高斯列主元消元法解线性方程组

合集下载

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要....................................................................................... 错误!未定义书签。

第1章绪论 ......................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

列主元消去法解方程组实验报告

列主元消去法解方程组实验报告

实验名称:列主元消去法解方程组1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。

而在用高斯消去法解Ax=b时,其中设A为非奇异矩阵,可能出现的情况,这时必须进行带行交换的高斯消去法。

但在实际计算中即使但其绝对值很小时,用作除数,会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。

因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。

为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数,以便减少计算过程中舍入误差对计算解的影响。

一种方式是完全主元消去法,这种消去法是在每次选主元时,选择为主元素。

这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。

实际计算中我们常采用部分选主元的的消去法。

列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。

2 实验目的和要求运用matlab编写一个.m文件,要求用列主元消去法求解方程组(实现PA=LU):要求输出以下内容:(1)计算解x;(2) L,U;(3)整形数组IP(i)(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1)算法原理设有线性方程组Ax=b,其中设A为非奇异矩阵。

方程组的增广矩阵为第1步(k=1):首先在A的第一列中选取绝对值最大的元素,作为第一步的主元素:,然后交换(A,b)的第1行与第i1行元素,再进行消元计算。

设列主元素消去法已经完成第1步到第k-1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定ik使(2)如果,则A为非奇异矩阵,停止计算。

(3)如果ik≠k,则交换[A,b]第ik行与第k行元素。

(4)消元计算消元乘数满足:(5)回代求解计算解在常数项b(n)内得到。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结

高斯消元法与线性方程组的解法知识点总结在数学中,线性方程组是一个常见的问题。

解决线性方程组的一个重要方法是高斯消元法。

本文将对高斯消元法及其相关知识点进行总结。

一、高斯消元法概述高斯消元法是一种通过进行行变换将线性方程组转化为简化行阶梯形矩阵,从而求解方程组的方法。

它通过不断的行变换,将系数矩阵化为单位矩阵,从而得到方程组的解。

二、高斯消元法的步骤1. 构造增广矩阵:将线性方程组中的系数矩阵和常数矩阵合并,形成增广矩阵。

2. 主元选择:选取增广矩阵中的第一个非零元作为主元,将主元所在列的其他元素进行行变换,使其化为零。

3. 交换行:如果主元所在行的系数为零,则可以进行行交换,将非零行移到主元所在行。

4. 迭代计算:从第二行开始,重复进行主元选择和行变换,使整个增广矩阵形成简化行阶梯形矩阵。

5. 回代求解:根据形成的简化行阶梯形矩阵,反向求解线性方程组,得到方程组的解。

三、高斯消元法的优缺点1. 优点:a. 算法简单,易于实现。

b. 可以准确求解线性方程组的解。

c. 可以判断线性方程组的解的个数和解的形式。

2. 缺点:a. 当方程组的系数矩阵存在大量零元或接近零元时,可能会产生较大的舍入误差。

b. 在某些情况下,方程组的解可能无法唯一确定,或者无解。

四、高斯消元法的应用高斯消元法在科学与工程领域有着广泛的应用,特别是在线性代数、计算机图形学、金融数学等领域。

它可以用于求解线性方程组的解,计算矩阵的逆、行列式等。

五、高斯消元法的拓展1. 高斯-约旦消元法:在高斯消元法的基础上,通过对主元所在列的其他元素进行行变换,将主元化为1,从而形成行简化阶梯形矩阵。

2. 列主元高斯消元法:在主元选择时,选取主元所在列中绝对值最大的元素作为主元,从而减小舍入误差的影响。

3. 高斯消元法的数值稳定性:在进行高斯消元法计算时,需要注意舍入误差的积累,通过一些数值稳定的改进方法,可以提高计算的精度。

六、总结高斯消元法是解决线性方程组的一种常用方法,通过不断的行变换,将系数矩阵化为简化行阶梯形矩阵,从而求解方程组的解。

列主元高斯消去法和列主元三角分解法解线性方程

列主元高斯消去法和列主元三角分解法解线性方程

计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。

解线性方程组的方法

解线性方程组的方法

解线性方程组的方法线性方程组是数学中常见的一类方程组,它由一组线性方程组成,常用形式为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ = b₂⋮aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, …, a₁ₙ, a₂₁, a₂₂, …, aₙₙ为已知系数,b₁,b₂, …, bₙ为已知常数,x₁, x₂, …, xₙ为未知数。

