圆柱表面积 ppt课件
圆柱、圆锥、圆台的表面积与体积 课件-2022-2023学年高一下学期数学人教A版必修第二册
例4.如图:已知圆台的上底面半径为1,下底面半径为
2,母线长为2,则该圆台的体积为
1
7 3
3
2
2
.
三者之间的联系
圆柱、圆锥、圆台三者的体积公式之间有什么关系?
O'
S
O'
r'
r’=0
r’=r
l
r O
上底扩大
2
V圆柱 =πr h
所用的数学思想: 类比
l
r O
l
上底缩小
r O
1 2
V圆锥 = πr h
O
(r是底面半径,l是
母线长)
S圆锥 =πr +πrl πr (r l )
2
S圆锥 =πr +πrl πr (r l )
2
例2、如图,已知扇形OAB的圆心角为∘ ,半径为4厘
米,求用这个扇形卷成的圆锥的表面积.
(3)圆台的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
解:
(1)由题意可知,该圆锥的底面半径 r 3 ,母线 l 5 .
∴该圆锥的表面积 S πr 2 πrl π 32 π 3 5 24π .
(2)在 Rt△POB 中, PO PB2 OB2 52 32 4 ,
∵ O 是 PO 的中点,∴ PO 2 .
故圆台的表面积为1100π cm2.
出圆台的体积公式:
V圆 台 VSO VSO '
圆台的体积
S
VSO
r'
r O
l
h
r
VSO '
1 '2 '
8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).
《圆柱体的表面积》ppt课件
一个圆柱的高是18厘米,底 例1: 面半径是5厘米,它的表面 积是多少?
例2:一顶圆柱形厨师帽,高28厘米,
帽顶直径20厘米,做这样一顶帽子 需要用多少面料?
(得数保留整十平方厘米) 问:求表面积还是总面积?
答案:2073平方厘米
一顶厨师帽,高28cm,帽顶直径20cm, 做这样一顶帽子至少需要用多少面 料?(得数保留整十平方厘米)
S表=S侧+2S底=345.4(cm2)
两个圆柱的侧面积相等,表面积不相等。
说一说: 该求哪部分的面积?
茶 叶
做茶叶桶所需铁皮面积
加油啊!
做一个无盖水桶 所需铁皮面积
加油啊!
往井的内壁和底面抹水泥, 求抹水泥部分的面积。
加油啊!
做一个笔筒所需塑料面积
加油啊!
圆柱在木板上滚过的轨迹是什么形状?
S表 = S侧 + 2S底
3、在日常生活中,我们可以利用圆柱的 侧面积计算公式和表面积计算公式,解 决那些问题?
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
大班数学认识圆柱体PPT课件-2024鲜版
04
2024/3/28
05
球体的半径是从球心到球面 任意一点的距离。
17
三者之间联系与区别总结
2024/3/28
联系
圆柱体、圆锥和球体都是常见的三维图形,在数学和日常生活中都有广泛应用。它们都可 以用来描述具有圆形截面的物体。
形状不同
圆柱体有两个平行的圆形底面和一个侧面;圆锥有一个圆形底面和一个顶点;球体则是一 个完全对称的图形,没有平面。
单位换算的方法:根据换算关系进行 计算。例如,1米=100厘米,因此可 以将厘米单位的数值除以100转换为 米单位。
2024/3/28
14
04
拓展内容:圆锥和球体简介
2024/3/28
15
圆锥基本概念与性质
定义:圆锥是一个有一个圆形底面和一 个顶点的三维图形,所有从顶点到底面 边缘的线段都相等。
6
02
圆柱体表面积计算方法
2024/3/28
7
侧面积计算公式推导
圆柱体侧面积定义
圆柱体侧面展开后形成的矩形面积。
注意事项
计算侧面积时,要确保底面半径和高 度的单位一致。
公式推导
设圆柱体底面半径为$r$,高为$h$, 则侧面展开后矩形的长为底面周长 $2pi r$,宽为$h$。因此,侧面积 $S_{侧} = 2pi r times h$。
2024/3/28
22
06
课程总结与回顾
2024/3/28
23
关键知识点梳理
01
02
03
圆柱体的基本特征
上下两个面是相等的圆形,侧 面是一个曲面。
圆柱体的高
两个底面之间的距离叫做高。
圆柱体的表面积
侧面积+2个底面积。
新版高中数学必修2课件:8.3.2圆柱、圆锥、圆台、球的表面积和体积
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:由题意知,该三棱柱为正三棱柱,如图. 设O1,O分别为上,下底面的中心,且球心O2为OO1的中点, 连接AO交BC于D点,球半径为R.
