2019-2020学年重庆市第一中学高三3月月考
理综卷.2013届重庆市第一中学高三上学期第三次月考试题(2012 11)
重庆市一中2013届高三上学期第三次月考生物试卷2012.11一、选择题(每题只有一个正确选项,每小题6分,共36分)1.下列关于细胞的结构和功能叙述正确的是:A、人体成熟的红细胞吸收葡萄糖需要消耗能量B、用含3H标记的胸腺嘧啶脱氧核苷酸的培养液培养洋葱根尖,可以在线粒体,叶绿体,细胞核中检测到较强的放射性,而在核糖体中检测不到C、线粒体基质中的氧气浓度比细胞质基质中的低D、菠菜叶肉细胞有丝分裂前期,两组中心粒会分别移向两级2.下列有关ATP与酶的叙述正确的是:A、动物与绿色植物ADP转化为ATP所需能量只能由呼吸作用提供B、所有酶都在生物膜上,没有生物膜生物就无法进行各种代谢反应C、ATP中含有核糖,形成需要酶的催化;酶中不含核糖,形成需要消耗ATPD、ATP中用于生命活动的能量贮存在远离腺苷的高能磷酸键中3.根据所学的知识判断,下列说法正确的:①乙醇可以使溴麝香草酚蓝溶液由蓝变绿再变黄②细胞分裂间期,核糖体上合成解旋酶和DNA聚合酶③核移植技术,反应了动物细胞也具有全能性④从cDNA文库中获取的目的基因,既无启动子,又无内含子⑤在“提取和分离色素”的实验中,使用无水乙醇提取叶绿体中的色素⑥具有分裂能力的细胞一定会分化且分化程度越高分裂能力越强⑦胚胎工程中冲卵的实质是用特定的装置把受精卵从子宫冲出来⑧减数第一次分裂染色体联会不需要线粒体提供能量A、三项B、四项C、五项D、六项4、研究小组发现了胎盘生长因子抗体——PLGF抗体,该抗体与肿瘤细胞的胎盘生长因子结合,阻断了胎盘生长因子与毛细血管结合的通路,削减了对肿瘤的养分供给,癌细胞分裂速度减缓,且低于免疫系统杀死癌细胞的速度,使肿瘤明显缩小。
下列有关叙述正确的:A、人体内只有癌变的细胞内才存在原癌基因B、抗体的化学本质是蛋白质,其合成和分泌需要多种细胞器的参与C、癌细胞容易发生转移是由于细胞表面糖蛋白增多,细胞之间的润滑作用增强D、该抗体与肿瘤内的胎盘生长因子结合属于细胞免疫5、下列有关细胞分裂的描述解释合理的是:A、图1是次级卵母细胞,将产生一个卵细胞和一个极体,每个子细胞含有2条非同源染色体B、观察到的某生物(2n=6)减数第二次分裂后期细胞如图2所示,出现该现象的原因是减数第一次分裂中有一对染色体没有相互分离导致C、图3为体细胞的有丝分裂,图中含有4对同源染色体,两个染色体组D、图4图为某二倍体生物体内的一个细胞,在分裂形成此细胞的过程中,细胞内可形成2个四分体。
重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题
重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.在某次学科期末检测后,从全部考生中选取100名考生的成绩(百分制,均为整数)分成[50,60),[)[)60,70,70,80,[80,90),[90,100)五组后,得到频率分布直方图(如右图),则下列说法正确的是()据学校共有的人数,得到关于高一人数的方程,解方程得到高一人数,用人数乘以抽取的比例,得到结果.本题考查分层抽样,在分层抽样之前有一个小型的运算,是一个基础题,运算量不大,可以作为选择和填空出现.分层抽样主要用于个体数量较多,且个体间具有明显差异的,这时采用分层抽样合适.4.D【分析】分甲得2个和甲得1个磁力片两种情况分类求解,再由分类加法计数原理得解.【详解】若甲分得两个磁力片,共有1232C A 6=种分法,若甲只分得一个磁力片,共有2232C A 6=种分法,由分类加法计数原理,可得共有6612+=种分法.故选:D 5.A【分析】根据递推关系式可知数列{}n a 是以6为周期的周期数列,根据周期性和对数运算法则可求得结果.【详解】由题意知:0n a >,31n n a a +=Q ,361n n a a ++\=,6n n a a +\=,即数列{}n a 是以6为周期的周期数列;()()()1234561425361a a a a a a a a a a a a ==Q ,()()()33712202412202412345612ln ln ln ln ln ln a a a a a a a a a a a a a a \++×××+=×××××=+ln1ln 2ln 2=+=.故选:A.6.C【分析】根据题意找出相应的规律,第37个数为第21行第3个数,从而可求解.【详解】由题意可得每行有2个数且从第3行开始计数,所以第37项为“杨辉三角”中第21行第3个数,所以20n =,3r =,所以3122020C C 190-==.故C 正确.故选:C.=。
重庆市第一中学校2022-2023学年高三下学期2月月考语文答案和解析
2023年重庆一中高2023届2月月考语文参考答案1.(3分)A 【解析】B项,原文“翻译往往不是一‘本’定音,好的意译与直译各擅胜场”,不能只以一个标准来判定;C项,“使当时中国读者高涨的爱国之情得到进一步激发”与原文“出于他希望将激情和光明带给读者的拳拳爱国之心”不符,原文的意思是傅雷主观上想达到这样的效果,并非既成事实;D项,“过去的中国文学翻译将译本作为研究重点,却忽略了译本之外的因素”推断不合理。
2.(3分)B 【解析】A项,所使用的例子详略不能表明作者的侧重点;C项,张峰讨论的是回顾文学翻译史的价值和作用;D项,材料二没有讨论“译本的翻译原则”,而是讨论译本翻译原则以外的翻译策略。
3.(3分)C 【解析】选择的宣传点不好,文学作品本身的价值被替换成饮食文化,也未贴近输出国家的实际情况。
4.(4分)①文化素养:充分了解本国语言、文化传统;对翻译的目的语文化特点有准确把握。
②审美素养:在文学译介的作品选择上选择思想性高、能给人以思想启迪和精神感染的作品,力求引发读者共鸣。
(每点2分)5.(6分)①林:忠实于内容;传递了思想文化内涵,帮助西方读者理解“风刀霜剑”的深层文化内涵,即影射了现实的严酷。
②杨:未考虑受众,直译出来,西方读者并不能理解其双关义。
③霍:虽然使用了归化式翻译,但缺少美学特质,“屠宰”产生的联想画面显得血腥,不符合作品本身的美学特点。
(每点2分)6.(3分)C 【解析】A项,“意在指责”不恰当。
并非意在指责敬老院。
而是与婶娘生前体面一辈子相对比,婶娘死得很没有尊严,不体面,“我”的内心有难以言说的痛苦;B 项,“否定的态度”存疑,“我”对“善良的婶娘”是肯定的,但是对善良的人却总是有悲剧性的人生感到伤感;D项,“反差”不恰当。
因为自己的爱无人认领,还有客观的病症问题,并不一定非要强调前后的对比。
7.(3分)B 【解析】“补叙”应该改为“插叙”。
8.(4分)①叙述人称上看:作者用第三人称和第一人称交替的方式讲述婶娘的故事,前者能多方面多角度灵活表现婶娘的人物形象;后者显得更加真实可信,且抒情性强,能直接表语文参考答案·第1页(共5页)达出“我”对婶娘的怀念之情,富有感染力。
2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
重庆市沙坪坝区第一中学校2023-2024学年高一下学期3月月考生物试题
秘密★启用前【考试时间:3月29日08:00—09:30】2024年重庆一中高2026届高一下期月考生物试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞学说的叙述,错误的是()A.细胞学说解释了个体发育,也为生物进化论埋下了伏笔B.细胞学说认为一切动植物都由细胞及细胞产物构成C.细胞学说认为细胞是生命活动的基本单位D.细胞学说揭示了动植物结构和功能的统一性2.如图表示细胞中几种元素与相应化合物之间的关系,其中①③④代表单体,⑤⑥⑦代表多聚体。
下列叙述正确的是()A.若⑤具有催化作用,则①可与双缩脲试剂反应显紫色B.若②是动物细胞膜特有的组成成分,则②可以参与血液中脂质的运输C.若⑥主要分布在细胞核,则③中不含糖类D.若⑦是植物细胞壁的主要成分,则④只存在于植物细胞中3.绿叶海蜗牛(没有贝壳,通体绿色像一片叶子)可将叶绿体从藻类的细胞中“偷”出来,存储在自己的消化道细胞之中。
图1~4为绿叶海蜗牛消化道细胞不同细胞器的电镜照片,下列说法错误的是()A.图1和图2所示细胞器均与分泌蛋白的运输有关B.图3和图4所示细胞器均具有双层膜结构C.图3细胞器可作为绿叶海蜗牛消化道细胞的“养料制造车间”D.图2和图3所示细胞器中含有核酸4.下列有关“骨架”或“支架”的叙述,正确的是()A.多聚体及单体均以碳原子构成的碳链为基本骨架B.多种多样的蛋白质构成了各种生物膜的基本支架C.位于细胞溶胶中的“细胞骨架”由蛋白质和纤维素构成D.脱氧核糖和磷酸交替连接构成DNA及RNA分子的骨架5.下列叙述正确的是()A.在生命活动旺盛的细胞中含有大量ATPB.质壁分离是指细胞质和细胞壁发生分离C.所有生物都具有与细胞呼吸有关的酶D.腺苷可以参与构成ATP和部分酶6.幽门螺杆菌(Hp)可引发胃炎、慢性咽炎和口腔溃疡等消化性疾病,Hp产生的脲酶能催化尿素分解为NH₃和CO2。
