配位化合物的化学键理论

合集下载

配位化合物的化学键理论

配位化合物的化学键理论
八面体场中的中心原子d轨道
X X
X MX X X
八面体场中d轨道的分裂
球形场
成键作用和电子结构 八面体场中的d轨道能级分裂
Eeg-Et2g=Δo 2Eeg+3Et2g=0
成键作用和电子结构 四面体场中的中心原子d轨道
成键作用和电子结构
八面体和四面体晶体场能级分裂图
Δt= 49Δo
平面四方形 线形
16
对于Fe3+而言,它的内轨型配合物与外轨型配 合物的未成对电子数分别为1和5,差距甚大。这使 得它们的磁性不同。因而用磁性可以判断Fe3+的6配 位络合物属于哪种杂化类型。例如:
配离子 计算磁矩 实测磁矩 杂化类型
Fe(CN)63- 1.73 Fe(H2O)63+ 5.92
2.3 内轨型(低自旋) 5.88 外轨型(高自旋)
10
1. ns np nd 杂化 (外轨型配合物)
例 讨论Fe(H2O)63+ 配离子中的成键情况Leabharlann 解:3d4s
4p
4d
Fe [Ar]
Fe3+ [Ar]
Fe3+ [Ar]
sp3d2( 外 轨 型 )
Fe3+ [Ar]
d2sp3( 内 轨 型 ) 铁(III)离子的内轨型和外轨型电子构型
11
3d
Ni [Ar]
配合物的化学键理论
配位化合物的价键理论 配位化合物的晶体场理论
1
1 配位化合物的基本概念
1) 配位化合物定义 由中心原子(或离子)和几个配体分子(或离子)
以配位键相结合而形成的复杂分子或离子,通常称为配位 单元,含有配位单元的化合物称为配位化合物。
配位阳离子: [Co ( NH3 )6 ]3+ 和 [Cu ( NH3 )4]2+ 配位阴离子: [Cr(CN)6]3- 和 [Co(SCN)4]2- 中性配合物分子:Ni(CO)4 和Cu(NH2CH2COO)2

无机化学-第六章 配位化合物

无机化学-第六章 配位化合物

正四面体构型
同样是四配位,但对配合物[Ni(CN)4]2–就成了另一回事 3d 4s 4p
中心离子Ni2+的结构
3d [Ni(CN)4]2–的结构 CN CN dsp2杂化
平面正方形构型
CN CN

[FeF6]3–的结构?
sp3d2杂化
八面体构型
[Fe(CN)6]3-的结构?
d2sp3杂化
八面体构型
↑↓ ↑↓ ↑↓ ↑ ↑ 3d
↑↓ ↑↓ ↑↓ ↑↓ _ 3d
_
_
_ _ _ 4s 4p
_ _ _ 4s 4p dsp2杂化,四方形
同一中心原子的内轨型配合物比外轨型配合物稳定
(3)内外轨型取决于 ♦ 配体的强弱
配体 (主要因素) 中心离子(次要因素)
(1)电负性小的配位原子易给出孤对电子,如:CN-, CO, NO2-(配位原子:C,N) 。对中心离子(n-1)d轨道影响较 大,内轨型,配体的配位能力强; (2) 电负性大的配位原子(如卤素X-和氧O),不易给出孤 对电子,对中心离子影响不大。外轨型,配体的配位能
力弱 。
配体的强弱——光谱化学系列: I- <Br-<S2-<SCN-≈Cl-<NO3-<F-<OH-<C2O42-<H2O<NCS<NH3<en≈SO32-<o- phen<NO2-<CO(羰基),CNH2O以前:弱场; H2O ~ NH3:中间场;NH3以后:强场
♦ 中心离子的价层电子数
(1) d10型,无空(n-1)d轨道, 易形成外轨型 (2) d4 ~d8型, 需根据配体强弱判断内外轨型 (3) d0~d3型,有空的(n-1)d轨道,形成内轨型

