冷凝器换热面积计算方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷凝器换热面积计算方法
(制冷量+压缩机功率)/200~250=冷凝器换热面
例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃
制冷量12527W+压缩机功率11250W
23777/230=气冷凝器换热面积103m2
水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2
蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度)
制冷量=温差×重量/时间×比热×安全系数
例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃;6安全系数1.23
计算:62℃×1000/2/H×0.82×1.23=31266kcal/n
可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/h
NFB与MC选用
无熔丝开关之选用
考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),
低电压配线建议选用标准
(单一压缩机)
AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了)
AT(A ) = 电动机额定电流×1.5 ~2.5(如保险丝的IC值)
(多台压缩机)
AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和
IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体
积愈大,愈能承受大一点的故障电流,担保用电安全。
要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。
电磁接触器之选用
考虑使用电压、控制电压,連续电流It h之大小( 亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√3。
直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。
额定值通常以电流A、马力HP或千瓦KW标示,一般皆以三相220V电压之额定值为准。
<!--[if!supportLists]--><!--[endif]-->电磁接触器依启闭电流为额定电流倍数分为:
(1).AC1级:1.5倍以上,电热器或电阻性负载用。
(2).AC2B级:4倍以上,绕线式感应电动机起动用。
(3).AC2级:4倍以上,绕线式感应电动机起动、逆相制动、寸动控制用。
(4).AC3级:闭合10倍以上,启断8倍以上,感应电动机起动用。
(5).AC4级:闭合12倍以上,启断10倍以上,感应电动机起动、逆相制动、寸动控制用。
如士林sp21规格
◎额定容量CNS AC3级3相
220~240V→kW/HP/A:5.5/7.5/24
380~440V→kW/HP/A:11/15/21
压缩功率计算
一. 有关压缩机之效率介绍:
1.体积效率(EFF V):用以表示该压缩机泄漏或阀门间隙所造成排出的
气体流量减少与进入压缩机冷媒因温度升高造成比体积增加之比值
体积效率(EFF V)=压缩机实际流量/压缩机理论流量
体积效率细分可分为二部分
(1)间隙体积效率
ηvc=V´/ V
V´:实际之进排气量V :理论之排气量
间隙体积效率一般由厂商提供,当压缩机之压缩比(PH/ PL)增大,即高压愈高或低压愈低,则膨胀行程会增长,ηvc减少。
(2)过热体积效率
ηvs=v / v´
v:理论上进入汽缸之比体积v´:实际进入汽缸之比体积
当压缩比愈大时、汽缸温度愈,冷媒过热度愈大,比体积也愈大,所以ηvs愈小。
整体的体积效率ηv=ηvc˙ηvs
2.压缩效率(EFF C):用以表示该压缩机实际压缩过程与等熵压缩偏离程度压缩效率(EFF C)=压缩机实际进出口焓差与等熵压缩进出口焓差比值= (h out,等熵- h in) / (h out,实际- h in)
*若假设等其熵压缩其压缩效率就等于1 (冷冻空调全国竞赛试题假设了等熵压缩,其压缩效率=0.63,很奇怪)
3.断热效率(EFF AD):用以表示如以等熵绝热压缩时之机械效率
断热效率(EFF AD) =等熵绝热压缩冷媒获得能量/压缩机所需之制动马力输入能量,
