α +β +γ )=cos α· cos-β·α·cossinγβ·-sinsinα·γcosβ·-sinsinα·γsin β· co sγtan( α +β +γ )=(tan α +tan-tanβ+tanα·γtan β· tan-tanγα·)/(1 tan-tanββ· tan- γtan γ· tan α)·其它公式·两角和与差的三角函数cos( α +β )=cos α·-sincosα·β sin βcos( α-β )=cos α· cosβ +sin α· sin βsin( α±β )=sin α· cosβ± cosα· sin βtan( α +β )=(tan α +tan-tanβ )/(1α· tan β)tan( α-β )=(tan -tanα β )/(1+tan α· tan β)=sin α /(1-cosα )和差·化积 [/url] 公式:sin α +sin β =2sin[( α +β )/2]cos[(-βαsin α-sin β =2cos[( α +β )/2]sin[(-β)/2] αcosα +cosβ =2cos[( α +β )/2]cos[(-βαcosα-cosβ=-2sin[( α +β )/2]sin[(-β)/2] α·积化和差 [/url] 公式:sin α· cosβ =(1/2)[sin( α-β+β)] )+sin( αcosα· sin β =(1/2)[sin(-sin( α-αβ+β))]cosα· cosβ =(1/2)[cos( α-+ββ)])+cos( αsin α· sin-(1/2)[cos(β=α-cos(+β)-αβ )]·倍角公式 [/url] :sin(2 α )=2sin α· cosα =2/(tan α +cot α)cos(2 α )=(cos α-(sin)^2 α )^2=2(cos α-1=1)^2-2(sin α )^2tan(2 α )=2tan α-tan^2/(1 α)cot(2α)=(cot^2-1)/(2cotαα)sec(2 α )=sec^2 α-tan^2/(1 α)csc(2 α )=1/2*sec α· cscα·三倍角公式:sin(3 α ) = 3sin-4sin^3α α = 4sin α· sin(60 °-+α)sin(60 °cos(3 α ) = 4cos^3-3cosαα = 4cos α· cos(60 ° +-α)cos(60 °tan(3 α ) = (3tan-tan^3α α )/(1-3tan^2 α ) = tan α tan( π /3+ α-α))tan( π /3cot(3 α )=(cot^3-3cotα α )/(3cot^2-1) α·n 倍角公式:sin(n α )=ncos^(n-1) α· sin-C(n,3)cos^(nα-3) α· sin^3 α+C(n,5)cos^(n-α· sin^5 α-cos(n α )=cos^n-C(n,2)cos^(nα-2) α· sin^2 α +C(n,4)cos^(n-α· sin^4- α·半角公式 [/url] :sin( α /2)= ±√-cos((1α )/2)cos( α /2)= ±√ ((1+cos α )/2)tan( α /2)= ±√-cos((1α )/(1+cos α ))=sin α /(1+cos-α)/sin)=(1 αcot( α /2)= ±√ ((1+cos-cosαα)/(1))=(1+cos α )/sin αsec( α /2)= ±√ ((2sec α /(sec α +1))csc( α /2)= ±√ ((2sec -1))α /(sec α·辅助角公式:Asin α +Bcosα =√ (A^2+B^2)sin()(αtan+φφ =B/A)Asin α +Bcosα =√ (A^2+B^2)cos(-φ)(αtan φ =A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2 α =(1-cos(2 α ))/2=versin(2α )/2cos^2α =(1+cos(2 α ))/2=covers(2α )/2tan^2 α =(1-cos(2 α ))/(1+cos(2α ))·三角和的三角函数:sin( α +β +γ )=sin α· cosβ· cosγ +cosα· sin β·-sincosα·γ+cossinβ·α·sicosβ· nγcos( α +β +γ )=cos α· cos-β·α·cossinγβ·-sinsinα·γcosβ·-sinsinα·γsin β· co sγtan( α +β +γ )=(tan α +tan-tanβ+tanα·γtan β· tan-tanγα·)/(1tan-tanββ· tan- γ tan γ· tan α)·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30tan α +cot α =2/sin2 αtan α-cot α=-2cot21+cos2 α =2cos^2α1-cos2α=2sin^2 α1+sin α =[sin( α /2)+cos( α /2)]^21+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a)cos30=sin60sin30=cos60·推导公式tan α +cot α =2/sin2 αtan α-cot α=-2cot2 α1+cos2 α =2cos^2α1-cos2α=2sin^2 α1+sin α =[sin(α /2)+cos(α /2)]^2。

(完整word)三角函数公式大全,推荐文档

(完整word)三角函数公式大全,推荐文档

三角函数公式大全三角函数定义直任角三角形意角三角函数函数关系倒数关系:商数关系:平方关系:.诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:公式二:设为任意角,与的三角函数值之间的关系:公式三:任意角与的三角函数值之间的关系:公式四:与的三角函数值之间的关系:公式五:与的三角函数值之间的关系:公式六:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限记忆方法二:无论α是多大的角,都将α看成锐角.以诱导公式二为例:若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.以诱导公式四为例:若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.诱导公式的应用:运用诱导公式转化三角函数的一般步骤:特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