第四章 配位键和配位化合物第二节 配合物的化学键理论

第四章  配位键和配位化合物第二节 配合物的化学键理论

中心离子的氧化数相同,随半径增大,d电子离核越远,受晶体场 的影响越大,分裂能越大。如
[CrCl6]3- △○=162.7kJ.mol-1 [MoCl6]3- △○=229.7kJ.mol-1
2023/2/19
20


dxy
dyz
dxz
Dx2-y2
dz2

正八面体 6 -4.00 -4.00 -4.00 6.00 6.00 10.00
正四面体 4 1.78 1.78 1.78 -2.67 -2.67 4.45
平面正方 4 2.28 -5.14 -5.14 12.28 -4.28 17.42
直线
2 -6.28 1.14 1.14 -6.28 10.28 16.56
2023/2/19
9
●内轨型配合物
——定义 中心离子以部分次外层轨道((n-1)d轨道)与外层轨 道(ns、np轨道)杂化,再与配体成键 ——特点
•配体对中心离子影响大 •d轨道电子排布发生了变化,未成对电子数减小,磁性减小 •配位键稳定性强,键的共价性较强,水溶液中较难离解为简 单离子 ——示例 [Ni(CN)4]2-、[Fe(CN)6]3-、Fe(CO)5、[Cr(H2O)6]3+
4d
5s
5p
sp杂化
2023/2/19
3
(2)配位数为4的配合物 有两种构型。例,Ni2+
3d
4s
4p
●四面体构型 例,[Ni(NH3)4]2+。sp3杂化
3d
4s
4p
sp3杂化 ●平面正方形构型 例,[Ni(CN)4]2-,dsp2杂化,方向指向平面正 方形的四个顶点,Ni2+位于中心,4个CN-分占4个角顶

9.3 配位化合物的化学键理论

9.3 配位化合物的化学键理论
1s22s2p
Be2+
sp3杂化
[BeCl4]2-:四面体
例3:[NiCl4]2-和[Ni(CN)4]2-
Ni2+,3d8构型,性质与杂化方式和几何构型?
[NiCl4]2-:3d84s4p
Ni2+
sp3杂化
[NiCl4]2-四面体
2单电子,顺磁性
[Ni(CN)4]2-3d84s4p
Ni2+
dsp2杂化
这种键具有部分双键特征,它比通常的σ配键的键能大,键长短,其配合物的稳定性强。
注意:反馈π键必须与σ配键同时存在。
形成反馈π键的条件:
M有成对d电子,L有匹配的空轨道。
显然,Be2+,Al3+没有d电子,不形成反馈π键;而Sn2+, Sb3+, Pb2+等d电子被外层的s电子屏蔽,也不能形成反馈π键。
高←d8→低
(3)稳定性
同一金属离子配合物稳定性:内轨型>比外轨型。
内轨型总键能-成对能>外轨型总键能
(4)判断外轨型(高自旋)和内轨型(低自旋)配合物的方法:
*测量配合物的磁矩
外轨型配合物单电子数较多,磁矩大;
内轨型配合物单电子数目较少,磁矩小。
单电子数n与物质的磁矩μ的近似关系式为:
B.M
例如:[FeF6]3-中有5个单电子,理论磁矩值为:
[Ni(CN)4]2-
无单电子,抗磁性几何构型:正方形
注意:
Zn2+、Cd2+、Hg2+:d10,只能用外层轨道,它们形成的4配位配合物:sp3杂化,四面体
(n-1)d10nsnp
Pd2+、Pt2+、Au3+:d8,能用1个内层d轨道,它们形成的4配位配合物:dsp2杂化,正方形