压缩机输入能量= (h out,等熵- hin) /压缩机制动马力输入能量
*如压缩机实际输入10kw 因某部分消耗在传动摩擦与马达磁耗上,真正传至
冷媒可能仅有0.9kw此时断热效率(EFF AD)=0.9
4.机械效率(EFF m): 压缩机进出冷媒时所需要之动力与压缩机运转时所需要的制动马力之比
机械效率(EFF m)=压缩机实际进出冷媒所需之动力/压缩机所需之制动马力输入能量= (h out,实际- h in) / 压缩机输入制动马力
压缩机之机械效率:ηm =P /Pr
机械效率ηm一般约为0.85 ~0.95,实际运转为了安全起见,制动马力应增加10 ~15%之安全系数,以应付运转时冷冻负载之增减。
(一般压缩机内部有电动机与压缩机构,如60kw的电动机去带动制冷能力50kw的压缩机,机械效率ηm=0.83)
*压缩效率=断热效率/机械效率
当假设系统为等熵线压缩且能量无任何损失,则压缩效率= 1, 断热效率=1 ,机械效率=1,
(1).若压缩机输入能量100kw,损失20kw(磁损,摩擦),但压缩过程若假设为等熵压缩(表示损失热量不会传至冷媒),因此80kw全转成压缩功(即出入口冷媒焓差),则压缩效率= 1, 断热效率=0.8, 机械效率=0.8。
(2)如有一压缩机输入能量100kw,损失20kw(磁损,摩擦),但压缩过程热量传至冷媒10kw,
因此有90kw转成出入口冷媒焓差,则压缩效率= 0.8/0.9=0.89 , 断热效率=0.8, 机械效率=0.9。
二、冷媒循环量
冷媒循环量系冷冻系统内单位时间所流过之质量。
公制为kg / hr,英制为lb/hr。
则理论冷媒循环量(质量流率)
m=V / v V:m³/hr(压缩机之体积流率)
v:m³/kg((压缩机入口之比体积)
实际冷媒循环量为G´
ms=ηv ˙G
三、冷冻效果
单位质量冷媒流过蒸发器所吸收之热量,一般以r为代号,单位为kcal/kg或BTU/lb或KJ/kg 。
若进入蒸发器前之冷媒焓热量为i1,流出蒸发器之冷媒焓热量为i2,则冷冻效果, r =i2 - i1
四、冷冻能力
每小时冷媒流过蒸发器所吸收之热量
公制为kcal / hr,英制为BTU/hr,SI制为KW。
符号一般以R表示,
理论上之冷冻能力;Qe=m×r
实际上之冷冻能力;Qs=ms×r。
1,公制冷冻吨: 1 JRT=3320 kcal/hr ≒3.86 KW
2,美制冷冻吨: 1US RT=12000 BTU/hr=3024 kcal/hr=3.516 KW
现在市面上冷冻能力标示以Kw表示,不易混淆。
(1KW=860 kcal/hr)
五、压缩机所需之动力
理论上压缩机所需之压缩热为:AWc=i3-i2(kcal/kg)
i3:理论上压缩机出口冷媒之焓
i2:理论上压缩机入口冷媒之焓
实际上压缩机所需要的压缩能量为:AWc´=i3´-i2´(kcal/kg)
i3´:实际上压缩机出口冷媒之焓
i2´:实际上压缩机入口冷媒之焓
压缩效率ηi=AWc / AWc´,当缩缩效率等于1, 压缩效率与体积效率是相等的。
压缩机所需之动力,以N(kcal/hr)、H(HP、马力)及P(KW或W)表示理论上压缩机所需之动力;N =m×AWc
实际上压缩机所需之动力;N´=ms×AWc´
而 1 HP=746 W =0.746 KW=642 kcal/hr; 1 KW=860 kcal/hr; H=N/642(HP);P=N/860(KW)
六、冷冻循环之性能系数ε(C.O.P)
冷冻循环之冷冻效果/压缩热理论ε=r / AWc;实际ε´=r / AWc´
七、冷冻机组之能源效率比值(EER)
冷冻机组之冷冻能力R之单位为kcal/hr或BTU/hr,而冷冻机组(含冷凝器与蒸发器风扇)之输入动力单位为W
EER=R / P(Kcal/h˙W)
【例一】已知压缩机之活塞推动量为340m³/hr,若压缩吸入冷媒之比体积为0.05 m³/kg,试求理论冷媒循环量m。
若此压缩机之体积效率为0.8,试求ms。
m=V/v=340/0.05=6800 kg/hr
ms=mηv=6800×0.8=5440 kg/hr
【例二】若此冷冻系统之冷冻效果r为50kcal/kg,试求此冷冻系统理论冷冻能力及实际冷冻能力。
Qe=m×r=6800×50=340000 kcal/h=340000÷3320=102.4冷冻吨
Qs=ms×r=5440×50=272000(kcal/h)=82冷冻吨
【例三】若进入压缩机前之冷媒之焓为150kcal/kg,压缩机排出口冷媒之焓为158kcal/kg,试求此压缩机所需理论马力。
若此压缩机之压缩效率为0.75,则此压缩机实际上所需之制动马力为多少?