解线性方程组的方法有多种,下面将详细介绍其中的几种常用方法。

1. 列主元高斯消元法列主元高斯消元法是一种经典的解线性方程组的方法。

它的基本思想是通过消元将线性方程组转化为三角形式,然后逐步回代求解未知数。

具体步骤如下:(1)将系数矩阵按列选择主元,即选取每一列中绝对值最大的元素作为主元;(2)对系数矩阵进行初等行变换,使主元所在列下方的元素全部变为零;(3)重复上述步骤,直到将系数矩阵化为上三角矩阵;(4)从最后一行开始,逐步回代求解未知数。

2. Cramer法则Cramer法则是一种基于行列式的解线性方程组的方法。

它利用克拉默法则,通过求解线性方程组的系数矩阵的行列式和各个未知数对应的代数余子式的乘积,进而得到方程组的解。

具体步骤如下:(1)计算线性方程组的系数矩阵的行列式,若行列式为零,则方程组无解,否则进行下一步;(2)分别将每个未知数对应的列替换为常数向量,并计算替换后的系数矩阵的行列式;(3)将第二步计算得到的行列式除以第一步计算得到的行列式,得到各个未知数的解。

需要注意的是,Cramer法则只适用于系数矩阵为非奇异矩阵的情况。

3. 矩阵求逆法矩阵求逆法是一种利用矩阵求逆运算解线性方程组的方法。

它将线性方程组转化为矩阵形式,通过求解系数矩阵的逆矩阵,然后与常数向量相乘得到未知数向量。

具体步骤如下:(1)将线性方程组的系数矩阵记为A,常数向量记为b,未知数向量记为x;(2)判断A是否可逆,若A可逆,则进行下一步,否则方程组无解;(3)求解系数矩阵的逆矩阵A⁻¹;(4)计算未知数向量x = A⁻¹b。

Gauss消元法解解线性方程组

Gauss消元法解解线性方程组

摘要本文叙述了Gauss 顺序消元法解线性方程的算法思想以及其求解过程,同时简要叙述了Gauss 主元素消元法以及Gauss 全主元消元法。

紧接着给出了Gauss Seidel -迭代法的算法思想,本文给出了这三个消元方法以及一个迭代法的算法流程图,由于全主元消元法是前两个算法的基础上改进而来,故本文采用第三种方法进行编程计算,前两种方法不再重复编程,然后给出一个实例的计算结果,运行时间,在文章最后分析该实例的计算结果,针对同一实例,又采用Gauss Seidel -方法编程实现,然后对结果进行分析和对比。

最后给出了本人在编程时遇到的一些问题和解决办法。

关键词:Gauss 顺序消元法 Gauss 主元素消元法 Gauss 全主元消元法一、算法的简要描述1.1Gauss 顺序消元法Gauss 消元法在中学里已经学习过,其方法实质,就是运用初等变换,将线性方程组Ax b =转化为同解的上三角矩阵方程组1Ux L b -=(1.1.1)其中,U 为上三角矩阵,L 为下三角矩阵。