第六部分-配位键理论-1

第六部分-配位键理论-1
生了变化,原来由单电子占据、后来腾空了的(n-1)d轨道参与 了 杂 化 , 这 样 一 类 络 合 物 叫 内 轨 型 配 合 物 ( Inner orbital complexes), 它们是指配位体孤对电子填充在(n-1)d轨道和 一部分n层轨道上的一类配合物 。
试画出[BeF4]2–或[Be(H2O) 4]2+的结构。
排布没有变化,配位原子的孤对电子填在由外层轨道杂 化而得的杂化轨道上。这样一类络合物叫外轨型配合物 (Outer orbital complexes)。
同样是四配位,但对络合物[Ni(CN)4]2–就成了另一回事
[Ni(CN)4]2–的结构 3d
dsp2杂(CN)4]2-形成之前和之后, 中心原子的d电子排布发
因而有人说, 过渡元素化学就是d电子的配位化学
试按照价键理论分析下列两个化合物中心原子可能采取 的杂化类型 并画出其杂化轨道图示,判断其分属何种配合物 (外轨型和内轨型配合物)
[FeF6]3-
[Fe(CN)6]3–
配合物中的化学键一直是化学家们十分感兴趣的 一个领域,为了解释配位化合物中中心离子与配位体 间的成键本质,化学家们进行了长期的探索,先后提 出过多种理论。
有效原子序数规则
20世纪30年代初,鲍林将价键理论应用于配合物结构,能够解释一些 问题,但有些问题不能解释。 20世纪50年代,引入晶体场理论和分子轨道理论解释配合物中的化学 结合和化学结构,形成了配位场理论。
化学键概念经历了三个发展阶段:
经典理论阶段:仅仅指出了化学结合现象,并把这种结合现象称之 为化学键;
配位化合物的基本理论
➢价键理论(VBT) ➢分子轨道理论(MOT) ➢晶体场理论(CFT) ➢配位场理论(LFT)

无机化学-配位化学基础-配合物的化学键理论

无机化学-配位化学基础-配合物的化学键理论

解得: Et2 = + 1.78 Dq Ee = - 2.67 Dq
dxy ,dxz 和 dyz 轨道(即t 轨道) d x2-y2和 d z2轨道(即e 轨道)
( 3 ) 正方形场
sq = 17.42 Dq
四面体、八面体或正方形场中,中心金属离子5个d 轨道的能级分裂
t = 4.45 Dq
sq = 17.42 Dq
中心离子
电荷↑,半径↑, △ ↑
同一几何构型配合物的 △ : 八面体场△o
第二过渡系列中心离子 > 第一过渡系列(40 - 50%)
第三过渡系列中心离子 > 第二过渡系列(20 - 25%)
正八面体配合物ML6的△o (cm-1)
1 cm-1 = 1.23977 10-4 eV = 1.19 10-2 kJ.mol-1
电荷迁移跃迁: KMnO4 , K2CrO4 , HgO 等
(中心离子为d 0 或d 10的化合物)
互相极化 e(荷移跃迁) Mn+ ——— O2- ———→ Mn+
h
→ 显示互补色
E
hν e
O2-
1951年,几位化学家用CFT解释了 [Ti(H2O)6]3+的吸收光谱,应用于配合物,迅 速发展。
9.3.2.1 要点
1. 静电模型:配合物中Mn+ - L纯粹是静电作用,均
为点电荷,L是阴离子成偶极分子.
2. d 轨道能量分裂:
中心离子的d 轨道的能量在非球形对称的配位体形成
的晶体场中都升高,且发生分裂,分离能为 △ :
d4 – d7 构型中心离子在 八面体强场和弱场中d电子的排布
弱 场 ( △o < P )
d4

