高考热点问题和解题策略之选择题
2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)
![2024年高考考前指导(考前提醒+心理调整+应试策略+答题技巧)](https://img.taocdn.com/s3/m/c16687d782d049649b6648d7c1c708a1284a0a98.png)
内容提纲1、考前篇2、考场篇3、答题技巧:(1)单项选择题的答题技巧;(2)多项选择题的答题技巧;(3)填空题的解题技巧;(4)解答题的答题技巧4、七大题型解题策略:(1)数列;(2)解三角形;(3)立体几何(4)概率统计(5)解析几何(6)导数及应用(7)新定义题型1、合理作息、调整状态适当休息、按时学习,调整状态,以最好的状态迎接高考!2、适度温习、保持题感准备好回扣材料、错题好题本、一模以来的高考综合模拟题等相应材料考前再浏览一遍重点题目,作息时间和高考保持一致,学习上做基础题练笔,看以前的错题,不要再做新题、仿真卷、猜题卷等!对新题看看思路,也可做些简单题,免得"手生".考前把一些基本数据、常用公式、重要定理"过过电影"。
再看一眼难记易忘结论、平时考试比较容易出错的地方:如抽样中的平均数、方差公式、几何体的体积面积公式、圆锥曲线和平面向量的二级结论等.3、清单物品、奔赴考场出发前,再次清点用具是否带全(笔、橡皮、作图工具、身份证、准考证等),根据学校的安排,精神放松,心态平静的奔赴考场考场。
到达考场后不要打闹喧哗,按照考场安排,按时进入考场。
1、填涂信息拿到答题卡后一定先认真填涂信息,贴好二维码,注意不要忙中出错影响考试心态,万一出现错误,也不必着急,请示监考老师后,考点会有补救措施。
2、心理调整(1)合理设置考试目标,创设宽松的应考心理,以平常心对待高考。
(2)调节呼吸,不断进行积极的心理暗示。
(3)遇事都往好处想在考试时,要相信自己的水平,相信自己已经复习的很好了,没有什么不会的了。
就算是有不会的,也要告诉自己:“这题我不会,那么大家肯定都不会,我不是一个人。
”就算数学是弱科,你也要知足常乐,把会做的题都做完,把该得的的分都得到就好了。
3、通览试卷刚拿到试卷,一般心情比较紧张。
开考铃响之前不允许答题,利用这5分钟:先从头到尾、正反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查。
高考数学答题策略与技巧
![高考数学答题策略与技巧](https://img.taocdn.com/s3/m/459a8c6400f69e3143323968011ca300a6c3f6e2.png)
高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)
![高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)](https://img.taocdn.com/s3/m/88d74c31974bcf84b9d528ea81c758f5f61f2995.png)
一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。
研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体. (2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决. (3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A 【解析】【分析】由题意得出11118104AB BC AA AB BC BC AA AB AA ++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA ++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果.【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==.故选:A.【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径. 【举一反三】1.(2020·2,若与球相关的外接与内切问题该棱柱的顶点都在一个球面上,则该球的表面积为( ) A .73π B .113π C .5π D .8π【答案】D【解析】根据条件可知该三棱柱是正三棱柱,上下底面中心连线的中点就是球心,如图,则其外接球的半径22221123222sin 60R OB OO BO ⎛⎫ ⎪⎛⎫==+=+= ⎪ ⎪︒⎝⎭⎝⎭, 外接球的表面积428S ππ=⨯=.故选:D【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a πD .232a π【答案】D【解析】由已知作出截面图形如图1,可知正三角形的边长等于正方体的面对角线长,正方体与其外接球的位置关系如图2所示,可知外接球的直径等于正方体的体对角线长,设正方体的棱长为m ,外接球的半径为R ,则2a m =,23R m =,所以64R a =,所以外接球的表面积为222634442a S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭, 故选:D .【点睛】本题考查正方体的外接球、正方体的截面和空间想象能力,分析出外接球的半径与正三角形的边长的关系是本题的关键,3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为52cm ,每装两个球称为“一层”,这样装n 层球, 则最上层球面上的点距离桶底最远为()()10521n +-cm ,若想要盖上盖子,则需要满足()10521100n +-≤,解得19213.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球.故选:C 类型二 锥体与球【例2】5.已知球O 的半径为102,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________. 【来源】重庆市2021届高三下学期二模数学试题 【答案】182【解析】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四面体各面的距离为2106122⎛⎫-=⎪⎝⎭,设正四面体棱长为a ,如图所示,则斜高332AE EF a ==,体高63=AF a ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61236632a =-,∴6a =,∴231362618234312V a a =⋅⋅=⋅=. 【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】如图,设正四面体ABCD 的棱长为,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则,,,即.再设正四面体ABCD 的外接球球心为G ,连接GA , 则,即.∴正四面体ABCD 的外接球的体积为.故答案为:.2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为 【答案】288π【解析】如图所示,根据圆柱与圆锥和球的对称性知,其外接球的直径是23R h =,设圆柱的底面圆半径为r ,母线长为l h =, 则232r ππ=,解得42r =222(2)(3)l r h +=, 222(82)9h h ∴+=,解得4h =,∴外接球的半径为3462R =⨯=,∴外接球的体积为3344628833R V πππ⨯===.3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( ) A .143πB .283πC .563πD .1123π【答案】D 【解析】【分析】过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,取PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O ,可证O 为外接球的球心,利用解直角三角形可计算PO .【详解】如图,过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,在PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O .因为PAD ∆为等边三角形,AF FD =,所以PF ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PF ⊂平面PAD ,所以PF ⊥平面ABCD ,因GF ⊂平面ABCD ,故PF GF ⊥. 又因为四边形ABCD 为正方形,而,G F 为,BC AD 的中点,故FG CD ,故GF AD ⊥,因ADPF F =,故PF ⊥平面PAD .在Rt PGF ∆中,因,OE GF PF GF ⊥⊥,故OE PF ,故OE ⊥平面ABCD ,同理OH ⊥平面PAD .因E 为正方形ABCD 的中心,故球心在直线OE 上,因H 为PAD ∆的中心,故球心在直线OH 上,故O 为球心,OP 为球的半径. 在Rt PGF ∆中,2234343323PH PF ==⨯⨯=,2OH EF ==, 故16282214333OP =+==,所以球的表面积为28112433ππ⨯=. 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132πC .144πD .156π【答案】B【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AE BC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+=,222225PE PA AE x ∴+=+所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠=,PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴=+=+, 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-.当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+;当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x ==+,此时,r 取最小值,即()22min max 22r R d =-=. 由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x,解得22x =.所以,33R =,因此,球O 的表面积为24132S R ππ==.故选:B.【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为()A.43B.53C.83D.163【答案】A【解析】【分析】如图所示画出几何体,再计算体积得到答案.【详解】由三视图知该几何体是一个四棱锥,可将该几何体放在一个正方体内,如图所示:在棱长为2的正方体1111ABCD A B C D -中,取棱11,,,,B C DA AB BC CD 的中点分别为,,,,E M N P Q ,则该几何体为四棱锥E MNPQ -,其体积为()2142233⨯⨯=.故选:A 类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( ) A .143B .134C .72D .163【答案】D 【解析】【分析】设正三棱锥底面的边长为a ,高为h ,由勾股定理可得22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22183h h a -=,三棱锥的体积()23384V h h =-,对其求导,分析其单调性与最值即可得解. 【详解】解:设正三棱锥底面的边长为a ,高为h ,根据图形可知22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22180,3h h a -=>08h ∴<<. 又正三棱锥的体积21334V a h =⨯()2384h h h =-()23384h h =-,则()231634V h h '=-, 令0V '=,则163h =或0h =(舍去), ∴函数()23384V h h =-在160,3⎛⎫ ⎪⎝⎭上单调递增,在16,83⎛⎫⎪⎝⎭上单调递减,∴当163h =时,V 取得最大值,故选:D. 【点睛】本题考查球与多面体的最值问题,常常由几何体的体积公式、借助几何性质,不等式、导数等进行解决,对考生的综合应用,空间想象能力及运算求解能力要求较高. 