AWc=158-150=8kcal/kg
N=ms×AWc=6800×8=54400 kcal/h
H=N/642≒85(HP)
又AWc´=AWc/ηi=8/0.75=10.7
实际上所需之制动马力N´=G´×AWc´=5440×10.7=58208 kcal/h=
90(HP)
【例四】若考虑压缩机之机械效率及安全系数时,则实际上应选用之马达容量为何?若机械效率为0.9,安全系数为10%。
Hr=(H´/ηm)×1.1=(90/0.9)×1.1=110(HP)
【例五】求此冷冻系统之冷冻循环性能系数,冷冻机之能源效率比值(EER)。
ε=r / AWc=50/8=6.25
ε´=r / AWc´=50/10.7=4.67
εa=Qe / N=340000/54400=6.25
εa´=Qs/ N´=272000/58208=4.67
EER=R´/P=272000/82060
=3.3kcal/hr.w
螺旋式冰水主机操作注意事项
.1压缩机
冷冻油油位是否满油窗口
油加热器加热是否足够?
每一手动阀(冷却水、冰水之出入口阀及冷媒侧之进出口关断阀)是否皆已开
加卸除电磁阀毛细管是否扭曲破损
马达线圈与排气温度保护开关之接线确实連接且作动正常?
.2 电气系统
压缩机之主电源与控制电源之电压与频率是否正确?
马达端子相间与对地之绝缘值是否1 0 MΩ以上?
马达端子与接地线是否固定确实?
各项控制器之设定值是否正确?
(注意)
开始抽真空后直到冷媒充填完成之前,切勿量测绝缘。
新机冷媒充填完成后绝缘量测至少有50 0MΩ ( DC500V) 以上,否则应确认是否有抽真空程序不良、冷媒含水量过高、泄漏等因素。
马达温度保护接点请以DC9V 量测绝缘,切勿使用高阻计。
3 管路系统
吸排气端之配件与管路焊接处是否有泄漏?
4抽真空注意事项
尽可能使用大口径接管抽真空。
高低压兩侧同时抽真空。
冬天或低温地区抽真空时,尽可能提高外围温度以确保效果。
抽真空期间,绝对不得测量马达绝缘,可能造成马达线圈严重损坏。
5 运转中注意事项
启动后确认转向,注意吸气压力为下降、排气压力为上升,否则应立即关机,且变换马达相序后再开机。
压缩机运转过热度最佳范围在R - 2 2 / R-1 3 4 a :
5~10℃,R- 4 0 7 C : 8 ~ 12
℃,过热太大或太小皆有不良影响。
系统初启动时可能因负载大而过热太大,造成压缩机马达线圈温度保护开关作动而停机。
过热度不足,可能造成转子液压缩而损坏压缩机。
并且造成失油狀况, 影响润滑轴承之功能。
在湿度较高地区, 压缩机应用于低温系统时,电气接头如有水份凝结而影响电气安全时, 请于端子接头加附绝缘绝热树脂,以避免因环境露水造成相间电气短路。
在低环境温度下运转,为确保最低压力差在5 b a r 以上
在冰水回水温度11℃以上100% 负载运转、11~10℃75% 负载运转、10~9℃50% 负载运转、8℃停机;当冰水回水温度升高,若设定于
9℃压缩机再次启动运转,将造成马达启动频繁、起动/停机间距短、马
达积热无法完全排除、润滑循环不充分等惡劣狀况。
因此设定压缩机在12℃以上再次启动运转,以避免之。
压缩机每次到达设定温度停机前务必以25% 负载运转20~30 秒,确保下次启动时滑块在最低负载位置。
运转压力(表压):最高吸气压力R - 22( R- 4 07 C ) :6bar ;R - 1 3 4 a : 3 b a r .最高排气压力R - 2 2 ( R- 4 0