∵AD= 23a,AO=23AD= 33a,OO2=a2, ∴R2=AO22=13a2+14a2=172a2. ∴S球=4πR2=4π×172a2=73πa2.故选B. 答案:B
S底=_π_(r_′__2_+__r2) S侧=π_(_r_′__+__r_)l S=4πR2 S表=π_(_r_′__2+__r_2)+π(r+r′)l
要点二 体积公式 图形
体积公式
圆 柱
底面半径为r,高为h,V=_π_r_2_h____
圆 锥
底面半径为r,高为h,V=__13_π_r_2_h__
高中数学必修二
8.3.2 圆柱、圆锥、圆台、 球的表面积和体积
要点一 圆柱、圆锥、圆台、球的表面积
圆柱(底面半 径为
圆台(上、下 底面半径分别 球半径为 为r′,r,母 R
线长为l)
侧面展 开图
底面积 S底=__2_π_r2__ S底=__π_r_2__ 侧面积 S侧=__2_π_rl__ S侧=__π_r_l__ 表面积 S表=_2_π_r(_r_+__l)_ S表=_π_r(_r_+__l)
16π C. 3
64π D. 3
六年级下册数学《圆柱的表面积》(17张PPT)
圆柱的侧面积和一个底面积
圆柱的侧面积和两个底面积
学习检测
一、基础训练1、一台压路机的滚筒宽1.2米,直径为0.8米。它滚动1周,压路的面积是多少平方米?2、一个圆柱的底面半径5厘米,高10厘米,它的一个底面积是( )平方厘米,侧面积是( )平方厘米,表面积是( )平方厘米。二、提高练习(选做) 一个圆柱形的无盖铁皮桶,底面直径4分米,高4.5分米。为了防止生锈,要在桶的里外都涂上防锈漆,涂漆的面积是多少平方分米?
课堂总结
我们认识了圆柱的表面积、学习了圆柱表面积的计算方法,希望同学们能灵活运用,解决生活中的实际问题。
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
帽子的侧面积:3.14×20×30=1884(cm2)
帽顶的面积:3.14×(20÷2)2=314(cm2)
需要用的面料:1884+314=2198≈2200(cm2)
答:做这样一顶帽子大约要用2200cm2的面料。
巩固练习
一、下面这些生活中的问题实际求的是圆柱的什么?想一想,选一选。A底面积 B侧面积 C表面积 D一个底面+侧面积1.制作一节通风管需要的铁皮面积。( )2.求圆柱形水池的占地面积。( )3.求做一个无盖的圆柱形塑料水桶,需要的塑料面积。( )4.做一个圆柱形茶叶桶,需要的硬纸板的面积。( )10 Nhomakorabea罐头
S侧=ch = 2×5×3.14×10 =314(平方厘米)答:商标纸的面积是314平方厘米。
5
圆柱的表面积=侧面积+两个底面的面积
S表 =S侧+2S底
S表=S侧+2S底
圆柱体课件
等研究中涉及圆柱体的性质。
工程学
03
在工程学中,圆柱体广泛应用于各种结构设计和建筑设计中,
如水塔、油罐、高层建筑等。
圆柱体的制作方法介绍
旋转成型
通过旋转一个矩形或圆形平面并逐渐缩小尺寸,可以制作出圆柱 体。
切割和拼接