【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823C .23D .2π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==,90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π【答案】C 【解析】根据6AB BC ==可得直角三角形ABC ∆的面积为3,其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q , 由于底面积ABC S ∆不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为为133ABC S DQ ∆⨯=,即133,33DQ DQ ⨯⨯=∴=,如图, 设球心为O ,半径为R ,则在直角AQO ∆中,即222(3)(3,)2R R R =∴+=-, 则这个球的表面积为24216S ππ=⨯=,故选C.3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( ) A .153π B .2153π C .209π D .203π 【答案】D 【解析】【分析】当平面ACD 与平面ABC 垂直时体积最大,如图所示,利用勾股定理得到2223(3)()3R OG =-+和22223()3R OG =+,计算得到答案. 【详解】易知:当平面ACD 与平面ABC 垂直时体积最大. 如图所示:E 为AC 中点,连接,DE BE ,外接球球心O 的投影为G 是ABC ∆中心,在BE 上 3BE =,3DE =,33EG =,233BG =设半径为R ,则2223(3)()3R OG =-+,22223()3R OG =+ 解得:153R =,表面积22043S R ππ== 故选:D三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( ) A .2334a + B .2336a + C .2336a - D .2334a - 【答案】A【解析】由题意,多面体ABCDE 的外接球即正四面体ABCD 的外接球, 由题意可知AE ⊥面BCD 交于F ,连接CF ,则233323CF a a =⋅= 且其外接球的直径为AE ,易求正四面体ABCD 的高为223633a a a ⎛⎫ ⎪ ⎪=⎝⎭-. 设外接球的半径为R ,由2226333R a R a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=⎭-⎝-得64R a =. 设正三棱锥E BCD -的高为h ,因为6623AE a a h ==+,所以66h a =. 因为底面BCD ∆的边长为a ,所以2222EB EC ED CF h a ===+=, 则正三棱锥E BCD -的三条侧棱两两垂直.即正三棱锥E BCD -的表面积222121333322224S a a a ⎛⎫+=⨯⨯+⨯= ⎪ ⎪⎝⎭,故选:A .2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为()A23B.223C.22D.223【答案】Ba b c R【解析】设正四面体、正方体、正八面体的棱长以及外接球半径分别为,,,则2223,23,22R a R b R c =⨯==, 即222,,2::2:2:333R R a b c R a b c ===∴=故选:B 4.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =,2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π 【答案】B【解析】由四边形ABCD 为矩形,得AB AD ⊥,又SA AD ⊥,且SA AB A ⋂=,∴AD ⊥平面SAB ,则平面SAB ⊥平面ABCD ,设三角形SAB 的外心为G ,则23322sin 2sin12032AB GA ASB ====∠︒. 过G 作GO ⊥底面SAB ,且1GO =,则22215OS =+=.即四棱锥外接球的半径为5. ∴四棱锥外接球的表面积为24(5)20S ππ=⨯=.故选B .5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B .C .D .【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以,在中,设外接圆的直径为,则:,所以外接球的半径,则:,故选:C.6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.B.C.D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =,且二面角P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π【答案】A【解析】因90PBC ABC ∠=∠=︒,所以BC ⊥平面PAB ,且PBA ∠为二面角P BC A --的平面角, 又3BC =,4AB =,410PB =,由勾股定理可得13PC =,5AC =, 因为1sin 8102PAB S PB AB PBA PBA ∆⋅=⋅∠=∠,所以三棱锥的体积1181032433PAB V S BC PBA ∆=⋅=⨯∠⨯=,解得310sin PBA ∠=,又PBA ∠为锐角,所以10cos 10PBA ∠=, 在PAB ∆中,由余弦定理得2101601624410144PA =+-⨯⨯=, 即12PA =,则222PB PA AB =+,故PA AB ⊥, 由BC ⊥平面PAB 得BC PA ⊥,故PA ⊥平面ABC ,即PA AC ⊥,取PC 中点O , 在直角PAC ∆和直角PBC ∆中,易得OP OC OA OB ===,故O 为外接球球心, 外接圆半径11322R PC ==,故外接球的表面积24169S R ππ==.故选:A. 8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π18【答案】C【解析】问题转化为求四棱锥P ABCD -的外接球的表面积.4913PC =+=,∴3sin 13PCD ∠=.所以PCD ∆外接圆的半径为131336213r ==⨯,由于PE ⊥平面1111D C B A ,则PE ⊥平面ABCD ,PE ⊂平面PCD ,所以平面PCD ⊥平面ABCD , 所以外接球的222169313243636R r =+=+=.所以2313π4π9S R ==球表面积.9.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( ) A .3 B .C .D .【答案】B【解析】设外接球半径为,P 到底面ABC 的距离为,,则,因为,所以, 因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】C【解析】取,AD BD 中点,E F ,设BCD ∆的外心为M ,连,,MB MF EF , 则01,30,22MF BD BMF DMB BCD BM BF BD ⊥∠=∠=∠=∴== 分别过,E M 作,MF EF 的平行线,交于O 点, 即//,//OE MF OM EF ,,BD AB E ⊥∴为ABD ∆的外心,平面ABD ⊥平面BCD ,AB ⊥平面BCD ,//,EF AB EF ∴⊥平面BCD ,OM ∴⊥平面BCD ,同理OE ⊥平面ABD ,,E M 分别为ABD ∆,BCD ∆外心,O ∴为三棱锥的外接球的球心,OB 为其半径, 22222221342OB BM OM BD EF BD AB =+=+=+=, 246S OB ππ=⨯=球.故选:C11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10πC .323π D .12π【答案】A【解析】如图,由题意得2334AB =,解得2AB =.记,,AB c BC a AC b ===, 12sin 24ABC S ab C ab ∆==,由余弦定理2222cos c a b ab C =+-,得224222a b ab ab ab =+-≥-,42(22)22ab ≤=+-,当且仅当a b =时取等号.所以CA CB =且平面PAB ⊥底面ABC 时,三棱锥P ABC -的体积最大.分别过PAB ∆和ABC ∆的外心作对应三角形所在平面的垂线,垂线的交点即球心O , 设PAB ∆和ABC ∆的外接圆半径分别为1r ,2r ,球O 的半径为R ,则123r =,21222sin 45r =⨯=︒.故222211172233R r r ⎛⎫=+=+= ⎪⎝⎭, 球O 的表面积为22843R ππ=.故选:A.12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .【答案】C 【解析】如图,由题意可得,三棱锥P-AEF 的三条侧棱PA ,PE ,PF 两两互相垂直, 且,,把三棱锥P-AEF 补形为长方体,则长方体的体对角线长为, 则三棱锥P-AEF 的外接球的半径为,外接球的表面积为.故选:C .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( ) A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 【答案】A【解析】过,,O A B 三点作球的截面,如图:设该截面与棱l 交于D ,则OA l ⊥,OB l ⊥,又OA OB O =,所以l ⊥平面AOB ,所以OD l ⊥,所以||2OD =,依题意得,OA AD OB BD ⊥⊥,所以,,,O A D B 四点共圆,且OD 为该圆的直径,因为||2||AB OD ==,所以AB 也是该圆的直径,所以四边形OADB 的对角线AB 与OD 的长度相等且互相平分,所以四边形OADB 为矩形,又||||OA OB =,所以该矩形为正方形,所以2||||22OA AB ==,即圆O 的半径为2,所以圆O 的表面积为24(2)8ππ⨯=. 故选:A14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( ) A .32312+ B .3236+ C .23312+ D .3312+ 【答案】A【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=, 设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =, 22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大, 即S 为O O '32,所以三棱锥S ABC -体积的最大值为11112)2)3322ABCS ⨯=⨯⨯⨯=故选:A15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C .6D 【答案】D【解析】如图1所示,设BC x =,CO r '=,作CF AB ⊥于点F ,延长OO '交球面于点E ,则1BF r =-,OO CF '===2得CO O D ''⋅=()()11O E O H OO OO ''''⋅=+⋅-,即((211r =+⋅,解得212x r =-,则圆台侧面积(2π1102x S x x ⎛⎫=⋅+-⋅<< ⎪⎝⎭,则'2322S x ππ=-,令'0S =,则3x =或x =,当0x <<时,'0S >x <<'0S <,所以函数2π112x S x ⎛⎫=⋅+-⋅ ⎪⎝⎭在⎛ ⎝⎭上递增,在⎝上递减,所以当3x =时,S 取得最大值.当3x BC ==时,21123x r =-=,则213BF r =-=.在轴截面中,OBC ∠为圆台母线与底面所成的角,在Rt CFB △中可得cos 3BF OBC BC ∠==故选:D .16.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为 【答案】323π【解析】设圆柱的底面直径为2r ,高为l ,则222π16πr l l =⎧⎨=⎩,解得24πr l =⎧⎨=⎩.故圆柱的底面直径为4,高为4π,所以圆柱内最大球的直径为4,半径为2,其体积为34π32π233⨯=. 