7 C ) : 2 5 b ar ;R - 1 3 4 a : 1 9 b a r .
容许最高排气温度:110℃
停机后须待1 0 分钟后,才可再行开机。
每小时马达之启动次數不得超过六次。
每次开机运转时间至少五分钟以上。
电压范围:额定电压±10%
频率范围: 额定频率±2%
三相电压不平衡量:±2 .2 5%
三相电流不平衡量:±5%
马达线圈保护跳脱温度: 1 3 0 ±5℃;復归温度: 1 1
0±5℃。
排气高温保护跳脱温度: 1 1 0 ±5℃;復归温度9 0 ±5℃
三相过电流保护电驿运转电流可由性能曲线表查得机组允许操作狀态下的
油位开关連续1 5 ~ 30 s e c 呈现低油位时,强制压缩机停机油压差保护开关压差设定1 ~ 1 . 5 b a r
最低运转高低压差5 b a r
启动程序Y-Δ转换时之电磁接触器切换时间须控制在4 0ms ec 以下进相电容压缩机起动完成后至少0. 5秒,再連接进相电容。
功因补偿上限为0.95。
停机前一秒(至少), 先切離进相电容原则上进相电容仅在运转中作用。
压缩机效率说明
*容积效率: ηv=实际流量÷理论流量=实际压缩排出的容积÷活塞移动的容积
*压缩效率: ηc=压缩机进出等熵焓差÷压缩机进出实际焓差=【等熵效率】*断热效率:ηad=压缩机进出等熵焓差(kw)÷压缩机输入功率(kw)
*机械效率: ηm=压缩机进出实际焓差(kw)/压缩机输入功率(kw)
ηc=ηad÷ηm
理想的等熵压缩ηad=ηm=ηad=1
若输入功率为100,损耗为20 ηad=ηm=0.8ηc=0.8÷0.8=1
若输入功率100,损耗为20,回传10 ηad=0.8ηm=0.9 ηc=0.8÷0.9
满液式冰水机液位控制
孔口板——液位控制
在冰水12℃/7℃;冷却水30℃/35℃满载负荷运转时,孔口板向蒸发器的供液量与蒸发负荷相刚好匹配。
若负载变化时。
当压差大,孔口板供液量比蒸发器负荷需要的液量大,吸气过热度降低,易引起液压缩;当压差小,蒸发器存液量比蒸发器负荷需要的液量小,吸气过热度升高,制冷量降低,COP减小,制冷装置能耗增大;
在由低负载转为高负载,蒸发器需量增大,过热度升高,在由高负载转为低负载时,蒸发器负荷需量减小,过热度降低,引起液压缩,机组满负载运转突然停机,蒸发器需量减小75%,短时间蒸发器实际存液量比蒸发器负荷需要的液量大55%,吸气过热度急速降低,进而降低排气过热度,油分离效果下降,甚至导致压缩机失油。
孔口板要在一定范围负载变动可自动调节,负载变动极大,一般不宜采用。
电子膨胀阀——液位控制
当蒸发器内的液面上下变化时,蒸发器内的液位传感器将液位变动的比例关系用4 -20m A信号传给液位控制器, 液位控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进马达,使其开度增大、减小,以保持液位在限定的范围内。
电子膨胀阀的步进马达是根据制冷剂液位变化实时输出变化的驱动,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,有效的控制蒸发液位。
直流变频与交流变频空调机的简述
气冷式冷气机系统设计之程序
1、冷房能力kcal/hrx1.3做为comp之选择标准
2、过冷却5℃;过热3℃;蒸发温度为3.5~7℃冷凝温度为48~52℃从comp之特性由线表找出合于要求之comp
3蒸发器之设计,温度条件决定后予以决定.冷却能力、.管距、散热片厚度、散热片节距;前面风速一般取0.9~ 1.4m /s