通过将多个矩形或圆形平面切割成细条并拼接起来,也可以制作 出圆柱体。
3D打印
现代技术如3D打印可以方便地制作出各种形状的圆柱体,尤其 是具有复杂内部结构的圆柱体。
起来即可。
计算表面积
利用圆柱体的展开图可以计算圆 柱体的表面积,包括侧面积和底
面积。
理解几何形状
通过观察圆柱体的展开图,可以 更好地理解圆柱体、圆锥体等几
何形状的特点和性质。
05
圆柱体的截面
圆柱体截面的定义
定义
过圆柱体(Cylinder)的任意一平面与 圆柱体的交线称为圆柱体的截面 (Section of Cylinder)。
圆柱体课件
• 圆柱体概述 • 圆柱体的表面积 • 圆柱体的体积 • 圆柱体的展开图 • 圆柱体的截面 • 圆柱体的应用
目录
01
圆柱体概述
圆柱体的定义
圆柱体是一种三维图形,由一 个矩形平面和一个垂直于该平 面的圆形平面相交而成。
圆柱体的两个底面是两个相等 的圆,而侧面是一个矩形。
圆柱体的高度等于矩形的高度 ,而底面的周长等于矩形的长 度。
圆柱体的构成
01
02
03
04
圆柱体由顶面、底面和侧面构 成。
顶面是一个平面,与底面平行 且等距。
底面是一个圆形,与顶面平行 且等距。
侧面是一个矩形,垂直于底面 和顶面,且与底面和顶面等长
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册
19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
人教版六年级数学下册第三单元第4课《圆柱的表面积》整理复习课件
一个圆柱的侧面积是188.4 dm2,底面半径是2 dm。 它的高是多少?
根据3.14×圆柱的底面半径×2×高=圆柱的侧面积
188.4÷(3.14×2×2)=15(dm)
侧面积 ÷ 底面周长 = 高
答:这个圆柱的高是15dm。
一根圆柱形木料的底面半径是0.5m,长是2m。如图所示, 将它截成4段,这些木料的表面积之和比原木料的表面积增 加了多少平方米?
正方形的边长
圆柱的底面周长 =圆柱的高
解:设圆柱的底面直径为d,底面周长为dπ。 直径与高的比 d∶πd =1∶π
答:这个圆柱底面直径与高的比是1∶π。
这节课你们都学会了哪些知识?
圆柱的表面积计算 1.计算方法:
圆柱的表面积=侧面积+两个底面积
2πrh
2×πr2
2.解决问题时要根据实际情况判断。
圆柱表面积的意义 1.填一填。 (1)圆柱的表面积是指圆柱的( 侧面积 )和
求用了多少彩纸,需要用圆 柱的表面积减去上下底面中 间留出的口的面积。
(1)侧面积:3.14×20×30=1884(cm2 ) (2)两个底面的面积:3.14×(20÷2)2 ×2=628(cm2 ) (3)需要用的彩纸:1884+628-78.5×2=2355(cm2 )
答:他用了2355cm2的彩纸。
3 圆柱与圆锥
练习四
说一说:圆柱展开图是什么样的。
用手摸一摸,圆的表面积是哪Fra bibliotek? 圆柱的表面积是指圆柱的侧面积和两个底面积 的面积和。
用字母怎么表示呢?