然后对式(1.1.1)进行回代求解,即得方程组的解。

手算的过程是非常清楚的,现在需回答的是计算机求解,如何实现上述计算过程。

设线性方程组为1111221331121122223322112233n n n n n n n nn n na x a x a x a xb a x a x a x a x b a x a x a x a x b +++⋅⋅⋅+=⎧⎪+++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪+++⋅⋅⋅+=⎩ 写成矩阵形式为1112111212222221222m m m n n a a a x b aa a xb a a a x b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(1.1.2)设线性方程组如上式所示,记(1)A A =,(1)b b =,与是增广矩阵具有形式(1)(1)[][]A b A b =,此时方程组为(1)(1)A x b =。

作业一 高斯消元法和列主元消元法

作业一 高斯消元法和列主元消元法

用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。

⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。

作业一 高斯消元法和列主元消元法

作业一 高斯消元法和列主元消元法

用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。

为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。

⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。

⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。

高斯列主元消去法优缺点

高斯列主元消去法优缺点

高斯列主元消去法优缺点
高斯列主元消去法是解线性方程组的一种常用方法。

它的优点是
可以有效地求解大规模线性方程组,计算精度高,稳定性强,并且可
以通过程序自动化计算。

此外,高斯列主元消去法的求解过程简单明了,易于理解和掌握,对于初学者也比较友好。

不过,高斯列主元消去法也存在一些缺点。

首先,在解决某些具
有特殊形式的线性方程组时,可能需要进行额外的操作,如部分主元
消去、对角线支配等,导致计算难度和复杂度增加。

其次,高斯列主
元消去法在求解稀疏矩阵时,可能会出现计算复杂度较高的情况,甚
至无法求解。

此外,高斯列主元消去法还可能面临误差传播和舍入误差等问题,导致求解结果略有偏差。

综合考虑,高斯列主元消去法在解决一般的
线性方程组问题时,是一种可靠、实用的方法。

但在某些特殊情况下,可能需要选择其他更适合的方法来求解。

解线性方程组的列主元素高斯消去法和lu分解法

解线性方程组的列主元素高斯消去法和lu分解法

数值试验报告分析一、实验名称:解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的及要求:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

三、算法描述:本次试验采用的是高斯列主元消去法和LU分解法求解线性方程组的解。

其中,高斯消去法的基本思想是避免接近于零的数作分母;能进行到底的条件: 当A可逆时,列主元Gauss(高斯)消去法一定能进行到底。

优点: 具有很好的数值稳定性;具有与顺序Gauss 消去法相同的计算量。

列主元Gauss(高斯)消去法的精度显著高于顺序Gauss(高斯)消去法。

注意:省去换列的步骤,每次仅选一列中最大的元。

矩阵的三角分解法是A=LU,L 是下三角阵,U是上三角阵,Doolittle 分解:L 是单位下三角阵,U是上三角阵;Crout 分解:L 是下三角阵,U是单位上三角阵。

矩阵三角分解的条件是矩阵 A 有唯一的Doolittle 分解的充要条件是 A 的前n-1 顺序主子式非零;矩阵A有唯一的Crout 分解的充要条件是 A 的前n-1 顺序主子式非零。

三角分解的实现是通过(1)Doolittle 分解的实现;(2)Doolittle 分解的缺点:条件苛刻,且不具有数值稳定性。

(3)用Doolittle 分解求解方程组: AX=b LUX=b LY=bA=LU UX=Y ;四、实验内容:解下列两个线性方程组3.01 6.03 1.99 x1 11) 1.27 4.16 1.23 x2 10.987 4.81 9.34 x3 110 7 0 1 x1 83 2.099999 6 2 x2 5.9000012) 5 1 5 1x3 52 1 0 2 x4 1a、用你熟悉的算法语言编写程序用列主元高斯消去法和LU分解求解上述两个方程组,输出Ax=b 中矩阵 A 及向量b, A=LU 分解的L 及U,detA 及解向量x.b、将方程组(1)中系数 3.01 改为 3.00 ,0.987 改为0.990 ,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。

