自由空间传播模型
LoRa通信中的信号强度衰减与距离推算
LoRa通信中的信号强度衰减与距离推算随着物联网技术的发展和应用范围的扩大,无线通信技术也得到了很大的发展。
其中,LoRa(Long-Range)无线通信技术凭借其低功耗、长距离和强抗干扰等特点,在物联网领域得到了广泛应用。
在LoRa通信中,信号强度的衰减与距离的推算是非常重要的一部分,本文将探讨这方面的知识。
一、LoRa通信原理及特点LoRa是一种使用扩频调制的无线通信技术,相较于传统的窄带无线通信技术,LoRa可以实现远距离通信,具有更好的抗干扰能力和更低的功耗。
LoRa技术采用了多普勒扩频、直序扩频和调幅扩频等分散技术,以及协议中的自适应速率和自动重传机制,使得在有限的频段内实现更高的可靠性和更低的功耗。
LoRa通信具有以下特点:1. 长距离通信:LoRa能够在城市环境中达到数公里的通信距离,且在郊区或农村等环境下,通信距离更远。
这使得LoRa成为连接远距离设备的理想选择,比如城市智能灯杆、智能农业监测设备等。
2. 低功耗:LoRa技术采用了低功耗的设计,能够提供长达数年的电池寿命。
这使得LoRa在一些应用场景中特别有优势,比如远程环境监测、智能电表等。
3. 抗干扰能力强:LoRa采用了扩频调制技术,能够在噪声和干扰环境下保持较好的通信质量。
这使得LoRa适用于复杂的城市环境中,如智能交通系统和智能停车等。
二、信号强度衰减与距离关系在LoRa通信中,信号强度衰减与距离之间存在着一定的关系。
这是由于传播路径上存在的路径损耗、多径效应和阴影效应等因素导致的。
1. 路径损耗:路径损耗是指信号在传播过程中因为自由空间传播、反射、绕射、散射等效应导致信号功率衰减的现象。
路径损耗与传播距离呈正相关关系,即传播距离越远,损耗越大。
2. 多径效应:多径效应是指信号在传播过程中因为反射、绕射和散射等效应导致信号多个路径同时到达接收器,并产生干扰的现象。
多径效应会导致信号衰减增大,特别是在城市环境中。
3. 阴影效应:阴影效应是指移动和固定障碍物对信号传播的阻挡和散射效应。
无线通信原理与应用-4.2 自由空间传播模型
Wireless Communications Principles and Practice
第四章 移动无线电传播:大尺度路径损耗
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
§4.2 自由空间传播模型
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
例4.2:如果发射机发射50瓦的功率,将其换算成(a)dBm和(b)dBW。如果该发射 机为单位增益天线,并且载频为900MHz,求出在自由空间中距天线100m处接收 功率为多少dBm。10km处Pr为多少?假定接收天线为单位增益。 解: 已知: 发射功率,Pt= 50W,载频fc= 900MHz,使用公式(4.9) (a)发射功率
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
例题4.1:求解最大尺寸为1m,工作频率为900M Hz的天线的远场 距离。
解: 已知: 天线最大尺寸,D=1m 工作频率 f= 900MHz
使用公式(4.7a)可获得远地距离为:
自由空间中距发射机d处天线的接收功率由公式4.1给出(Friis公式 或自由空间公式)
其中:
Pt: 为发射功率;
Pr(d):是接收功率,为T-R距离的函数;
Gt: 是发射天线增益;
Gr: 是接收天线增益;
D: 是T-R间距离,单位为米;
L: 是与传播无关的系统损耗因子(L大于等于1);
第9章电波传播模型
jϕ
9.2平面反射传播模型
最小有效天线高度 当天线架设较低时,表面波其主要作用,将表面波起支 配作用的天线高度称为最小有效天线高度。最小有效高 度和波长、极化方式、地面电特性性参数有关。 当f<30MHz时表面波其主要作用,当 30MHz<f<300MHz时电波以空间波和表面波两种方式 传播,当f>300MHz时电波以空间波的方式传播,表面 波可以忽略不计。
1 1 1 1 − = − R ρ Re ρ e
Re =
1
1 1 R − 1− R ρ ρ 1 =R = KR dn 1+ 气对电波传播的影响