圆柱的表面积=侧面积+两个底面积
底面是圆形 S底= πr 2
S表=S侧 +2S底
长方形的面积= 长 × 宽
《圆柱的认识》PPT课件
《圆柱的认识》PPT课件•圆柱基本概念与性质•圆柱表面积计算方法•圆柱体积计算公式及应用目录•典型例题解析与讨论•学生自主操作实践环节•课堂小结与课后作业布置圆柱基本概念与性质圆柱定义及特点圆柱定义圆柱特点底面侧面高030201底面、侧面和高等元素圆柱与长方体关系形状差异01面积与体积计算02应用场景03圆柱表面积计算方法侧面积计算公式推导公式推导圆柱侧面积定义设圆柱底面半径为面展开后矩形的长为底面周长2πr,宽为h。
因此,侧面积注意事项底面积计算方法回顾圆的面积公式圆柱底面积计算注意事项总表面积计算实例演示实例1解法实例2解法圆柱体积计算公式及应用体积计算公式推导过程圆柱体积公式为公式推导实际应用举例分析圆柱形水桶计算水桶能装多少水,需要用到圆柱体积公式。
已知水桶的底面半径和高,即可求出其容积。
圆柱形油罐计算油罐内油的容量,同样需要用到圆柱体积公式。
通过测量油罐的底面半径和高,可以计算出油的容量。
圆柱形零件在机械工程中,经常需要计算圆柱形零件的体积。
已知零件的底面半径和高,即可利用公式求出其体积。
与其他几何体积关系探讨与长方体体积关系与球体体积关系与圆锥体积关系典型例题解析与讨论求表面积或体积类问题01020304例题1解析例题2解析涉及比例关系类问题例题1解析例题2解析例题1解析例题2解析创新题型展示与思路拓展学生自主操作实践环节测量步骤首先使用卷尺或游标卡尺测量圆柱的高度;接着使用直尺或游标卡尺测量圆柱的底面直径。
准备工具卷尺、游标卡尺、直尺等测量工具。
数据记录将测量得到的高度和底面直径数据记录在表格中,以便后续计算使用。
利用工具测量圆柱尺寸计算给定条件下圆柱表面积和体积公式回顾回顾圆柱表面积和体积的计算公式,即表面积=2πrh+2πr²,体积=πr²h。
数据代入将测量得到的圆柱高度和底面直径数据代入公式中进行计算。
结果呈现将计算得到的圆柱表面积和体积结果呈现在表格中,以便后续分析使用。
人教版六年级数学下册3.2《圆柱的表面积》课件
小试牛刀 (选题源于教材P22做一做第1题)
求下面各圆柱的侧面积。 (1)底面周长是1.6m,高是0.7m。
1.6×0.7=1.12( m2 ) 答:圆柱的侧面积是1.12m2 。 (2)底面半径是3.2dm,高是5dm。
2×3.14×3.2 ×5=100.48(dm2 ) 答:圆柱的侧面积是100.48dm2。
3 圆柱与圆锥
圆柱的表面积(1)
口头回答下面的问题。
(1)一个圆形花池,直径是5m,周长是多少? (2)长方形的面积怎样计算?
长方形的面积=长×宽。
探究点 1 圆柱的表面积的意义和计算公式
圆柱的表面积指的是什么?
底面
底面的周长 底面
底面
底面的
周长 高
底面
圆柱的表面积=圆柱的侧面积 +两个底面的面积
4.一个圆柱的展开图是一个正方形,求这个圆柱的 底面直径与高的比。(选题源于教材P24第14*题)
底面直径×π=高, 所以底面直径:高=1:π
夯实基础
1.填空。 (1)已知圆柱的底面直径是3 cm,高也是3 cm,把它沿高
展开后得到的图形的长是( 9.42 )cm,宽是( 3 )cm。 (2)把一个底面半径是2 cm,高是5 cm的圆柱沿高展开,
(1)帽子的侧面积:3.14×20×30=884(cm2 ) (2)帽顶的面积:3.14×(20÷2)2=314(cm2 ) (3)需要用的面料:1884+314=198≈2200(cm2 ) 为什么最后的结果取2200,而不取2190呢?
628÷10÷3.14÷2=10(cm) 3.14×102×2+3.14×10×2×(10+15)=2198(cm2)
6.一根圆柱形木头的长是3 m,底面直径是8 cm, 如果将它截成3段,表面积增加了多少平方厘米?
人教版六年级数学下册《圆柱的表面积》课件PPT
16
帽子侧面积: 3.14×20×28=1758.4(cm2)
帽顶的面积: 3.14×(20÷2)2 =314 (cm2)
所用面料:
1758.4+314=2072.4 (cm2) =2080 (cm2)
=602.88+113.04×2
5×3.14×20+(5÷2)2×3.14×2
=828.96(平方厘米) =314+6.25×3.14×2
=314+19.625×2
=353. 25(平方厘米)
21
2、计算下面各圆柱的表面积。
①C=9.42 cm,h=5 cm。
9.42×5+(9.42÷3.14÷2)2×2
4
5
6
7
侧面
长方形的长
底面周长
8
圆柱的侧面展开是一个长方形.