17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则该二十四等边体外接球的表面积为【答案】8π【解析】2,侧棱长为2的正四棱柱的外接球,2222(2)(2)(2)2R ∴=++,2R ∴,∴该二十四等边体的外接球的表面积24πS R =24π(2)8π=⨯=.18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M BC =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为 【答案】2293【解析】如图1,2,,B M F 三点共线,连结22,B E B MF ∈从而2B ∈平面FEM ,则2B E 与11A B 的交点即为点N ,又12Rt B B N ∆与1Rt A EN ∆相似,所以1112112A E A NB B NB ==; 如图2,设11B D N ∆的外接圆圆心为1O ,半径为r ,球半径为R ,在11B D N ∆中,111445,103NB D D N ︒∠==,由正弦定理得453r =,所以1853D P =,在1Rt DD P ∆中,解得4293DP =,即42293R =,所以所求的球的半径为2293.19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为【答案】183【解析】ABC 中,6BC =,60BAC ∠=︒,则643223sin sin 60a r r A ===∴=︒,22max 6h R r R =-=,222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤ ,1sin 932S bc A =≤ 当6a b c ===时等号成立,此时11833V Sh ==20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为【答案】934或334【解析】设正三棱锥的高为h ,球心在正三棱锥的高所在的直线上,H 为底面正三棱锥的中心因为底面边长AB=3,所以2222333332AH AD ⎛⎫==-= ⎪⎝⎭当顶点S 与球心在底面ABC 的同侧时,如下图此时有222AH OH OA += ,即()()222322h +-=,可解得h=3因而棱柱的体积113393333224S ABC V -=⨯⨯⨯⨯=当顶点S 与球心在底面ABC 的异侧时,如下图有222AH OH OA +=,即()222322h +-=,可解得h=1所以113333313224S ABC V -=⨯⨯⨯⨯=9333421.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为 【答案】338【解析】如下图,由题意,2PA PB PC ===,90ABC ∠=︒,取AC 的中点为G ,则G 为三角形ABC 的外心,且为P 在平面ABC 上的射影,所以球心在PG 的延长线上,设PG h =,则2OG h =-,所以2222OB OG PB PG -=-,即22424h h --=-,所以1h =. 故G CG 3A ==,过B 作BD AC ⊥于D ,设AD x =(023x <<),则23CD x =-,设(03)BD m m =<≤,则~ABD BCD ,故23m xx m-=, 所以()223m x x =-,则()23m x x =-,所以ABD 的面积()3112322S xm x x ==-,令()()323f x x x =-,则()2'634f x x x =-(),因为20x >,所以当3032x <<时,()'0f x >,即()f x 此时单调递增;当33232x ≤<时,()'0f x ≤,此时()f x 单调递减.所以当332x =时,()f x 取到最大值为24316,即ABD 的面积最大值为1243932168=.当ABD 的面积最大时,三棱锥P ABD -体积取得最大值为19333388⨯=.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题 【答案】163π【解析】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=,所以球O 的半径为2323x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___【答案】π 【解析】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =,设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+=, 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==;②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题 【答案】132π【解析】在正四棱锥P ABCD -中M 为侧楼PA 中点,∴四棱锥M ABCD -外接球即为棱台MNEF ABCD -的外接球,如图,四棱锥P ABCD -的底面边长和高均为8,1214,42AB O N O M ===∴ 212242AO MO ==∴设球心为O ,则图中12,OO A OMO △△均为直角三角形, 设1OO h =,222(42)OA h ∴=+,222(22)(4)OM h =++,A , M 都在球面上,222O O M R A =∴=,解得21,33h R =∴=,24132S R ππ∴==球25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题 【答案】72π 【解析】如图所示:设截面圆心为1O , 依题意得130OMO ∠=, 设1OO h =,则2OM h =, 又2OM MP =,所以3OP h =,即球的半径为3h ,所以3ON h =,又截面的面积为16π,所以()2116O N ππ=,解得14O N =,在1Rt OO N 中,()22316h h =+, 解得2h =,所以球的半径为32, 所以球的表面积是()243272S ππ==,故答案为: 72π 26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题【答案】15【解析】如图,圆锥面与其内切球12,O O 分别相切与,B A ,连接12,O B O A ,则12,O B AB O A AB ⊥⊥,过1O 作12O D O A 于D ,连接12,,O F O E EF 交12O O 于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △12O O D 中,2312DO ,22182215O D11221515cos 84O D O O α===128O O = , 218CO O C =-,△2EO C △1FO C ,11218O C O C EO O F -= 解得12O C =,26O C = 222211213CF O C FO ∴=-=-= ,即13cos 2CFO C , 所以椭圆离心率为cos 25cos 5c e aβα=== 在△2EO C 中223cos cos 2EC ECO O C β=∠== 解得33EC =,432EF c ==2325155a a =⇒= 2215a ∴=故答案为:21527.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题 【答案】16538【解析】如图所示:平面ABMN 将长方体分成两部分,MN 有可能在平面11CDD C 上或平面1111A D C B 上,根据对称性知,两球半径和的最大值是相同的,故仅考虑在平面11CDD C 上的情况,延长11B C 与BM 交于点P ,作1O Q BC ⊥于Q 点,设1CBP BPB α∠=∠=,圆1O 对应的半径为1r ,根据三角形内切圆的性质, 在1Rt O QB 中,12QBO α∠=,15BQ BC CQ r =-=-,111tan 25O Q r BQ r α==-, 则15tan5251tan 1tan 22r ααα==-++,又当BP 与1BC 重合时,1r 取得最大值,由内切圆等面积法求得1512251213r ⨯≤=++,则2tan 23α≤ 设圆2O 对应的半径为2r ,同理可得266tan2r α=-, 又252r ≤,解得7tan 212α≥. 故1255566tan 176(1tan )221tan 1tan 22r r αααα+=-+-=--+++,72tan 1223α≤≤, 设1tan 2x α=+,则195[,]123x ∈,()5176f x x x=--, 由对号函数性质易知195[,]123x ∈,函数()f x 单减,则19519165()()1761912123812f x f ≤=--⨯=,即最大值为16538 故答案为:16538 28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题【答案】183【解析】ABC 为等边三角形且其面积为93,则23934ABC SAB ==,6AB ∴=,如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===, 点M 为三角形ABC 的重心,2233BM BE ∴==, Rt OMB ∴中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯=29.已知四面体ABCD 的棱长均为6,,EF 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题【答案】3 8π【解析】。
高考生物选择题题型归类及解题策略
![高考生物选择题题型归类及解题策略](https://img.taocdn.com/s3/m/fbd082e7bb4cf7ec4bfed003.png)
高考生物选择题题型归类以及解题策略近几年高考的理科综合考试中,生物科目选择题虽然数量只有5道题,但是在知识广度上却基本上覆盖了高中生物教材的所有章节,难度上也注意了适当的区分度。
而且选择题的分数值也占生物总分的将近二分之一,在高考中如何解答好生物选择题,如何减少非知识性因素所造成的失分,是很多教师和学生关注的问题。
笔者结合指导学生高考复习的体会,从题型分析、解题策略和和提高选择题得分率的教学方法三个方面谈一谈个人意见,希望能对同学们的复习有所帮助。
1.题型分析和归类纵览近五年的理科综合的选择试题,并对照考试大纲,可以发现,选择题主要考查的是学生的生物学科基本知识和生物学科思想。
具体地说,选择题注重多个知识点的整合,注重观察学生的知识网络的全面性和概念掌握的准确性。
考查学生对基础知识的理解、基本技能的熟练、考虑问题的严谨、提取信息和解答速度的快捷等。
尤其值得一提的是,近几年高考命题的能力立意越来越明显,对能力的考查,实际上是通过考查考生解题时运用适当的方法所反映出来的思维过程,来判断考生智能发展的程度和学习的潜力大小。
在考查能力方面,非选择题可以考查的能力虽然比较全面,但是由于受到利用踩分点等主观性评卷方法的影响,并不能真正地通过分数来评判学生的能力高低,再加上近两年来我省生物非选择题的得分率一直非常低,不能达到有效的区分和选拔目的,选择题的区分功能显得更加的重要。
而要想在选择题方面拿到高分,对题目的类型、命题意图等进行分析归类,做到知己知彼,才能立于不败之地。
题型归类的方法有很多种,下面简单谈一下在教学实践中最常用的分类方法。
1.1根据考查的知识所属章节来分高考考查的知识点往往具有综合性,但还是有一定的规律,在研究中,可以根据题目重点考查的知识点将其归入相应章节,以利于进行统计分析,找到主干知识,加以重点突破。
下表显示了04—06年全国理综生物选择题的分章节(模块)统计。
2006年全国高考统一生物试题选择题知识点分布从表格中可以看出,三年来试题的总体特点和趋向:(1)知识重心在突出必修的同时,又十分关注选修内容。
高考解题技巧:选择题的答题策略与提分技巧
![高考解题技巧:选择题的答题策略与提分技巧](https://img.taocdn.com/s3/m/20a379194afe04a1b171dee0.png)
[方法感悟] 此法在解答选择题中是使用频率最高的一种方法.基本思路 是通过一个知识点或过程分析排除部分选项,然后再通过另 一物理规律或过程分析排除部分选项,最后得出正确答案.
❖9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 ❖10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 6:34:49 PM ❖11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 ❖12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
(1)要把整个题目看完(特别是选项),让选项引领你的思路. (2)要注意一些关键词:正确的是、错误的是.选择题中通 常至少有一个选“错误的”或选“不正确的”. 2.把选项进行分类,粗略判定为几个答案 选项分为以下三类: (1)统一型选项:四个选项要说明的是同一个问题.大多出 现在图象问题中. (2)发散型选项:四个选项独立,分别考查不同的概念、规 律和应用,知识覆盖面广. (3)分组型选项:选项可分为两组或三组.