重庆市第一中学2023-2024学年高三下学期2月月考英语试卷
重庆市第一中学2023-2024学年高三下学期2月月考英语试卷一、听力选择题1.What will the woman do first?A.Go shopping.B.Go back home.C.Go swimming.2.Who is the man’s hero?A.Steve Jobs.B.Stephen Hawking.C.Tim Berners-Lee.3.What time does the train leave for Darlington?A.At 2:00 p.m.B.At 6:00 p.m.C.At 7:00 p.m.4.Where does the conversation probably take place?A.In a library.B.In a bookstore.C.In a dormitory.5.Why is the woman worried?A.Because she has no study plan.B.Because she has too much homework.C.Because she doesn’t have much time for study.听下面一段较长对话,回答以下小题。
6.What is the woman looking forward to?A.Running.B.Healthy food.C.Strength training.7.What are the speakers mainly talking about?A.Health.B.Wealth.C.Diet.听下面一段较长对话,回答以下小题。
8.What do the speakers usually do for lunch?A.Have a party in the office.B.Meet in the building's cafe.C.Go to a downtown restaurant.9.What must the speakers do before leaving?A.Finish their reports.B.Attend the company's celebration.C.Have a group lunch.听下面一段较长对话,回答以下小题。
重庆市第一中学2023届高三下学期3月月考化学 (无答案)
2023年重庆一中高2023届3月月考化学试题卷一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.化学与生活生产密切相关,下列说法错误的是( ) A .用23Na CO 与()243Al SO 两种溶液制作泡沫灭火剂 B .4NH Cl 与2ZnCl 溶液可用作焊接金属的除锈剂 C .4BaSO 常用作医学上肠胃X 射线检查的造影剂 D .带有强亲水基团的聚丙烯酸钠常用作高吸水性树脂 2.下列化学用语表述正确的是( )A .基态铷原子最高能级的电子云轮廓图:B .2CS 的电子式:S C S ::::C .亚油酸(顺,顺-9,12-十八碳二烯酸)的结构简式:D .苯分子中的大π键示意图:3.常温下,下列各组离子在指定溶液中一定能大量共存的是( ) A .能使甲基橙变黄色的溶液中:2Mg +、3Fe +、227Cr O -、ClO -B .饱和2CO 溶液中:K +、2Ba +、3NO -、Cl -C .澄清透明溶液中:K +、2Fe +、24SO -、[]36Fe(CN)-D .由水电离的()141H110mol L c +--=⨯⋅的溶液中:Na +、K +、F -、I -4.下列叙述错误的是( )A .向22Na O 固体中分别通入2CO 和2SO 气体,均能得到大量2OB .过量3NH 分别通入3AgNO 溶液和32Cu(NO )溶液中,均可看到溶液先浑浊后澄清C .2SO 使溴水褪色与乙烯使4KMnO 溶液褪色的原型相同D .饱和34Na SO 溶液和浓硝酸均可使鸡蛋清溶液产生沉淀,但原理不同 5.下列实验装置(夹持装置略)及操作正确的是( )6.布洛芬、阿司匹林、酚麻美敏片均属于常见的解热镇痛抗炎药,下图所示X 、Y 、Z 分别是其有效成分分子的结构简式。
下列说法错误的是( )A .X 含1个手性碳,且与苯甲酸互为同系物B .Y 中所有的碳原子可能在同一平面上C .Z 苯环上的H 被Br 所取代,二溴代物有4种D .X 、Y 、Z 均能与23Na CO 反应产生2CO7.金属M 在潮湿的空气中会形成一层致密稳定的233M(XY)MZX ⋅。
重庆市第一中学2025届高三化学10月月考试题含解析
B. 298K时,在Cl-和CrO42-的物质的量浓度均为0.1mol/L的溶液中,滴入少量0.1mol/L的AgNO3溶液,首先产生的是红色沉淀
C. 298 K时若增大p点的阴离子浓度,则y上的点沿曲线向上移动
D. 298 K时Ag2CrO4(s)+2SCN-(aq) 2AgSCN(s)+CrO42-(aq)的平衡常数K=2.0×1012
(5)反应终止后,烧瓶C中的溶液经蒸发浓缩即可析出Na2S2O3•5H2O,其中可能含有Na2SO3、Na2SO4等杂质。利用所给试剂设计试验,检测产品中是否存在Na2SO4,简要说明试验操作____________,现象和结论_________:。
已知Na2S2O3•5H2O遇酸易分解:S2O32‾+2H+=S↓+SO2↑+H2O
D. 装置安装后若干脆闭合Kl,电流计指针不发生偏转,但往左池加入适当的氨水后,左池银离子浓度降低,产生浓度差,形成原电池,指针偏转,正确。
答案选B。
【点睛】本题考查原电池与电解池原理,结合原电池和电解池原理分析,闭合K2,断开K1,为电解装置,阳极金属银被氧化,阴极析出银,NO3-向阳极移动,右池浓度增大,左池浓度减小;断开K1,闭合K1后,形成浓差电池,电流计指针偏转(Ag+浓度越大氧化性越强),可知Y为正极,发生还原反应,X为负极,发生氧化反应,NO3-向负极移动。
【答案】D
【解析】
【详解】A.反应生成二氧化碳气体,且盐酸易挥发,二氧化碳与氯化钡溶液不反应,视察到Ⅱ中溶液无明显改变,不能产生白色沉淀,选项A错误;
B.反应生成氨气,氨气与硫酸亚铁溶液反应生成白色沉淀氢氧化亚铁,氢氧化亚铁被氧气,沉淀变为灰绿色,最终变为红褐色,则视察到Ⅱ中先生成白色沉淀,沉淀变为灰绿色,最终变为红褐色,后选项B错误;
重庆市第一中学2019届高三下学期适应性月考(3月)物理试题题(解析版)
重庆市第一中学高2019届(三下)适应性月考物理试题卷(3月)2019.3二、选择题(4-17为单选, 18-21为多选,每题6分,共48分)1.2018年8月23日报道,国家大科学工程——中国散裂中子源(CSNS )项目通过国家验收,投入正式运行,并将对国内外各领域的用户开放。
有关中子的研究,下面说法正确的是( )A. 中子和其他微观粒子,都具有波粒二象性B. 卢瑟福发现中子的核反应方程C. 在中子轰击下生成的过程中,原子核中平均核子质量变小D. β衰变所释放的电子是原子核内部的中子转变为质子时所产生的【答案】ACD【解析】【详解】A、所有粒子都具有波粒二象性,故A正确;B、查德威克发现中子的核反应是:,故B错误;C、裂变反应释放出能量,根据质能方程知,在中子轰击下生成和的过程中,释放大量的能量,由质量亏损,原子核中的平均核子质量变小,故C正确;D、β衰变所释放的电子是原子核内部的中子转变为质子时产生的,故D正确;故选ACD。
2.如图所示,卫星A、B绕地球做匀速圆周运动,用T、a、v、S分别表示卫星的周期、加速度、速度、与地心连线在单位时间内扫过的面积。
下列关系式正确的有()A. T A>T BB. a A>a BC. v A>v BD. S A=S B【答案】A【解析】【详解】ABC、根据可知线速度为:,周期为:,加速度为:,A的轨道半径较大,则:,,,故A正确,B、C错误;D、由开普勒第二定可知绕同一天体运动的天体与中心天体连线在同一时间内扫过的面积相等,A、B不是同一轨道,所以A、B与地心连线在单位时间内扫过的面积不同,故D错误;故选A。
3.静电场方向平行于x轴,其电势φ随x的分布可简化为如图所示的折线,图中φ0和d为已知量。
一个带负电的粒子在电场中以x=0为中心、沿x轴方向做周期性运动。
已知该粒子质量为m、电量为-q,忽略重力。