(完整版)大学用三角函数公式大全

(完整版)大学用三角函数公式大全

倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1cosα/sinα=cotα=cscα/secα1+cot^2(α)=csc^2(α)tan α *cot α=1一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式正弦sin2A=2sinA·cosA余弦1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2Cos^2(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)正切tan2A=(2tanA)/(1-tan^2(A))万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))半角公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ双曲函数sh a = [e^a-e^(-a)]/2ch a = [e^a+e^(-a)]/2th a = sin h(a)/cos h(a)sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanα三角函数的诱导公式(六公式)公式一sin(-α) = -sinαtan (-α)=-tanα公式二sin(π/2-α) = cosαcos(π/2-α) = sinα公式三sin(π/2+α) = cosαcos(π/2+α) = -sinα公式四sin(π-α) = sinαcos(π-α) = -cosα公式五sin(π+α) = -sinαcos(π+α) = -cosα公式六tanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²]cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²] tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)^2+(cosα)^2=1(平方和公式)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)(seca)^2+(csca)^2=(seca)^2(csca)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)反三角函数公式arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=xx〉0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)三角函数求导:(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。

三角函数常用公式表(可编辑修改word版)

三角函数常用公式表(可编辑修改word版)

1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角;(2)、与终边相同的角,连同角在内,都可以表示为集合{| = + k ⋅ 360 , k ∈ Z }(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。