上,质量为 mA=22 kg 的木箱 A 放在木板 B 上.一根轻绳一端拴
在木箱 A 上,另一端拴在天花板上,轻绳与水平方向的夹角为 θ=
37°.已知木箱 A 与木板 B 之间的动摩擦因数 μ1=0.5.现用水平方
高考化学三轮冲刺专题3.7原电池类选择题解题方法和策略
![高考化学三轮冲刺专题3.7原电池类选择题解题方法和策略](https://img.taocdn.com/s3/m/851b4ff64b35eefdc9d3339b.png)
专题3.7 原电池类选择题电化学类试题是高考的必考点,在多数省市的选择题中考查,少数以化学反应原理在大题中考查。
通查考查电极反应方程式的书写、电子电流以及离子的流动方向的判断、有关电子转移数目、产物的量和电极增减量等的相关计算。
原电池的考查是近几年考查的热点,通常考查可充电电池中充电和放电两个过程的分析,新型燃料电池等。
在复习过程中学会分析几种典型模型,重点训练电极反应方程式的书写,结合近几年的高考题训练,灵活运用。
【详解】【点睛】本题考查了化学电源、新型电池的知识,是高频考点,侧重考查学生分析问题的能力,明确电池放电时正负极与充电时的阴阳极电极反应式的关系是本题解答的关键,电子流动区域及离子移动区域的区别是学生易混淆之处。
电化学类试题具有很强的规律性和策略性,在解题过程中需要不断总结,归纳。
1、池型判断(1)根据概念:原电池是将化学能转化为电能,电解池是将电能转化为化【详解】2.科学家很早就提出锂-空气电池的概念,它直接使用金属锂作电极,从空气中获得O2,和以LiFePO4作电极的锂离子电池相比,增大了电池的能量密度(指标之一是单位质量电池所储存的能量)。
右图是某种锂-空气电池的装置示意图,放电时,下列说法不正确的是A.金属锂为负极B.若隔膜被腐蚀,不会影响该电池正常使用C.多孔碳电极上发生的电极反应为:O2 + 2H2O + 4e- === 4OH-D.锂-空气电池能量密度大的原因之一是转移等量电子时,金属锂比LiFePO4质量小【答案】B【解析】【分析】通过原电池的工作原理进行分析。
【详解】【点睛】本题难点是选项B,学生弄不清楚选项B是否正确,因为忽略了锂是碱金属,能与水反应,隔膜破损后,锂与水发生反应,不符合该电池设计原理。
需要学生平时对基础知识熟记和学会运用。
高三数学专题备考——高考中的最值问题的解题策略
![高三数学专题备考——高考中的最值问题的解题策略](https://img.taocdn.com/s3/m/78d5137b1711cc7931b716c0.png)
高三数学专题备考——高考中的最值问题的解题策略主讲人:黄冈中学高级教师汤彩仙一、复习策略1、函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2):均值不等式法和单调性加以选择;(3)多元函数:数形结合或转化为一元函数.3、三角函数、数列、解析几何中的最值问题,往往将问题转化为函数问题,利用求函数最值的方法或基本不等式法求解.4、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,二次函数的最值).5、不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.6、参数范围问题内容涉及代数和几何的多个方面,解题的关键是不等关系的建立,其途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.解决这一类问题,常用的思想方法有:函数思想、数形结合等.二、典例剖析问题1:函数的最值问题例1、(07江苏卷)已知二次函数的导数为,,对于任意实数,都有,则的最小值为()A.3B.C.2D.解:=,依题意,有:,可得,==+1≥2+1≥2+1=2,故选(C).例2、如下图(1)所示,定义在D上的函数,如果满足:对任意,存在常数A,都有≥A成立,则称函数在D上有下界,其中A称为函数的下界. (提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)(1)(2)(Ⅰ)试判断函数在(0,+)上是否有下界?并说明理由;(Ⅱ)又如具有上右图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数在D上有上界的定义,并判断(Ⅰ)中的函数在(-,0)上是否有上界?并说明理由;(Ⅲ)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.分析:利用导数判断函数的单调性,求出函数的最值,从而可以确定函数的下界或上界;或用重要不等式求最值.解:(Ⅰ)解法1:∵,由得,∵,∴x=2,∵当时,,∴函数在(0,2)上是减函数;当时,,∴函数在(2,+)上是增函数;∴是函数在区间(0,+)上的最小值点,.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.解法2:.当且仅当即x=2时“=”成立.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:定义在D上的函数,如果满足:对任意,存在常数B,都有≤B 成立,则称函数在D上有上界,其中B称为函数的上界.设则,由(Ⅰ)知,对任意,都有,∴,∵函数为奇函数,∴.∴,∴.即存在常数B=-32,对任意,都有,∴函数在(-,0)上有上界.(Ⅲ)质点在上的每一时刻的瞬时速度.依题意得对任意有.对任意恒成立.令,∵函数在[0,+∞)上为减函数.∴.∴.问题2:三角函数、数列、解析几何中的最值问题将问题转化为函数问题,利用求函数最值的方法求解.例3、(05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.分析:将d用点M的坐标表示出来,,然后求其最小值.解:(1)由已知可得点A(-6,0),F(0,4).设点P(x,y),则={x+6,y},={x-4,y},由已知可得,则2x2+9x-18=0,解得x=或x=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2) 直线AP的方程是x-y+6=0.设点M(m,0),则M到直线AP的距离是.于是=,又-6≤m≤6,解得m=2.椭圆上的点(x,y)到点M的距离d有,由于-6≤≤6,∴当=时,d取得最小值.例4、(05年辽宁)如图,在直径为1的圆中,作一关于圆心对称、邻边互相垂直的十字形,其中.(Ⅰ)将十字形的面积表示为的函数;(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?分析:将十字型面积S用变量表示出来,转化为三角函数的极值问题,利用三角函数知识求出S的最大值.(Ⅰ)解:设S为十字形的面积,则(Ⅱ)解法一:其中当最大.所以,当最大. S的最大值为解法二:因为所以令S′=0,即可解得,所以,当时,S最大,S的最大值为例5、已知点A(-1,0),B(1,-1)和抛物线,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(I)若△POM的面积为,求向量与的夹角;(II)试探求点O到直线PQ的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.分析:可先设出M与P点的坐标,再利用斜率相等求出的值,利用向量的数量积求出夹角.第二问中可用重要等式求出最值.解:(I)设点、M、A三点共线,设∠POM=α,则由此可得tanα=1.又(II)由第(I)问答案知,令,则. ∴O到PQ的距离:,即当且仅当t=16时取最大值,且最大值为.故存在最大值,且最大值为.问题3:最值的实际应用在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.例6、(06年江苏卷)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示).试问当帐篷的顶点O到底面中心O的距1离为多少时,帐篷的体积最大?分析:将帐蓬的体积用x表示(即建立目标函数),然后求其最大值.解:为,则.设OO1由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:)求导得.令,解得(不合题意,舍去),,当时,,为增函数;当时,,为减函数.∴当时,最大.答:当OO为2m时,帐篷的体积最大,最大体积为.1点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.例7、(05年湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99,有两种方案可供选择.方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是.用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方法用水量较小.(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.点拨与提示:设初次与第二次清洗的用水量分别为与,,.于是+,利用均值不等式求最值.方案甲与方案乙的用水量分别为x与z,由题设有,解得x=19,由c=0.95得方案乙初次用水量为3,第二次用水量y满足方程:,解得y=4a,故z=4a+3,即两种方案的用水量分别为19与4 a +3,因为当1≤a≤ 3时,x-z =4(4-a)>0,即x>z.故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+.当a为定值时,.当且仅当时等号成立,此时(不合题意,舍去)或.将代入(*)得,.故时用水量最少,此时第一次与第二次用水量分别为与,最少总用水量为.当1≤a≤3时,,故T(a)是增函数(也可用二次函数的单调性来判断),这说明随着a的值的增加,最少总用水量增加.问题4:恒成立问题不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.例8、已知函数f(x)=.(Ⅰ)当时,求的最大值;(Ⅱ) 设,是图象上不同两点的连线的斜率,是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.分析:利用导数求出函数的单调性,再比较其极大值与端点值的大小求出的最大值.解:(Ⅰ)当-2≤<时,由=0得x1=显然-1≤x1<,<x2≤2,又=-.