解线性方程组-高斯消去法列主元

解线性方程组-高斯消去法列主元

的数作主元 arkk1

max
kin
aikk
1
,然后将第 r 行和第 k 行交换(如 r k )。从而在计算 lik 时保证了被除
数的绝对值大于等于除数的绝对值。
实际计算时,当最大的 arkk1 很小时,求解结果同样会严重失真,则求解过程应当停止。设 0是某个 很小的数,当 arkk1 时,过程应该停止,此时已不是算法的问题,而是方程组本身的问题了。
x3 5 1 5 , x2 3 3x3 3 3 35 3 4 , x1 7 x2 x3 2 7 4 5 2 1
此方法就是高斯消去法。
计算流程
记初始方程组 Ax b 为 A0 x b0 。
k 1,即消去第 2 到第 n 个方程中的 x1 ,假定 a110 0 , 目标
a110 a120
是:
A

a201
a202

an01 an02
a1n0
b10

a110 a120
a20n
b20


0
a212

对于j k 1, , n 做 aijk aijk1 lik akkj 1
bik bik1 lik bkk1
直到 k n 1时,消元过程结束, An1 成为上三角矩阵,最后一个方程成为一元一次方程(只含 xn ),
第一步,消元过程: 对增广矩阵进行消元,
7b 11ຫໍສະໝຸດ , 0 x1
x


x2


x3
2
A b 4
1
1 5 1
1 1 1

计算方法实验报告_列主元高斯消去法

计算方法实验报告_列主元高斯消去法
double row_first; //行首元素 //主对角元素单位化 for(int i=0;i<n;i++) {
row_first=A[i][i]; for(int j=0;j<n+1;j++)
计算方法实验报告
{ A[i][j]=A[i][j]/row_first;
} }
for(int k=n-1;k>0;k--) {
for(int i=0;i<N;i++) {
for(int j=0;j<N;j++) {
A_B[i][j]=A[i][j]; } A_B[i][N]=B[i][0]; } return A_B; }
3
//输出矩阵 A 的 row x col 个元素 void Show_Matrix(double **A,int row,int col) {
for(int i=0;i<N;i++)
{
int row=Choose_Colum_Main_Element(N,A_B,i);
if(Main_Element<=e) goto A_0;
Exchange(A_B,N+1,row,i);
Elimination(N,A_B,i);
cout<<"选取列主元后第"<<i+1<<"次消元:"<<endl;
double factor; for(int i=start+1;i<n;i++) {
factor=A[i][start]/A[start][start]; for(int j=start;j<n+1;j++) {

高斯消元法(完整)

高斯消元法(完整)

高斯消元法(完整)高斯消元法解线性方程组在工程技术与工程管理中有许多问题经常可以归结为线性方程组类型得数学模型,这些模型中方程与未知量个数常常有多个,而且方程个数与未知量个数也不一定相同.那么这样得线性方程组就是否有解呢?如果有解,解就是否唯一?若解不唯一,解得结构如何呢?这就就是下面要讨论得问题.一、线性方程组设含有n个未知量、有m个方程式组成得方程组(3、1)其中系数,常数都就是已知数,就是未知量(也称为未知数)。

当右端常数项,,…,不全为0时,称方程组(3、1)为非齐次线性方程组;当== …== 0时,即(3、2)称为齐次线性方程组.由n个数, , …, 组成得一个有序数组(,,…,),如果将它们依次代入方程组(3、1)中得,,…, 后,(3、1)中得每个方程都变成恒等式,则称这个有序数组(,,…,)为方程组(3、1)得一个解。

显然由=0, =0, …, =0组成得有序数组(0,0,…,0)就是齐次线性方程组(3、2)得一个解,称之为齐次线性方程组(3、2)得零解,而当齐次线性方程组得未知量取值不全为零时,称之为非零解.(利用矩阵来讨论线性方程组得解得情况或求线性方程组得解就是很方便得。