9
1、有两个底面:
面积相等
2、一个侧面:
高宽
长=底面周长
长
10
11
长方形的长=圆柱的底面周长,长方形的宽=圆柱的高。
圆柱的侧面积=底面周长×高
S侧=Ch
12
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
13
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米) (2)底面积:3.14 ×102 =314(平方厘米) (3)表面积:1884+314 × 2=2512(平方厘米)
14
一个圆柱的高是15厘米,底面半径是5厘米,它的表面 积是多少?
(1)侧面积:2 ×3.14 ×5 ×15=471(平方厘米) (2)底面积:3.14 ×52 =78.5(平方厘米) (3)表面积:471+78.5 × 2=628(平方厘米)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)表面积: 50.24+12.56×2 =75.36(cm2)
2020/4/4
达标检测
1、计算下面各圆柱的表面积。
①C=9.42 cm,h=5 cm。 ②d=8 m,h=3 m。 ③r=2 dm,h=6 dm。
S= cm2 S= m2
S= dm2
2020/4/4
点此播放视频
3、计算下现各圆柱的表面积。(图中单位:厘米)
2020/4/4
2、学校食堂要用铁皮做一根横截面半径是3 分米,高是3米的圆柱形烟囱,至少需要多 少平方米的铁皮?
2020/4/4
2020/4/4
圆柱的表面积= 侧面积+2个底面积 (1)圆柱的侧面积= 底面周长×高
(2)底面积: S=πr 2 (3)表面积:
2020/4/4
在解决“求圆柱表面积”的有关问题时,要注意弄 清 题中要求的到底是哪部分的面积。一般分为3种情况:
C.求1个底面积与侧面积 D.求表面积(2个底面积和
2020/4/4
侧面积)
3、一个底面半径为2分米,高5分米的圆柱 体,它的表面积是多少?
2020/4/4
将高都是1米,底面半径分别为1.5米、1米 和0.5米的三个圆柱组成一个物体.这个物 体的表面积是多少平方米?
0.5米
1米
1米
1米
1.5米
2020/4/4
联系生活实际,说说生活中的这些问题是求哪些面积?
(填A.B.C.D)
⑴圆柱形水池的占地面积。( A)
⑵做一节烟囱所需铁皮面积。( B) ⑶求易拉罐上商标纸的面积。( B)
⑷做茶叶筒所需铁皮面积。( D)
⑸做一个无盖水桶所需铁皮面积。( C)
⑹压路机的滚筒转动一周,求压路面积。( B)
A.求底面积
B.求侧面积
圆柱的侧面积与两个
底面面积的和,是圆柱的 表面积。
S表= S侧 + 2S底
底面
2020/4/4
2020/4/4
圆柱的分解
2020/4/4
2020/4/4
2020/4/4
2020/4/4
2020/4/4
圆柱的侧面
2020/4/4
底面周长
问题:圆柱的侧面展开 图中的长与圆柱底面的
周长有什么关系,宽与 h
2020/4/4
茶叶桶底面半径是2dm,高是4dm, 求做茶叶桶所需铁皮面积?
4dm
茶
叶
2020/4/4
2dm
应用与实践 现在有一个罐头厂计划 用铁皮制作一批底面半 径5厘米,高10厘米的圆 柱形罐头盒。你能不能 帮厂长算一算制作一个 至少需要多少平方厘米 铁皮?
2020/4/4
例1、一顶圆柱形厨师帽,高25厘米,帽 顶直径20厘米,做这样一顶帽子需要用 多少面料?
1、有两个底面,一个侧面,如饼干盒,茶叶筒等; 2、只有一个底面和一个侧面,如无盖水桶,圆柱形
鱼缸等; 3、两个底面都没有,只需计算侧面积的,如水管,
烟囱,轧路机等。
所以,在解答这些问题时,具体情况要具体对待。
2020/4/4
复习:
1.把圆柱体的侧面沿高展开, 可能得到一个( 长)形方, 也
可能得到一个( 正)形方或(
加油啊!