当≤x≤x2时,≥0,单调递增;当x<x≤2时,<0,单调递减,2=(x2)=∴max=-(Ⅱ)答:存在符合条件.解:因为=.不妨设任意不同两点,其中.则.由知:1+<1.又,故.故存在符合条件.解法二:据题意在图象上总可以找一点,使以P为切点的切线平行于图象上任意两点的连线,即存在.故存在符合条件.问题五:参数的取值范围问题参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力.在历年高考中占有较稳定的比重.解决这一类问题,常用的思想方法有:函数思想、数形结合等.例9、设直线过点P(0,3)且和椭圆顺次交于A、B两点,求的取值范围.分析:=.要求的取值范围,一是构造所求变量关于某个参数(自然的想到“直线AB的斜率k”)的函数关系式(或方程),通过求函数的值域来达到目的.二是构造关于所求量的一个不等关系,由判别式非负可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称式.问题找到后,解决的方法自然也就有了,即我们可以构造关于的对称式:.由此出发,可得到下面的两种解法.解法1:当直线垂直于x轴时,可求得;当l与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得.解之得由椭圆关于y轴对称,且点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以,即.解法2:设直线的方程为:,代入椭圆方程,消去得(*)则,令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.例10、在直角坐标平面中,过点作函数的切线,其切点为;过点作函数的切线,其切点为;过点作函数的切线,其切点为;如此下去,即过点作函数的切线,其切点为;过点作函数的切线,其切点为….(1)探索与,与的关系,说明你的理由,并求,的值;(2)求数列通项公式;(3)是否存在正实数,使得对于任意的自然数,不等式恒成立?若存在,求出这样的实数的取值范围;若不存在,则说明理由.分析:利用导数先找出切线方程,从而可以确定数列与,与的关系,再分奇数项与偶数项来求出数列的通项,在第三问中可用错位相消法求出不等式左端的和,再证明其单调性来求解.解:(1)∵,∴切线的方程为,又切线过点,∴,且,∴∴.又,∴切线的方程为,而切线过点,∴,且,∴∴.(2)由(1) 可知,即,∴数列为等比数列,且首项为4,∴,即.而,故数列通项公式为(3)令∴,两式相减得∴.∴,∴数列递增.又当时,.∴,而,∴.∴对于任意的正整数和任意的实数不等式恒成立等价于,而,所以有,解得或(舍).故存在这样的正实数,其取值范围为.冲刺练习一、选择题1、若,则a的取值范围是()A.B.C.D.2、下列结论正确的是()A.当B.C.的最小值为2D.当无最大值3、在R上定义运算:.若不等式对任意实数x 成立,则()A.B.C.D.4、设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.5、若动点()在曲线上变化,则的最大值为()A.B.C.D.2b6、已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则()A.⊥B.⊥(-)C.⊥(-)D.(+)⊥(-)7、已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.38、设,对于函数,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值9、在约束条件下,当时,目标函数的最大值的变化范围是()A.B.C.D.10、已知不等式对任意正实数恒成立,则正实数的最小值为()A.2B.4C.6D.8[提示]二、填空题11、已知,则的最小值是__________.12、在△OAB中,O为坐标原点,,则△OAB的面积达到最大值时,__________.13、设实数x,y满足__________.14、在中,O为中线AM上一个动点,若AM=2,则的最小值是__________.15、已知函数在[0,1]上的最大值与最小值的和为a,则a的值为____________.[答案]三、解答题16、若函数的最大值为,试确定常数a的值.[答案]17、已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.(1)求a、b的值与函数f(x)的单调区间.(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.[答案]18、已知函数,其中0<a<4.(Ⅰ)将的图像向右平移两个单位,得到函数,求函数的解析式;(Ⅱ)函数与函数的图像关于直线对称,求函数的解析式;(Ⅲ)设,已知的最小值是,且,求实数的取值范围.[答案]19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.[答案]20、已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.提示:1、①当,即时,无解;②当,即时,,故选C.2、A中lgx不满足大于零,C中的最小值为2的x值取不到,D中当x=2时有最大值,选B.3、∵,∴不等式对任意实数x成立,则对任意实数x成立,即使对任意实数x成立,所以,解得,故选C.4、因为,所以(A)恒成立;在(B)两侧同时乘以得,所以(B)恒成立;(C)中,当a>b时,恒成立,a<b时,不成立;(D)中,分子有理化得恒成立,故选(C).5、由曲线方程得,=,∵-b≤y≤b,∴若即b≥4,则当y=b时,最大值为2b;若即0<b<4,则当时,最大值为.(本题也可用三角代换求解).6、由|-t|≥|-|得|-t|2≥|-|2展开并整理得,由,所以,得,即,选(C).7、,解得,选B.8、令,则函数的值域为函数的值域,又,所以是一个减函减,故选B.9、解:由,交点为,(1)当时可行域是四边形OABC,此时,.(2)当时可行域是△OA此时,.10、,∴≥9,≥4.11、12、13、14、-2 15、提示:11、表示直线=0上动点P(x,y)到点(1,1)的距离,的最小值就是点(1,1)到直线=0的距离,可求得.12、,当即时,面积最大.13、表示两点(0,0),P(x,y)的斜率,作出不等式组表示的平面区域即△ABC及其内部,由图形可得AO的斜率最大,可求得A(1,),.14、如图,即的最小值为-2.15、若a>1,与是增函数,为增函数,f(x)的最大值为f(1),最小值为f(0),所以f(1)+f(0)=a;若0<a<1,与是减函数,为减函数,f(x)的最大值为f(0),最小值为f(1),所以f(0)+f(1)=a;故+=a,解得a =.16、解:因为的最大值为的最大值为1,则所以17、解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.由f′()=,f′(1)=3+2a+b=0得a=,b=-2.f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:,-) -,所以函数f(x)的递增区间是(-∞,-)与(1,+∞).递减区间是(-,1).(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.解得c<-1或c>2.18、(Ⅰ);(Ⅱ)设点是函数上任一点,点关于的对称点是,由于函数与函数的图像关于直线对称,所以,点在函数的图像上,也即:.所以,;(Ⅲ).解法一:注意到的表达式形同,所以,可以考虑从的正负入手.(1)当,即时,是R上的增函数,此时无最小值,与题设矛盾;(2) 当,即时,.等号当且仅当,即时成立.由及,可得:,解之得:.解法二:由可得:.令,则命题可转化为:当时,恒成立.考虑关于的二次函数.因为,函数的对称轴,所以,需且只需,解之得:.此时,,故在取得最小值满足条件.19、解:(Ⅰ)设双曲线方程为由已知得故双曲线C的方程为(Ⅱ)将由直线l与双曲线交于不同的两点得即①设,则而于是②由①、②得故k的取值范围为。
【智博教育原创专题】高考数学必胜秘诀之高考数学选择题的解题策略
![【智博教育原创专题】高考数学必胜秘诀之高考数学选择题的解题策略](https://img.taocdn.com/s3/m/b6c2e4de33d4b14e85246853.png)
高考数学必胜秘诀之高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。
数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。
高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。
【策略1】直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
【例1】某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )81.125A 54.125B 36.125C 27.125D 【解析】某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。
22333364627()()101010125C C ⨯⨯+⨯=,故选A 。
1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线,a b 不垂直,那么过a 的任一个平面与b 都不垂直。
高考古代诗歌鉴赏选择题设误角度与解题策略(考情报告+典例剖析+解题策略+对点训练+答案解析)
![高考古代诗歌鉴赏选择题设误角度与解题策略(考情报告+典例剖析+解题策略+对点训练+答案解析)](https://img.taocdn.com/s3/m/dbc0c6f6b9f67c1cfad6195f312b3169a451ea1b.png)
高考古代诗歌鉴赏选择题设误角度与解题策略(考情报告+典例剖析+解题策略+对点训练+答案解析)古代诗歌鉴赏选择题,其考查落脚点仍是考纲规定的四大考点(思想内容、形象画面、表达技巧、语言特点),选择题通过给出的选项内容,不仅降低了诗歌鉴赏题目的整体难度,而且间接降低了诗歌的阅读难度,解决了阅读理解上的部分障碍。
【考情报告】考情调研:2022年高考语文新高考卷两套和全国卷两套的古代诗歌阅读题的第一小题都采用了“四选一”的选择题形式,选项多是从古代诗歌的思想内容、形象画面、表达技巧、语言特点等角度设计题目,覆盖面广,要求高,需要学生对给出的阅读材料有全面、深刻、细致的理解,才能够选出正确的选项。