规定x轴正方向为电场强度E、加速度a、速度v的正方向,下图分别表示x轴上各点的电场强度E,小球的加速度a、速度v和动能E K随x的变化图象,其中正确的是()【答案】D【解析】试题分析:图象的斜率表示电场强度,沿电场方向电势降低,因而在的左侧,电场向左,且为匀强电场,故A 错误;由于离子带负电,粒子在的左侧加速度为正值,在右侧加速度为负值,且大小不变,故B错误;在左侧粒子向右匀加速,在的右侧向右做匀减速运动,速度与位移不成正比,故C错误;在左侧粒子根据动能定理,在的右侧,根据动能定理可得,故D正确。
2019-2020学年重庆一中七年级(下)月考数学试卷(3月份) 解析版
2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)26.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.1007.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣19.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.4312.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为.14.已知:m﹣n=6,mn=1,则m2+n2=.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是米.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为cm2.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②(角平分线的定义)∴∠3=∠4(③)∵a∥b(已知)∴∠4=∠5(④)∴∠3=∠5(⑤)21.先化简,再求值.,其中m=2,n=﹣1.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了名学生,其中“名著阅读”所占的圆心角度数为.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=cm.(2)图2中m=;n=.(3)当△AHP的面积y为2时,求对应的x的值.25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:=+;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.2019-2020学年重庆一中七年级(下)月考数学试卷(3月份)参考答案与试题解析一.选择题(共12小题)1.下列事件中,随机事件是()A.一个数的绝对值为非负数B.两数相乘,同号得正C.两个有理数之和为正数D.对顶角不相等【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据定义依次分析题目中的事件即可解决.【解答】解:A、一个数的绝对值为非负数是必然事件,不符合题意;B、两数相乘,同号得正是必然事件,不符合题意;C、两个有理数之和为正数是随机事件,符合题意;D、对顶角不相等是不可能事件,不符合题意;故选:C.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、R是变量,π为常量C.V、R是变量,、π为常量D.V、R是变量,为常量【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:在球的体积公式V=πR3中,V,R是变量,,π是常量,故选:C.3.下列说法正确的是()A.直线外一点到这条直线的垂线段叫这点到这条直线的距离B.同位角相等,两直线平行C.同旁内角一定互补D.一个角的补角与它的余角相等【分析】分别按照“点到直线的距离”的概念、平行线的判定定理及两角互补与互余的定义分析即可.【解答】解:选项A:点到直线的距离是指:直线外一点到这条直线的垂线段的长度,即距离是“数”,而不是垂线段这个“物”,故A错误;选项B:“同位角相等,两直线平行”是平行线的判定定理之一,故正确;选项C:两直线不平行,则同旁内角不互补,故C错误;选项D:设这个角为α,则其补角为:180°﹣α;其余角为:90°﹣α当180°﹣α=90°﹣α时,得180°=90°,矛盾,故D错误.综上,只有选项B正确.故选:B.4.一个盒子里装有红、黄、白球分别为3、4、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A.B.C.D.【分析】让黄球的个数除以球的总数即为摸到黄球的概率.【解答】解:∵布袋中装有红、黄、白球分别为3、4、5个,共12个球,从袋中任意摸出一个球共有12种结果,其中出现黄球的情况4种可能,∴得到黄球的概率是:=.故选:B.5.下列各式计算正确的是()A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)2【分析】分别根据完全平方公式和平方差公式逐一判断即可.【解答】解:A.(x+y)2=x2++2xy+y2,故本选项不合题意;B.(x+3)(x﹣3)=x2﹣9,故本选项不合题意;C.(m﹣n)(n﹣m)=﹣n2+2mn﹣m2,故本选项不合题意;D.(x﹣y)2=(y﹣x)2,正确.故选:D.6.按下面的程序计算,若开始输入的值x为正整数,当输入x=7时,输出的值为()A.28B.42C.52D.100【分析】在理解题意的基础上,把x=7代入式子求值,其结果与40作比较,小于40则重新代入2x﹣4中计算,直到结果大于40就是输出结果.【解答】解:当x=7时,2x﹣4=10∵10<40∴将x=10继续代入2x﹣4=16∵16<40∴将x=16继续代入2x﹣4=28∵28<40∴将x=28继续代入2x﹣4=52∵52>40∴输出结果是52故选:C.7.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少60°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【解答】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣60,解得:x=30,∴这两个角的度数是30°和30°;若这两个角互补,则180﹣x=3x﹣60,解得:x=60,∴这两个角的度数是60°和120°.∴这两个角的度数是30°和30°或60°和120°.故选:C.8.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣1【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选:D.9.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)【分析】原长方形的边长减少xcm后得到的新长方形的边长为(10﹣x)cm,和(6﹣x)cm,周长为y=2(10﹣x+6﹣x),自变量的范围应能使长方形的边长是正数,即满足x >0,6﹣x>0.【解答】解:∵长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,∴y与x之间的关系式是:y=2[(10﹣x)+(6﹣x)]=32﹣4x(0<x<6).故选:A.10.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.11.下列图形都是由同样大小的黑点按一定的规律组成,摆第1个图案需要4个圆点,摆第2个图案需要7个圆点,摆第3个图案需要10个圆点,摆第4个图案需要13个圆点,按照这个规律继续摆放,第12个图摆放圆点的个数为()A.21B.35C.37D.43【分析】首先根据前几个图形圆点的个数规律即可发现规律,从而得到第12个图摆放圆点的个数.【解答】解:观察图形可知:摆第1个图案需要4个圆点,即3×1+1=4;摆第2个图案需要7个圆点,即3×2+1=7;摆第3个图案需要10个圆点,即3×3+1=10;摆第4个图案需要13个圆点,即3×4+1=13;按照这个规律继续摆放,第12个图摆放圆点的个数3×12+1=37.故选:C.12.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α,故答案选B.【解答】解:如图所示:∵BD为∠ABC的角平分线,∴∠ABC=2∠CBD,又∵AD∥BC,∴∠A+∠ABC=180°,∴∠A+2∠CBD=180°,又∵DF是∠ADC的角平分线,∴∠ADC=2∠ADF,又∵∠ADF=∠ADB+α∴∠ADC=2∠ADB+2α,又∵∠ADC+∠C=180°,∴2∠ADB+2α+∠C=180°,∴∠A+2∠CBD=2∠ADB+2α+∠C又∵∠CBD=∠ADB,∴∠A=∠C+2α,故选:B.二.填空题(共6小题)13.2019新型冠状病毒(2019﹣nCoV),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 1.25×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.14.已知:m﹣n=6,mn=1,则m2+n2=38.【分析】根据完全平方公式(m﹣n)2=m2+n2﹣2mn即可解题.【解答】解:∵(m﹣n)2=m2+n2﹣2mn,∵36=m2+n2﹣2,∴m2+n2=38,故答案为38.15.如图,已知AB∥CD,BE⊥DE于E,则∠ABE+∠CDE=270°.【分析】作FE∥AB,然后根据平行线的性质,即可得到∠ABE+∠BEF+∠FED+∠EDC 的度数,再根据BE⊥DE,即可得到∠ABE+∠CDE的度数,本题得以解决.【解答】解:过点E作FE∥AB,∵AB∥CD,∴AB∥FE∥CD,∴∠ABE+∠BEF=180°,∠FED+∠EDC=180°,∴∠ABE+∠BEF+∠FED+∠EDC=360°∵BE⊥DE,∴∠BEF+∠FED=90°,∴∠ABE+∠CDE=270°,故答案为:270°.16.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.【分析】设小圆的半径为r,得出大圆的半径是3r,根据圆的面积公式先求出7个小圆的面积和一个大圆的面积,然后根据概率公式即可得出答案.【解答】解:设小圆的半径为r,则大圆的半径就是3r,7个小圆的面积是:7•r2π=7πr2,大圆的面积是:(3r)2π=9πr2,则蚂蚁停留在涂有颜色部分的概率为=;故答案为:.17.甲、乙两小朋友都从A地出发,匀速步行到B地(A、B两地之间为笔直的道路),甲出发半分钟后,乙才从A地出发,经过一段时间追上甲,两人继续向B地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,乙又立刻掉头向B地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为y(米)与乙出发的时间x(分钟)之间的关系如图所示,当乙到达B地时,甲与B地相距的路程是40米.【分析】设甲的速度为am/min,乙的速度为bm/min,由第一次相遇时,图象上的数据求得a与b的关系,再根据“当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇”求得两人的速度和a+b,进而求得两人的速度a与b,再求得第二次相遇时间,由图象知7.5min时,乙到达B地,求得此时甲与B地相距的路程.【解答】解:设甲的速度为am/min,乙的速度为bm/min,由函数图象知,当x=1.5min时,y=0m,即两人第一次相遇,根据题意得,(1.5+0.5)a=1.5b,∴b=a,∵当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向A地步行,半分钟后与甲相遇,∴a+b=70÷=140,∴a+a=140,∴a=60(m/min),b=80(m/min),于是,当甲、乙之间的距离刚好是70米时,乙出发的时间为:1.5+70÷(80﹣60)=5(min),∴两人第二次相遇时的时间为:5+0.5=5.5(min),根据函数图象知,当x=7,5min时,乙到达了B地,此时,两人相距:(80﹣60)×(7.5﹣5.5)=40(m),∴甲与B两地的距离为:40m.故答案为:40.18.工人师傅按照“最优化处理”打包多个同一款式长方体纸盒,其“最优化处理”是指:每相邻的两个纸盒必须以完全一样的面对接,最后打包成一个表面积最小的长方体,已知长方体纸盒的长xcm、宽ycm、高zcm都为整数,且x>y>z>1,x+z=2y,x+y+z+xy+xz+yz+xyz=439,若将六个此款式纸盒按“最优化处理”打包,其表面积为956 cm2.【分析】根据x+y+z+xy+xz+yz+xyz=439可得(x+1)(y+1)(z+1)=440,再根据题意可得(x+1)+(z+1)=2(y+1),进一步得到x+1=11,y+1=8,z+1=5,解方程求得x,y,z,再根据最优化处理时,最大的表面被重叠,依此可求表面积.【解答】解:∵x+y+z+xy+xz+yz+xyz=439,∴x+y+z+xy+xz+yz+xyz+1=440,∴(x+1)(y+1)(z+1)=440,∵x+z=2y,∴(x+1)+(z+1)=2(y+1),∵z+1≥3,y+1≥4,x+1≥5,其中5+11=2×8,∴x+1=11,y+1=8,z+1=5,解得x=10,y=7,z=4,最优化处理时,最大的表面被重叠,表面积为(7×10×2+4×7×12+4×10×12=956(cm2).故答案为:956.三.解答题(共8小题)19.计算:(1);(2)(a+2b+c)(a﹣2b+c)﹣2ac.【分析】(1)分别根据幂的定义,负整数指数幂的运算法则,绝对值的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式和完全平方公式化简即可.【解答】解:(1)原式=﹣1+4﹣3+1=1(2)原式=(a+c)2﹣(2b)2﹣2ac=a2+2ac+c2﹣4b2﹣2ac=a2﹣4b2+c2.20.如图,a∥b,点A在直线a上,点B、C在直线b上,且BA⊥CA,点D在线段BC上,连接AD,且AC平分∠DAF.证明:∠3=∠5.证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换)【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【解答】证明:∵BA⊥CA(已知)∴∠BAC=∠2+∠3=90°(①垂直的定义)∵∠1+∠BAC+∠4=180°(平角的定义)∴∠1+∠4=180°﹣∠BAC=180°﹣90°=90°∵AC平分∠DAF(已知)∴∠1=②∠2(角平分线的定义)∴∠3=∠4(③等角的余角相等)∵a∥b(已知)∴∠4=∠5(④两直线平行,内错角相等)∴∠3=∠5(⑤等量代换).故答案为:垂直的定义;∠2;等角的余角相等;两直线平行,内错角相等;等量代换.21.先化简,再求值.,其中m=2,n=﹣1.【分析】直接利用乘法公式进而化简,再合并同类项,利用整式的除法运算法则计算,把已知数据代入得出答案.【解答】解:原式=(m2+4n2﹣4mn﹣2mn﹣5n2+n2﹣4m2)÷3m=(﹣3m2﹣6mn)÷3m=﹣m﹣2n,当m=2,n=﹣1时,原式=﹣2+2=0.22.新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查中一共调查了20名学生,其中“名著阅读”所占的圆心角度数为54°.(2)请把条形统计图补全.(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.【分析】(1)用喜欢“其它课程“的人数除以它所占的百分比得到调查的总人数,然后用“名著阅读”所占的百分比乘以360°得到扇形统计图中,“名著阅读”所占的圆心角度数;(2)利用喜欢名著阅读的人数补全条形统计图;(3)根据概率公式计算;(4)利用样本估计整体,用3000乘以样本中最喜爱的课程是“体育锻炼”的人数所占的百分比.【解答】解:(1)2÷10%=20,所以本次调查中一共调查了20名学生,其中“名著阅读”的人数为20﹣5﹣6﹣4﹣2=3,所以在扇形统计图中,×360°=54°;故答案为20,54°;(2)如图,(3)他恰好最喜爱的课程是“艺术欣赏”的概率==;(4)3000×=900,所以估算出全校最喜爱的课程是“体育锻炼”的人数为900人.23.已知:a2+b2﹣4a+8b+20=0,求:(a+1)(a2+1)(a4+1)(a8+1)﹣的值.【分析】已知等式配方变形后,利用非负数的性质求出a与b的值,代入原式计算即可求出值.【解答】解:已知等式整理得:(a2﹣4a+4)+(b2+8b+16)=0,即(a﹣2)2+(b+4)2=0,∴a﹣2=0,b+4=0,解得:a=2,b=﹣4,可得a﹣1=2﹣1=1,则原式=(a﹣1)(a+1)(a2+1)(a4+1)(a8+1)﹣()b=(a2﹣1)(a2+1)(a4+1)(a8+1)﹣()b=(a4﹣1)(a4+1)(a8+1)﹣()b=(a8﹣1)(a8+1)﹣()b=a16﹣1﹣()b当a=2,b=﹣4时,原式=216﹣1﹣()﹣4=216﹣1﹣216=﹣1.24.