2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做 1弧度的角,用弧度做单位叫弧度制。

(2)、度数与弧度数的换算:180 = 弧度,1 弧度= (180) ≈ 57 18'y P (x ,y ) (3)、弧长公式: l =|| r(是角的弧度数)r扇形面积: S =1lr == 2 1|| r 22 r = x 2 + y 2 > 0x 3、三角函数 (1)、定义:(如图)(2)、各象限的符号:y ysin = yr tan = yx sec =r+x + _+ cos = xrcot= x y csc= r y OxO___+tan的角度 0︒ 30︒ 45︒60︒90︒120︒ 135︒ 150︒ 180︒ 270︒ 360︒的弧度0 6 4 3 2 2 3 3 4 5 63 22 sin 0 1 2 2 23 2 1 3 2 2 2 1 2 0 - 1 0 cos 1 3 2 2 2 1 2- 1 2 - 2 2 - 3 2 - 11 tan3 313—- 3- 1- 3 3 0—4、同角三角函数基本关系式 (1)平方关系:(2)商数关系: (3)倒数关系:sincossin 2 + cos 2= 1 1 + t an 2 = s ec 21 + c ot2 = c sc 2tan =sin coscot =cos sintan cot = 1sin csc = 1cos sec = 1tanseccsccot(4)同角三角函数的常见变形:(活用“1”)①、sin 2= 1 - c os 2 , sin= ± 1 - c os 2; c os 2 = 1 - s in 2 ,cos= ± 1 - sin 2;② tan + cot =cos 2 + sin 2 =sin cos2sin 2, cot - tan =cos 2 - s in 2 = sin cos 2 c os 2sin 2= 2 cot 2③ (sin± cos )2 = 1 ± 2 s in cos = 1 ± sin 2, 1 ± sin 2 =| sin ± cos |y_+ xOx+_1a 2 +b 2 a 25、诱导公式:(奇变偶不变,符号看象限) 公式一: sin(+ k ⋅ 360︒) = sin cos(+ k ⋅ 360︒) = cos tan(+ k ⋅ 360︒) = tan公式二: 公式三: 公 式 四 :sin(-) = -sin cos(-) = cos tan(-) = - tan 公式五:sin(180︒ -) = sin cos(180︒ -) = -cos tan(180︒ -) = - tan sin(180︒ +) = -sin cos(180︒ +) = -cos tan(180︒ +) = tansin(360︒ -) = -sin cos(360︒ -) = costan(360︒ -) = - t ansin -) = cos( 2补充: cos -) = s in( 2tan -) = cot ( 2sin +) = cos ( 2 cos +) = -sin ( 2 tan +) = -cot (2 sin(3-) = -cos 2sin(3+) = -cos 2 cos(3-) = -sin2cos(3+) = sin 2 tan(3-) = cot tan(3+) = -cot 22 6、两角和与差的正弦、余弦、正切两角和与差的三角函数公式万能公式sin(+ ) = sin cos + cos sin sin=2 tan(/ 2) sin(- ) = sin cos - cos sin 1+ t an 2(/ 2)cos(+ ) = cos cos - sin sincos(- ) = cos cos+ sin sintan(+ ) =tan + tancos=1- tan 2(/ 2) 1+ tan 2(/ 2) 1- tan ⋅ tan tan=2 tan(/ 2) tan(- ) =tan - tan1- t an 2(/ 2)1- tan ⋅ tan7 .辅角公式a sin x +b cos x = ⎛ a 2+ b ⎝ sin x +⎫ cos x ⎪ ⎭= a 2 + b 2 (sin x ⋅ c os+ cos x ⋅ s in ) =⋅ sin(x +)(其中称为辅助角,的终边过点(a , b ) , tan= b ) (多用于研究性质) a8、二倍角公式:(1)、 S 2 : sin 2= 2 s in cosC 2: cos 2= cos 2 - sin 2= 1 - 2 sin 2 = 2 cos 2- 1T 2:tan 2=2 tan1 - tan 2(3)、二倍角公式的常用变形:①、 1- cos 2 = | sin | ,1 + cos2 = | cos | ;②、 1 - 1cos 2 =| sin| ,1 + 1cos 2 =| cos |2 22 2a 2 +b 2a 2 +b 2 (2)、降次公式:(多用于研究性质)sincos = 1sin 2 2sin 2 = 1 - cos 2 = - 1 cos 2+ 12 2 2 cos 2 = 1 + cos 2 = 1 cos 2+ 12 2 22 2 by 12 y = sin x- -23 22 x-12③ sin 4 + cos 4= 1 - 2 s in 2 cos 2= 1 -sin 2 2 ;2cos 4 - sin 4= cos 2;④半角: sin三角函数的和差化积公式三角函数的积化和差公式sin + sin = 2 sin+ cos -⋅ 2 2 sin - sin = 2 cos + sin -⋅ 2 2 cos + cos = 2 cos + cos -⋅ 2 2 cos - cos = -2 sin + sin -⋅ 2 2 sin ⋅cos = 1[sin(+ ) + sin(- )]2 cos ⋅sin = 1[sin(+ ) - sin(- )]2 cos ⋅cos = 1[cos(+ ) + cos(- )]2 sin ⋅sin = - 1[cos(+ ) - cos(- )]29、三角函数的图象性质 (1) 、函数的周期性:①、定义:对于函数 f (x ),若存在一个非零常数 T ,当 x 取定义域内的每一个值时, 都有:f (x +T )= f (x ),那么函数 f (x )叫周期函数,非零常数 T 叫这个函数的周期;②、如果函数 f (x )的所有周期中存在一个最小的正数,这个最小的正数叫 f (x )的最小正周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanA + tanB 1- tanAtanB tan(A-B) = tanA - tanB 1+ tanAtanB
cot(A+B) = cotAcotB-1 cotB + c otA
cot(A-B) = cotAcotB +1 cotB - cotA
三角函数公式
倍角公式 tan2A =
2tanA
1- tan 2A
Sin2A=2SinA•CosA
Cos2A = Cos 2A-Sin 2A
=2Cos 2A-1=1-2sin 2A
三倍角公式
sin3A = 3sinA-4(sinA)3
cos3A = 4(cosA)3-3cosA tan3a = tana·tan( +a)·tan( -a) 3 3
半角公式
sin( A )= 2
cos( A )= 2 tan( A )= 2
cot( A )= 2
tan( A )= 1- cos A = sin A 2 sin A 1+ cos A
和差化积
1- cos A 2 1+ cos A 2
1- cos A 1+ cos A 1+ cos A 1- cos A
(a 2 + b 2 ) (a 2 + b 2 ) sina+sinb=2sin a + b cos a - b
2 2 sina-sinb=2cos a + b sin a - b
2 2 cosa+cosb = 2cos a + b cos a - b
2 2 cosa-cosb = -2sin a + b sin a - b
2 2 tana+tanb= sin(a + b )
cos a cos b
积化和差
1 sinasinb = - [cos(a+b)-cos(a-b)]
2 cosacosb = sinacosb = cosasinb = 万能公式
1 [cos(a+b)+cos(a-b)]
2 1 [sin(a+b)+sin(a-b)]
2 1 [sin(a+b)-sin(a-b)]
2
2 tan a sina=
2 1+ (tan a )2 2
1- (tan a )2 cosa=
2 1+ (tan a )2 2 2 tan a tana=
2 1- (tan a )2 2
其它公式 a•sina+b•cosa= ×sin(a+c) [其中 b tanc= ] a a•sin(a)-b•cos(a) = ×cos(a-c) [其中 a a a 2 tan(c)= ] b 1+sin(a) =(sin +cos ) 2 2 a a 2
1-sin(a) = (sin -cos )
2 2
其他非重点三角函数
csc(a) = sec(a) =
1 sin a 1 cos a
双曲函数
e a - e-a sh(a)=
2
ch(a)= e a e-a
2
th(a)=
sh(a )
ch(a)
ch2A-sh2A=1
sh2A=2shAchA ch2A=ch2A+sh2A
设α为任意角,n
2
+α的三角函数值与α的三角函数值之间的关系:假设α为锐角时,先计算n 2
+α的值,再确定符号,如果n 为偶数,则三角函数不变,否则转换函数,同时去
掉n,例如2
sin(n
+α)cos(
n
+α)2 2
tan(n
+α)cot(
n
+α)2 2。

相关文档
最新文档