1.思想内容:主要从某个词语、句子或整首诗歌表达的思想内容入手设计题目,要求学生判断选项给出的诗人的思想感情是否符合诗歌内容。
2.形象画面:主要从归纳概括诗歌中的人、事、景、物等形象特征设计题目,要求学生判断选项给出的形象特征的正误。
3.表达技巧:主要从诗歌使用的修辞手法、人物与景物之间的关系、景物和情感之间的关系以及诗歌的结构等角度设计题目,要求学生判断选项中涉及的有关表达方式、写作方法、修辞手法等方面的内容的正误。
4.语言特点:主要从分析诗歌在表情达意上最贴切、最富有表现力的字词入手设计题目,要求学生判断选项对诗歌的语言特色、语言风格等表述的正误。
从2022年高考古代诗歌选择题的命制角度分析,错误项的命制有以下几种类型:①望文生义。
解释诗句时,不考虑整体内容,错误解说诗句中的字词等;②无中生有。
凭空解说一些诗歌中没有体现的内容,比如相关的表达技巧等;③说法绝对。
选项内容太过绝对,不符合客观情况;④胡乱联系。
选项的内容将诗歌的某些特点与学生学过的诗句联系起来,但这种联系不是必然的;⑤拼凑词句。
把几句没有本质联系的话放到一起来解释诗歌。
【典例剖析】(2022·新高考Ⅰ卷)阅读下面这首宋词,完成问题。
醉落魄·人日南山约应提刑懋之【注】魏了翁无边春色,人情苦向南山觅,村村箫鼓家家笛,祈麦祈蚕,来趁元正七。
高考语文选择题的答题技巧
![高考语文选择题的答题技巧](https://img.taocdn.com/s3/m/990ee414773231126edb6f1aff00bed5b9f3738c.png)
高考语文选择题的答题技巧在高考中语文是必考项目,那么语文中最容易拿到分的就是选择题,那选择题有什么技巧吗?那么接下来给大家分享一些关于高考语文选择题的答题技巧,希望对大家有所帮助。
高考语文选择题的答题技巧1.语文选择题一定要仔细审题高考语文选择题中第一步最关键的就是要仔细审题,仔细审题的目的也是在于充分的理解题意,审题时正确解题的首要条件,通过审题,可以掌握解题所需的第一手资料。
一直条件,弄清题目要求。
在高考的时候往往会有一些陷阱,如果你不仔细的推敲就容易出错。
由于高考语文的时间比较紧,很多的高中生往往会匆匆看一下就提笔,因此,必须养成仔细审题的习惯。
对于高考语文中词义的理解,你可以先从你最精通的语词去排除,对语词的运用,一定要在上下文中找到相对应的信息,重点就是在前后语句上的搭配。
高三网小编表示,高考语文选择题要注意采用排除的方法,将最容易辨析的词语先排除,逐渐减少选项。
2.语文选择题解题攻略在高考语文选择题中对于找到正确发音或者是错误发音的题目,高中生们一定要在答这个道题前做好准备,对老师的出题策略做到心中有数。
一定情况下,有一些常见字和多音字等,会出现在这道题中。
这类题没有什么技巧,无非就是学习高中语文的时候多积累。
高三网小编表示,对对词语题来讲,就考研学生平时使用词语的熟练度了。
但是在一般情况下,平时我们写作文的时候,要注意用词的正确性。
3.怎么提高高考语文选择题的准确性在高考语文选择题给出的选择过于绝对的时候,特别表示在语言的运用上。
高中的同学们在审题的时候,对于选择的陈述切莫以主观喜好,习惯思维去评价,而要整体考虑,认真的去权衡每一道题。
小编表示在阅读时要注意主要的人物,地点,及故事情节及一些主要的细节等。
高考语文高分的答题技巧1、首先是选择题当直接选择答案不确定时可以用排除法进行选择,排除掉最不可能的项就会知道答案了。
而假如排除法也不能达到目的,可以暂时选择一个你觉得最可能的答案,然后对该题目进行标记,继续做下面的题目,最后试卷做完再反过头来看这个题目。
一类高考“超纲”选择题的解题方法和策略-精品文档
![一类高考“超纲”选择题的解题方法和策略-精品文档](https://img.taocdn.com/s3/m/26aa470d5727a5e9846a611d.png)
一类高考“超纲”选择题的解题方法和策略所谓“超纲”高考题,就是指那些来源于物理竞赛或大学普物,超出高中知识求解范围,却仍能对解的合理性进行一定的分析和判断的一类问题.此类问题充分体现了“过程和方法”的目标,很好地考察了学生的科学探究能力和分析推理能力.最早出现在2008年北京高考卷中,后来福建、安徽、全国新课标等高考卷也紧随其后,命出了一些高质量的此类题目.本文系统地研究了解决此类问题的三种常见方法.一、量纲法物理关系式不仅反映了物理量大小之间的关系,也确定了物理量单位间的关系.量纲法就是从解的物理量单位,分析判断出物理量之间可能合理性的关系式.例1 (2012年北京卷,第20题)“约瑟夫森结”由超导体和绝缘体制成.若在结两端加恒定电压U,则它会辐射频率为ν的电磁波,且与U成正比,即ν=kU.已知比例系数k仅与元电荷e的2倍和普朗克常量h有关.你可能不了解此现象的机理,但仍可运用物理学中常用的方法,在下列选项中,推理判断比例系数k的值可能为().A.h2eB.2ehC.2heD. 12he解析光子的能量公式E=hν,而能量也可表示为对电子做功,即E∝eU,根据以上两式,可得k=νU∝EhEe∝eh,对比四个选项,只有B选项在量纲上和eh的相同,故正确选项为C.例2 弦振动频率于波长、张力以及线密度(弦单位长度的质量)有关,求它们之间的关系.解析若弦振动频率为f,弦长、张力以及线密度分别为l、F和ρ,设它们之间的的关系为f=lαFβργ,在国际单位制中:s-1=mα(kg?ms-2)β(kgm)γ,即s-1=mα+β-γkgβ+γs-2β.应有-2β=-1、α+β-γ=0、β+γ=0,解得α=-1、β=12、γ=-12.所以f∝l-1F12ρ-12,写成f=klFρ(k是没有量纲的系数).二、特殊值法图1特殊值法指对解取某些特定值,或在某些特殊条件下取得的结果进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.例3 (2011年福建卷,第18题)如图1所示,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为m1和m2的物体A和B.若滑轮有一定大小,质量为m且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的摩擦.设细绳对A和B 的拉力大小分别为T1和T2,已知下列四个关于T1的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是().A.T1=(m+2m2)m1gm+2(m1+m2)B. T2=(m+2m1)m2gm+4(m1+m2)C.T1=(m+4m2)m1gm+2(m1+m2)D. T1=(m+4m1)m2gm+4(m1+m2)解析用量纲法无法排除任何一项,可以考虑特殊情况求出解的特殊值.比如假定滑轮的质量m=0,则等同我们高中常见的轻滑轮,此时细绳对A和B的拉力大小T1和T2相等均为T.假设m1>m2,A和B一起运动的加速度大小均为a,根据牛顿第二定律分别对A、B有m1g-T=m1a、T-m2g=m2a,联立解得T=2m1m2gm1+m2.把m=0带入ABCD四个选项并化简,发现只有C 选项满足T=2m1m2gm1+m2,故正确选项为C.解法2 可假定m1=m2=m0,此时A、B恰好受力平衡,绳中的拉力大小T1和T2相等均为T,则T=m0g.把m1=m2=m0带入ABCD 四个选项并化简,只有C满足T=m0g,故答案选C.三、极限法极限法指根据函数关系式的单调性,判断解随某些已知量变化的趋势,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.例4 (2012年安徽卷,第20题)如图2所示,半径为R 的图2 图3均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P(坐标为x)的电场强度可以由库仑定律和电场强度的叠加原理求出,为E=2πkσ[1-x(R2+x2)1/2] ,方向沿x 轴.现考虑单位面积带电量为σ0的无限大均匀带电平板,从其中间挖去一半径为r的圆板,如图3所示.则圆孔轴线上任意一点Q(坐标为x)的电场强度为A.2πkσ0x(r2+x2)1/2B. 2πkσ0r(r2+x2)1/2C.2πkσ0xrD. 2πkσ0rx解析当x不变,r增大时,该值应减小,可排除BD;当x 不变,r减小时,该值应增大,r=0时该值取某一不是∞的定值,又排除C,故选A.解法2 由于带电体表面的电场强度的方向垂直于带电体表面,无限大均匀带电平板周围的电场应是垂直于平板的匀强电场,即电场强度处处相同,都等于R→∞时的电场强度.由题中给出的公式E=2πkσ[1-x(R2+x2)1/2] ,当R→∞可得单位面积带电量为σ0无限大均匀带电平板场强为E=2πkσ0 (也可以令x→0时得到).而单位面积带电量为σ0的半径为r的圆板在Q点场强为E′=2πkσ0[1-x(R2+x2)1/2] ,所以Q的合场强EQ=E-E′=2πkσ0x(R2+x2)1/2 .故答案为A.。
新高考数学多选题的解题策略
![新高考数学多选题的解题策略](https://img.taocdn.com/s3/m/a5e4b96dbf1e650e52ea551810a6f524cdbfcb45.png)
ny2 =1,( ).
A.若 m >n>0,则 C 是椭圆,其焦点在 y 轴上
B.若 m =n>0,则 C 是圆,其半径为 n
C.若 mn <0,则 C 是 双 曲 线,其 渐 近 线 方 程 为
y=±
m
- x
n
以“五育并举”方 针 为 背 景 的 数 学 应 用 问 题,既 践
y2 x2
m
- x;当 m <0,
n>0 时,方 程 化 为 -
=
n
1
1
-
n
m
1,表示焦点 在 y 轴 上 的 双 曲 线,渐 近 线 方 程 为 y =
±
±
m
- x,故 C 正确 .
n
对于 D,当 m =0,
n>0 时,方程化为y=±
表示两条平行于 x 轴的直线,故 D 正确 .
1
,
n
综上可知,应选 A,
C,
D.
本题主要考查 椭 圆、双 曲 线 的 标 准 方 程 和 几
何性质,熟知常 见 曲 线 方 程 之 间 的 区 别 是 解
决本题的关键,属于基础题 .
例 2 (
2020 年 山 东 卷 11)已 知 a >0,
b>0,且
a+b=1,则( ).
A.
a2 +b2 ≥
1
1
B.
2a-b >
关注新高考
D.若 m =0,
n>0,则 C 是两条直线
把题设方程化 为 标 准 形 式,再 结 合 圆 锥 曲 线
的标准方程和几何性质逐一判断 .