已知动点P从点A出发沿图1的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的△AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图2,若AH=2cm,根据图象信息回答下列问题:(1)图1中AB=3cm.(2)图2中m=6;n=26.(3)当△AHP的面积y为2时,求对应的x的值.【分析】(1)由图象可得点P在B点时,x=3,y=3,由三角形面积公式可求解;(2)由图象可得点P在点D时,x=11,y=m,由三角形面积公式可求解,由点P在直线AH上时,y=0,即可求解;(3)由三角形面积公式可求点P到直线AH的距离为2cm,分别在线段AB上,线段EF 上,即可求解.【解答】解:(1)由图象可得:3=×2×AB,∴AB=3cm,故答案为:3;(2)由图象可得:0<x≤3时,点P在AB上运动,3<x≤5时,点P在BC上运动,5<x≤11时,点P在CD上运动,11<x≤17时,点P在DE上运动,17<x≤30时,点P 在EF上运动,∴m=×2×(11﹣2﹣3)=6,当点P在线段EF上,且在直线AH上时,y=0,∴n=17+11﹣2=26,故答案为:6,26;(3)∵△AHP的面积y为2,AH=2cm,∴点P到直线AH的距离为2cm,当点P在AB上时,x=2cm,当点P在EF上时,x=25+2=27cm或x=25﹣2=23cm,∴x=2或23或27;25.阅读下列材料:数学中枚举法是一种重要归纳法也称为列举法、穷举法,是暴力策略的具体体现,又称为蛮力法.用枚举法解题时应该注意:(1)常常需要将对象进行恰当分类.(2)使其确定范围尽可能最小,逐个试验寻求答案.正整数N的末尾为5称为“威武数”,那么N的平方数为M称为“平武数”.例:152=225(2=1×2),252=625(6=2×3),352=1225(12=3×4),452=2025(20=4×5),552=3025(30=5×6),……由以上的枚举可以归纳得到的“平武数”特点是:①“平武数”的末两位数字是25;②去掉末两位数字25后,剩下部分组成的数字等于“威武数”去掉个位数字5后剩部分组成的数字与比此数大1的数之积.(如例中的括号内容)(1)根据以上特点我们能够很快的推出一个四位数的“平武数”M一共有7个.(2)同学们用学过的完全平方公式求证:当“威武数”N为任意二位数时,“平武数”M 都满足以上特点.(3)已知“平武数”M的首位数是2且小于六位,又满足N的各位数字之和与M的各位数字之和相等,求出“平武数”M的值.【分析】(1)由已知可得352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,满足条件;(2)设二位数的“威武数”N的十位数字是a,则N=10a+5,再由M=(10a+5)2=100a2+25+100a=100a(a+1)+25,即可证明;(3)M分两种情况讨论:当M是四位数时,设M的千位数是x,百位数是y,此时N 是两位数,设N的十位数字是z,根据已知可得z2+2=9x,则当x=2时,z=4;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,由于五位数中3152=99225,再分两种情况:设N的十位数字是a,当N的首位是1时,可得1+a=2+x+y+z,(10+a)(10+a+1)=100x+10y+z,联立求出a=4;当N的首位是2时,可得2+a=2+x+y+z,(20+a)(20+a+1)=100x+10y+z,此时a不存在.【解答】解:(1)∵352=1225,452=2025,552=3025,652=4225,752=5625,852=7225,952=9025,再由“平武数”的特点,∴四位数的“平武数”共有7个,故答案为7;(2)设二位数的“威武数”N的十位数字是a,∴N=10a+5,∴M=(10a+5)2=100a2+25+100a=100a(a+1)+25,∴M的末尾两位数是25,∴当“威武数”N为任意二位数时,“平武数”M都满足以上特点;(3)当M是四位数时,设M的千位数是x,百位数是y,此时N是两位数,设N的十位数字是z,∴10x+y=z(z+1),∵N的各位数字之和与M的各位数字之和相等,∴z+5=x+y+2+5,∴z=x+y+2,∴z2+2=9x,∴当x=2时,z=4;∴M=2025;当M是五位数时,设万位数字是x,千位数字是y,百位数字是z,∵3152=99225,∴N的首位两个数字和最大是11,设N的十位数字是a,当N的首位是1时,∴1+a=2+x+y+z,∴a﹣1=x+y+z,又∵(10+a)(10+a+1)=100x+10y+z,∴a2+20a+111=9(9x+y),∴a2+20a+111=(a+10)2+11=9(9x+y),∴a=4,∴1452=21025,∴M=21025;当N的首位是2时,∴2+a=2+x+y+z,∴a=x+y+z,又∵(20+a)(20+a+1)=100x+10y+z,∴a2+40a+420=(a+20)2+20=9(9x+y),此时a不存在;∴M的值为2025或21025.26.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG ⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE于点M.(1)直接写出∠AHE,∠F AH,∠KEH之间的关系:∠AHE=∠KEH+∠F AH;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.【分析】(1)根据平行线的性质和三角形的外角性质可得答案;(2)设∠BEF=x,用x分别表示出∠BAK、∠BEC、∠BAK、∠KAG、∠AME和∠AHE,再由AG⊥BE,得关于x的方程,解得x的值,则问题可解;(3)由(2)可得,∠KHE=105°,再分4种情况列方程求解即可:①当KH∥EN时;②当kE∥GN时;③当HE∥GN时;④当HK∥GN时.【解答】解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠F AH∴∠AHE=∠KEH+∠F AH故答案为:∠AHE;∠KEH;∠F AH;(2)设∠BEF=x∵∠BEF=∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°﹣30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°﹣30°﹣30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.。
重庆市第一中学校2023-2024学年高二下学期5月月考数学试题
重庆市第一中学校2023-2024学年高二下学期5月月考数学试题一、单选题1.设全集{}1,2,3,4,5,6U =,集合{}3,4,6A =,{}2B x x =∈≤Z ,则()U B A ⋂=ð( ) A .{}1,5B .{}1,2C .{}2,3D .∅2.袋子中装有5个形状和大小相同的球,其中3个标有字母,2a 个标有字母b .甲先从袋中随机摸一个球,摸出的球不再放回,然后乙从袋中随机摸一个球,若甲、乙两人摸到标有字母a 的球的概率分别为12,p p ,则( ) A .12p p = B .1223p p = C .123p p =D .122p p =3.某校5名同学到A 、B 、C 三家公司实习,每名同学只能去1家公司,每家公司至多接收2名同学.若同学甲去A 公司,则不同的安排方法共有( ) A .18种B .30种C .42种D .60种4.2024海峓两岸各民族欢度“三月三”暨福籽同心爱中华⋅福建省第十一届“三月三”畲族文化节活动在宁德隆重开幕.海峡两岸各民族同胞齐聚于此,与当地群众共同欢庆“三月三”,畅叙两岸情.在活动现场,为了解不同时段的入口游客人流量,从上午10点开始第一次向指挥中心反馈入口人流量,以后每过一个小时反馈一次.指挥中心统计了前5次的数据(),i i y ,其中1,2,3,4,5,i i y =为第i 次入口人流量数据(单位:百人),由此得到y 关于i 的回归方程2ˆˆlog (1)5y b i =++.已知9y =,根据回归方程(参考数据:22log 3 1.6,log 5 2.3≈≈),可顶测下午4点时入口游客的人流量为( ) A .9.6B .11.0C .11.4D .12.05.