第3章 配合物的化学键理论

第3章 配合物的化学键理论

Mn2+ < Co2+ Ni2+ < V2+ < Fe3+ < Cr3+ < Co3+ < Mo3+ < Rh3+ < Ir3+ < Pt4+
3. 晶体场理论
3. 晶体场理论
(3)配体的性质和光谱化学序
(A)同一金属、不同配位原子对的影响 I < Br < Cl < S < F < O < N < C
MXL5:拉长 / 缩短八面体
3. 晶体场理论
3. 晶体场理论
3.2 晶体场分裂能( )及其影响因素
晶体场分裂能( ):d轨道能量分裂后,最高能量d轨道与最低能量 d轨道之间的能量差。相当于1个电子从能量最低d轨道跃迁至能量最高d 轨道所需吸收的能量。
影响因素:
(1)晶体场类型
八面体场、四面体场、平面正方形场· · · · · ·
[Co(NH3)6]3+
o = 23000 cm-1
(C)中心金属离子半径:半径越大, 越大。 中心离子半径越大,d轨道离核越远,易在配体场作用下改变能量, 增加。 同族元素, 随中心离子轨道主量子数的增加而增加: 3d4d, 增加约40%50%; [Co(NH3)6]3+ [Rh(NH3)6]3+ 4d5d, 增加约20%25%
原子半径减小 电负性减小
(B)光谱化学序列 (spectrochemical series) 弱场 I-<Br-<S2-<SCN-<Cl-<NO3-<F-<(NH2)2CO<OH- ~
CH3COO- ~ HCOO-<C2O42-<H2O<NCS-<gly-<CH3CN<edta4<py < NH3<en<NH2OH<bpy<Phen<NO2-<PPh3<CN-<CO 强场

配位键

配位键

简单的说,配位键是一种特殊的共价键,一般的共价键是成键的两个原子各拿出一个电子来共用,而配位键是一方原子拿出一对电子,与另一个原子共用,一般要求一个原子具有未共用电子对,而另一个原子具有空轨道,也就是缺电子,,比如NH3分子遇到H+。

就会形成配位键,,NH3+H+==NH4+ 。

NH3分子中N原子具有一对未共用的电子,而H+一个电子也没有,它们之间就可以形成配位键银氨离子中Ag+外层没有电子,而NH3有未共用电子对,就可以形成配位键,,以配位键形成的化合物叫配位化合物,化学中有一个分支学科叫配位化学,专门研究配位化合物的,,评论|002013-11-19 20:49 热心网友配合物由中心原子、配位体和外界组成,例如硫酸四氨合铜(Ⅱ)分子式为〔Cu (NH3)4〕SO4,其中Cu2+是中心原子,NH3是配位体,SO4 2-是外界。

中心原子可以是带电的离子,如〔Cu(NH3)4〕SO4中的Cu2+,也可以是中性的原子,如四羰基镍〔Ni(CO)4〕中的Ni。

周期表中所有的金属元素都可作为中心原子,但以过渡金属最易形成配合物。

配位体可以是中性分子,如〔Cu(NH3)4〕SO4中的NH3,也可以是带电的离子,如亚铁氰化钾K4〔Fe (CN)6〕中的CN-。

与中心原子相结合的配位体的总个数称为配位数,例如K4〔Fe(CN)6〕中Fe2+的配位数是6 。

中心原子和配位体共同组成配位本体(又称内界),在配合物的分子式中,配位本体被括在方括弧内,如〔Cu(NH3)4〕SO4中,〔Cu(NH3)4〕2+就是配位本体。

它可以是中性分子,如〔Ni(CO)4〕;可以是阳离子,如[Cu(NH3)4〕2+ ;也可以是阴离子,如〔Fe(CN)6〕4-。

带电荷的配位本体称为配离子。

在配合物中,中心原子与配位体之间共享两个电子,组成的化学键称为配位键,这两个电子不是由两个原子各提供一个,而是来自配位体原子本身,例如〔Cu (NH3)4〕SO4中,Cu2+与NH3共享两个电子组成配位键,这两个电子都是由N原子提供的。