1 1
对于 A,当 m >n>0 时,有 0< < ,方程化为
m n
◇ 福建 廖永福
有一分证据,就说一分话——基于近年高考全国卷历史选择题的解题思考及教学建议
![有一分证据,就说一分话——基于近年高考全国卷历史选择题的解题思考及教学建议](https://img.taocdn.com/s3/m/67915696fc0a79563c1ec5da50e2524de518d0d1.png)
选择题是高考历史试卷的重要题型。
近年高考全国卷历史试题坚持以史料、图表、历史叙述、史论等构建真实问题情境,考查考生解决问题的能力。
这样的试题突出考查考生的历史学科关键能力,要求考生能合理运用分析、综合、概括、比较等逻辑思维方式与方法,以解决情境下的历史真实问题。
鉴于此,本文试提出学生解决此类问题时可遵循的三种思维方法和相应的教学策略。
一、讲求证据,证而不疏历史是对过去事情的研究,而过去的事情无法被直接观察,也无法在实验中重现,更无法在现实中重演,只能依据过去留下的痕迹(史料),进行严格的考证、谨慎的推理,乃至合理的想象(张汉林,2020)。
这说明若离开了史料,历史研究就无法寻求事实和真相,而解答高考历史选择题也是如此。
可见,讲求证据,证而不疏(不作引申、不东拉西扯等),是解答高考历史选择题的首要原则。
这要求学生在思考历史问题时要有证据意识,推理中不能有疏漏,要尽可能地从材料中获取每一分证据,形成一个完整的证据链,再对证据链进行谨慎的推理。
例如,2017年高考文综全国卷玉第26题属于典型的根据历史材料推导出历史事实的选择题。
该题引用了四条不同出处的材料,均记录了发生于唐武德元年西部边陲的一场战争,包括双方代表人物、地点和结局等战争要素,只是详略稍有差别。
考生要根据题干信息,作出综合性而非片面性的历史事实认定。
四条材料的战争要素信息依次整理如下:(1)秦王(李世民)、薛举、泾州、败绩。
(2)薛举、泾州、太宗(李世民)、不利。
(3)秦王世民、薛举、泾州、败绩。
(4)薛举、泾州、太宗、所败。
能够被认定的历史事实只能是C项“唐军与薛举在泾州作战失败”。
A项“皇帝李世民与薛举战于泾州”错在将李世民身份确定为“皇帝”,不符合对材料作出综合性历史事实认定的要求。
其次,第三条材料记述的历史事实是此战役中唐军主帅为李世民而非刘文静,故而B项“刘文静是战役中唐军的主帅”不正确。
再次,历史事实与历史结论都是基于史料的研究,但前者指不因人为主观因素转移的历史客观存在,后者指借助某种史观对史料作出的人为主观历史解释。
单项选择题命题特点及解题策略
![单项选择题命题特点及解题策略](https://img.taocdn.com/s3/m/5f38b5222af90242a895e543.png)
21 26 34 28 22
21 22 31 24 33 26
29
年份及题号 考点
2004 2005
2006
2007
短语动词 情态动词 时态语态 非谓语 动词 动词
29 23 25 24,34 22 31 21 22 26,34 29 23,27,34 23,27 31 25,27 30,32 28,30, 35 25,30 30
quantity of…/ plenty of… 答案:B
命题趋势和复习策略:
冠词主要考查语意和规则, 从近几年命
题来看有重语意表达轻规则记忆的特点,提 高了对学生语境理解的要求. 复习时应关注
冠词使用的一些特定的场合, 解题时从情景
语意入手, 合理使用规则.
2. 代词 (1) (06/22) My most famous relative of all, ______who really left his mark on America, was Rob Sussel, my great grandfather. A. one B. the one C. he D. someone
(2) (05/34) Unlike watching TV, reading is a highly active process ________ it requires attention as well as memory and imagination. A. until B. but C. unless D. for 解析: for 因为,由于,表示对上文的补充说明. 答案: D
22题考查情态动词; 24, 34题考查短语动
词.
动词是英语中最活跃的词类, 是句子的
高考化学计算解题策略-铜与硝酸的反应
![高考化学计算解题策略-铜与硝酸的反应](https://img.taocdn.com/s3/m/11d587f37d1cfad6195f312b3169a4517723e513.png)
高考化学计算解题策略:铜与硝酸的反应化学计算高考解题策略:铜与硝酸的反应选择合适的方法解决计算问题,不仅可以缩短解决问题的时间,还有助于减少计算过程中的计算量,尽可能减少计算过程中出错的机会。
例如,下一个问题有两种不同的解决方案。
相比之下,不难看出选择合适方法的重要性:1.一定浓度的30 mL硝酸溶液与5.12克铜片反应。
当所有铜片反应后,总共收集到2.24升气体(标准大气压),因此硝酸溶液中的物质浓度至少为() 8摩尔/升,5摩尔/升,10摩尔/升【解析】解决方案1:由于标题中没有标明硝酸是浓硝酸还是稀硝酸,因此无法确定产品。
根据铜和硝酸反应的两个方程式:(1)3Cu 8HNO3(稀释)=3cu (NO3) 22no=4h2o(2) Cu4NO3(浓缩)=Cu (NO3) 22no2=2h2o可以假设反应(1)中的Cu为x mol,那么反应生成的NO气体为2/3xmol,反应消耗的硝酸为8/3x mol,然后可以假设反应(2)中的Cu为y mol,那么反应生成的NO2气体为2y mol,反应消耗的硝酸为4ymol,这样方程可以列为:(x y)64=5.12,[(2/3)x 2y]22.4=2.22 而如果x=0.045mol,y=0.035mol,那么硝酸的消耗量为8/3x 4y=0.26mol,其浓度为(0.26/0.03)mol/L,在8 ~ 9之间,只能选择A。
方案二:根据质量守恒定律,由于铜片只与硝酸完全反应生成Cu2,产物应为硝酸铜,其物质量为5.12/64=0.08摩尔,与原铜片相同。
从产物Cu(NO3)2的化学式可以看出,参与复分解反应提供NO3-的硝酸具有20.08=0.16摩尔;反应的气态产物,无论是NO还是NO2,每个分子都含有一个N原子,所以气体分子总数相当于参与氧化还原反应的硝酸摩尔数,所以每消耗1摩尔硝酸就会产生22.4升气体(可以是NO或NO2,甚至是二者的混合物),而现有气体为2.24升,即0.1摩尔硝酸参与氧化还原反应,所以硝酸的消耗量为0.160.1=【点评】从以上两种方法可以看出,这道题是一道选择题,只要能得出结果就行,不考虑方法和解题标准,而这道题的关键点在于能否巧妙地应用质量守恒定律,而第二种方法采用守恒法,计算量要少得多,也不需要先将化学方程式罗列平衡,大大缩短了解题时间,避免了不知道用哪个方程式计算硝酸而引起的恐慌。
高考数学必考题型及答题技巧
![高考数学必考题型及答题技巧](https://img.taocdn.com/s3/m/ffa59cad03d276a20029bd64783e0912a2167c93.png)
高考数学必考题型及答题技巧高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;高考数学考试大纲①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
高考数学的解题思路技巧
![高考数学的解题思路技巧](https://img.taocdn.com/s3/m/bfca44f67e192279168884868762caaedc33ba50.png)
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考化学备考 中生百日捷进提升 化学反速率化学平衡类选择题解题方法和策略试题
![高考化学备考 中生百日捷进提升 化学反速率化学平衡类选择题解题方法和策略试题](https://img.taocdn.com/s3/m/92a074e380c758f5f61fb7360b4c2e3f5727252f.png)
魁夺市安身阳光实验学校专题九化学反应速率化学平衡类选择题解题方法策略考试方向化学反应速率与化学平衡类试题时高考的必考点,大多数省份卷以选择题形式考查,少数也与大题形式。
通常考查化学反应反应速率及计算,影响化学反应速率的因素,化学平衡的建立及移动,化学平衡常数,化学平衡相关计算等。
近几年的考查中均出现新的情境,结合等效平衡思想进行分析,相对难度较大。
经典题例析【例题1】【2015重庆卷】羰基硫(COS)可作为一种粮食熏蒸剂,能防止某些昆虫、线虫和真菌的危害。
在恒容密闭容器中,将CO和H2S混合加热并达到下列平衡: CO(g)+H2S(g)COS(g)+H2(g) K=0.1反应前CO物质的量为10mol,平衡后CO物质的量为8mol。
下列说法正确的是()A.升高温度,H2S浓度增加,表明该反应是吸热反应B.通入CO后,正反应速率逐渐增大C.反应前H2S物质的量为7molD.CO的平衡转化率为80%【答案】C【考点定位】本题主要考查影响化学反应速率的因素,反应的热效应,化学平衡的有关计算【名师点晴】化学平衡的计算,可以利用三段式解题,将三组数据依次列出,简单明了,是学生必须掌握的基本技能,本题将影响化学反应速率和化学平衡的因素,反应的热效应,化学平衡转化率的计算联系起来,重点考查化学平衡,试题形式更加常规,学生容易入题,难度在保持基本稳定的同时有所下降。
【例题2】【2015天津卷】某温度下,在2L的密闭容器中,加入1molX(g)和2molY(g)发生反应:X(g)+m Y(g)3Z(g),平衡时,X、Y、Z 的体积分数分别为30%、60%、10%。
在此平衡体系中加入1molZ(g),再次达到平衡后,X、Y、Z的体积分数不变。
下列叙述不正确...的是()A.m=2B.两次平衡的平衡常数相同C.X与Y的平衡转化率之比为1:1D.第二次平衡时,Z的浓度为0.4 mol·L-1【答案】D【考点定位】本题主要考查了化学平衡移动原理及计算。
高考数学核心考点解题方法与策略
![高考数学核心考点解题方法与策略](https://img.taocdn.com/s3/m/ff3ca4f532d4b14e852458fb770bf78a65293a8a.png)
一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键。
二、解题策略选择1.先易后难是所有科目应该遵循的原则,而表现在数学试卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,旧高考解答题的20和21题是难题,22和23是二选一的题目,相对比较容易,新高考解答题的后两题是难题(一般是入口容易,拿高分难,所以也不能完全放弃,应该是争取多拿分)。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,有的难题却可能是自己的容易题。
所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。
2.选择题有其独特的解答方法,首先重点把握选择项也是已知条件,利用选择项之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答题卷上。