2020/4/4
圆柱在木板上滚过的轨迹是什么形状?
往柱子上涂漆,求涂漆部分面积。
2020/4/4
2020/4/4
加油啊!
2020/4/4
压路机滚筒压过的路面的面积。
练习三: (一)、操作:
•
剪长方形、平行四边形、梯形的纸各
一张,试一试哪些纸能围成圆柱形的纸筒
。
能
2020/4/4
能
不能
)平形行。四边
2. 把一个圆柱侧面沿高展开, 可得到一个长方形, 这个长 方形的长等于圆柱的( 底面),周宽长等于圆柱的( )。 高
3. 圆柱两底面之间的( 距)离叫做它的高, 它的高有 ( 无)条数。
4.圆柱的侧面积=底面的( 周长)×( 高)。
5.圆柱的表面积=( 侧面积)+(
2020/4/4
两个)底面面积
圆柱的高有什么关系?
r
底面
侧面 h
r
底面
圆柱的表面积= 圆柱的侧面积 + 两个底面的面积
底面周长×高
S表面积=2πr×h + 2×πr2
S表面积=πd×h + 2×πr2
2020/4/4
单位:(厘米)
底面周长
求:
求侧面积 求底面积
(1)侧面积: 2×3.14×2×4=50.24 (cm2)
(2)底面积: 3.14×22=12.56 (cm2)
牛刀小试:
①用一张长8cm、宽5 cm的长方形 纸围成一个圆柱体,这个圆柱体的 侧面积是( 40)cm2。
②一根10米长的圆柱形排水钢管, 量得横截面圆的周半长径是是10.2.35米6米, 如果在钢管的表面喷上防锈油漆, 喷漆面积是(1128.5.86 4)平方米。
2020/4/4
再接再厉
一个圆柱形的无盖铁皮水桶,底面直径 是4分米,高是5分米,为了防止生锈, 要在水桶里外两面及底面都涂上防锈漆, 涂漆的 面积是多少平方分米?
2020/4/4
轻松一刻
把一个圆柱在平坦的桌面上滚动,那么滚
动的路线是(B ).
A 圆弧 B长方形 C圆形
2020/4/4
再接再厉
下面哪个图形是圆柱的展开图?
2
6.28 3 2
4
3
15
4 32
3 4
√A
B
C
2020/4/4
1、一根10米长的圆柱形排水钢管,量得横 截面周长3.14米,如果在钢管的表面喷上防 锈油漆,喷漆面积是多少平方米?
(二)、判断:
• 1、上下两个底面是圆形的物体都是圆柱 。 ()
• 2、圆柱的表面积是圆柱的底面积加上侧 面积。( )
• 3、圆柱底面半径不变,高扩大2倍,侧面 积也扩大2倍。( )
控
2020/4/4
制
2020/4/4
轻松一刻
冬天护林工人给圆柱形 的树干的下端涂防蛀涂 料,那么粉刷树干的面 积是指树的( B ). A.底面积 B.侧面积 C.表面积 D.体积
解:帽子的侧面积: 3.14×20×25=1570(厘米2)
帽顶的面积: 3.14×(20÷2)2=பைடு நூலகம்14(厘米2)
需要用的面料: 1570+314=1884(厘米2)
答:做这样一顶帽子需要用1884平方厘米的面料。
2020/4/4
做一个笔筒所需塑料面积
加油啊!
2020/4/4
2020/4/4
往井的内壁和底面抹水泥,求抹水泥部分的面积。
2020/4/4
2020/4/4
在生活中,圆柱的高会有不同的称呼,你知道吗?
深
2020/4/4
长
厚
• 回顾一下
• 长方体、正方体的表面积指的是什 么?
• 怎么计算它们的表面积?
2020/4/4
说一说该求哪部分的面积。
茶 叶
做茶叶桶所需铁皮面积
加油啊!
2020/4/4
圆柱的表面积:
底面 侧面