4散热器之设计,
at CT=54.6℃、ET=5.2 ℃Wcomp=2230
W
散热量Q= 3750+2230wx0.86= 5667kcal/hr(1w=0.86kcal/hr)
回风温度Tin=35 ℃
出风温度=一般为Tin+15℃=50 ℃(sharp)
风量= 5667=Wout ×60 ×1.08×0.24×(50-35)t= 24.3m3 /min
5 Propeller选用及管排之设计
水系统
水泵扬程(H)= 泵出入口能量差=(进出水压力差÷r)+(流速平方差÷2g)+压力表处高度差
水泵推动水所需要的功率=r×Q×H(kg—m/s) kw=(r×Q×H)÷6120推动水泵所需要的马达功率=轴功率=kw=( r×Q×H )÷(6120×η)
H=(进出水压力差÷r)+(流速平方差÷2g)+压力表处高度差=68.2m
轴功率=kw=( r×Q×H )÷(6120×η)=5.29kw
水泵运转特性曲线
练习
一水泵1170rpm,扬程:H=490-0.26Q2管路阻力:H R=100+1.5Q2
若单一水泵运转其流量(工作点)
H= HR Q=14.9 gpm
若二台水泵并联其流量(工作点)
管路流量为原流量1/2倍490-0.26(Q/2)2=100+1.5Q2 Q=15.8 gpm
若二台水泵串联其流量(工作点)
管路扬程为原扬程2倍2(490-0.26Q2)=100+1.5Q2 Q=20.9 gpm
孔蚀现象:泵吸入口压力小于水饱和蒸气压而产生气泡加压后气泡破裂而产生振动与噪音
解决方法: 泵吸入口压力要大于水饱和蒸气压;此压力称净正吸入水头NPSH NPSH>=RNPSH
水泵定律:Q1/Q2=N1/N2 H1/H2=(N1/N2)2KW1/KW2=(N1/N2)2
练习
预估改变转速或叶轮尺寸后,泵浦的性能的变化
空调水配管
采用镀锌无缝钢管(GIP)PVC管
密闭式、开放式概念
空调密闭冰水系统配管方式可分为直接回水配管与逆回水配管
设计逆回水配管法,各回路空调设备盘管压降要一样,若实际上每一回路空调设备盘管压力降不同,既使使用逆回水配管法,也无法使系统流量均衡。
因此在密闭管路宜采直接回水配管法,再加上平衡阀的适当安装调整较妥。
水管路摩擦损失与流体黏度、比重、流速; 管子的粗造、长度、管径有关。
选用管径步骤:
绘制管路图计算各管段水流量
设定管路摩擦损失3~8m / 100m
由图决定管径
再验证流速是否合宜否则重复步骤2
1.冷却水管流量80 GPM 流速不可超过5.0 ft/s ------管径?2.冷却水管流量6 CMH 流速不可超过1.2 m/s------ 管径?
水箱静压:P=DH+1ATM
管子△P=PA-PB∞Q2 摩擦损失=f*(L/D)*(V2/2g)
配件摩擦损失=K*(V2/2g) KV:15℃水流过阀件产生1bar的流量(CMH)
避免空调系统能源浪费及冷热不一水系统要保持三个条件
每台送风机空调箱需达到设计流量
控制阀压插变化不宜太大
依次测与二次测水量热交换量要相配合
比例观念先建立
方法一:
补偿法:
1.适用没有装分歧阀的管路系统
1.最远程的阀当参考阀
2.将参考阀调整到设计的流量,调好后就不要再动了
3.调整其他阀的流量,会改变参考阀的流量,此时需配合分歧阀保持参考阀流量
4.不变,并调妥其他阀流量。
5.需要二人以上操作
方法二:
TA法:
2.适用有装分歧阀的管路系统
3.启动水泵
4.分歧阀全开
5.调整各回路的平衡阀到50%的开度(2.0)
6.清除纪录8↓4↓2↓
7.归零
8.连接好高低压管。