多写不会扣分,写了就可能得分。
(1)直接法直接法在选择题中的具体应用就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.由于填空题和选择题相比,缺少选择项的信息,所以常用到直接法进行求解.直接法是解决选择、填空题最基本的方法,适用范围广,只要运算正确必能得到正确答案,解题时要多角度思考问题,善于简化运算过程,快速准确得到结果.直接法具体操作起来就是要熟悉试题所要考查的知识点,从而能快速找到相应的定理、性质、公式等进行求解,比如,数列试题,很明显能看到是等差数列还是等比数列或是两者的综合,如果是等差数列或等比数列,那就快速将等差数列或等比数列的定义(或)、性质(若,则或)、通项公式(或)、前n 项和公式(等差数列、,等比数列)等搬出来看是否适用;如果不能直接看出,只能看出是数列试题,那就说明,需要对条件进行化简或转化了,也可快速进入状态.(2)排除法排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论。
高考常见数学题型及答题技巧
![高考常见数学题型及答题技巧](https://img.taocdn.com/s3/m/b0d99f7283d049649a6658ba.png)
2021高考常见数学题型及答题技巧高考复习面广量大,不少学生感到既畏惧,又无从下手。
同学们如何才能提高复习的针对性和实效性呢?下面来看看高考常见数学题型,相信对你的复习有很大帮助~1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、选择题解答策略近几年来高考数学试题中选择题稳定在14~15道题,分值65分,占总分的43.3%。
高考选择题注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向;使作为中低档题的选择题成为具备较佳区分度的基本题型。
因此能否在选择题上获取高分,对高考数学成绩影响重大。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
迅速是赢得时间获取高分的必要条件。
高考中考生不适应能力型的考试,致使“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应该控制在不超过50分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面,是否达到《考试说明》中的“了解、理解、掌握”三个层次的要求。
历年高考的选择题都采用的是“四选一”型,即选择项中只有一个是正确的。
它包括两个部分:题干,由一个不完整的陈述句或疑问句构成;备选答案,通常由四个选项A、B、C、D组成。
选择题的特殊结构决定了它具有相应的特殊作用与特点:由于选择题不需写出运算、推理等解答过程,在试卷上配有选择题时,可以增加试卷容量,扩大考查知识的覆盖面;阅卷简捷,评分客观,在一定程度上提高了试卷的效度与信度;侧重于考查学生是否能迅速选出正确答案,解题手段不拘常规,有利于考查学生的选择、判断能力;选择支中往往包括学生常犯的概念错误或运算、推理错误,所有具有较大的“迷惑性”。
一般地,解答选择题的策略是:①熟练掌握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
Ⅰ、示范性题组:一、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。
【例1】(96年高考题)若sin2x>cos2x,则x的取值范围是______。
A.{x|2kπ-34π<x<2kπ+π4,k∈Z} B. {x|2kπ+π4<x<2kπ+54π,k∈Z}C. {x|kπ-π4<x<kπ+π4,k∈Z} D. {x|kπ+π4<x<kπ+34π,k∈Z}【解】直接解三角不等式:由sin2x>cos2x得cos2x-sin2x<0,即cos2x<0,所以:π2+2kπ<2x<32π+2kπ,选D;【另解】数形结合法:由已知得|sinx|>|cosx|,画出单位圆:利用三角函数线,可知选D 。
【例2】(96年高考题)设f(x)是(-∞,∞)是的奇函数,f(x +2)=-f(x),当0≤x ≤1时,f(x)=x ,则f(7.5)等于______。
A. 0.5B. -0.5C. 1.5D. -1.5【解】由f(x +2)=-f(x)得f(7.5)=-f(5.5)=f(3.5)=-f(1.5)=f(-0.5),由f(x)是奇函数得f(-0.5)=-f(0.5)=-0.5,所以选B 。
也可由f(x +2)=-f(x),得到周期T =4,所以f(7.5)=f(-0.5)=-f(0.5)=-0.5。
【例3】(87年高考题)七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是_____。
A. 1440B. 3600C. 4320D. 4800【解一】用排除法:七人并排站成一行,总的排法有P 77种,其中甲、乙两人相邻的排法有2×P 66种。
因此,甲、乙两人必需不相邻的排法种数有:P 77-2×P 66=3600,对照后应选B ;【解二】用插空法:P 55×P 62=3600。
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。
直接法适用的范围很广,只要运算正确必能得出正确的答案。
提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
二、 特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。
常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
【例4】(97年高考题)定义在区间(-∞,∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是( )A. ①与④B. ②与③C. ①与③D. ②与④【解】令f(x)=x ,g(x)=|x|,a =2,b =1,则:f(b)-f(-a)=1-(-2)=3, g(a)-g(-b)=2-1=1,得到①式正确;f(a)-f(-b)=2-(-1)=3, g(b)-g(-a)=1-2=-1,得到③式正确。
所以选C 。
【另解】直接法:f(b)-f(-a)=f(b)+f(a),g(a)-g(-b)=g(a)-g(b)=f(a)-f(b),从而①式正确;f(a)-f(-b)=f(a)+f(b),g(b)-g(-a)=g(b)-g(a)=f(b)-f(a),从而③式正确。
所以选C 。
【例5】(85年高考题)如果n 是正偶数,则C n 0+C n 2+…+C nn -2+C n n =______。
A. 2n B. 2n -1 C. 2n -2 D. (n -1)2n -1 【解】用特值法:当n =2时,代入得C 20+C 22=2,排除答案A 、C ;当n =4时,代入得C 40+C 42+C 44=8,排除答案D 。
所以选B 。
【另解】直接法:由二项展开式系数的性质有C n 0+C n 2+…+C n n -2+C n n=2n -1,选B 。
当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得愈简单愈好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。
近几年高考选择题中可用或结合特例法解答的约占30%左右。
三、 筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。
【例6】(95年高考题)已知y =log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是_____。
A. [0,1]B. (1,2]C. (0,2)D. [2,+∞)【解】∵ 2-ax 是在[0,1]上是减函数,所以a>1,排除答案A 、C ;若a =2,由2-ax>0得x<1,这与[0,1]不符合,排除答案C 。
所以选B 。
【例7】(88年高考题)过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是______。
A. y 2=2x -1B. y 2=2x -2C. y 2=-2x +1D. y 2=-2x +2【解】筛选法:由已知可知轨迹曲线的顶点为(1,0),开口向右,由此排除答案A 、C 、D ,所以选B ;【另解】直接法:设过焦点的直线y =k(x -1),则y kx y x =-=⎧⎨⎩142,消y 得: k 2x 2-2(k 2+2)x +k 2=0,中点坐标有x x x k k y k k k k =+=+=+-=⎧⎨⎪⎪⎩⎪⎪12222222212(),消k 得y 2=2x -2,选B 。
筛选法适应于定性型或不易直接求解的选择题。
当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择。
它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。
四、 代入法:将各个选择项逐一代入题设进行检验,从而获得正确判断的方法叫代入法,又称为验证法,即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。
【例8】(97年高考题)函数y=sin(π3-2x)+sin2x 的最小正周期是_____。
A .π2B. πC. 2πD. 4π【解】代入法:f(x+π2)=sin[π3-2(x+π2)]+sin[2(x+π2)]=-f(x),而f(x+π)=sin[π3-2(x+π)]+sin[2(x+π)]=f(x)。
所以应选B;【另解】直接法:y=32cos2x-12sin2x+sin2x=sin(2x+π3),T=π,选B。
【例9】(96年高考题)母线长为1的圆锥体积最大时,其侧面展开图的圆心角ϕ等于_____。
A. 223π B.233π C. 2π D.263π【解】代入法:四个选项依次代入求得r分别为:23、33、22、63,再求得h分别为:73、63、22、33,最后计算体积取最大者,选D。
【另解】直接法:设底面半径r,则V=13πr212-r=23πr2r212-r≤…其中r2=12-r,得到r=23,所以ϕ=2π23/1=263π,选D。
代入法适应于题设复杂,结论简单的选择题。
若能据题意确定代入顺序,则能较大提高解题速度。
五、图解法:据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。
【例10】(97年高考题)椭图C与椭圆()x-392+()y-242=1关于直线x+y=0对称,椭圆C的方程是_____。
A.()x+242+()y+392=1 B.()x-292+()y-342=1C. ()x+29+()y+342=1 D.()x-242+()y-392=1【解】图解法:作出椭圆及对称的椭圆C,由中心及焦点位置,容易得到选A。
【另解】直接法:设椭圆C上动点(x,y),则对称点(-y,-x),代入已知椭圆方程得()--y 392+()--x 242=1,整理即得所求曲线C 方程,所以选A 。
【例11】(87年高考题)在圆x 2+y 2=4上与直线4x +3y -12=0距离最小的点的坐标是_____。