因此,我们先给出线性方程组得矩阵表示形式。

) 非齐次线性方程组(3、1)得矩阵表示形式为:AX =B其中A=,X=,B =称A为方程组(3、1)得系数矩阵,X为未知矩阵,B为常数矩阵。

将系数矩阵A与常数矩阵B放在一起构成得矩阵=称为方程组(3、1)得增广矩阵。

齐次线性方程组(3、2)得矩阵表示形式为:AX=O二、高斯消元法(下面介绍利用矩阵求解方程组得方法,那么矩阵初等行变换会不会改变方程组得解呢?我们先瞧一个定理。

)定理3、1若用初等行变换将增广矩阵化为,则AX= B与CX =D 就是同解方程组。

证由定理3、1可知,存在初等矩阵,,…, ,使…=记…= P,则P可逆,即存在。

设为方程组A X=B得解,即A= B在上式两边左乘P,得P A = PB即C=D说明也就是方程组C X=D得解。

解线性方程组实验

解线性方程组实验

实验报告专用纸实验项目名称解线性方程组的直接法课程名称数值方法教师评语及成绩:实验成绩:教师签字:(请按照实验报告的有关要求书写。

一般必须包括:1、实验目的;2、实验内容;3、实验步骤与方法;4、实验数据与程序清单;5、出现的问题与解决方法;6、实验结果、结果分析与体会等内容)1、实验目的(1)掌握Gauss消元法及Gauss列主元消去法,能用这两种方法求解线性方程组;(2)掌握平方根法与追赶法;(3)掌握相应数值算法的程序编写;(4)理解方程组的性态、条件数及误差分析。

2、实验内容1.应用高斯消元法和高斯列主元素法解线性方程组Ax=b。

2.解线性方程组Ax=b的LU分解法。

用熟悉的算法语言编写程序,用高斯消去法和高斯列主元消去法求解方程组,输出Ax=b 中矩阵A、b、解向量x及detA。

3、实验步骤和方法(1)要求上机实验前先编写出程序代码;(2)编辑录入程序;(3)调试程序并记录调试过程中出现的问题及修改程序的过程;(4)经反复调试后,运行程序并验证程序运行是否正确;(5)记录运行时的输入和输出;(6)对程序的运行结果进行分析;(7)根据实验情况和结果撰写并提交实验报告。

4、实验原理(1)实验结果图1Gauss消元法图2Gauss消元法近似为0(2)结果分析在Gauss消元法中,可以看到3的值是一个非常接近于0的数,如果将消元后的系数矩阵打印出来,可以看到消元后的系数矩阵并不是一个真正的上三角矩阵,下三角部分有几处是绝对值极小的值,这是由于计算机的浮点计算造成的,浮点在计算机中本身就不是一个精确的数,在消元的过程中,一些浮点运算有误差,最后得到的是近似值而不是0。

4-线性方程组的解法

4-线性方程组的解法

17
定理 1 矩阵 A 可以三角分解的条件如下:
1. 若矩阵 A 的所有顺序主子式不等于零; 2. 若矩阵 A 对称正定; 3. 若矩阵 A 严格对角占优,即:
akk akj , k 1, 2, n 。
j k
18
2 2 1 A 4 5 4 例 3 已知矩阵 ,检验 A 是否满足三角分解的条件, 2 4 3
n n n n a11 a1 a b k 1n 1 n n n akk akn bk n n ann bn
7
消元公式:
(0) aij aij , bi(0) bi , ( i , j 1, 2, ..., n) For k 1, 2, ..., n 1 (k ) ( k 1) ( k 1) aij aij lik akj b( k ) b( k 1) l b( k 1) i i ik k ( k 1) ( k 1) akk ; i , j k 1, ..., n lik aik
利用增广矩阵的初等行变换法表示为:
1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 1 3 2 1 3 2 A b 4 1 2 1 3 6 7 3 1
k 1
1
ai1 lik uk1 li1u11 ,
k 1
1
即: li1 ai1 u11 i 2, 3,, n .
这是 U 的第一行和 L 的第一列。
22
设: U 的前 m 1 行和 L 前 m 1 列均已算出,那么:
amj lmk ukj lmk ukj lmmumj ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯列主元消元法解线性方程组
一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,
A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)
二、原理及步骤分析