• 在考虑大气折射的情况下,只要把电波在均匀大气 中传播时所得到的一系列计算公式中,所用的地球 半径用等效地球半径来代替,则电波就好象在无折 射的大气中一样,沿直线传播。 • 例如,在均匀大气中,视距传播的距离为
大于两天线高度和间的距离当收发天线之差引起的相位差入射波和反射波的路径5dre10jee当天线架设高度与波长相比较高时电波主要以空间波的方式进行传播这是可以忽略表面波工程设计中当频率大于150mhz时通常只考虑直射波和反射波92平面反射传播模型最小有效天线高度当天线架设较低时表面波其主要作用将表面波起支配作用的天线高度称为最小有效天线高度
接收功率的计算
2
h1h2 PA = P∑ 2 D1 D2 d
9.2平面反射传播模型
传播损耗的计算 光滑平面传播损耗的计算
P∑ d4 1 Ls = = 2 2⋅ PA h1 h2 D1 D2
实际地面传播损耗的计算
当地形起伏不超过15m,频率为40MHz的路径或 距离小于60KM频率小于1GHz时 : L p = 120 + 40 lg d − 20 lg h1h2 当频率40 < f < 450MHz时进行修正可得: f L p = 120 + 40 lg d − 20 lg h1h2 + 20 lg 40
无线电波空间传播模型
无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
网络路径损耗值计算公式
网络路径损耗值计算公式引言。
在现代社会中,网络通信已经成为人们生活中不可或缺的一部分。
而在网络通信中,路径损耗值的计算是非常重要的。
路径损耗值是指信号在传输过程中由于传输媒介、距离等因素而造成的信号衰减。
在网络规划和优化中,准确计算路径损耗值可以帮助我们更好地设计和优化网络结构,提高网络的性能和覆盖范围。
因此,本文将介绍网络路径损耗值的计算公式,并探讨其在网络通信中的重要性。
一、路径损耗值的定义。
路径损耗值是指信号在传输过程中由于传输媒介、距离等因素而造成的信号衰减。
路径损耗值的大小直接影响着信号的传输质量和覆盖范围。
一般来说,路径损耗值与传输距离成正比,传输距离越远,路径损耗值越大。
此外,传输媒介的不同也会对路径损耗值产生影响,比如在空气中传输的信号路径损耗值要大于在光纤中传输的信号。
二、路径损耗值的计算公式。
路径损耗值的计算公式通常采用自由空间传播模型或多径传播模型。
其中,自由空间传播模型适用于开阔的空间环境,而多径传播模型适用于复杂的城市环境。
下面分别介绍这两种模型的路径损耗值计算公式。
1. 自由空间传播模型。
在自由空间传播模型中,路径损耗值的计算公式为:L = 20 log(d) + 20 log(f) + 20 log(4π/c)。
其中,L为路径损耗值(单位为dB),d为传输距离(单位为米),f为信号频率(单位为赫兹),c为光速(单位为米/秒)。
2. 多径传播模型。
在多径传播模型中,路径损耗值的计算公式为:L = L0 + 10 n log(d/d0)。
其中,L0为参考距离d0处的路径损耗值(单位为dB),n为路径损耗指数,通常在2-5之间,d为传输距离(单位为米)。
三、路径损耗值的重要性。
路径损耗值的准确计算对于网络规划和优化具有重要意义。
首先,路径损耗值的大小直接影响着信号的传输质量和覆盖范围。
准确计算路径损耗值可以帮助我们更好地设计和优化网络结构,提高网络的性能和覆盖范围。
其次,路径损耗值的计算还可以帮助我们评估网络设备的性能和传输媒介的质量,为网络的维护和管理提供参考依据。
无线信号功率计算公式
1.1自由空间传播模型(前提:发射端与接收端之间的传播无障碍物,比如卫星与手机的连接信号)Friis 公式:L d G G P d P r t t r 222)4()(πλ=(1.1)Pr(d):接收到的信号功率 Pt:发射功率 Gt:发射天线增益 Gr:接收天线增益 λ:波长(m)d:发射端与接收端的距离(m) L:与传播无关的损耗(传输线衰减、滤波损耗、天线损耗)注:功率与增益的单位都为W可以由上述公式改写为P r ,是P r (d)的非函数形式L d G G P P r t t r lg lg 2)4lg(lg 2lg lg lg lg 2---+++=πλ (1.2)假设理想状态下无损耗,L=0,f =c / λ,将常数加和,可以演算得:152.19lg 2lg 2lg lg lg 954.16198.2lg 2lg 2lg lg lg 198.2lg 2lg 2lg 2lg lg lg 198.2lg 2lg 2lg lg lg )4lg(lg 2lg 2lg lg lg lg 2--+++=---+++=---+++=--+++=--+++=d f G G P d f G G P d f c G G P d G G P d G G P P r t t r t t r t t r t t r t t r λπλ (1.3)52.191lg 20lg 20lg 10lg 10lg 10lg 10--+++=d f G G P P r t t r (1.4)注:Pr,Pt,Gt,Gr 单位为W如果将Pr,Pt,Gt,Gr 单位换为mW ,可以推导出以下公式52.131lg 20lg 20lg 10lg 10lg 10lg 1052.191lg 20lg 2030lg 1030lg 1030lg 1030lg 1052.191lg 20lg 2010lg 10lg 1010lg 10lg 1010lg 10lg 1010lg 10lg 103333--+++=--++++++=+--++++++=+d f G G P P d f G G P P d f G G P P r t t r r t t r r t t r (1.5)无线概念中常用来表示功率的的单位一般用dbm ,dbi ,与W 的转换关系如下)lg(*10mW dbi dbm ==(1.6)1.2 地面反射模型在d>50m 情况下,422P d h h G G P r t rt t r = (1.7)可以演算为dh h G G P P r t r t t r lg 40lg 20lg 20lg 10lg 10lg 10lg 10-++++= (1.8)注:Pr,Pt,Gt,Gr 单位为W如果将Pr,Pt,Gt,Gr 单位换为mW ,可以推导出以下公式60lg 40lg 20lg 20lg 10lg 10lg 10lg 10+-++++=d h h G G P P r t r t t r (1.9)路径损耗公式为)lg 20lg 20lg 10lg 10(lg 40lg 10lg 10)(r t r t r t h h G G d P P dB PL +++-=-=(1.10)。
通信系统中的无线信号传播模型与特点
通信系统中的无线信号传播模型与特点无线通信是指通过无线电波或红外线等无线电磁波来实现信息传输的通信方式。
现如今,无线通信系统已经广泛应用于无线电、移动通信、卫星通信、无线局域网等多个领域。
无线信号传播模型与特点对于确保通信质量和提高通信效率非常重要。
一、信号传播模型无线信号传播模型是描述无线信号在空间传播过程中衰减和传播路径的模型。
常用的信号传播模型主要包括自由空间传播模型、自由路径传播模型和多径传播模型。
1. 自由空间传播模型:自由空间传播模型是最简单的无线信号传播模型,它假设空间中没有障碍物,信号在传播过程中不会受到衰减。
该模型适用于空旷的地区,如在广场上使用遥控器控制无人机。
2. 自由路径传播模型:自由路径传播模型考虑到了地面、建筑物等直射路径上的障碍物对信号传播的影响。
一般采用二维平面模型或三维平面模型来描述信号的传播路径。
该模型可以应用于城市中高楼大厦之间的通信。
3. 多径传播模型:多径传播模型认为信号在传播过程中会经历多条传播路径,包括直射路径、反射路径和散射路径。
反射路径是信号经过建筑物等物体表面反射,并到达接收点。
散射路径是信号在随机散射体表面发生散射后到达接收点。
该模型可以应用于室内无线通信和城市中街道间的通信。
二、信号传播特点无线信号传播具有独特的特点,了解这些特点对于设计和优化无线通信系统非常重要。
1. 多径效应:多径效应是指信号在传播过程中经历了多条路径,导致接收信号中出现多个分量。
这些分量之间存在相位差和时间延迟,会造成信号的频谱扩展和码间干扰。
在调制解调、信道估计和误码控制等方面需要针对多径效应进行处理。
2. 反射和折射:无线信号在传播过程中会经过建筑物、树木等物体的表面,发生反射和折射。
这会导致信号的强度、相位和传播路径的改变。