已知A ,B 为同一次试验中的两个随机事件,且()0P A >,()0P B >,命题甲:若()()1P B A P B +=,则事件A 与B 相互独立;命题乙:“A 与B 相互独立”是“()()P A B P A B =”的充分不必要条件;则命题( ) A .甲乙都是真命题B .甲是真命题,乙是假命题C .甲是假命题,乙是真命题D .甲乙都是假命题6.三个男生三个女生站成一排,已知其中女生甲不在两端,则有且只有两个女生相邻的概率是( ) A .25B .310C .920 D .357.数列{}n a 的前n 项和为()*1,n n n n S S a n a +=∈N ,则5622111i i i i a a -==-∑∑可以是( )A .18B .12C .9D .68.如图,在ABC V 中,120BAC ∠=o ,其内切圆与AC 边相切于点D ,且1AD =.延长BA 至点E .使得BC BE =,连接CE .设以,C E 两点为焦点且经过点A 的椭圆的离心率为1e ,以,C E 两点为焦点且经过点A 的双曲线的离心率为2e ,则12e e 的取值范围是( )A.∞⎫+⎪⎪⎣⎭ B.∞⎫+⎪⎪⎝⎭C .[)1,+∞D .()1,∞+二、多选题9.已知0a >,0b >,a b ab +=,则( ) A .1a >且1b > B .4ab ≥ C .49a b +≤D .11bab+>10.在对具有相关关系的两个变量进行回归分析时,若两个变量不呈线性相关关系,可以建立含两个待定参数的非线性模型,并引入中间变量将其转化为线性关系,再利用最小二乘法进行线性回归分析.下列选项为四个同学根据自己所得数据的散点图建立的非线性模型,且散点图的样本点均位于第一象限,则其中可以根据上述方法进行回归分析的模型有( )A .212y c x c x =+B .12x c y x c +=+C .()12ln y c x c =++D .21x c y c e +=11.在信道内传输,,M N P 信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为()01αα<<,收到其他两个信号的概率均为12α-.若输入四个相同的信号,,MMMM NNNN PPPP 的概率分别为123,,p p p ,且1231p p p ++=.记事件111,,M N P 分别表示“输入MMMM ”“输入NNNN ”“输入PPPP ”,事件D 表示“依次输出MNPM ”,则( )A .若输入信号MMMM ,则输出的信号只有两个M 的概率为()221αα- B .()22112P D M αα-⎛⎫= ⎪⎝⎭C .()3112P D P αα-⎛⎫= ⎪⎝⎭D .()()1112311p P M D p ααα=-+-三、填空题12.若关于x ,y 的三项式()221cos sin nx y θθ++的展开式中各项系数之和为64,则n =;其中xy 项系数的最大值为.13.有一枚质地均匀的硬币,现进行连续抛硬币游戏,规则如下:在抛掷的过程中,无论何时,连续出现奇数次正面后出现一次反面,则游戏停止;否则游戏继续进行.最多抛掷10次,则该游戏抛掷次数的数学期望为. 14.不经过第四象限的直线l 与函数()24f x x x=-的图象从左往右依次交于三个不同的点()11,A x y ,()22,B x y ,()00,C x y ,且1x ,2x ,0x 成等差数列,则00x y 的最小值为.四、解答题15.对于*,m t ∈N ,s ∈N ,t 不是10的整数倍,且10s m t =⋅,则称m 为s 级十全十美数.已知数列{}n a 满足:18a =,240a =,2156n n n a a a ++=-. (1)若{}1n n a ka +-为等比数列,求k ;(2)求在1a ,2a ,3a ,…,2024a 中,3级十全十美数的个数.16.人口老龄化加剧的背景下,我国先后颁布了一系列生育政策,根据不同政策要求,分为两个时期Ⅰ和Ⅱ.根据部分调查数据总结出如下规律:对于同一个家庭,在Ⅰ时期内生孩X 人,在Ⅱ时期生孩Y 人,(不考虑多胞胎)生男生女的概率相等.X 服从0-1分布且1(0)P X ==.Y 分布列如下图:现已知一个家庭在Ⅰ时期没生孩子,则在Ⅱ时期生2个孩子概率为124;若在Ⅰ时期生了1个女孩,则在时期生2个孩子概率为16;若在Ⅰ时期生了1个男孩,则在Ⅱ时期生2个孩子概率为112,样本点中Ⅰ时期生孩人数与Ⅱ时期生孩人数之比为2:5(针对普遍家庭). (1)求Y 的期望与方差;(2)由数据(1,2,,)i z i n =⋅⋅⋅组成的样本空间根据分层随机抽样分为两层,样本点之比为:a b ,分别为(1,2,,)i x i k =⋅⋅⋅与(1,2,,)i y i m =⋅⋅⋅,k m n +=,总体样本点与两个分层样本点均值分别为z ,x ,y ,方差分别为20S ,21S ,22S ,证明:22222012()()a b S S x z S y z a b a b⎡⎤⎡⎤=+-++-⎣⎦⎣⎦++,并利用该公式估算题设样本总体的方差.17.随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为 1.4例如在1秒末,粒子会等可能地出现在()()()()1,0,1,0,0,1,0,1--四点处.(1)设粒子在第2秒末移动到点(),x y ,记x y +的取值为随机变量X ,求X 的分布列和数学期望()E X ;(2)记第n 秒末粒子回到原点的概率为n p . (i )已知220(C )C nk n n n k ==∑求34,p p 以及2n p ;(ii )令2n n b p =,记n S 为数列{}n b 的前n 项和,若对任意实数0M >,存在*n ∈N ,使得n S M >,则称粒子是常返的.已知146!e πe nnn n n ⎫⎛⎫⎫<<⎪ ⎪⎪⎭⎝⎭⎭,证明:该粒子是常返的. 18.已知点F 是抛物线2:4C y x =的焦点,C 的两条切线交于点()00,,,P x y A B 是切点. (1)若000,3x y ==,求直线AB 的方程;(2)若点P 在直线3y x =+上,记PFA V 的面积为1,S PFB △的面积为2S ,求12S S ⋅的最小值; (3)证明:PFA BFP △∽△.19.已知函数()2sin cos f x x x x x =--在[)0,∞+上的极小值点从小到大排列成数列{}n a ,函数()2sin πn n x g x x x a =-+-. (1)求{}n a 的通项公式; (2)讨论()n g x 的零点个数.。
重庆市第一中学2019-2020学年高一上学期10月月考试题 地理 Word版含答案
秘密★启用前【考试时间:10月25日14:40—16:00】重庆一中高2022级高一上期月考考试地理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将答题卡交回。
一、选择题:本题共40小题,每小题2分,共80分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 经线与纬线相比较,具有的特点是A. 经线比任何一条纬线都长B. 所有经线都在南北极相交C. 经线是一个圆圈D. 任何一条经线都可以把地球等分为两个半球《淮南子·精神训》:“日中有踆(cūn)乌”。
“踆乌”即蹲着的三足乌鸦,古代传说三足乌鸦是专门为西王母觅寻食物的神鸟。
下图示意太阳外部结构。
据此完成2-3题。
2.日中的踆乌出现在图中的A.A B.B C.C D.太阳内部3.“日中有踆(cūn)乌”所描述的太阳活动A.没有活动周期,但可能持续较长一段时间B.只考虑距日距离,地球是最先受其影响的行星C.高峰年地震、水旱灾害等自然现象可能增加D.爆发后1分钟左右引起两极大量极光产生4.关于太阳活动的叙述正确的是A.耀斑出现在日冕层B.黑子在太阳表面呈黑色C.黑子是太阳活动的唯一标志D.黑子活动周期约是11年5.用一般收音机收听短波广播时,声音常常会忽大忽小,甚至中断,主要是因为A.太阳大气层发射的电磁波扰动地球大气层B.太阳大气抛出的带电粒子扰乱了地球磁场C.短波在大气中传播时,被空气分子吸收D.短波到达电离层后,被全部反射回地面美国帕克号太阳探测器于2018年8月升空,正式开启人类首次穿越日冕之旅。
读图回答6-7题。
6.下列有关帕克号太阳探测器的叙述,正确的是A.首次飞跃行星轨道为金星轨道B.运行轨道为正圆C.属于地球人造卫星D.数次飞越小行星带7.下列有关日冕层的叙述,正确的是A.日常生活中肉眼可见B.厚度达到几百万公里以上C.最强烈的太阳活动是耀斑D.与空气分子摩擦产生极光8.我国自主研制的“天宫一号”目标飞行器发射升空后准确进入预定轨道绕地球飞行。
重庆市第一中学2023-2024学年高三下学期5月月考英语试题(解析版)