第三章 配合物化学键理论

第三章 配合物化学键理论

1 d 轨道在晶体场中的分裂
d 轨道在八面体场中的能级分裂
•dxy、dxz 、 dyz 、 dx2-y2 、 dz2在球形 对称场中,受到的作用相等,为简 并轨道;
•若有一个配合物ML6,M处于八面 体场oh中,由于L沿着x、y、z轴方向 接近中心离子, dxy、dxz 、 dyz 正好 插入配位体L的空隙中间,受静电排 斥相对较小,能量较低、而dx2-y2 、 dz2正好正对着配位体L,受静电排 斥相对较大,能量较高。
(σ-π的协同效应)
当配位体给出电子对与中心元素形成 键时,如果中心元素的
某些d 轨道(如dxy、dyz、dxz)有孤电子对,而配位体有空的p分子轨
道(如CO中有空的 p*轨道) 或空的 p或 d 轨道,而两者的对称性又匹 配时,则中心元素的孤对 d 电子也可以反过来给予配位体形成所谓
的“反馈 p 键”,它可用下式简示:
⑴ 正八面体配离子中d轨道的能级分裂 在过渡金属的自由离子中,五个d轨道的空间取向虽 然不同,但他们的能量却是相同的,是五个简并轨道,设 其能量为E。如果中心离子处在球形对称的电场中,由于 负电场在各个方向的斥力相同,五个d轨道能量升高的程 度也相同,因此,五个d轨道的能量虽都有升高,但并不 发生分裂,设其能量E=0 Dq。
d 轨道在四面体场中的能级分裂
在球型场中 在四面体场中
组轨道的能量与八面体场中正好相反。其能量差用 符号△T表示: △T = E(t2g) - E(eg)
d 轨道在平面正方形场中的能级分裂
在球型场中 在平面四边形场中
dx2–y2
dx2–y2
dz2
Δ
0
eg
dxy dxy dxz dyz dxz
2/3Δ dz20 dyz1/12Δ 0

无机化学-11配位化合物

无机化学-11配位化合物
40/90
2.配位数为4的配合物 [BeX4]2-的空间构型 为四面体, μ=0 。
41/90
[Ni(CN)4]2-的空间 构型为平面正方形, μ=0。
42/90
[NiCl4]2-的空间构型 为四面体, μ=2.83(B.M.)。
43/90
3.配位数为6的配合物
[Fe(CN)6]3-的空间构 型为八面体, μ=2.4(B.M.)。
H2[SiF6]
六氟合硅(Ⅳ)酸(俗名氟硅酸)
H2[PtCl6]
六氯合铂(Ⅳ)酸(俗名氯铂酸)
[Fe(CO)5]
五羰基合铁
[Pt(NH3)2Cl2]
二氯·二氨合铂(Ⅱ)
[Co(NH3)3(NO2)3] 三硝基·三氨合钴(Ⅲ)
24/90
配位化合物的基本概念
配位化合物的类型
简单配位化合物 由一个中心原子和若干个单齿配体所形成的配 合物称为简单配位化合物。
内轨型配合物
44/90
[FeF6]3-的空间构型 为八面体, μ=5.90(B.M.)。
外轨型配合物
45/90
配离子的几何异构 (a) cis-[PtCl2(NH3)2] 顺式,棕黄色,极性分子 (b) trans-[PtCl2(NH3)2] 反式,淡黄色,非极性分子
顺式Pt(Ⅱ)配合物显示治癌活性。
配合物的空间构型不同,d轨道分裂方式不同; 晶体场类型相同,配体L不同,分裂程度不同。
48/90
中心原子d轨道的能级分裂 1. 八面体场中的能级分裂 过渡金属离子d轨道( dx2-y2,dz2,dxy,dyz,
17/90
配离子的电荷 等于中心原子和配位体两者电荷的代数和。 例如:[Cu(NH3)4]2+、[Fe(CN)6]3- 、Ni(CO)4 三 种配离子电荷分别为+2、-3 、0。