因此,在设计信号传播模型时需要考虑建筑物和其他物体对信号传播的影响。
3. 阻塞效应:阻塞效应是指由于障碍物的存在,信号不能直接到达接收点。
这会导致信号衰减、散射和影子区等问题。
通信原理知识点笔记总结
通信原理知识点笔记总结一、信号与系统1.1 时域和频域时域表示信号随时间的变化,频域表示信号在频率上的特性。
通信系统中的信号通常是在时域和频域上进行分析和处理的。
1.2 信号的分类根据波形和性质,信号可以分为连续信号和离散信号。
连续信号是信号在时间上连续变化的,而离散信号是在某些时刻取特定数值的信号。
1.3 傅里叶变换傅里叶变换是将信号在时域上的波形转换到频域上的表示,可以分析信号的频谱特性。
傅里叶逆变换则是将信号从频域上的表示还原为时域上的波形。
1.4 采样和量化在数字通信中,信号需要经过采样和量化处理,将连续信号转换为离散信号,以便进行数字化处理和传输。
1.5 系统的传递函数系统的传递函数描述了输入信号和输出信号之间的关系,可以用来分析系统的性能和稳定性。
二、模拟调制与解调2.1 模拟调制模拟调制是将数字信号调制成模拟信号,以便在传输过程中减小信号的失真和干扰。
常见的模拟调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。
2.2 AM调制原理AM调制是通过改变载波的幅度来传输信息,信号可以直接调制到载波上。
2.3 FM调制原理FM调制是通过改变载波的频率来传输信息,信号是通过改变载波的频率来实现。
2.4 PM调制原理PM调制是通过改变载波的相位来传输信息,信号是通过改变载波的相位来实现。
2.5 解调解调是将模拟信号还原成原始数字信号的过程,通常通过相应的解调器实现。
三、数字调制与解调3.1 数字调制数字调制是将数字信号调制成模拟信号的过程,常见的数字调制方式有ASK、FSK和PSK 等。
3.2 ASK调制原理ASK调制是通过改变载波的幅度来传输数字信号,可以通过调制器将数字信号转换为模拟信号。
3.3 FSK调制原理FSK调制是通过改变载波的频率来传输数字信号,可以通过调制器将数字信号转换为模拟信号。
3.4 PSK调制原理PSK调制是通过改变载波的相位来传输数字信号,可以通过调制器将数字信号转换为模拟信号。
卫星链路预算带公式计算
卫星链路预算带公式计算1.计算路径损耗:路径损耗是指信号在空间传播过程中因为衰减和散射而损失的功率。
路径损耗可以通过自由空间传播模型或海森伯模型进行计算。
自由空间传播模型的计算公式为:PL(dB) = 20log10(d) + 20log10(f) + 20log10(4π/c)其中,PL为路径损耗(单位:dB),d为传播距离(单位:m),f 为信号频率(单位:Hz),c为光速(单位:m/s)。
海森伯模型是一种常用的宽带信号传播模型,计算公式如下:PL(dB) = 20log10(d) + 20log10(f) + K其中,K为路径衰落因子。
根据具体的卫星通信场景和环境条件,选择适当的路径损耗模型进行计算。
2.计算发射功率:发射功率是指在卫星链路中,为保证接收端信号质量要求,发射端需要提供的最小功率。
发射功率的计算可以通过链路损耗和链路预算余量进行估算。
发射功率(Pt)=接收端灵敏度+链路损耗+链路预算余量接收端灵敏度是接收端能够接收到的最小信号功率。
链路损耗通过前述的路径损耗计算得到。
链路预算余量是为了考虑系统运行中的各种不确定性因素而设置的一定的功率余量。
通常,链路预算余量的大小取决于系统设计的可靠性要求和工程经验。
3.计算接收灵敏度:接收灵敏度是指接收端能够接收到的最小信号功率。
它取决于接收机的技术指标和接收机的前端噪声。
接收灵敏度可根据接收机的技术规格手册或卫星通信系统的设计要求来确定。
通过以上三个步骤,就可以计算得到卫星链路的预算参数,包括发射功率、接收灵敏度和链路预算余量。
这些参数可以作为卫星通信系统设计和优化的参考依据,以提高系统的性能和可靠性。
需要注意的是,卫星链路预算的计算是一个复杂的过程,涉及到多个技术参数和系统设计要求。
在实际应用中,需要根据具体的情况和需求进行调整和优化,以满足特定的通信需求。
自由空间传播模型
2.2 无线传播模型
2.2.2 自由空间传播模型