听下面一段对话,回答第 14 至第 16 三个小题。
14. What did the man ask the woman to do at first?
A. Prepare something for him to eat.
B. Have dinner with him.
C. Confirm a meeting for him.
A. Cool.
B. Hot.
3. What would the woman mainly do in Africa?
C. Wet.
A. Take a tour.
B. See-relatives.
C. Start a business.
4. Where does the conversation most probably take place?
B. His coach.
9. How is the man feeling?
A Much relieved.
B. Very tired.
10. What caused the injury to the man’s shoulder?
A. Doing too much housework. B. Playing tennis.
C. German.
A. Introduce a chef to him.
B. Call a cab for him.
C. Book a hotel for him.
听下面一段独白,回答第 17 至第 20 四个小题。
17. Who is the speaker probably?
A. An artist.
Session 1 Thursdays 1/11,1/18, 1/25, 2/1
【人教版】地理A卷-2019-2020学年高二地理3月《最新试题·月考卷》(考试范围:中国地理)
2019—2020学年高三地理3月《最新试题·月考卷》人教版·A卷班级___________ 姓名___________ 分数____________(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
4.考试范围:中国地理第Ⅰ卷(选择题共40分)一、选择题:本题共20个小题,每小题2分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(2020·安徽省太和第一中学高二期末)下图为某区域1月等温线分布图。
近年来,M地土地荒漠化问题较为严重。
读图,完成下面小题。
1.图示区域A.1月等温线向南弯曲主要受海陆位置影响B.东部有东北—西南走向的山脉分布C.M地年降水量比N地多D.M地气温年较差比N地小2.M地土地荒漠化日益严重的主要人为原因是A.过牧过垦,土地退化加剧B.修路开矿,破坏地表植被C.城市面积扩大,非农用地增加D.动物迁徙,踩踏啃食草皮(2019·重庆市云阳江口中学校高二月考)“红三角”经济圈包括江西赣州、广东韶关、湖南郴州的8万k㎡土地。
三市都属于红色砂砾岩山区,也是革命老区,被称为“红三角”地区。
读下图,完成下面小题。
3.图中①②两条铁路线分别是A.京广线、京沪线B.京九线、京沪线C.焦柳线、宝成线D.京广线、京九线4.“红三角”地区发展粮食生产的主要限制性因素是A.热量、光照B.光照、水C.地形、土壤D.水、地形5.“珠三角”可以为“红三角”地区经济的发展提供A.资金和技术支持B.充足的农林产品C.丰富的矿产资源D.大量廉价劳动力(2020·山东省高二期末)福建“北水南调”工程以引用大樟溪水源为主,从闽江竹岐水源点建抽水泵站引水补充,向福清、平潭、长乐等地输水。
重庆市2022-2023学年高三下学期3月月考 英语试卷及答案
316重庆市2022-2023学年(下)3月月度质量检测高三英语2023.03【命题单位:重庆缙云教育联盟】注意事项:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回;4.全卷共9页,满分150分,考试时间120分钟。
第一部分听力(共两节,满分30分)做题时先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题:每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.How much money do the speakers have altogether?A.$30.B.$40.C.$46.2.What will the woman do next Monday?A.Attend a meeting.B.Meet the man.C.Visit a friend.3.What does the woman mean?A.The man should have helped her packB She couldn’t have time to read the paperC.There're too many things to pack4.Why didn't George attend the party?A.He had a car accident.B.He had an appointment with a doctor.C.He had to take his father-in-law to hospital5How will the man contact local companies?A.By ringing them.B.By visiting them.C.By writing to them.第二节(共15小题:每小题1.5分,满分22.5分)听下面5段对话或独白。
2020-2021学年重庆白市驿镇第一中学高三物理月考试卷含解析
2020-2021学年重庆白市驿镇第一中学高三物理月考试卷含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. (多选)如图所示,有一正方体空间ABCDEFGH,则下面说法正确的是()A.若A点放置一正点电荷,则B、H两点的电场强度大小相等解:A、若A点放置一正点电荷,由于B与H到A的距离不相等,使用B、H两点的电场强度大小不相等.故A错误;B、若A点放置一正点电荷,由图中的几何关系可知,BC之间的电场强度要大于HG之间的电场强度,结合它们与A之间的夹角关系可得电势差UBC>UHG,故B正确;C、若在A、E两点处放置等量异种点电荷,则AE连线的垂直平分平面是等势面,等势面两侧的点,一定具有不同的电势,使用C、G两点的电势一定不相等.故C错误;D、若在A、E两点处放置等量异种点电荷,等量异种点电荷的电场具有对称性,即上下对称,左右对称,D与H上下对称,所以电场强度大小相等;H与F相对于E点一定位于同一个等势面上,所以H与F两点的电势相等,则D、F两点的电场强度大小相等.故D正确.故选:BD.2. 如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度大小为此物体在斜面上上升的最大高度为h,则在这个过程中物体A.重力势能增加了3/4mgh B.克服摩擦力做功1/4mghC.动能损失了3/2mgh D.机械能损失了1/2 mgh参考答案:CD3. 如图,质量为m,横截面为直角三角形的物块ABC,AB边靠在竖直墙面上,∠ABC=а,物块与墙面间的动摩擦因数为μ。
F是垂直于斜面BC的推力,物块沿墙面匀速下滑,则摩擦力的大小为()A. B.C. D.参考答案:BD对物体受力分析可知,物体受重力、推力F、墙对物体的弹力及摩擦力的作用下做匀速直线运动,故物体受力平衡;将F向水平方向和竖直方向分解,如下图所示,则可知竖直方向上合力为零,即摩擦力f=mg+Fsinα,故B正确;而物体滑动,故为滑动摩擦力,故摩擦力也可以等于μFcosα,故D正确;故选BD.4. (单选)如图,质量相同的两物体a、b,用不可伸长的轻绳跨接在同一光滑的轻质定滑轮两侧,a在水平桌面的上方,b在水平粗糙桌面上.初始时用力压住b使a、b静止,撤去此压力后,a开始运动,在a下降的过程中,b始终未离开桌面.在此过程中()解答:解:A、将b的实际速度进行分解如图:由图可知va=vbcosθ,即a的速度小于b的速度,故a的动能小于b的动能,A错误;B、由于有摩擦力做功,故ab系统机械能不守恒,则二者机械能的变化量不相等,B错误;C、a的重力势能的减小量等于两物体总动能的增加量与产生的内能之和,故a的重力势能的减小量大于两物体总动能的增加量,C错误;D、在这段时间t内,绳子对a的拉力和对b的拉力大小相等,绳子对a做的功等于﹣FTvat,绳子对b的功等于拉力与拉力方向上b的位移的乘积,即:FTvbcosθt,又va=vbcosθ,所以绳的拉力对a所做的功与对b所做的功的绝对值相等,二者代数和为零,故D正确.故选:D.点评:本题考查了有摩擦力作用下的系统功能转化关系,克服摩擦力做功时,系统的机械能减少,减L,稳定时绳与水平方向的夹角为θ,当传送带分别以v1、v2的速度做逆时针转动时(v1<v2),绳中的拉力分别为F1、F2;若剪断细绳时,物体到达左端的时间分别为t1、t2,则下列说法正确的是A、F1<F2 B、F1=F2 C、t1大于t2 D、t1可能等于t2参考答案:BD二、填空题:本题共8小题,每小题2分,共计16分6. (4分)从事太空研究的宇航员需要长时间在太空的微重力条件下工作、生活,这对适应了地球表面生活的人,将产生很多不良影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年重庆市第一中学高三3月月考