配位化合物:配合物的化学键理论

配位化合物:配合物的化学键理论

3
sp2 等边三角形 [CuCl3]2-
4
sp3 正四面体形 [Ni(NH3)4]2+
dsp2
正方形 [Ni(CN)4]2-
5
dsp3 三角双锥形 [Fe(CO)5]
6
sp3d2 正八面体形
[CoF6]3-
d2sp3
[Co(CN)6]3-
8.2 配位化合物的化学键理论
[CoF6]3-—— 正八面体
正方形 [Ni(CN)4]2-
5
dsp3 三角双锥形 [Fe(CO)5]
6
8.2 配位化合物的化学键理论
[Fe(CO)5]—— 三角双锥体
Fe价层电子结构为
3d
3d
[Fe(CO)5]
4s 4p
5CO
dsp3
8.2 配位化合物的化学键理论
配位数 杂化类型 几何构型
实例
2
sp
直线形 [Hg(NH3)2]2+
中心原子或离子与电负性较小的配 位原子,形成内轨配键。这种配位 键, 离子性成分较小,共价键成分 较大,又称共价配键。
8.2 配位化合物的化学键理论
2. 配合物的稳定性、磁性与键型关系
稳定性 同一中心离子形成相同配位数
的配离子, 稳定性: 内轨型 > 外轨型
[FeF6]3-[Fe(CN)6]3[Ni(NH3)4]2+[Ni(CN)4]2
0 反磁性
/B.M.
2.83
0
— 磁矩,单位为波尔磁子, 符号 B.M.
=√n(n+2) n — 未成对电子数
8.2 配位化合物的化学键理论
=√n(n+2)
n(未成对电子数) 0 1 2 3 4 5

配位化合物知识总结

配位化合物知识总结

互为旋光异构体的两 种物质,使偏振光偏 转的方向不同。按一 系列的规定,定义为 左旋、右旋。 不同的
旋光异构体在生物体 内的作用不同。
(c) and (d) 光学异构
2、异构现象
A) 结构(构造)异构
电离异构 水合异构 键合异构 配位异构
B)立体异构
几何异构 光学异构
配合物的化学键理论
价键理论 晶体场理论
常见金属离子的配位数
1价金属离子
Cu+ 2,4 Ag+ 2 Au+ 2,4
2价金属离子
Ca2+ 6 Mg2+ 6 Fe2+ 6 Co2+ 4,6 Cu2+ 4,6 Zn2+ 4,6
3价金属离子
Al3+ 4,6
Cr3+ 6
Fe3+
6
Co3+ 6
Au3+ 4
(3) 配体和配位原子
配位体
负离子 X SCN C2O24 CN 中性分子 H2O NH3 CO en
配体的相互位置关系不一致可形成几何异构,当相互 位置的关系一致时,也可能不重合。比如人的两只手,各 手指、 手掌、手背的相互位置关系也一致,但不能重合且 彼此互为镜像。互为镜像的两个几何体可能重合,但只要 能重合则是一种。
若两者互为镜像但又不能重合,则互为旋光异构。旋 光异构体的熔点相同,但光学性质不同。
中心的电荷高,半径 大,易形成高配位数 的配位单元;配体的 电荷高,半径大,利 于低配位数。
二 配合物的命名 (Nomenclature)
命名原则 按照中国化学会无机专业委员会制定规则命名
1 在配合物中 先阴离子,后阳离子,阴阳离子之间加“化”字
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 晶体场稳定化能 ( C F S E )
d 电子在晶体场中分裂后的d轨道中排布,其能量
用E晶 表示,在球形场中的能量用E球 表示。因晶体场
的存在,体系总能量的降低值称为晶体场稳定化能 ( Crystal Field Stabilization Energy )。 由E球=0,则 CFSE = E球-E晶 = 0 - E晶
d
dz2 dx2-y2
d
dxy dxz dyz
Jahn-Teller 效应
解释 Cu(NH3)42+ 离子的正方形结构,
[Cu(NH3)4(H2O)2]2+ 离子为拉长的八面体结构?
按晶体场理论,Cu2+ 为d9 电子构型。在八面体场
中,最后一个电子有两种排布方式:一种是最后一个电子
应用: 用晶体场稳定化能解释水合热的双峰 曲线 M2+(g) + 6H2O(l) = M(H2O)62+(aq)
d 电子数 |H|
第一过渡元素M2+的水合热绝对值 对其d电子数作图 热力学对水合热的计算,随d电子数的增加,水合热 应是平缓上升的直线,如图中虚线所示,但是实验数 据作图为双峰曲线,为什么?
原子轨道;