为了给通信系统的规划和设计提供依据,人们通过理论分析或实测等方法,对电磁波在某些特定环境下的传播特性进行统计分析,从而总结和建立了一些具有普遍性的数学模型。
我们将这些模型称为无线传播模型(Propagation Model )。
自由空间传播模型(Free Space Propagation Model )是最简单、理想情况的无线电波传播模型。
PG G λ2 P (d ) = t t r r (4π)2 d 2 L ⎡⎛ 4πd
⎫2 ⎤ 10 l og P r = 10 log P t + 10 log G t + 10 log G r - 10 log L - 10 log ⎢ ⎢⎣⎝ ⎪ ⎥ λ ⎭ ⎥⎦
Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 13
2.2 无线传播模型
2.2.2 自由空间传播模型
自由空间路径损耗用于
描述信号衰减,定义为
有效发射功率和接收功
率之间的差值,不包括
天线增益
PL(dB) = 10 l og P t
P
r
=-147.56 + 20 log d + 20 log f
Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 1 4。
无线电波传播模型的应用与分析
无线电波传播模型的应用与分析在现代通信领域,无线电波传播模型扮演着至关重要的角色。
它们是我们理解和预测无线电信号在不同环境中传播特性的有力工具,对于无线通信系统的规划、设计、优化以及性能评估都具有不可或缺的意义。
无线电波传播模型的种类繁多,每种模型都有其适用的场景和局限性。
常见的传播模型包括自由空间传播模型、OkumuraHata 模型、COST 231-Hata 模型、射线跟踪模型等。
自由空间传播模型是最简单也是最基础的模型。
它假设信号在无障碍物的理想自由空间中传播,不考虑地形、建筑物等因素的影响。
这个模型适用于卫星通信等长距离、空旷环境下的粗略估计。
但在实际的城市、山区等复杂环境中,其预测结果往往与实际情况相差较大。
OkumuraHata 模型则是一种基于大量实测数据建立起来的经验模型,适用于频率在 150 MHz 到 1500 MHz 之间的城区环境。
它考虑了基站天线高度、移动台天线高度以及通信距离等因素对信号衰减的影响。
然而,对于一些特殊的地形地貌,如山区、水域等,该模型的准确性可能会有所下降。
COST 231-Hata 模型是在 OkumuraHata 模型的基础上发展而来,对频率范围进行了扩展,适用于 1500 MHz 到 2000 MHz 的频段。
它在城市环境中的预测效果相对较好,但在农村和郊区等场景的应用中仍存在一定的局限性。
射线跟踪模型是一种基于几何光学和电磁理论的确定性模型。
它通过追踪无线电波从发射源到接收点的传播路径,考虑了反射、折射、绕射等多种传播机制。
这种模型能够提供非常精确的预测结果,但计算复杂度较高,通常需要大量的计算资源和时间。
无线电波传播模型在无线通信系统的规划和设计中发挥着重要作用。
在网络规划阶段,工程师们可以利用传播模型来估算基站的覆盖范围、信号强度以及容量,从而确定基站的位置、数量和发射功率等关键参数。
例如,在城市中心区域,由于建筑物密集,信号衰减较大,需要增加基站密度以保证良好的覆盖;而在郊区或农村地区,由于地形开阔,信号传播条件较好,可以适当减少基站数量,降低建设成本。
400M传播特性及衰落
400MHz频段无线电传播特性及衰落UHF(30MHz< f< 3000MHz) 该频带内,安排有大量固定和移动业务。
该频段除了低端之外,通常不是通过有规则的电离层来进行电波传播的。
气候只对超折射和传导有影响,这是由大气折射指数中正常梯度的变化引起的。
除了自由空间传播外,对流层散射和绕射也是很重要的。
我们可以按照下述各种特定传播环境的传播模型来估算电波的传播损耗。
(1)自由空间传播模型通常把电磁波在真空中的传播称之为“自由空间传播”。
在某些环境中,假定有用信号只是由于在自由空间所产生的传播损耗。
也就是说,把大气看成为近似真空的均匀介质,电磁波沿直线传播,不发生反射、折射、绕射和散射等现象,这时在大气中的传播就等效于自由空间传播,它只与频率f和距离d有关。
(2)平坦大地的绕射模型适合大于视距的传播范围,对有用信号的预测需要考虑地球的曲率。