n
n ij R a A ⨯∈=][)1(,n
n R
b b b b ∈=],,,[)1()2(2)1(1 。

若约化主元素
),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。

如果在消元过程中发现某个约化主元0)
(=k kk a , 则第K 次消元就无法进行。

此外,即
使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。

为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。

相应过程为:
(1)选主元:在子块的第一列中选择一个元)
(k k i k a 使)
(max k ik n
i k k
k i a a k ≤≤=
并将第k 行元与第k i 行元互换。

(2)消元计算:对k=1,2,……n-1依次计算
()()()⎪⎪⎪⎩
⎪⎪⎪⎨⎧++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i
k kj
ik k ij k ij k kk
k ik
k ik ,,2,1,,2,1,,,2,1)()()
1()
()()1()()
()( (3)回代求解
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-==∑+=)
(1)
()()()
(i ii n i j j i ij i i
i n nn
n n
n a x a b x a b x
()
1,,2,1 --=n n i
三.流程图
四、源程序
高斯列主元消元法程序
#include<math.h>
#include<stdio.h>
#define N 6
main()
{
float
A[N][N+1]={{17.031,-0.615,-2.991,1.007,-1.006,0.000,0.230},{-1.000,34.211,-1.00 0,-2.100,0.300,-1.700,-52.322},{0.000,0.500,13.000,-0.500,1.000,-1.500,54.000}, {4.501,3.110,-3.907,-61.705,12.170,8.999,240.236},{0.101,-8.012,-0.017,-0.910,4 .918,0.100,29.304},{1.000,2.000,3.000,4.500,5.000,21.803,-117.818}}, total,x[6]; int i,j,k,m,n;
printf("方程的增广矩阵:\n");
for(i=0;i<N;i++)
{
for(j=0;j<N+1;j++)
printf(" %5.3f ",A[i][j]);
printf("\n");
}
for(j=0;j<N-1;j++) /*di j bu xiao yuan */
{
k=j; /*最大行号赋给k*/
for(i=j+1;i<N;i++)
{
if(fabs(A[i][j])>fabs(A[k][j]))
k=i;
}
if(k==j)
for(i=j+1;i<N;i++)
for(m=j+1;m<N+1;m++)
{
A[i][m]=A[i][m]-A[j][m]*A[i][j]/A[j][j];
}
else
{
for(n=0;n<N+1;n++)
{
A[N][n]=A[k][n]; /*换行 */
A[k][n]=A[j][n];
A[j][n]=A[N][n];
}
for(i=j+1;i<N;i++)
for(m=j+1;m<N+1;m++)
{
A[i][m]=A[i][m]-A[j][m]*A[i][j]/A[j][j]; }
}
}
. printf("消元後的结果:\n");
for(i=0;i<N;i++)
{
for(j=0;j<N+1;j++)
printf(" %5.3f ",A[i][j]);
printf("\n");
}
x[N-1]=A[N-1][N]/A[N-1][N-1];
for(i=N-2;i>=0;i--)
{
total=A[i][N];
for(j=N-1;j>i;j--)
total=total-x[j]*A[i][j];
x[i]=total/A[i][i];
}
printf("方程的解:\n");
for(i=0;i<N;i++)
printf("x1=%f\n",x[i]);
}
五、结果显示
.
六、结果分析:
消元必须从主元的下一行下一列开始,否则,不会得到正确结果。

从结果运行情况看,消元后不会得到三角阵,但回带求解时,程序只关心上三角阵,不会影响最终计算结果。

若从主元这一列开始,消元后会得到一个三角阵,但该三角阵并不准确。

由不准确的三角阵到的结果也不正确。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档