数学
考试时间:120分钟
学校:___________班级:___________姓名:___________学号:___________
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则A∩B=A. (0,e]
B.{0,e}
C.{1,2}
D.(1,2)
A ={x ∈Z |(2x +3)(x −3)<0}
B ={x |y =}1−lnx
‾‾‾‾‾‾‾√2.已知复数z满足(i为虚数单位),则z的虚部为A. 4
B. 4i
C. -4
D. -4i
=1+2i 11+2i z
3.设,,,则
A.a<c<b
B.b<a<c
C.c<a<b
D.c<b<a
a =sin π5
b =log 2√3‾√
c =()14234.过抛物线的焦点F的直线交抛物线于A,B两点,若线段AB中点的横坐标为3,且,则p=A. 8
B. 2
C. 6
D. 4
=2px (p >0)y 2|AB |=p 52
5.一架飞机有若干引擎,在飞行中每个引擎正常运行的概率为p,且相互独立.已知4引擎飞机中至少有3个引擎正常运行,飞机就可安全飞行;2引擎飞机要2个引擎全部正常运行,飞机才可安全飞行.若已知4引擎飞机比2引擎飞机更安全,则p的取值范围是
A. B. (,1)23(,1)13
C. D. (0,)
23(0,)
136.已知S={1,2,3,···,40},且A中有三个元素,若A中的元素可构成等差数列,则这样的集合A共有
A. 460个
B. 760个
C. 380个
D. 190个
A ⊆S 7.已知函数,若在(0,+∞)上恒成立,e=2.71828···为自然对数的底数,则实数m的取值范围
A. m>e
B.
C. m>1
D. f (x )=
lnx x 2f (x )<m −1x 2m >e 2m >e √8.在平面直角坐标系xOy中,A和B是圆上的两点,且,点P(2,1),则的取值范围是
A.
B. C.
D.
C :(x −1+=1)2y 2AB =2‾√|−|2PA −→−−PB −→−[−,+]5‾√2‾√5‾√2‾√[−1,+1]
5‾√5‾√[6−2,6+2]5‾√5‾√[7−2,7+2]10‾‾‾√10‾‾‾√二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.
9.下列说法错误的是
A. ,“”是“a>1”的必要不充分条件
B. “p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C. 命题“,使得”的否定是“,”
D. 命题p:“,”,则p是真命题
a ∈R <11a ∃x ∈R +2x −3<0x 2∀x ∈R +2x −3>0x 2∀x ∈R sinx +cosx ≤2‾√¬10.下列关于函数的图象或性质的说法中,正确的是A. 函数f(x)的图象关于直线对称
B. 将函数f(x)的图象向右平移个单位所得图象的函数为
C. 函数f(x)在区间上单调递增
D. 若f(x)=a,则 f (x )=2sin (x +)12
π6x =8π
3π3y =2sin (x +)12π3(−,)
π35π3cos (x −)=12π3a 211.下列结论正确的有
A.若随机变量ξ~N(1,σ),P(ξ≤4)=0.79,则P(ξ<-2)=0.21
B.若,则D(3X+2)=22
C.已知回归直线方程为,且,,则
D.已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为22
2X ~B (10,)13y =x +10.8b =4x
¯=50y ¯=9.8
b
12.若长方体的底面是边长为2的正方形,高为4,E是的中点,则
A. B. 平面//平面C. 三棱锥的体积为D. 三棱锥的外接球的表面积为24π
ABCD —A 1B 1C 1D 1DD 1E ⊥B
B 1A 1CE B 1BD
A 1−CE C 1
B 183−
C C 1B 1
D 1三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.
13.已知x>0,y>0,且,则xy+x+y的最小值为____.
+=11x 2y 14.若展开式的二项式系数之和是64,则n=____;展开式中的常数项的值是____.(本题第一空2分,第二空3分)
(3x +)1
x √n 15.某正四棱柱被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为____.16.已知定义域为的函数f(x)满足:当x∈(-1,1]时,
且f(x+2)=f(x)对任意的恒成立.若函数g(x)=f(x)-m(x+1)在[-1,5]内有6个零点,则实数m的取值范围是_______.
R f (x )=⎧⎩⎨⎪⎪−,−1<x ≤0,x x +1−2,0<x ≤1,
22−x x ∈R 四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.
17.如图,在中,点D在BC边上,∠ADC=60°,,BD=4.
(Ⅰ).求的面积;
(Ⅱ).若∠BAC=120°,求sinC的值.
△ABC AB =27‾√△ABD 18.在①是与的等差中项;②是与的等比中项;③数列的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.
已知是公差为2的等差数列,其前n项和为,____.
(Ⅰ).求;
(Ⅱ).设,是否存在,使得?若存在,求出k的值;若不存在,说明理由.
注:如果选择多个条件分别解答,按第一个解答计分.S 4a 2a 21a 7S 33a 22{}a 2n {}a n S n a n =·b n ()34n a n k ∈N ∗>b k 278
19.为了了解同学们的视力情况,学校研究性学习小组对高三学生视力情况进行调查,在高三的全体1 000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.附:,n=a+b+c+d.
0.10
0.050.0250.0100.005k
2.706
3.841 5.024 6.6357.879(Ⅰ).若频率分布直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(Ⅱ).小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与成绩是否有关系,
对年级名次在1~50名和951~1 000名的学生进行了调查,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与成绩有关系?
(Ⅲ).在(Ⅱ)中调查的100名学生里,按分层抽样从不近视的学生中抽取了9人,进一步调查他们良好
的护眼习惯.现从这9人中随机选出3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
=K 2n (ad −bc )2
(a +b )(c +d )(a +c )(b +d )P (≥k )K 2
20.如图,在斜三棱柱中,正三角形ABC的边长为2,,,.
(Ⅰ).求证:平面ABC⊥平面;(Ⅱ).求二面角的余弦值.ABC —A 1B 1C 1B =3B 1A =B 110‾‾‾√∠CB =60°B 1BCC 1B 1C −B −A B 121.已知椭圆的左、右焦点分别为,,焦距为4,直线与椭圆相交于A,B两点,关于直线的对称点E恰好在椭圆上.(Ⅰ).求椭圆的标准方程;
(Ⅱ).与直线垂直的直线与线段AB(不包括端点)相交,且与椭圆相交于C,D两点,求四边形
ACBD面积的取值范围.
+=1(a >b >0)x 2a 2y 2b 2F 1F 2:y =x l 1b c F 2l 1l 1l 222.已知函数f(x)=sinx-aln(x+b),g(x)是f(x)的导函数.(Ⅰ).若a>0,当b=1时,函数g(x)在内有唯一的极大值,求a的取值范围;(Ⅱ).若a=1,,试研究f(x)的零点个数.(0,)π2b ∈(1,e −)
π2。