(3)粗糙大地上的传播模型适合于世界特定地区和特别粗糙大地上的传播。
(4)OKUMURA-HATA模型以距离和发射机天线的高度为依据。
校正这个损耗须要以建筑物在接收位置附近的百分率、路径类型(陆地、海洋、混合)和大地不规则度为依据,主要用于大城市和郊区环境的传播损耗和场强预测。
(5)LONGLEY-RICE(ITS)模型可用来估算地波和对流层散射的传播衰减。
这个模型是统计模型,也就是预测中值场强和估计信号随时间与空间的变化。
另外,还必须考虑到其他有可能造成干扰的传播机理,包括电离层传播机理,有可能随季节和昼夜时间变化;通过偶尔发生的E层,有可能允许在约70MHz频率上进行长距离传播。
此外还有超折射和大气波导等。
400MHz频段的电波属于微波波段,该波段是指频率为300-3000MHz(波长为0.1-1m)的电波,称为特高频(UHF)。
一般来说微波(UHF)频率电波的传播,电波穿透电离层不再返回地面,地波在地面上传播时,由于波长比较短,地面上与使用波长可比拟的物体多,绕射困难,形成阻隔,造成地波衰减严重,因此主要依靠空间直射波传播,也称为视距传播。
无线通信原理与应用第二版课后练习题含答案
无线通信原理与应用第二版课后练习题含答案第一章绪论选择题1. 下列哪一种无线通信技术的频率最低?A. 蓝牙B. Wi-FiC. ZigbeeD. RFID答案:D判断题1. 无线通信技术只在近年来快速发展,以前没有应用历史。
答案:错误第二章无线信道传输基础选择题1. 无线信道传输中出现的信道;随机转换为周期变换的方法被称为:A. 等效周期转换法B. 非等效周期转换法C. 均匀随机交替法D. 非均匀随机交替法填空题1. 在无线传输的环境中,由于信号在其传播过程中将受到反射、衍射等影响,因此信号会受到多个路径的传输,称之为多径效应。
答案:多径效应简答题1. 请简述自由空间传播模型的传输路径特点。
自由空间传播模型的传输路径特点是直线传播。
自由空间传播模型适用于在较为开阔的场合中,由于不具有阻碍、反射、绕射等因素的影响,因此传播损耗小。
但是在实际应用中,很难避免多径效应,在城市等复杂环境中,自由空间传播模型不具有现实意义。
第三章无线传输技术选择题1. 下列哪一种无线传输技术属于固定式通信?A. Wi-FiB. WCDMAC. 链路D. 蓝牙答案:C1. 请简述频分复用的基本概念和特点。
频分复用基本上是通过将一条信道分为多个子信道来实现的,每一个子信道都具有不同的载波频率和时间插槽,可以支持多个用户在同一条通信信道中传输信息。
在频分复用中,对于不同频段的信号,发送和接收机通过中继站进行转换。
频分复用技术可以减少重复线路的数量,降低了系统的成本。
同时,它也具有可靠、稳定的传输品质,适用于多种不同的通信标准。
无线电波传播模型
COST 231-Hata模型
PL 46.30 33.90log
f 13.82loghb ahm
44.9 6.55loghblog ddB Cm
适用范围:
频率范围f: 基站天线高度Hb: 移动台高度Hm: 距离d:
150~2000MHz 30~200m
1~10m 1~20km
宏蜂窝模型
基站天线高度高于周围建筑物 1km以内预测不适用 频率超过2000MHz或低于1500MHz时不适用
频描率述 超了过长20距00是离M理H内z或论接பைடு நூலகம்收模于信型1号。50的该0M强环H度境z时的在不缓现适慢实用变中化并;不存在,但空气介质近似于各向同性介质。
自由空间传播模型适用于具有各向同性传播介质(如真空)的无线环境,
COST 231Walfish-Ikegami模型
Okumura-Hata模型
小尺度模型
描述短距离或短时间内接收信号强度快速变化的模型; 主要的模型代表由:AGWN模型、Raleigh时变信道模型等。
自由空间传播模型
频率超过2000MHz或低于1500MHz时不适用
Okumura-Hata
84+20lgd, for f = 2100MHz
基站天线高度Hb:
30~200m
Cost231-Hata
PL 69.55 26.16log
f 13.82loghb ahm
44.9 6.55loghblog ddB Cm
适用范围:
频率范围f: 基站天线高度Hb: 移动台高度Hm: 距离d:
150~1500MHz 30~200m
1~10m 1~20km
宏蜂窝模型
基站天线高度高于周围建筑物 1km以内预测不适用 频率超过1500MHz以上时不适用
自由空间传播模型
自由空间传播模型
2.2 无线传播模型
2.2.2 自由空间传播模型
为了给通信系统的规划和设计提供依据,人们通过理论分析或实测等方法,对电磁波在某些特定环境下的传播特性进行统计分析,从而总结和建立了一些具有普遍性的数学模型。
我们将这些模型称为无线传播模型(Propagation Model )。
自由空间传播模型(Free Space Propagation Model )是最简单、理想情况的无线电波传播模型。
PG G λ2 P (d ) = t t r r (4π)2 d 2 L ?? 4πd
2 ? 10 l og P r = 10 log P t + 10 log G t + 10 log G r - 10 log L - 10 log ? ??? ? ? λ ? ??
Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 13
2.2 无线传播模型
2.2.2 自由空间传播模型
自由空间路径损耗用于
描述信号衰减,定义为
有效发射功率和接收功
率之间的差值,不包括
天线增益
PL(dB) = 10 l og P t
P
r
=-147.56 + 20 log d + 20 log f
Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 1 4。
自由空间路径损耗公式
自由空间路径损耗公式自由空间路径损耗公式,也称为自由空间传播模型,是用来计算无线信号在自由空间中传播过程中的损耗情况的数学公式。
这个公式可以用来估算信号在不同距离、不同频率和不同天线高度下的衰减程度,对于无线通信系统的规划和设计具有重要意义。
自由空间路径损耗公式的基本形式如下:L = 20log10(d) + 20log10(f) + K其中,L表示路径损耗,单位为dB;d表示传输距离,单位为米;f 表示信号的频率,单位为MHz;K是一个常数,用来表示其他因素对路径损耗的影响,单位为dB。
公式中的20log10(d)项表示距离衰减,20log10(f)项表示频率衰减,K项表示其他因素的影响。
距离衰减是指信号在传输过程中随着距离的增加而衰减的现象。
根据自由空间路径损耗公式,距离衰减的程度与传输距离的对数成正比,即随着传输距离的增加,路径损耗也会增加。
这是因为信号在传输过程中会受到空气、地面和建筑物等物体的阻挡和散射,导致信号强度的减弱。
频率衰减是指信号在传输过程中随着频率的增加而衰减的现象。
根据自由空间路径损耗公式,频率衰减的程度与信号的频率的对数成正比,即随着信号频率的增加,路径损耗也会增加。
这是因为高频信号在传输过程中会受到大气、地面和建筑物等物体的吸收和散射,导致信号强度的减弱。
除了距离和频率衰减外,自由空间路径损耗公式还考虑了其他因素对路径损耗的影响。
这些因素包括天线高度、地形、气候条件、建筑物的遮挡等。
这些因素都会对信号的传输产生影响,使得路径损耗的程度不仅与距离和频率相关,还与这些因素有关。
K项表示这些因素对路径损耗的影响,可以根据实际情况来确定。
在无线通信系统的规划和设计中,自由空间路径损耗公式可以用来估算信号的传输损耗,从而确定合适的传输距离、频率和天线高度等参数。
通过合理地选择这些参数,可以使得信号在传输过程中的损耗最小化,从而提高通信质量和覆盖范围。
自由空间路径损耗公式是无线通信系统设计中重要的工具,通过计算路径损耗可以有效地估算信号在自由空间中的传输情况。
无线信号传播衰弱浅析
1无线传播简介移动通信中采用无线电波传播信息,即无线信道。
而移动台又经常处于不断运动状态之中,因而导致接收到的信号幅度和相位随时间、地点而不断地变化。
因此,需要对网络所在无线环境进行研究。
从移动信道的电磁波传播上看,有四种传播方式:直射波、反射波、绕射波和散射波。
1.1直射波(自由空间传播模型)自由空间传播是指在理想的、均匀的各向同性的介质中传播,不发生反射、折射、散射和吸收现象,只存在因电磁波能量扩散而引起的传播损耗。