Pauli原理:同一原子轨道只能容纳自旋方
式不同的两个电子;

Hund规则:电子分布到能量简并的原子轨
道上时,优先以自旋相同的方式分占不同
轨道。
例 讨论过渡金属 d 4 组态在八面体场中电子排布。
低自旋方式 △ > P
高自旋方式 △ < P

分裂能△ :简并的d轨道分裂后最高能量d
轨道和最低能量d轨道之差;
配位阴离子: [Cr(CN)6]3- 和 [Co(SCN)4]2-
中性配合物分子:Ni(CO)4 和Cu(NH2CH2COO)2
2
一些常用简称:
配盐: [Cu(NH3)4]SO4
配酸: H2[PtCl6]
配碱: [Cu(NH3)4](OH)2 配位分子:[Co(NH3)3Cl3]
3
2. 配合物组成
sp3d2 d2sp3
d4sp
d3sp3
9
中心原子价层轨道的杂化
若中心原子参与杂化的的价层轨道属同一主层(具有相
同的主量子数),即中心原子采取 ns np nd 杂化,形成
的配合物被称为外轨型配合物;若中心参与杂化的的价层 轨道不属同一主层,即中心原子采取 (n-1)d ns np 杂化, 形成的配合物被称为内轨型配合物。
解: E晶 = ( - 6 Dq )×3 + ( 4 Dq )×3 = - 6 Dq
CFSE = 0-E晶 = 0-( - 6 Dq ) = 6 Dq
球形场
成对能怎么不考虑了?
四面体弱场
考虑。但是成对能没有增加和减少,所以没体现。

求 Fe(CN)64-的 CFSE。
已知: △= 33800 cm-1,P = 15000 cm-1。
配合物的化学键理论
配位化合物的价键理论
配位化合物的晶体场理论
1
1
配位化合物的基本概念
由中心原子(或离子)和几个配体分子(或离子)
1) 配位化合物定义
以配位键相结合而形成的复杂分子或离子,通常称为配位
单元,含有配位单元的化合物称为配位化合物。
配位阳离子: [Co ( NH3 )6 ]3+ 和 [Cu ( NH3 )4]2+
配位原子
4
2
配合物的价键理论
把杂化轨道理论应用于配合物的结构与
成键研究,就形成配合物的价键理论。
其实质是配体中配位原子的孤电子对向
中心原子的空杂化轨道配位形成配位键。
5
杂化轨道理论
目的:从理论上解释多原子分子或离子的立体结构 (Pauling提出杂化轨道理论) 杂化轨道的三个特征: (1)电子激发:电子从低能级跃迁至高能级;(例如: CH4) (2)轨道杂化:处于电子激发态的轨道线性组合形成一 组新的轨道;具有一定形状和方向性;

成对能P:当轨道中存在一个电子后,另一
个电子要继续填入,需要克服它们之间的
排斥作用,所需能量叫做成对能; 分裂能 和 成对能 常用波数(cm-1) 的形式给出。 波数越大,能量越高。

讨论下列二种配离子d电子排布情况。
Fe(H2O)62 +中 △= 10400 cm-1 ,P = 15000 cm-1
的总能量一致,规定其为零。
(1)八面体场分裂后的d 轨道的能量: 列方程组 解得 : E d - E d = △o , 3 Ed + 2 Ed = 0 E d = 3∕5 △o, E d = - 2∕5 △o
若设分裂能 △o =10 Dq , 则E d = 6 Dq ,E d =-4 Dq