在自由空间中,若发射点处的发射功率为P t ,以球面波辐射接收的功率为P r ,则有P r =P t λ4πd()2g t g r式中,P t 为发射机送至天线的功率,g t 和g r 是发射和接收天线增益,λ为波长,d 为发射天线和接收天线之间的距离。
自由空间传播损耗则可以定义为:L s =P t P r =4πd λ()21g t g r损耗常用分贝表示,则:L s =32.45+20logd+20logf-10log(g t g r )L bs =32.45+20logd+20logf g =g =1式中,距离d 以km 为单位,频率f 以MHz 为单位,L bs 定义为自由空间路径损耗,他表示自由空间中的两个理想电源天线(增益系数g t =g r =1的天线)之间的传输损耗。
1.2反射波反射波是指从不同建筑物或其他反射体反射后到达接收点的传播信号,其信号强度较直射波弱。
接下来,对多径传播模型做如下推导:如果电磁波传播到理想介质表面,则能量都将反射回来,反射系数(入射波与反射波的场强比值)R 为1。
而对于非理想介质的情况下,反射系数R=sinθ-z sinθ+z。
式中z=ε0-cos 2θ√/ε0(垂直极化)或z=ε0-cos 2θ√(水平极化),ε0=ε-j60σλ,其中,θ入射角,ε和σ分别为反射媒质的介电常数和电导率,λ为波长。
两径传播的接收信号强度P r 可以表示为:P r ≈P tλ4πd()2g t gr1+Re-jΔΦ2其中,相位差ΔΦ=2πΔl λ,Δl=(AC+CB)-AB。
视距传输的两种模型
Rmax = 3.57{ √HT (m) +√HR (m) } (km)
考虑到大气层对电波的折射作用,极限直视距离应修正为:
Rmax = 4.12 { √HT(m) +√HR (m) } (km)
电波传播的有效直视距离 Re 约为 极限直视距离Rmax 的 70% ,即 Re = 0.7 Rmax .
无线电波最简单的传播模型是自由空间传播模型,但在超远覆盖情况下,对传播距离影响最大的是地球曲率。在距离足够远(>L)的地方,由于地球曲率的存在,视距传播(LOS)信号无法直接到达对端。因此实际微波传输距离受地球曲率影响很大。另外站高也决定了微波传输距离。以地球半径R=6371公里,基站高度H=300米为例,可以根据公式计l=[(R+H)^2-R^2]^1/2算出最大视距传播距离约为71.4公里。考虑衍射和折射的因素,实际传播距离会比视距传播距离略远10%左右。
l=[(R+H)^2-R^2]^1/2
第一种模型为:
显然,由于地球的曲率使空间波传播存在一个极限直视距离 R max 。在最远直视距离之内的区域,习惯上称为照明区 ;极限直视距离 R max 以外的区域,则称为 阴影区。 不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离 R max内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pr
(d )
Pt Gt Gr λ2 (4π)2 d 2 L
10 log Pr
10 log Pt
10 log Gt
10 log Gr
10 log L 1obile Networks Technology
Zhenzhou Tang @ Wenzhou University
2.2 无线传播模型 2.2.2 自由空间传播模型
为了给通信系统的规划和设计提供依据,人们通过理论分析或实测 等方法,对电磁波在某些特定环境下的传播特性进行统计分析,从 而总结和建立了一些具有普遍性的数学模型。我们将这些模型称为 无线传播模型(Propagation Model)。
自由空间传播模型(Free Space Propagation Model)是最简单、理 想情况的无线电波传播模型。
13
2.2 无线传播模型 2.2.2 自由空间传播模型
自由空间路径损耗用于 描述信号衰减,定义为 有效发射功率和接收功 率之间的差值,不包括 天线增益
PL(dB) 10 log Pt Pr
147.56 20 log d 20 log f
14
Wireless and Mobile Networks Technology
Zhenzhou Tang @ Wenzhou University