计算八面体强场中 d 5 组态的 CFSE
解: E晶 = ( - 4 Dq )×5 + 2p = - 20 Dq + 2P
CFSE = E球 - E晶 = 0- (-20 Dq + 2P) = 20 Dq – 2P = 2△– 2P
球形场
八面体强场
d电子在球形场中和八面体强场中电子排布
例 计算正四面体弱场d6组态的CFSE。
问题
水是弱场,无成对能P的问题。下面给出M2+ 水合 离子d 0 ~ d10 的晶体场稳定化能CFSE与d电子数的 对应关系。
d电子数 0 1 2 3 4 5 6 7 8 9 10
CFSE∕Dq
0
4 8 12 6 0 4 8
12 6
0
八面体场,在d1d2d3d8d9d10情况下,不论强场、弱 场都只有一种电子构型,在d4~d7的情况下,强场和弱 场才可能出现低自旋和高自旋两种构型。
H3C 镍试剂 (双齿配体) 氮是配位原子(电子对给予体)
丁二酮肟 + Ni2+ 鲜红色沉淀
镍 离 子 与 镍 试 剂 形 成 的 配 合 物
14
Ni [Ar]
- [Ar] 2 [NiCl4] - [Ar] 2 [Ni(CN)4]
2+
3d
4s ..
外轨型
4p .. .. .. .. ..
..
..
18
Cu(H2O)4
2+
19
配位化合物的晶体场理论
晶体场中的 d 轨道
在自由原子或离子中,五种 d 轨道的能量简并,其
原子轨道的角度分布图
y x
z x
z y
y
X
+
z
+
x
dxy
dxz
dy z
dx 2 y2
dz 2
1. 晶体场中d 轨道的分裂
(1)八面体场 (octahedral field)
成键作用和电子结构
(3)轨道重叠:满足原子轨道最大重叠原理。重叠越多, 形成的化学键越稳定。
6
2- 1
配合物的构型
配位单元的构型由中心空轨道的杂化类型决定。 常见配位单元的构型有:直线形,三角形,四面体, 正方形,三角双锥,正八面体。
7
配位数 2 3
中心杂化类型 sp sp2
构 型


直线形 三角形
Ag(NH3)2+ Cu(CN)32-
N 2+ 2+
氮原子的孤对电子 进入镍离子的 1个3d轨道一个4s 轨道以及2个4p轨道 形成平面四边形的 dsp 2 杂化轨道
H O H3C C N Ni C N O H N O C CH3 O N C CH3 + 2H+
..
N
.. ..
N N
2
CH3 CH3
C C
..
NOH
+ Ni
2+
NOH ..
10
1. ns np nd 杂化 (外轨型配合物)
例 讨论Fe(H2O)63+ 配离子中的成键情况
解:
Fe [Ar] Fe [Ar] Fe [Ar] sp3d2 (外轨型) Fe [Ar] d2sp3 (内轨型)
3+ 3+ 3+ 3d 4s 4p
4d
铁(III)离子的内轨型和外轨型电子构型
11
3d
解: Fe2+ 3d 6 , △o > P,CN- 为强场,低自旋。 CFSE = 0-[ (-2 /5 △o )×6 +2 P ] = 12 / 5 △o-2 P = 12 / 5×33800 cm-1-2×15000 cm-1 = 51120 cm-1
球形场 八面体强场 提示:原来有一对成对电子,现在又增加两对,所以 加上2P;
(2)四面体场分裂后的d 轨道的能量:
列方程组 Ed - Ed = △t,3 Ed+2Ed = 0
解得: Ed = 2∕5 △t, Ed = -3∕5 △t
若 △t = 10 Dq , 则 E d = 4 Dq,E d =-6 Dq 当中心原子和配体相同时
△t = 4/9 △o
d轨道在不同配体场中Δ的相对值
(4)配体影响:配位原子的电负性越小,分裂能大。
I-< Br-< SCN-< Cl-< F-< OH-<-ONO-<C2O42-< <
H2O < NCS- < NH3 < en < NO2- < CN-≈ CO
3. 分裂后 d 轨道中电子排布: 遵守电子排布三原则。

能量最低原理:尽可能分布到能量最低的
内轨型
15
配位化合物的磁性
化合物中成单电子数和磁性有关。磁矩 和单电子数 n 有如下关系,式中B.M. 为玻尔磁子。
μ n(n 2)B.M.
例 实验测得Co(NH3)63+的 = 0,在 Co(NH3)63+ 中d
相关文档
最新文档